2
|
Carrier B, Beaty D, Meyer M, Blank J, Chou L, DasSarma S, Des Marais D, Eigenbrode J, Grefenstette N, Lanza N, Schuerger A, Schwendner P, Smith H, Stoker C, Tarnas J, Webster K, Bakermans C, Baxter B, Bell M, Benner S, Bolivar Torres H, Boston P, Bruner R, Clark B, DasSarma P, Engelhart A, Gallegos Z, Garvin Z, Gasda P, Green J, Harris R, Hoffman M, Kieft T, Koeppel A, Lee P, Li X, Lynch K, Mackelprang R, Mahaffy P, Matthies L, Nellessen M, Newsom H, Northup D, O'Connor B, Perl S, Quinn R, Rowe L, Sauterey B, Schneegurt M, Schulze-Makuch D, Scuderi L, Spilde M, Stamenković V, Torres Celis J, Viola D, Wade B, Walker C, Wiens R, Williams A, Williams J, Xu J. Mars Extant Life: What's Next? Conference Report. ASTROBIOLOGY 2020; 20:785-814. [PMID: 32466662 PMCID: PMC7307687 DOI: 10.1089/ast.2020.2237] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/24/2020] [Indexed: 05/19/2023]
Abstract
On November 5-8, 2019, the "Mars Extant Life: What's Next?" conference was convened in Carlsbad, New Mexico. The conference gathered a community of actively publishing experts in disciplines related to habitability and astrobiology. Primary conclusions are as follows: A significant subset of conference attendees concluded that there is a realistic possibility that Mars hosts indigenous microbial life. A powerful theme that permeated the conference is that the key to the search for martian extant life lies in identifying and exploring refugia ("oases"), where conditions are either permanently or episodically significantly more hospitable than average. Based on our existing knowledge of Mars, conference participants highlighted four potential martian refugium (not listed in priority order): Caves, Deep Subsurface, Ices, and Salts. The conference group did not attempt to reach a consensus prioritization of these candidate environments, but instead felt that a defensible prioritization would require a future competitive process. Within the context of these candidate environments, we identified a variety of geological search strategies that could narrow the search space. Additionally, we summarized a number of measurement techniques that could be used to detect evidence of extant life (if present). Again, it was not within the scope of the conference to prioritize these measurement techniques-that is best left for the competitive process. We specifically note that the number and sensitivity of detection methods that could be implemented if samples were returned to Earth greatly exceed the methodologies that could be used at Mars. Finally, important lessons to guide extant life search processes can be derived both from experiments carried out in terrestrial laboratories and analog field sites and from theoretical modeling.
Collapse
Affiliation(s)
- B.L. Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - D.W. Beaty
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - J.G. Blank
- NASA Ames Research Center, Moffett Field, California, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - L. Chou
- Georgetown University, Washington, DC, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - S. DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | - N.L. Lanza
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - A.C. Schuerger
- University of Florida/Space Life Sciences Laboratory, Kennedy Space Center, Florida, USA
| | - P. Schwendner
- University of Florida/Space Life Sciences Laboratory, Kennedy Space Center, Florida, USA
| | - H.D. Smith
- NASA Ames Research Center, Moffett Field, California, USA
| | - C.R. Stoker
- NASA Ames Research Center, Moffett Field, California, USA
| | - J.D. Tarnas
- Brown University, Providence, Rhode Island, USA
| | - K.D. Webster
- Planetary Science Institute, Tucson, Arizona, USA
| | - C. Bakermans
- Pennsylvania State University, Altoona, Pennsylvania, USA
| | - B.K. Baxter
- Westminster College, Salt Lake City, Utah, USA
| | - M.S. Bell
- NASA Johnson Space Center, Houston, Texas, USA
| | - S.A. Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida, USA
| | - H.H. Bolivar Torres
- Universidad Nacional Autonoma de Mexico, Coyoacan, Distrito Federal Mexico, Mexico
| | - P.J. Boston
- NASA Astrobiology Institute, NASA Ames Research Center, Moffett Field, California, USA
| | - R. Bruner
- Denver Museum of Nature and Science, Denver, Colorado, USA
| | - B.C. Clark
- Space Science Institute, Littleton, Colorado, USA
| | - P. DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Z.E. Gallegos
- University of New Mexico, Albuquerque, New Mexico, USA
| | - Z.K. Garvin
- Princeton University, Princeton, New Jersey, USA
| | - P.J. Gasda
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - J.H. Green
- Texas Tech University, Lubbock, Texas, USA
| | - R.L. Harris
- Princeton University, Princeton, New Jersey, USA
| | - M.E. Hoffman
- University of New Mexico, Albuquerque, New Mexico, USA
| | - T. Kieft
- New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | | | - P.A. Lee
- College of Charleston, Charleston, South Carolina, USA
| | - X. Li
- University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - K.L. Lynch
- Lunar and Planetary Institute/USRA, Houston, Texas, USA
| | - R. Mackelprang
- California State University Northridge, Northridge, California, USA
| | - P.R. Mahaffy
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - L.H. Matthies
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - H.E. Newsom
- University of New Mexico, Albuquerque, New Mexico, USA
| | - D.E. Northup
- University of New Mexico, Albuquerque, New Mexico, USA
| | | | - S.M. Perl
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - R.C. Quinn
- NASA Ames Research Center, Moffett Field, California, USA
| | - L.A. Rowe
- Valparaiso University, Valparaiso, Indiana, USA
| | | | | | | | - L.A. Scuderi
- University of New Mexico, Albuquerque, New Mexico, USA
| | - M.N. Spilde
- University of New Mexico, Albuquerque, New Mexico, USA
| | - V. Stamenković
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - J.A. Torres Celis
- Universidad Nacional Autonoma de Mexico, Coyoacan, Distrito Federal Mexico, Mexico
| | - D. Viola
- NASA Ames Research Center, Moffett Field, California, USA
| | - B.D. Wade
- Michigan State University, East Lansing, Michigan, USA
| | - C.J. Walker
- Delaware State University, Dover, Delaware, USA
| | - R.C. Wiens
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - J.M. Williams
- University of New Mexico, Albuquerque, New Mexico, USA
| | - J. Xu
- University of Texas, El Paso, Texas, USA
| |
Collapse
|
4
|
Uckert K, Chanover NJ, Getty S, Voelz DG, Brinckerhoff WB, McMillan N, Xiao X, Boston PJ, Li X, McAdam A, Glenar DA, Chavez A. The Characterization of Biosignatures in Caves Using an Instrument Suite. ASTROBIOLOGY 2017; 17:1203-1218. [PMID: 29227156 DOI: 10.1089/ast.2016.1568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The search for life and habitable environments on other Solar System bodies is a major motivator for planetary exploration. Due to the difficulty and significance of detecting extant or extinct extraterrestrial life in situ, several independent measurements from multiple instrument techniques will bolster the community's confidence in making any such claim. We demonstrate the detection of subsurface biosignatures using a suite of instrument techniques including IR reflectance spectroscopy, laser-induced breakdown spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy. We focus our measurements on subterranean calcium carbonate field samples, whose biosignatures are analogous to those that might be expected on some high-interest astrobiology targets. In this work, we discuss the feasibility and advantages of using each of the aforementioned instrument techniques for the in situ search for biosignatures and present results on the autonomous characterization of biosignatures using multivariate statistical analysis techniques. Key Words: Biosignature suites-Caves-Mars-Life detection. Astrobiology 17, 1203-1218.
Collapse
Affiliation(s)
- Kyle Uckert
- 1 Department of Astronomy, New Mexico State University , Las Cruces, New Mexico
| | - Nancy J Chanover
- 1 Department of Astronomy, New Mexico State University , Las Cruces, New Mexico
| | | | - David G Voelz
- 3 Department of Electrical and Computer Engineering, New Mexico State University , Las Cruces, New Mexico
| | | | - Nancy McMillan
- 4 Department of Geological Sciences, New Mexico State University , Las Cruces, New Mexico
| | - Xifeng Xiao
- 3 Department of Electrical and Computer Engineering, New Mexico State University , Las Cruces, New Mexico
| | - Penelope J Boston
- 5 NASA Astrobiology Institute , NASA Ames Research Center, Moffett Field, California
| | - Xiang Li
- 6 University of Maryland , Baltimore County, Baltimore, Maryland
| | - Amy McAdam
- 2 NASA/Goddard Space Flight Center , Greenbelt, Maryland
| | - David A Glenar
- 6 University of Maryland , Baltimore County, Baltimore, Maryland
| | - Arriana Chavez
- 4 Department of Geological Sciences, New Mexico State University , Las Cruces, New Mexico
| |
Collapse
|