1
|
Ravula AR, Murray KE, Rao KVR, Pfister BJ, Citron BA, Chandra N. MCC950 Attenuates Microglial NLRP3-Mediated Chronic Neuroinflammation and Memory Impairment in a Rat Model of Repeated Low-Level Blast Exposure. J Neurotrauma 2024; 41:1450-1468. [PMID: 38269433 DOI: 10.1089/neu.2023.0444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Blast-induced traumatic brain injury is typically regarded as a signature medical concern for military personnel who are exposed to explosive devices in active combat zones. However, soldiers as well as law enforcement personnel may be repeatedly exposed to low-level blasts during training sessions with heavy weaponries as part of combat readiness. Service personnel who sustain neurotrauma from repeated low-level blast (rLLB) exposure do not display overt pathological symptoms immediately but rather develop mild symptoms including cognitive impairments, attention deficits, mood changes, irritability, and sleep disturbances over time. Recently, we developed a rat model of rLLB by applying controlled low-level blast pressures (≤ 70 kPa) repeated five times successively to mimic the pressures experienced by service members. Using this model, we assessed anxiety-like symptoms, motor coordination, and short-term memory as a function of time. We also investigated the role of the NLRP3 inflammasome, a complex involved in chronic microglial activation and pro-inflammatory cytokine interleukin (IL)-1β release, in rLLB-induced neuroinflammation. NLRP3 and caspase-1 protein expression, microglial activation, and IL-1β release were examined as factors likely contributing to these neurobehavioral changes. Animals exposed to rLLB displayed acute and chronic short-term memory impairments and chronic anxiety-like symptoms accompanied by increased microglial activation, NLRP3 expression, and IL-1β release. Treatment with MCC950, an NLRP3 inflammasome complex inhibitor, suppressed microglial activation, reduced NLRP3 expression and IL-1β release, and improved short-term memory deficits after rLLB exposure. Collectively, this study demonstrates that rLLB induces chronic neurobehavioral and neuropathological changes by increasing NLRP3 inflammasome protein expression followed by cytokine IL-1β release.
Collapse
Affiliation(s)
- Arun Reddy Ravula
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, New Jersey, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Kathleen E Murray
- Department of Veterans Affairs, Laboratory of Molecular Biology, Research and Development, VA New Jersey Health Care System, East Orange, New Jersey, USA
- Rutgers School of Graduate Studies, Newark, New Jersey, USA
| | - Kakulavarapu V Rama Rao
- Center for Military Psychiatry and Neurosciences, Blast Induced Neurotrauma Group, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Bryan J Pfister
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Bruce A Citron
- Department of Veterans Affairs, Laboratory of Molecular Biology, Research and Development, VA New Jersey Health Care System, East Orange, New Jersey, USA
- Rutgers School of Graduate Studies, Newark, New Jersey, USA
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Namas Chandra
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
2
|
Katchur NJ, Notterman DA. Recent insights from non-mammalian models of brain injuries: an emerging literature. Front Neurol 2024; 15:1378620. [PMID: 38566857 PMCID: PMC10985199 DOI: 10.3389/fneur.2024.1378620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Traumatic brain injury (TBI) is a major global health concern and is increasingly recognized as a risk factor for neurodegenerative diseases including Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). Repetitive TBIs (rTBIs), commonly observed in contact sports, military service, and intimate partner violence (IPV), pose a significant risk for long-term sequelae. To study the long-term consequences of TBI and rTBI, researchers have typically used mammalian models to recapitulate brain injury and neurodegenerative phenotypes. However, there are several limitations to these models, including: (1) lengthy observation periods, (2) high cost, (3) difficult genetic manipulations, and (4) ethical concerns regarding prolonged and repeated injury of a large number of mammals. Aquatic vertebrate model organisms, including Petromyzon marinus (sea lampreys), zebrafish (Danio rerio), and invertebrates, Caenorhabditis elegans (C. elegans), and Drosophila melanogaster (Drosophila), are emerging as valuable tools for investigating the mechanisms of rTBI and tauopathy. These non-mammalian models offer unique advantages, including genetic tractability, simpler nervous systems, cost-effectiveness, and quick discovery-based approaches and high-throughput screens for therapeutics, which facilitate the study of rTBI-induced neurodegeneration and tau-related pathology. Here, we explore the use of non-vertebrate and aquatic vertebrate models to study TBI and neurodegeneration. Drosophila, in particular, provides an opportunity to explore the longitudinal effects of mild rTBI and its impact on endogenous tau, thereby offering valuable insights into the complex interplay between rTBI, tauopathy, and neurodegeneration. These models provide a platform for mechanistic studies and therapeutic interventions, ultimately advancing our understanding of the long-term consequences associated with rTBI and potential avenues for intervention.
Collapse
Affiliation(s)
- Nicole J. Katchur
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
- Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Daniel A. Notterman
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| |
Collapse
|
3
|
Varghese N, Morrison B. Partial Depletion of Microglia Attenuates Long-Term Potentiation Deficits following Repeated Blast Traumatic Brain Injury in Organotypic Hippocampal Slice Cultures. J Neurotrauma 2023; 40:547-560. [PMID: 36508265 PMCID: PMC10081725 DOI: 10.1089/neu.2022.0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Blast-induced traumatic brain injury (bTBI) has been a health concern in both military and civilian populations due to recent military and geopolitical conflicts. Military service members are frequently exposed to repeated bTBI throughout their training and deployment. Our group has previously reported compounding functional deficits as a result of increased number of blast exposures. In this study, we further characterized the decrease in long-term potentiation (LTP) by varying the blast injury severity and the inter-blast interval between two blast exposures. LTP deficits were attenuated with increasing inter-blast intervals. We also investigated changes in microglial activation; expression of CD68 was increased and expression of CD206 was decreased after multiple blast exposures. Expression of macrophage inflammatory protein (MIP)-1α, interleukin (IL)-1β, monocyte chemoattractant protein (MCP)-1, interferon gamma-inducible protein (IP)-10, and regulated on activation, normal T cell expressed and secreted (RANTES) increased, while expression of IL-10 decreased in the acute period after both single and repeated bTBI. By partially depleting microglia prior to injury, LTP deficits after injury were significantly reduced. Treatment with the novel drug, MW-189, prevented LTP deficits when administered immediately following a repeated bTBI and even when administered only for an acute period (24 h) between two blast injuries. These findings could inform the development of therapeutic strategies to treat the neurological deficits of repeated bTBI suggesting that microglia play a major role in functional neuronal deficits and may be a viable therapeutic target to lessen the neurophysiological deficits after bTBI.
Collapse
Affiliation(s)
- Nevin Varghese
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| |
Collapse
|
4
|
Varghese N, Morrison B. Inhibition of cyclooxygenase and EP3 receptor improved long term potentiation in a rat organotypic hippocampal model of repeated blast traumatic brain injury. Neurochem Int 2023; 163:105472. [PMID: 36599378 DOI: 10.1016/j.neuint.2022.105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/09/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Blast-induced traumatic brain injury (bTBI) is a health concern in military service members who are exposed to multiple blasts throughout their training and deployment. Our group has previously reported decreased long term potentiation (LTP) following repeated bTBI in a rat organotypic hippocampal slice culture (OHSC) model. In this study, we investigated changes in inflammatory markers like cyclooxygenase (COX) and tested the efficacy of COX or prostaglandin EP3 receptor (EP3R) inhibitors in attenuating LTP deficits. Expression of COX-2 was increased 48 h following repeated injury, whereas COX-1 expression was unchanged. EP3R expression was upregulated, and cyclic adenosine monophosphate (cAMP) concentration was decreased after repeated blast exposure. Post-traumatic LTP deficits improved after treatment with a COX-1 specific inhibitor, SC-560, a COX-2 specific inhibitor, rofecoxib, a pan-COX inhibitor, ibuprofen, or an EP3R inhibitor, L-798,106. Delayed treatment with ibuprofen and L-798,106 also prevented LTP deficits. These findings suggest that bTBI induced neuroinflammation may be responsible for some functional deficits that we have observed in injured OHSCs. Additionally, COX and EP3R inhibition may be viable therapeutic strategies to reduce neurophysiological deficits after repeated bTBI.
Collapse
Affiliation(s)
- Nevin Varghese
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, 10027, USA.
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, 10027, USA.
| |
Collapse
|
5
|
Siedhoff HR, Chen S, Song H, Cui J, Cernak I, Cifu DX, DePalma RG, Gu Z. Perspectives on Primary Blast Injury of the Brain: Translational Insights Into Non-inertial Low-Intensity Blast Injury. Front Neurol 2022; 12:818169. [PMID: 35095749 PMCID: PMC8794583 DOI: 10.3389/fneur.2021.818169] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Most traumatic brain injuries (TBIs) during military deployment or training are clinically "mild" and frequently caused by non-impact blast exposures. Experimental models were developed to reproduce the biological consequences of high-intensity blasts causing moderate to severe brain injuries. However, the pathophysiological mechanisms of low-intensity blast (LIB)-induced neurological deficits have been understudied. This review provides perspectives on primary blast-induced mild TBI models and discusses translational aspects of LIB exposures as defined by standardized physical parameters including overpressure, impulse, and shock wave velocity. Our mouse LIB-exposure model, which reproduces deployment-related scenarios of open-field blast (OFB), caused neurobehavioral changes, including reduced exploratory activities, elevated anxiety-like levels, impaired nesting behavior, and compromised spatial reference learning and memory. These functional impairments associate with subcellular and ultrastructural neuropathological changes, such as myelinated axonal damage, synaptic alterations, and mitochondrial abnormalities occurring in the absence of gross- or cellular damage. Biochemically, we observed dysfunctional mitochondrial pathways that led to elevated oxidative stress, impaired fission-fusion dynamics, diminished mitophagy, decreased oxidative phosphorylation, and compensated cell respiration-relevant enzyme activity. LIB also induced increased levels of total tau, phosphorylated tau, and amyloid β peptide, suggesting initiation of signaling cascades leading to neurodegeneration. We also compare translational aspects of OFB findings to alternative blast injury models. By scoping relevant recent research findings, we provide recommendations for future preclinical studies to better reflect military-operational and clinical realities. Overall, better alignment of preclinical models with clinical observations and experience related to military injuries will facilitate development of more precise diagnosis, clinical evaluation, treatment, and rehabilitation.
Collapse
Affiliation(s)
- Heather R. Siedhoff
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, MO, United States
| | - Shanyan Chen
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, MO, United States
| | - Hailong Song
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, MO, United States
| | - Jiankun Cui
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, MO, United States
| | - Ibolja Cernak
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, United States
| | - David X. Cifu
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ralph G. DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, United States
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, MO, United States
| |
Collapse
|
6
|
Schumm SN, Gabrieli D, Meaney DF. Plasticity impairment exposes CA3 vulnerability in a hippocampal network model of mild traumatic brain injury. Hippocampus 2022; 32:231-250. [PMID: 34978378 DOI: 10.1002/hipo.23402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022]
Abstract
Proper function of the hippocampus is critical for executing cognitive tasks such as learning and memory. Traumatic brain injury (TBI) and other neurological disorders are commonly associated with cognitive deficits and hippocampal dysfunction. Although there are many existing models of individual subregions of the hippocampus, few models attempt to integrate the primary areas into one system. In this work, we developed a computational model of the hippocampus, including the dentate gyrus, CA3, and CA1. The subregions are represented as an interconnected neuronal network, incorporating well-characterized ex vivo slice electrophysiology into the functional neuron models and well-documented anatomical connections into the network structure. In addition, since plasticity is foundational to the role of the hippocampus in learning and memory as well as necessary for studying adaptation to injury, we implemented spike-timing-dependent plasticity among the synaptic connections. Our model mimics key features of hippocampal activity, including signal frequencies in the theta and gamma bands and phase-amplitude coupling in area CA1. We also studied the effects of spike-timing-dependent plasticity impairment, a potential consequence of TBI, in our model and found that impairment decreases broadband power in CA3 and CA1 and reduces phase coherence between these two subregions, yet phase-amplitude coupling in CA1 remains intact. Altogether, our work demonstrates characteristic hippocampal activity with a scaled network model of spiking neurons and reveals the sensitive balance of plasticity mechanisms in the circuit through one manifestation of mild traumatic injury.
Collapse
Affiliation(s)
- Samantha N Schumm
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Gabrieli
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David F Meaney
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Miller ST, Cooper CF, Elsbernd P, Kerwin J, Mejia-Alvarez R, Willis AM. Localizing Clinical Patterns of Blast Traumatic Brain Injury Through Computational Modeling and Simulation. Front Neurol 2021; 12:547655. [PMID: 34093380 PMCID: PMC8173077 DOI: 10.3389/fneur.2021.547655] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Blast traumatic brain injury is ubiquitous in modern military conflict with significant morbidity and mortality. Yet the mechanism by which blast overpressure waves cause specific intracranial injury in humans remains unclear. Reviewing of both the clinical experience of neurointensivists and neurosurgeons who treated service members exposed to blast have revealed a pattern of injury to cerebral blood vessels, manifested as subarachnoid hemorrhage, pseudoaneurysm, and early diffuse cerebral edema. Additionally, a seminal neuropathologic case series of victims of blast traumatic brain injury (TBI) showed unique astroglial scarring patterns at the following tissue interfaces: subpial glial plate, perivascular, periventricular, and cerebral gray-white interface. The uniting feature of both the clinical and neuropathologic findings in blast TBI is the co-location of injury to material interfaces, be it solid-fluid or solid-solid interface. This motivates the hypothesis that blast TBI is an injury at the intracranial mechanical interfaces. In order to investigate the intracranial interface dynamics, we performed a novel set of computational simulations using a model human head simplified but containing models of gyri, sulci, cerebrospinal fluid (CSF), ventricles, and vasculature with high spatial resolution of the mechanical interfaces. Simulations were performed within a hybrid Eulerian—Lagrangian simulation suite (CTH coupled via Zapotec to Sierra Mechanics). Because of the large computational meshes, simulations required high performance computing resources. Twenty simulations were performed across multiple exposure scenarios—overpressures of 150, 250, and 500 kPa with 1 ms overpressure durations—for multiple blast exposures (front blast, side blast, and wall blast) across large variations in material model parameters (brain shear properties, skull elastic moduli). All simulations predict fluid cavitation within CSF (where intracerebral vasculature reside) with cavitation occurring deep and diffusely into cerebral sulci. These cavitation events are adjacent to high interface strain rates at the subpial glial plate. Larger overpressure simulations (250 and 500kPa) demonstrated intraventricular cavitation—also associated with adjacent high periventricular strain rates. Additionally, models of embedded intraparenchymal vascular structures—with diameters as small as 0.6 mm—predicted intravascular cavitation with adjacent high perivascular strain rates. The co-location of local maxima of strain rates near several of the regions that appear to be preferentially damaged in blast TBI (vascular structures, subpial glial plate, perivascular regions, and periventricular regions) suggest that intracranial interface dynamics may be important in understanding how blast overpressures leads to intracranial injury.
Collapse
Affiliation(s)
- Scott T Miller
- Computational Solid Mechanics & Structural Dynamics, Sandia National Laboratories, Albuquerque, NM, United States
| | - Candice F Cooper
- Terminal Ballistics Technology, Sandia National Laboratories, Albuquerque, NM, United States
| | - Paul Elsbernd
- Department of Neurology, Brooke Army Medical Center, Fort Sam Houston, TX, United States
| | - Joseph Kerwin
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Ricardo Mejia-Alvarez
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Adam M Willis
- Department of Neurology, Brooke Army Medical Center, Fort Sam Houston, TX, United States.,Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
8
|
Almeida MF, Piehler T, Carstens KE, Zhao M, Samadi M, Dudek SM, Norton CJ, Parisian CM, Farizatto KL, Bahr BA. Distinct and dementia-related synaptopathy in the hippocampus after military blast exposures. Brain Pathol 2021; 31:e12936. [PMID: 33629462 PMCID: PMC8412116 DOI: 10.1111/bpa.12936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/19/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Explosive shockwaves, and other types of blast exposures, are linked to injuries commonly associated with military service and to an increased risk for the onset of dementia. Neurological complications following a blast injury, including depression, anxiety, and memory problems, often persist even when brain damage is undetectable. Here, hippocampal explants were exposed to the explosive 1,3,5-trinitro-1,3,5-triazinane (RDX) to identify indicators of blast-induced changes within important neuronal circuitries. Highly controlled detonations of small, 1.7-gram RDX spherical charges reduced synaptic markers known to be downregulated in cognitive disorders, but without causing overt neuronal loss or astroglial responses. In the absence of neuromorphological alterations, levels of synaptophysin, GluA1, and synapsin IIb were significantly diminished within 24 hr, and these synaptic components exhibited progressive reductions following blast exposure as compared to their stable maintenance in control explants. In contrast, labeling of the synapsin IIa isoform remained unaltered, while neuropilar staining of other markers decreased, including synapsin IIb and neural cell adhesion molecule (NCAM) isoforms, along with evidence of NCAM proteolytic breakdown. NCAM180 displayed a distinct decline after the RDX blasts, whereas NCAM140 and NCAM120 exhibited smaller or no deterioration, respectively. Interestingly, the extent of synaptic marker reduction correlated with AT8-positive tau levels, with tau pathology stochastically found in CA1 neurons and their dendrites. The decline in synaptic components was also reflected in the size of evoked postsynaptic currents recorded from CA1 pyramidals, which exhibited a severe and selective reduction. The identified indicators of blast-mediated synaptopathy point to the need for early biomarkers of explosives altering synaptic integrity with links to dementia risk, to advance strategies for both cognitive health and therapeutic monitoring.
Collapse
Affiliation(s)
- Michael F. Almeida
- Biotechnology Research and Training CenterUniversity of North Carolina—PembrokePembrokeNCUSA
| | - Thuvan Piehler
- U.S. Army Research LaboratoryAberdeen Proving GroundMDUSA
| | - Kelly E. Carstens
- Neurobiology LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkNCUSA
- Present address:
Center for Computational Toxicology and ExposureU.S. Environmental Protection AgencyResearch Triangle ParkNCUSA
| | - Meilan Zhao
- Neurobiology LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkNCUSA
| | - Mahsa Samadi
- Neurobiology LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkNCUSA
- Present address:
Faculty of Medicine CentreImperial College LondonLondonUK
| | - Serena M. Dudek
- Neurobiology LaboratoryNational Institute of Environmental Health SciencesResearch Triangle ParkNCUSA
| | - Christopher J. Norton
- Biotechnology Research and Training CenterUniversity of North Carolina—PembrokePembrokeNCUSA
| | - Catherine M. Parisian
- Biotechnology Research and Training CenterUniversity of North Carolina—PembrokePembrokeNCUSA
| | - Karen L.G. Farizatto
- Biotechnology Research and Training CenterUniversity of North Carolina—PembrokePembrokeNCUSA
| | - Ben A. Bahr
- Biotechnology Research and Training CenterUniversity of North Carolina—PembrokePembrokeNCUSA
| |
Collapse
|
9
|
Improvement in cognitive dysfunction following blast induced traumatic brain injury by thymosin α1 in rats: Involvement of inhibition of tau phosphorylation at the Thr205 epitope. Brain Res 2020; 1747:147038. [PMID: 32738231 DOI: 10.1016/j.brainres.2020.147038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
Cognitive impairment is a significant sequela of traumatic brain injury (TBI) especially blast induced traumatic brain injury (bTBI), which is characterized by rapid impairments of learning and memory ability. Although several neuroprotective agents have been postulated as promising drugs for bTBI in animal studies, very few ideal therapeutic options exist to improve cognitive impairment following bTBI. Thymosin α1(Tα1), a 28-amino-acid protein that possesses immunomodulatory functions, has exhibited beneficial effects in the treatment of infectious diseases, immunodeficiency diseases and cancers. However, it remains unclear whether Tα1 has a therapeutic role in bTBI. Thus, we hypothesized that Tα1 administration could reverse the outcomes of bTBI. The blast induced TBI (bTBI) rat model was established with the compressed gas driven blast injury model system. A consecutive Tα1 therapy (in 1 ml saline, twice a day) at a dose of 200 µg/kg or normal saline (NS) (1 ml, twice a day) for 3 days or 2 weeks was performed. Utilizing our newly designed bTBI model, we investigated the beneficial effects of Tα1 therapy on rats exposed to bTBI including: cognitive functions, general histology, regulatory T (Treg) cells, edema, inflammation reactions and the expression and phosphorylation level of tau via Morris Water Maze test (MWM test), HE staining, flow cytometry, brain water content (BWC) calculation, IL-6 assay and Western blotting, respectively. Tα1 treatment seemed to reduce the 24-hour mortality, albeit with no statistical significance. Moreover, Tα1 treatment markedly improved cognitive dysfunction by decreasing the escape latency in the acquisition phase, and increasing the crossing numbers in the probe phase of MWM test. More interestingly, Tα1 significantly inhibited tau phosphorylation at the Thr205 epitope, but not at the Ser404 and Ser262 epitopes. Tα1 increased the percentage of Treg cells and inhibited plasma IL-6 production on 3d post bTBI. Moreover, Tα1 suppressed brain edema as demonstrated by decrease of BWC. However, there was a lack of obvious change in histopathology in the brain upon Tα1 treatment. This is the first study showing that Tα1 improves neurological deficits after bTBI in rats, which is potentially related to the inhibition of tau phosphorylation at the Thr205 epitope, increased Treg cells and decreased inflammatory reactions and brain edema.
Collapse
|
10
|
Honig MG, Dorian CC, Worthen JD, Micetich AC, Mulder IA, Sanchez KB, Pierce WF, Del Mar NA, Reiner A. Progressive long-term spatial memory loss following repeat concussive and subconcussive brain injury in mice, associated with dorsal hippocampal neuron loss, microglial phenotype shift, and vascular abnormalities. Eur J Neurosci 2020; 54:5844-5879. [PMID: 32090401 PMCID: PMC7483557 DOI: 10.1111/ejn.14711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/14/2022]
Abstract
There is considerable concern about the long‐term deleterious effects of repeat head trauma on cognition, but little is known about underlying mechanisms and pathology. To examine this, we delivered four air blasts to the left side of the mouse cranium, a week apart, with an intensity that causes deficits when delivered singly and considered “concussive,” or an intensity that does not yield significant deficits when delivered singly and considered “subconcussive.” Neither repeat concussive nor subconcussive blast produced spatial memory deficits at 4 months, but both yielded deficits at 14 months, and dorsal hippocampal neuron loss. Hierarchical cluster analysis of dorsal hippocampal microglia across the three groups based on morphology and expression of MHCII, CX3CR1, CD68 and IBA1 revealed five distinct phenotypes. Types 1A and 1B microglia were more common in sham mice, linked to better neuron survival and memory, and appeared mildly activated. By contrast, 2B and 2C microglia were more common in repeat concussive and subconcussive mice, linked to poorer neuron survival and memory, and characterized by low expression levels and attenuated processes, suggesting they were de‐activated and dysfunctional. In addition, endothelial cells in repeat concussive mice exhibited reduced CD31 and eNOS expression, which was correlated with the prevalence of type 2B and 2C microglia. Our findings suggest that both repeat concussive and subconcussive head injury engender progressive pathogenic processes, possibly through sustained effects on microglia that over time lead to increased prevalence of dysfunctional microglia, adversely affecting neurons and blood vessels, and thereby driving neurodegeneration and memory decline.
Collapse
Affiliation(s)
- Marcia G Honig
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Conor C Dorian
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - John D Worthen
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anthony C Micetich
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Isabelle A Mulder
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Katelyn B Sanchez
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - William F Pierce
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nobel A Del Mar
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
11
|
A novel model of blast induced traumatic brain injury caused by compressed gas produced sustained cognitive deficits in rats: involvement of phosphorylation of tau at the Thr205 epitope. Brain Res Bull 2020; 157:149-161. [PMID: 32044361 DOI: 10.1016/j.brainresbull.2020.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/05/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
Abstract
Improvised explosive devices (IEDs) represent the leading causes for casualties among civilians and soldiers in the present war (including counter-terrorism). Traumatic brain injury (TBI) caused by IEDs results in different degrees of impairment of cognition and behavior, but the exact brain pathophysiological mechanism following exposure to blast has not been clearly investigated. Here, we sought to establish a rat model of closed-head blast injury using compressed gas to deliver a single blast only to the brain without systemic injuries. The cognitive functions of these bTBI models were assessed by Morris Water Maze test (MWM test). The HE staining, flow cytometry, ELISA and Western Blotting were used to measure the effects of shock wave on general histology, regulatory T (Treg) cells percentage, inflammatory reactions, the expression and phosphorylation level of tau, respectively. In addition, the brain water content and 24 -h mortality were also assessed. As the distance from the blast source increased, the input pressure did not change, the overpressure decreased, and the mortality decreased. Receiver operating characteristic (ROC) curves for predicting 24 -h mortality using peak overpressure fits with the following areas under ROC curves: 0.833. In 2 weeks after blast injury, cognitive tests revealed significantly decreased performance at 20 cm distance from the blast (about 136.44 kPa) as demonstrated by increased escape latency in the acquisition phase, and decreased crossing numbers in the probe phase of MWM test. Interestingly, a single blast exposure (at 20 cm) lead to significantly increased tau phosphorylation at the Thr205 epitope but not at the Ser404 and Ser262 epitopes at 12 h, 24 h, 3d, and 7d after blast injury. Blast decreased the percentage of CD4+T cells, CD8+T cells, Treg cells and lymphocytes at different time points after blast injury, and blast increased the percentage of neutrophils at 12 h after blast injury and significantly increased IL-6 production at 12 h, 24 h and 3d after blast injury. In addition, blast lead to an increase of brain edema at 24 h and 3d after blast injury. However, no obvious alterations in brain gross pathology were found acutely in the blast-exposed rats. In conclusion, we established a rat model of simple craniocerebral blast injury characterized by impairment of cognitive function, Thr205 phosphorylation of tau, decreased Treg cells and increased inflammatory reactions and brain edema. We expect this model may help clarify the underlying mechanism after blast injury and possibly serve as a useful animal model in the development of novel therapeutic and diagnostic approaches.
Collapse
|
12
|
Direct Observation of Low Strain, High Rate Deformation of Cultured Brain Tissue During Primary Blast. Ann Biomed Eng 2019; 48:1196-1206. [DOI: 10.1007/s10439-019-02437-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/08/2019] [Indexed: 10/25/2022]
|
13
|
Harper MM, Woll AW, Evans LP, Delcau M, Akurathi A, Hedberg-Buenz A, Soukup DA, Boehme N, Hefti MM, Dutca LM, Anderson MG, Bassuk AG. Blast Preconditioning Protects Retinal Ganglion Cells and Reveals Targets for Prevention of Neurodegeneration Following Blast-Mediated Traumatic Brian Injury. Invest Ophthalmol Vis Sci 2019; 60:4159-4170. [PMID: 31598627 PMCID: PMC6785841 DOI: 10.1167/iovs.19-27565] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose The purpose of this study was to examine the effect of multiple blast exposures and blast preconditioning on the structure and function of retinal ganglion cells (RGCs), to identify molecular pathways that contribute to RGC loss, and to evaluate the role of kynurenine-3-monooxygenase (KMO) inhibition on RGC structure and function. Methods Mice were subjected to sham blast injury, one single blast injury, or three blast injuries separated by either 1 hour or 1 week, using a blast intensity of 20 PSI. To examine the effect of blast preconditioning, mice were subjected to sham blast injury, one single 20-PSI injury, or three blast injuries separated by 1 week (5 PSI, 5 PSI, 20 PSI and 5 PSI, 5 PSI, 5 PSI). RGC structure was analyzed by optical coherence tomography (OCT) and function was analyzed by the pattern electroretinogram (PERG). BRN3A-positive cells were quantified to determine RGC density. RNA-seq analysis was used to identify transcriptional changes between groups. Results Analysis of mice with multiple blast exposures of 20 PSI revealed no significant differences compared to one 20-pounds per square inch (PSI) exposure using OCT, PERG, or BRN3A cell counts. Analysis of mice exposed to two preconditioning 5-PSI blasts prior to one 20-PSI blast showed preservation of RGC structure and function. RNA-seq analysis of the retina identified multiple transcriptomic changes between conditions. Pharmacologic inhibition of KMO preserved RGC responses compared to vehicle-treated mice. Conclusions Preconditioning protects RGC from blast injury. Protective effects appear to involve changes in KMO activity, whose inhibition is also protective.
Collapse
Affiliation(s)
- Matthew M. Harper
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Addison W. Woll
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Lucy P. Evans
- Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, United States
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States
| | - Michael Delcau
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Abhigna Akurathi
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
| | - Adam Hedberg-Buenz
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States
| | - Dana A. Soukup
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States
| | - Nickolas Boehme
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Marco M. Hefti
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States
| | - Laura M. Dutca
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Michael G. Anderson
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States
| | - Alexander G. Bassuk
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States
- Department of Neurology, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
14
|
Elder GA, Ehrlich ME, Gandy S. Relationship of traumatic brain injury to chronic mental health problems and dementia in military veterans. Neurosci Lett 2019; 707:134294. [PMID: 31141716 DOI: 10.1016/j.neulet.2019.134294] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/25/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) is an unfortunately common event in military life. The conflicts in Iraq and Afghanistan have increased public awareness of TBI in the military. Certain injury mechanisms are relatively unique to the military, the most prominent being blast exposure. Blast-related mild TBI (mTBI) has been of particular concern in the most recent veterans although controversy remains concerning separation of the postconcussion syndrome associated with mTBI from post-traumatic stress disorder. TBI is also a risk factor for the development of neurodegenerative diseases including chronic traumatic encephalopathy (CTE) and Alzheimer's disease (AD). AD, TBI, and CTE are all associated with chronic inflammation. Genome wide association studies (GWAS) have identified multiple genetic loci associated with AD that implicate inflammation and - in particular microglia - as key modulators of the AD- and TBI-related degenerative processes. At the molecular level, recent studies have identified TREM2 and TYROBP/DAP12 as components of a key molecular hub linking inflammation and microglia to the pathophysiology of AD and possibly TBI. Evidence concerning the relationship of TBI to chronic mental health problems and dementia is reviewed in the context of its relevance to military veterans.
Collapse
Affiliation(s)
- Gregory A Elder
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; Mount Sinai Alzheimer's Disease Research Center and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; NFL Neurological Care Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
15
|
Swiatkowski P, Sewell E, Sweet ES, Dickson S, Swanson RA, McEwan SA, Cuccolo N, McDonnell ME, Patel MV, Varghese N, Morrison B, Reitz AB, Meaney DF, Firestein BL. Cypin: A novel target for traumatic brain injury. Neurobiol Dis 2018; 119:13-25. [PMID: 30031156 DOI: 10.1016/j.nbd.2018.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Cytosolic PSD-95 interactor (cypin), the primary guanine deaminase in the brain, plays key roles in shaping neuronal circuits and regulating neuronal survival. Despite this pervasive role in neuronal function, the ability for cypin activity to affect recovery from acute brain injury is unknown. A key barrier in identifying the role of cypin in neurological recovery is the absence of pharmacological tools to manipulate cypin activity in vivo. Here, we use a small molecule screen to identify two activators and one inhibitor of cypin's guanine deaminase activity. The primary screen identified compounds that change the initial rate of guanine deamination using a colorimetric assay, and secondary screens included the ability of the compounds to protect neurons from NMDA-induced injury and NMDA-induced decreases in frequency and amplitude of miniature excitatory postsynaptic currents. Hippocampal neurons pretreated with activators preserved electrophysiological function and survival after NMDA-induced injury in vitro, while pretreatment with the inhibitor did not. The effects of the activators were abolished when cypin was knocked down. Administering either cypin activator directly into the brain one hour after traumatic brain injury significantly reduced fear conditioning deficits 5 days after injury, while delivering the cypin inhibitor did not improve outcome after TBI. Together, these data demonstrate that cypin activation is a novel approach for improving outcome after TBI and may provide a new pathway for reducing the deficits associated with TBI in patients.
Collapse
Affiliation(s)
- Przemyslaw Swiatkowski
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA; Graduate Program in Molecular Biosciences, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | - Emily Sewell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6391, USA
| | - Eric S Sweet
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA; Graduate Program in Neurosciences, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | - Samantha Dickson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6391, USA
| | - Rachel A Swanson
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | - Sara A McEwan
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA; Graduate Program in Neurosciences, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | - Nicholas Cuccolo
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | - Mark E McDonnell
- Fox Chase Chemical Diversity Center, Inc., Doylestown, PA 18902, USA
| | - Mihir V Patel
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA; Graduate Program in Neurosciences, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | - Nevin Varghese
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Allen B Reitz
- Fox Chase Chemical Diversity Center, Inc., Doylestown, PA 18902, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6391, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA.
| |
Collapse
|
16
|
Sawyer TW, Ritzel DV, Wang Y, Josey T, Villanueva M, Nelson P, Song Y, Shei Y, Hennes G, Vair C, Parks S, Fan C, McLaws L. Primary Blast Causes Delayed Effects without Cell Death in Shell-Encased Brain Cell Aggregates. J Neurotrauma 2017; 35:174-186. [PMID: 28726571 DOI: 10.1089/neu.2016.4961] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Previous work in this laboratory used underwater explosive exposures to isolate the effects of shock-induced principle stress without shear on rat brain aggregate cultures. The current study has utilized simulated air blast to expose aggregates in suspension and enclosed within a spherical shell, enabling the examination of a much more complex biomechanical insult. Culture medium-filled spheres were exposed to single pulse overpressures of 15-30 psi (∼6-7 msec duration) and measurements within the sphere at defined sites showed complex and spatially dependent pressure changes. When brain aggregates were exposed to similar conditions, no cell death was observed and no changes in several commonly used biomarkers of traumatic brain injury (TBI) were noted. However, similarly to underwater blast, immediate and transient increases in the protein kinase B signaling pathway were observed at early time-points (3 days). In contrast, the oligodendrocyte marker 2',3'-cyclic nucleotide 3'-phosphodiesterase, as well as vascular endothelial growth factor, both displayed markedly delayed (14-28 days) and pressure-dependent responses. The imposition of a spherical shell between the single pulse shock wave and the target brain tissue introduces greatly increased complexity to the insult. This work shows that brain tissue can not only discriminate the nature of the pressure changes it experiences, but that a portion of its response is significantly delayed. These results have mechanistic implications for the study of primary blast-induced TBI and also highlight the importance of rigorously characterizing the actual pressure variations experienced by target tissue in primary blast studies.
Collapse
Affiliation(s)
- Thomas W Sawyer
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | | | - Yushan Wang
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Tyson Josey
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Mercy Villanueva
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Peggy Nelson
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Yanfeng Song
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Yimin Shei
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Grant Hennes
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | - Cory Vair
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| | | | - Changyang Fan
- 4 Canada West Biosciences , Camrose, Alberta, Canada
| | - Lori McLaws
- 1 Defence Research and Development Canada, Suffield Research Center , Medicine Hat, Alberta, Canada
| |
Collapse
|
17
|
Vogel EW, Morales FN, Meaney DF, Bass CR, Morrison B. Phosphodiesterase-4 inhibition restored hippocampal long term potentiation after primary blast. Exp Neurol 2017; 293:91-100. [PMID: 28366471 PMCID: PMC6016024 DOI: 10.1016/j.expneurol.2017.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/08/2017] [Accepted: 03/30/2017] [Indexed: 01/03/2023]
Abstract
Due to recent military conflicts and terrorist attacks, blast-induced traumatic brain injury (bTBI) presents a health concern for military and civilian personnel alike. Although secondary blast (penetrating injury) and tertiary blast (inertia-driven brain deformation) are known to be injurious, the effects of primary blast caused by the supersonic shock wave interacting with the skull and brain remain debated. Our group previously reported that in vitro primary blast exposure reduced long-term potentiation (LTP), the electrophysiological correlate of learning and memory, in rat organotypic hippocampal slice cultures (OHSCs) and that primary blast affects key proteins governing LTP. Recent studies have investigated phosphodiesterase-4 (PDE4) inhibition as a therapeutic strategy for reducing LTP deficits following inertia-driven TBI. We investigated the therapeutic potential of PDE4 inhibitors, specifically roflumilast, to ameliorate primary blast-induced deficits in LTP. We found that roflumilast at concentrations of 1nM or greater prevented deficits in neuronal plasticity measured 24h post-injury. We also observed a therapeutic window of at least 6h, but <23h. Additionally, we investigated molecular mechanisms that could elucidate this therapeutic effect. Roflumilast treatment (1nM delivered 6h post-injury) significantly increased total AMPA glutamate receptor 1 (GluR1) subunit expression, phosphorylation of the GluR1 subunit at the serine-831 site, and phosphorylation of stargazin at the serine-239/240 site upon LTP induction, measured 24h following injury. Roflumilast treatment significantly increased PSD-95 regardless of LTP induction. These findings indicate that further investigation into the translation of PDE4 inhibition as a therapy following bTBI is warranted.
Collapse
Affiliation(s)
- Edward W Vogel
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Fatima N Morales
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cameron R Bass
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, USA
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
18
|
Kawata K, Rubin LH, Takahagi M, Lee JH, Sim T, Szwanki V, Bellamy A, Tierney R, Langford D. Subconcussive Impact-Dependent Increase in Plasma S100β Levels in Collegiate Football Players. J Neurotrauma 2017; 34:2254-2260. [PMID: 28181857 DOI: 10.1089/neu.2016.4786] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The current study investigates whether repetitive subconcussive impacts cause changes in plasma S100β levels, and also tests the associations between S100β changes and frequency/magnitude of impacts sustained. This prospective study of 22 Division-I collegiate football players included baseline and pre-season practices (one helmet-only and four full-gear). Blood samples were obtained and assessed for S100β levels at baseline and pre- to post-practices; symptom scores were assessed at each time-point. An accelerometer-embedded mouthguard was employed to measure the number of impacts (hits), peak linear acceleration (PLA), and peak rotational acceleration (PRA). Because we observed a distinct gap in impact exposure (hits, PLA, and PRA), players were clustered into lower (n = 7) or higher (n = 15) impact groups based on the sum of impact kinematics from all five practices. S100β levels significantly changed across the study duration. Although S100β levels remained stable from baseline to all pre-practice values, statistically significant acute increases in S100β levels were observed in all post-practice measures compared with the respective pre-practice values (range: 133-246% in the overall sample). Greater number of hits, sum of PLA, and sum of PRA were significantly associated with greater acute increases in S100β levels. There were significant differences in head impact kinematics between lower and higher impact groups (hits, 6 vs. 43 [Mlower - Mhigher = 35, p < 0.001]; PLA, 99.4 vs. 1148.5 g [Mlower - Mhigher = 1049.1, p < 0.001]; PRA, 7589 vs. 68,259 rad/s2 [Mlower - Mhigher = 60,670, p < 0.001]). Players in the higher impact group showed consistently greater increases in plasma S100β levels, but not symptom scores, at each post-practice than the lower impact group. Collectively, these data suggest that although players continued to play without noticeable change in symptoms, a brain-enriched serological factor suggests an acute burden from head impacts. Assessing the effects of repetitive subconcussive head impacts on acute changes in S100β levels may be a clinically useful blood biomarker in tracking real-time acute brain damage in collegiate football players.
Collapse
Affiliation(s)
- Keisuke Kawata
- 1 Department of Neuroscience, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania.,2 Department of Kinesiology, Indiana University , Bloomington, Indiana
| | - Leah H Rubin
- 3 Department of Psychiatry, University of Illinois at Chicago , Chicago, Illinois
| | - Masahiro Takahagi
- 4 Department of Athletics, Temple University , Philadelphia, Pennsylvania
| | - Jong Hyun Lee
- 1 Department of Neuroscience, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania
| | - Thomas Sim
- 5 Department of Kinesiology, Temple University , Philadelphia, Pennsylvania
| | - Victor Szwanki
- 4 Department of Athletics, Temple University , Philadelphia, Pennsylvania
| | - Al Bellamy
- 4 Department of Athletics, Temple University , Philadelphia, Pennsylvania
| | - Ryan Tierney
- 5 Department of Kinesiology, Temple University , Philadelphia, Pennsylvania
| | - Dianne Langford
- 1 Department of Neuroscience, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Miller AP, Shah AS, Aperi BV, Kurpad SN, Stemper BD, Glavaski-Joksimovic A. Acute death of astrocytes in blast-exposed rat organotypic hippocampal slice cultures. PLoS One 2017; 12:e0173167. [PMID: 28264063 PMCID: PMC5338800 DOI: 10.1371/journal.pone.0173167] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 02/16/2017] [Indexed: 01/06/2023] Open
Abstract
Blast traumatic brain injury (bTBI) affects civilians, soldiers, and veterans worldwide and presents significant health concerns. The mechanisms of neurodegeneration following bTBI remain elusive and current therapies are largely ineffective. It is important to better characterize blast-evoked cellular changes and underlying mechanisms in order to develop more effective therapies. In the present study, our group utilized rat organotypic hippocampal slice cultures (OHCs) as an in vitro system to model bTBI. OHCs were exposed to either 138 ± 22 kPa (low) or 273 ± 23 kPa (high) overpressures using an open-ended helium-driven shock tube, or were assigned to sham control group. At 2 hours (h) following injury, we have characterized the astrocytic response to a blast overpressure. Immunostaining against the astrocytic marker glial fibrillary acidic protein (GFAP) revealed acute shearing and morphological changes in astrocytes, including clasmatodendrosis. Moreover, overlap of GFAP immunostaining and propidium iodide (PI) indicated astrocytic death. Quantification of the number of dead astrocytes per counting area in the hippocampal cornu Ammonis 1 region (CA1), demonstrated a significant increase in dead astrocytes in the low- and high-blast, compared to sham control OHCs. However only a small number of GFAP-expressing astrocytes were co-labeled with the apoptotic marker Annexin V, suggesting necrosis as the primary type of cell death in the acute phase following blast exposure. Moreover, western blot analyses revealed calpain mediated breakdown of GFAP. The dextran exclusion additionally indicated membrane disruption as a potential mechanism of acute astrocytic death. Furthermore, although blast exposure did not evoke significant changes in glutamate transporter 1 (GLT-1) expression, loss of GLT-1-expressing astrocytes suggests dysregulation of glutamate uptake following injury. Our data illustrate the profound effect of blast overpressure on astrocytes in OHCs at 2 h following injury and suggest increased calpain activity and membrane disruption as potential underlying mechanisms.
Collapse
Affiliation(s)
- Anna P. Miller
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States of America
| | - Alok S. Shah
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States of America
| | - Brandy V. Aperi
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States of America
| | - Shekar N. Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States of America
| | - Brian D. Stemper
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States of America
| | - Aleksandra Glavaski-Joksimovic
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
20
|
Effgen GB, Morrison B. Electrophysiological and Pathological Characterization of the Period of Heightened Vulnerability to Repetitive Injury in an in Vitro Stretch Model. J Neurotrauma 2017; 34:914-924. [DOI: 10.1089/neu.2016.4477] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Gwen B. Effgen
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
21
|
Smith M, Piehler T, Benjamin R, Farizatto KL, Pait MC, Almeida MF, Ghukasyan VV, Bahr BA. Blast waves from detonated military explosive reduce GluR1 and synaptophysin levels in hippocampal slice cultures. Exp Neurol 2016; 286:107-115. [PMID: 27720798 DOI: 10.1016/j.expneurol.2016.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 12/15/2022]
Abstract
Explosives create shockwaves that cause blast-induced neurotrauma, one of the most common types of traumatic brain injury (TBI) linked to military service. Blast-induced TBIs are often associated with reduced cognitive and behavioral functions due to a variety of factors. To study the direct effects of military explosive blasts on brain tissue, we removed systemic factors by utilizing rat hippocampal slice cultures. The long-term slice cultures were briefly sealed air-tight in serum-free medium, lowered into a 37°C water-filled tank, and small 1.7-gram assemblies of cyclotrimethylene trinitramine (RDX) were detonated 15cm outside the tank, creating a distinct shockwave recorded at the culture plate position. Compared to control mock-treated groups of slices that received equal submerge time, 1-3 blast impacts caused a dose-dependent reduction in the AMPA receptor subunit GluR1. While only a small reduction was found in hippocampal slices exposed to a single RDX blast and harvested 1-2days later, slices that received two consecutive RDX blasts 4min apart exhibited a 26-40% reduction in GluR1, and the receptor subunit was further reduced by 64-72% after three consecutive blasts. Such loss correlated with increased levels of HDAC2, a histone deacetylase implicated in stress-induced reduction of glutamatergic transmission. No evidence of synaptic marker recovery was found at 72h post-blast. The presynaptic marker synaptophysin was found to have similar susceptibility as GluR1 to the multiple explosive detonations. In contrast to the synaptic protein reductions, actin levels were unchanged, spectrin breakdown was not detected, and Fluoro-Jade B staining found no indication of degenerating neurons in slices exposed to three RDX blasts, suggesting that small, sub-lethal explosives are capable of producing selective alterations to synaptic integrity. Together, these results indicate that blast waves from military explosive cause signs of synaptic compromise without producing severe neurodegeneration, perhaps explaining the cognitive and behavioral changes in those blast-induced TBI sufferers that have no detectable neuropathology.
Collapse
Affiliation(s)
- Marquitta Smith
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Thuvan Piehler
- U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Richard Benjamin
- U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Karen L Farizatto
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Morgan C Pait
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Michael F Almeida
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Vladimir V Ghukasyan
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA.
| |
Collapse
|
22
|
Beamer M, Tummala SR, Gullotti D, Kopil C, Gorka S, Bass CRD, Morrison B, Cohen AS, Meaney DF. Primary blast injury causes cognitive impairments and hippocampal circuit alterations. Exp Neurol 2016. [PMID: 27246999 DOI: 10.1016/j.expneurol.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Blast-induced traumatic brain injury (bTBI) and its long term consequences are a major health concern among veterans. Despite recent work enhancing our knowledge about bTBI, very little is known about the contribution of the blast wave alone to the observed sequelae. Herein, we isolated its contribution in a mouse model by constraining the animals' heads during exposure to a shockwave (primary blast). Our results show that exposure to primary blast alone results in changes in hippocampus-dependent behaviors that correspond with electrophysiological changes in area CA1 and are accompanied by reactive gliosis. Specifically, five days after exposure, behavior in an open field and performance in a spatial object recognition (SOR) task were significantly different from sham. Network electrophysiology, also performed five days after injury, demonstrated a significant decrease in excitability and increase in inhibitory tone. Immunohistochemistry for GFAP and Iba1 performed ten days after injury showed a significant increase in staining. Interestingly, a threefold increase in the impulse of the primary blast wave did not exacerbate these measures. However, we observed a significant reduction in the contribution of the NMDA receptors to the field EPSP at the highest blast exposure level. Our results emphasize the need to account for the effects of primary blast loading when studying the sequelae of bTBI.
Collapse
Affiliation(s)
- Matthew Beamer
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | - Shanti R Tummala
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | - David Gullotti
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine Kopil
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel Gorka
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | | | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Akiva S Cohen
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David F Meaney
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Effgen GB, Morrison B. Memantine Reduced Cell Death, Astrogliosis, and Functional Deficits in an in vitro Model of Repetitive Mild Traumatic Brain Injury. J Neurotrauma 2016; 34:934-942. [PMID: 27450515 DOI: 10.1089/neu.2016.4528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Clinical studies suggest that athletes with a history of concussion may be at risk for additional mild traumatic brain injury (mTBI), and repetitive exposure to mTBI acutely increases risk for more significant and persistent symptoms and increases future risk for developing neurodegenerative diseases. Currently, symptoms of mTBI are managed with rest and pain medication; there are no drugs approved by the Food and Drug Administration (FDA) that target the biochemical pathology underlying mTBI to treat or prevent acute and long-term effects of repetitive mTBI. Memantine is an FDA-approved drug for treating Alzheimer's disease, and also was shown to be neuroprotective in rodents following a single, moderate to severe TBI. Therefore, we investigated the potential for memantine to mitigate negative outcomes from repetitive mild stretch injury in organotypical hippocampal slice cultures. Samples received two injuries 24 h apart; injury resulted in significant cell death, loss of long-term potentiation (LTP), and astrogliosis compared with naïve, uninjured samples. Delivery of 1.5 μM memantine 1 h following each stretch significantly reduced the effect of injury for all outcome measures, and did not alter those outcome measures that were unaffected by the injury. Therefore, memantine warrants further pre-clinical and clinical investigation for its therapeutic efficacy to prevent cognitive deficits and neuropathology from multiple mTBIs.
Collapse
Affiliation(s)
- Gwen B Effgen
- Department of Biomedical Engineering, Columbia University , New York, New York
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University , New York, New York
| |
Collapse
|
24
|
Beamer M, Tummala SR, Gullotti D, Kopil C, Gorka S, Bass CRD, Morrison B, Cohen AS, Meaney DF. Primary blast injury causes cognitive impairments and hippocampal circuit alterations. Exp Neurol 2016; 283:16-28. [PMID: 27246999 DOI: 10.1016/j.expneurol.2016.05.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/14/2016] [Accepted: 05/20/2016] [Indexed: 11/17/2022]
Abstract
Blast-induced traumatic brain injury (bTBI) and its long term consequences are a major health concern among veterans. Despite recent work enhancing our knowledge about bTBI, very little is known about the contribution of the blast wave alone to the observed sequelae. Herein, we isolated its contribution in a mouse model by constraining the animals' heads during exposure to a shockwave (primary blast). Our results show that exposure to primary blast alone results in changes in hippocampus-dependent behaviors that correspond with electrophysiological changes in area CA1 and are accompanied by reactive gliosis. Specifically, five days after exposure, behavior in an open field and performance in a spatial object recognition (SOR) task were significantly different from sham. Network electrophysiology, also performed five days after injury, demonstrated a significant decrease in excitability and increase in inhibitory tone. Immunohistochemistry for GFAP and Iba1 performed ten days after injury showed a significant increase in staining. Interestingly, a threefold increase in the impulse of the primary blast wave did not exacerbate these measures. However, we observed a significant reduction in the contribution of the NMDA receptors to the field EPSP at the highest blast exposure level. Our results emphasize the need to account for the effects of primary blast loading when studying the sequelae of bTBI.
Collapse
Affiliation(s)
- Matthew Beamer
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | - Shanti R Tummala
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | - David Gullotti
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine Kopil
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel Gorka
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA
| | | | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Akiva S Cohen
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David F Meaney
- Department of Bioengineering(1), University of Pennsylvania, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|