1
|
Dwyer MKR, Amelinez-Robles N, Polsfuss I, Herbert K, Kim C, Varghese N, Parry TJ, Buller B, Verdoorn TA, Billing CB, Morrison B. NTS-105 decreased cell death and preserved long-term potentiation in an in vitro model of moderate traumatic brain injury. Exp Neurol 2024; 371:114608. [PMID: 37949202 DOI: 10.1016/j.expneurol.2023.114608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of hospitalization and death. To mitigate these human costs, the search for effective drugs to treat TBI continues. In the current study, we evaluated the efficacy of the novel neurosteroid, NTS-105, to reduce post-traumatic pathobiology in an in vitro model of moderate TBI that utilizes an organotypic hippocampal slice culture. NTS-105 inhibited activation of the androgen receptor and the mineralocorticoid receptor, partially activated the progesterone B receptor and was not active at the glucocorticoid receptor. Treatment with NTS-105 starting one hour after injury decreased post-traumatic cell death in a dose-dependent manner, with 10 nM NTS-105 being most effective. Post-traumatic administration of 10 nM NTS-105 also prevented deficits in long-term potentiation (LTP) without adversely affecting neuronal activity in naïve cultures. We propose that the high potency pleiotropic action of NTS-105 beneficial effects at multiple receptors (e.g. androgen, mineralocorticoid and progesterone) provides significant mechanistic advantages over native neurosteroids such as progesterone, which lacked clinical success for the treatment of TBI. Our results suggest that this pleiotropic pharmacology may be a promising strategy for the effective treatment of TBI, and future studies should test its efficacy in pre-clinical animal models of TBI.
Collapse
Affiliation(s)
- Mary Kate R Dwyer
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Nicolas Amelinez-Robles
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Isabella Polsfuss
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Keondre Herbert
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Carolyn Kim
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Nevin Varghese
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Tom J Parry
- NeuroTrauma Sciences, LLC, Alpharetta, GA 30009, United States of America
| | - Benjamin Buller
- NeuroTrauma Sciences, LLC, Alpharetta, GA 30009, United States of America
| | - Todd A Verdoorn
- NeuroTrauma Sciences, LLC, Alpharetta, GA 30009, United States of America
| | - Clare B Billing
- BioPharmaWorks, LLC, Groton, CT 06340, United States of America
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America.
| |
Collapse
|
2
|
Varghese N, Morrison B. Inhibition of cyclooxygenase and EP3 receptor improved long term potentiation in a rat organotypic hippocampal model of repeated blast traumatic brain injury. Neurochem Int 2023; 163:105472. [PMID: 36599378 DOI: 10.1016/j.neuint.2022.105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/09/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Blast-induced traumatic brain injury (bTBI) is a health concern in military service members who are exposed to multiple blasts throughout their training and deployment. Our group has previously reported decreased long term potentiation (LTP) following repeated bTBI in a rat organotypic hippocampal slice culture (OHSC) model. In this study, we investigated changes in inflammatory markers like cyclooxygenase (COX) and tested the efficacy of COX or prostaglandin EP3 receptor (EP3R) inhibitors in attenuating LTP deficits. Expression of COX-2 was increased 48 h following repeated injury, whereas COX-1 expression was unchanged. EP3R expression was upregulated, and cyclic adenosine monophosphate (cAMP) concentration was decreased after repeated blast exposure. Post-traumatic LTP deficits improved after treatment with a COX-1 specific inhibitor, SC-560, a COX-2 specific inhibitor, rofecoxib, a pan-COX inhibitor, ibuprofen, or an EP3R inhibitor, L-798,106. Delayed treatment with ibuprofen and L-798,106 also prevented LTP deficits. These findings suggest that bTBI induced neuroinflammation may be responsible for some functional deficits that we have observed in injured OHSCs. Additionally, COX and EP3R inhibition may be viable therapeutic strategies to reduce neurophysiological deficits after repeated bTBI.
Collapse
Affiliation(s)
- Nevin Varghese
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, 10027, USA.
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, 10027, USA.
| |
Collapse
|
3
|
Recent Advancements in In Vitro Models of Traumatic Brain Injury. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Keating CE, Cullen DK. Mechanosensation in traumatic brain injury. Neurobiol Dis 2020; 148:105210. [PMID: 33259894 DOI: 10.1016/j.nbd.2020.105210] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is distinct from other neurological disorders because it is induced by a discrete event that applies extreme mechanical forces to the brain. This review describes how the brain senses, integrates, and responds to forces under both normal conditions and during injury. The response to forces is influenced by the unique mechanical properties of brain tissue, which differ by region, cell type, and sub-cellular structure. Elements such as the extracellular matrix, plasma membrane, transmembrane receptors, and cytoskeleton influence its properties. These same components also act as force-sensors, allowing neurons and glia to respond to their physical environment and maintain homeostasis. However, when applied forces become too large, as in TBI, these components may respond in an aberrant manner or structurally fail, resulting in unique pathological sequelae. This so-called "pathological mechanosensation" represents a spectrum of cellular responses, which vary depending on the overall biomechanical parameters of the injury and may be compounded by repetitive injuries. Such aberrant physical responses and/or damage to cells along with the resulting secondary injury cascades can ultimately lead to long-term cellular dysfunction and degeneration, often resulting in persistent deficits. Indeed, pathological mechanosensation not only directly initiates secondary injury cascades, but this post-physical damage environment provides the context in which these cascades unfold. Collectively, these points underscore the need to use experimental models that accurately replicate the biomechanics of TBI in humans. Understanding cellular responses in context with injury biomechanics may uncover therapeutic targets addressing various facets of trauma-specific sequelae.
Collapse
Affiliation(s)
- Carolyn E Keating
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, USA
| | - D Kacy Cullen
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, USA.
| |
Collapse
|
5
|
Abstract
As awareness on the short-term and long-term consequences of sports-related concussions and repetitive head impacts continues to grow, so too does the necessity to establish biomechanical measures of risk that inform public policy and risk mitigation strategies. A more precise exposure metric is central to establishing relationships among the traumatic experience, risk, and ultimately clinical outcomes. Accurate exposure metrics provide a means to support evidence-informed decisions accelerating public policy mandating brain trauma management through sport modification and safer play.
Collapse
Affiliation(s)
- Clara Karton
- Neurotrauma Impact Science Laboratory, University of Ottawa, A106-200 Lees Avenue, Ottawa, ON K1N 6N5, Canada.
| | - Thomas Blaine Hoshizaki
- Neurotrauma Impact Science Laboratory, University of Ottawa, A106-200 Lees Avenue, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
6
|
Mechanistic Insights of Astrocyte-Mediated Hyperactive Autophagy and Loss of Motor Neuron Function in SOD1 L39R Linked Amyotrophic Lateral Sclerosis. Mol Neurobiol 2020; 57:4117-4133. [PMID: 32676988 DOI: 10.1007/s12035-020-02006-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with no cure. The reports showed the role of nearby astrocytes around the motor neurons as one among the causes of the disease. However, the exact mechanistic insights are not explored so far. Thus, in the present investigations, we employed the induced pluripotent stem cells (iPSCs) of Cu/Zn-SOD1L39R linked ALS patient to convert them into the motor neurons (MNs) and astrocytes. We report that the higher expression of stress granule (SG) marker protein G3BP1, and its co-localization with the mutated Cu/Zn-SOD1L39R protein in patient's MNs and astrocytes are linked with AIF1-mediated upregulation of caspase 3/7 and hyper activated autophagy. We also observe the astrocyte-mediated non-cell autonomous neurotoxicity on MNs in ALS. The secretome of the patient's iPSC-derived astrocytes exerts significant oxidative stress in MNs. The findings suggest the hyperactive status of autophagy in MNs, as witnessed by the co-distribution of LAMP1, P62 and LC3 I/II with the autolysosomes. Conversely, the secretome of normal astrocytes has shown neuroprotection in patient's iPSC-derived MNs. The whole-cell patch-clamp assay confirms our findings at a physiological functional level in MNs. Perhaps for the first time, we are reporting that the MN degeneration in ALS triggered by the hyper-activation of autophagy and induced apoptosis in both cell-autonomous and non-cell autonomous conditions.
Collapse
|
7
|
Hamilton KA, Santhakumar V. Current ex Vivo and in Vitro Approaches to Uncovering Mechanisms of Neurological Dysfunction after Traumatic Brain Injury. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 14:18-24. [PMID: 32548365 PMCID: PMC7297186 DOI: 10.1016/j.cobme.2020.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Traumatic brain injury often leads to progressive alterations at the molecular to circuit levels resulting in epilepsy and memory impairments. Ex vivo and in vitro models have provided a powerful platform for investigating the multimodal alteration after trauma. Recent ex vivo analyses using voltage sensitive dye imaging, optogenetics, and glutamate uncaging have revealed circuit abnormalities following in vivo brain injury. In vitro injury models have enabled examination of early and progressive changes in activity while development of three-dimensional organoids derived from human induced pluripotent stem cells have opened novel avenues for injury research. Here, we highlight recent advances in ex vivo and in vitro systems, focusing on their potential for advancing mechanistic understandings, possible limitations, and implications for therapeutics.
Collapse
Affiliation(s)
- Kelly Andrew Hamilton
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Vijayalakshmi Santhakumar
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
8
|
Omelchenko A, Singh NK, Firestein BL. Current advances in in vitro models of central nervous system trauma. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 14:34-41. [PMID: 32671312 PMCID: PMC7363028 DOI: 10.1016/j.cobme.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CNS trauma is a prominent cause of mortality and morbidity, and although much effort has focused on developing treatments for CNS trauma-related pathologies, little progress has been made. Pre-clinical models of TBI and SCI suffer from significant drawbacks, which result in substantial failures during clinical translation of promising pre-clinical therapies. Here, we review recent advances made in the development of in vitro models of CNS trauma, the promises and drawbacks of current in vitro CNS injury models, and the attributes necessary for future models to accurately mimic the trauma microenvironment and facilitate CNS trauma drug discovery. The goal is to provide insight for the development of future CNS injury models and to aid researchers in selecting effective models for pre-clinical research of trauma therapeutics.
Collapse
Affiliation(s)
- Anton Omelchenko
- Department of Cell Biology and Neuroscience; Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082
- Neuroscience Graduate Program, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082
| | - Nisha K. Singh
- Department of Cell Biology and Neuroscience; Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082
- Molecular Biosciences Graduate Program, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience; Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854-8082
| |
Collapse
|
9
|
Direct Observation of Low Strain, High Rate Deformation of Cultured Brain Tissue During Primary Blast. Ann Biomed Eng 2019; 48:1196-1206. [DOI: 10.1007/s10439-019-02437-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/08/2019] [Indexed: 10/25/2022]
|
10
|
Sempere L, Rodríguez-Rodríguez A, Boyero L, Egea-Guerrero J. Principales modelos experimentales de traumatismo craneoencefálico: de la preclínica a los modelos in vitro. Med Intensiva 2019; 43:362-372. [DOI: 10.1016/j.medin.2018.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 02/08/2023]
|
11
|
Przekwas A, Garimella HT, Tan XG, Chen ZJ, Miao Y, Harrand V, Kraft RH, Gupta RK. Biomechanics of Blast TBI With Time-Resolved Consecutive Primary, Secondary, and Tertiary Loads. Mil Med 2019; 184:195-205. [DOI: 10.1093/milmed/usy344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/29/2018] [Indexed: 12/29/2022] Open
Abstract
Abstract
Blast-induced traumatic brain injury (bTBI) has become a signature casualty of recent military operations. In spite of significant clinical and preclinical TBI research, current understanding of injury mechanisms and short- and long-term outcomes is limited. Mathematical models of bTBI biomechanics may help in better understanding of injury mechanisms and in the development of improved neuroprotective strategies. Until present, bTBI has been analyzed as a single event of a blast pressure wave propagating through the brain. In many bTBI events, the loads on the body and the head are spatially and temporarily distributed, involving the primary intracranial pressure wave, followed by the head rotation and then by head impact on the ground. In such cases, the brain microstructures may experience time/space distributed (consecutive) damage and recovery events. The paper presents a novel multiscale simulation framework that couples the body/brain scale biomechanics with micro-scale mechanobiology to study the effects of micro-damage to neuro-axonal structures. Our results show that the micro-mechanical responses of neuro-axonal structures occur sequentially in time with “damage” and “relaxation” periods in different parts of the brain. A new integrated computational framework is described coupling the brain-scale biomechanics with micro-mechanical damage to axonal and synaptic structures.
Collapse
Affiliation(s)
| | | | - X Gary Tan
- US Naval Research Laboratory, 4555 Overlook Ave., Washington, DC
| | - Z J Chen
- CFD Research Corp., 701 McMillan Way NW, Huntsville, AL
| | - Yuyang Miao
- CFD Research Corp., 701 McMillan Way NW, Huntsville, AL
| | | | - Reuben H Kraft
- Pennsylvania State University, 320 Leonhard Building, University Park, PA
| | - Raj K Gupta
- DoD Blast Program Coordinating Office, US Army MRMC, 504 Scott Street, Fort Detrick, MD
| |
Collapse
|
12
|
Taubman B. Letter to the Editor. Biomechanical vulnerability with second concussion. J Neurosurg Pediatr 2018; 21:95-96. [PMID: 29076797 DOI: 10.3171/2017.5.peds17231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bruce Taubman
- 1Advocare Cherry Hill Pediatric Group, Cherry Hill, NJ; and.,2Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
13
|
Agoston DV, Langford D. Big Data in traumatic brain injury; promise and challenges. Concussion 2017; 2:CNC45. [PMID: 30202589 PMCID: PMC6122694 DOI: 10.2217/cnc-2016-0013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 05/25/2017] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a spectrum disease of overwhelming complexity, the research of which generates enormous amounts of structured, semi-structured and unstructured data. This resulting big data has tremendous potential to be mined for valuable information regarding the "most complex disease of the most complex organ". Big data analyses require specialized big data analytics applications, machine learning and artificial intelligence platforms to reveal associations, trends, correlations and patterns not otherwise realized by current analytical approaches. The intersection of potential data sources between experimental TBI and clinical TBI research presents inherent challenges for setting parameters for the generation of common data elements and to mine existing legacy data that would allow highly translatable big data analyses. In order to successfully utilize big data analyses in TBI, we must be willing to accept the messiness of data, collect and store all data and give up causation for correlation. In this context, coupling the big data approach to established clinical and pre-clinical data sources will transform current practices for triage, diagnosis, treatment and prognosis into highly integrated evidence-based patient care.
Collapse
Affiliation(s)
- Denes V Agoston
- Department of Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD 20814, USA.,Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD 20814, USA.,Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Dianne Langford
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
14
|
Kawata K, Rubin LH, Takahagi M, Lee JH, Sim T, Szwanki V, Bellamy A, Tierney R, Langford D. Subconcussive Impact-Dependent Increase in Plasma S100β Levels in Collegiate Football Players. J Neurotrauma 2017; 34:2254-2260. [PMID: 28181857 DOI: 10.1089/neu.2016.4786] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The current study investigates whether repetitive subconcussive impacts cause changes in plasma S100β levels, and also tests the associations between S100β changes and frequency/magnitude of impacts sustained. This prospective study of 22 Division-I collegiate football players included baseline and pre-season practices (one helmet-only and four full-gear). Blood samples were obtained and assessed for S100β levels at baseline and pre- to post-practices; symptom scores were assessed at each time-point. An accelerometer-embedded mouthguard was employed to measure the number of impacts (hits), peak linear acceleration (PLA), and peak rotational acceleration (PRA). Because we observed a distinct gap in impact exposure (hits, PLA, and PRA), players were clustered into lower (n = 7) or higher (n = 15) impact groups based on the sum of impact kinematics from all five practices. S100β levels significantly changed across the study duration. Although S100β levels remained stable from baseline to all pre-practice values, statistically significant acute increases in S100β levels were observed in all post-practice measures compared with the respective pre-practice values (range: 133-246% in the overall sample). Greater number of hits, sum of PLA, and sum of PRA were significantly associated with greater acute increases in S100β levels. There were significant differences in head impact kinematics between lower and higher impact groups (hits, 6 vs. 43 [Mlower - Mhigher = 35, p < 0.001]; PLA, 99.4 vs. 1148.5 g [Mlower - Mhigher = 1049.1, p < 0.001]; PRA, 7589 vs. 68,259 rad/s2 [Mlower - Mhigher = 60,670, p < 0.001]). Players in the higher impact group showed consistently greater increases in plasma S100β levels, but not symptom scores, at each post-practice than the lower impact group. Collectively, these data suggest that although players continued to play without noticeable change in symptoms, a brain-enriched serological factor suggests an acute burden from head impacts. Assessing the effects of repetitive subconcussive head impacts on acute changes in S100β levels may be a clinically useful blood biomarker in tracking real-time acute brain damage in collegiate football players.
Collapse
Affiliation(s)
- Keisuke Kawata
- 1 Department of Neuroscience, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania.,2 Department of Kinesiology, Indiana University , Bloomington, Indiana
| | - Leah H Rubin
- 3 Department of Psychiatry, University of Illinois at Chicago , Chicago, Illinois
| | - Masahiro Takahagi
- 4 Department of Athletics, Temple University , Philadelphia, Pennsylvania
| | - Jong Hyun Lee
- 1 Department of Neuroscience, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania
| | - Thomas Sim
- 5 Department of Kinesiology, Temple University , Philadelphia, Pennsylvania
| | - Victor Szwanki
- 4 Department of Athletics, Temple University , Philadelphia, Pennsylvania
| | - Al Bellamy
- 4 Department of Athletics, Temple University , Philadelphia, Pennsylvania
| | - Ryan Tierney
- 5 Department of Kinesiology, Temple University , Philadelphia, Pennsylvania
| | - Dianne Langford
- 1 Department of Neuroscience, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Effgen GB, Morrison B. Memantine Reduced Cell Death, Astrogliosis, and Functional Deficits in an in vitro Model of Repetitive Mild Traumatic Brain Injury. J Neurotrauma 2016; 34:934-942. [PMID: 27450515 DOI: 10.1089/neu.2016.4528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Clinical studies suggest that athletes with a history of concussion may be at risk for additional mild traumatic brain injury (mTBI), and repetitive exposure to mTBI acutely increases risk for more significant and persistent symptoms and increases future risk for developing neurodegenerative diseases. Currently, symptoms of mTBI are managed with rest and pain medication; there are no drugs approved by the Food and Drug Administration (FDA) that target the biochemical pathology underlying mTBI to treat or prevent acute and long-term effects of repetitive mTBI. Memantine is an FDA-approved drug for treating Alzheimer's disease, and also was shown to be neuroprotective in rodents following a single, moderate to severe TBI. Therefore, we investigated the potential for memantine to mitigate negative outcomes from repetitive mild stretch injury in organotypical hippocampal slice cultures. Samples received two injuries 24 h apart; injury resulted in significant cell death, loss of long-term potentiation (LTP), and astrogliosis compared with naïve, uninjured samples. Delivery of 1.5 μM memantine 1 h following each stretch significantly reduced the effect of injury for all outcome measures, and did not alter those outcome measures that were unaffected by the injury. Therefore, memantine warrants further pre-clinical and clinical investigation for its therapeutic efficacy to prevent cognitive deficits and neuropathology from multiple mTBIs.
Collapse
Affiliation(s)
- Gwen B Effgen
- Department of Biomedical Engineering, Columbia University , New York, New York
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University , New York, New York
| |
Collapse
|