1
|
Kang DE, Woo JA. Cofilin, a Master Node Regulating Cytoskeletal Pathogenesis in Alzheimer's Disease. J Alzheimers Dis 2020; 72:S131-S144. [PMID: 31594228 PMCID: PMC6971827 DOI: 10.3233/jad-190585] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The defining pathological hallmarks of Alzheimer’s disease (AD) are proteinopathies marked by the amyloid-β (Aβ) peptide and hyperphosphorylated tau. In addition, Hirano bodies and cofilin-actin rods are extensively found in AD brains, both of which are associated with the actin cytoskeleton. The actin-binding protein cofilin known for its actin filament severing, depolymerizing, nucleating, and bundling activities has emerged as a significant player in AD pathogenesis. In this review, we discuss the regulation of cofilin by multiple signaling events impinging on LIM kinase-1 (LIMK1) and/or Slingshot homolog-1 (SSH1) downstream of Aβ. Such pathophysiological signaling pathways impact actin dynamics to regulate synaptic integrity, mitochondrial translocation of cofilin to promote neurotoxicity, and formation of cofilin-actin pathology. Other intracellular signaling proteins, such as β-arrestin, RanBP9, Chronophin, PLD1, and 14-3-3 also impinge on the regulation of cofilin downstream of Aβ. Finally, we discuss the role of activated cofilin as a bridge between actin and microtubule dynamics by displacing tau from microtubules, thereby destabilizing tau-induced microtubule assembly, missorting tau, and promoting tauopathy.
Collapse
Affiliation(s)
- David E Kang
- Byrd Institute and Alzheimer's Center, USF Health Morsani College of Medicine, Tampa, FL, USA.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, USA.,Division of Research, James A. Haley VA Hospital, Tampa, FL, USA
| | - Jung A Woo
- Byrd Institute and Alzheimer's Center, USF Health Morsani College of Medicine, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology, USF Health Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
2
|
Review of PIP2 in Cellular Signaling, Functions and Diseases. Int J Mol Sci 2020; 21:ijms21218342. [PMID: 33172190 PMCID: PMC7664428 DOI: 10.3390/ijms21218342] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/27/2022] Open
Abstract
Phosphoinositides play a crucial role in regulating many cellular functions, such as actin dynamics, signaling, intracellular trafficking, membrane dynamics, and cell-matrix adhesion. Central to this process is phosphatidylinositol bisphosphate (PIP2). The levels of PIP2 in the membrane are rapidly altered by the activity of phosphoinositide-directed kinases and phosphatases, and it binds to dozens of different intracellular proteins. Despite the vast literature dedicated to understanding the regulation of PIP2 in cells over past 30 years, much remains to be learned about its cellular functions. In this review, we focus on past and recent exciting results on different molecular mechanisms that regulate cellular functions by binding of specific proteins to PIP2 or by stabilizing phosphoinositide pools in different cellular compartments. Moreover, this review summarizes recent findings that implicate dysregulation of PIP2 in many diseases.
Collapse
|
3
|
Sala S, Catillon M, Hadzic E, Schaffner-Reckinger E, Van Troys M, Ampe C. The PET and LIM1-2 domains of testin contribute to intramolecular and homodimeric interactions. PLoS One 2017; 12:e0177879. [PMID: 28542564 PMCID: PMC5436826 DOI: 10.1371/journal.pone.0177879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/04/2017] [Indexed: 12/18/2022] Open
Abstract
The focal adhesion protein testin is a modular scaffold and tumour suppressor that consists of an N-terminal cysteine rich (CR) domain, a PET domain of unknown function and three C-terminal LIM domains. Testin has been proposed to have an open and a closed conformation based on the observation that its N-terminal half and C-terminal half directly interact. Here we extend the testin conformational model by demonstrating that testin can also form an antiparallel homodimer. In support of this extended model we determined that the testin region (amino acids 52–233) harbouring the PET domain interacts with the C-terminal LIM1-2 domains in vitro and in cells, and assign a critical role to tyrosine 288 in this interaction.
Collapse
Affiliation(s)
- Stefano Sala
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Marie Catillon
- Cytoskeleton and Cell Plasticity Lab, Life Sciences Research Unit - FSTC, University of Luxembourg, Luxembourg, Luxembourg
| | - Ermin Hadzic
- Cytoskeleton and Cell Plasticity Lab, Life Sciences Research Unit - FSTC, University of Luxembourg, Luxembourg, Luxembourg
| | - Elisabeth Schaffner-Reckinger
- Cytoskeleton and Cell Plasticity Lab, Life Sciences Research Unit - FSTC, University of Luxembourg, Luxembourg, Luxembourg
| | | | - Christophe Ampe
- Department of Biochemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Nejedla M, Li Z, Masser AE, Biancospino M, Spiess M, Mackowiak SD, Friedländer MR, Karlsson R. A Fluorophore Fusion Construct of Human Profilin I with Non-Compromised Poly(L-Proline) Binding Capacity Suitable for Imaging. J Mol Biol 2017; 429:964-976. [DOI: 10.1016/j.jmb.2017.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/06/2016] [Accepted: 01/03/2017] [Indexed: 10/24/2022]
|
5
|
Chronophin coordinates cell leading edge dynamics by controlling active cofilin levels. Proc Natl Acad Sci U S A 2015; 112:E5150-9. [PMID: 26324884 DOI: 10.1073/pnas.1510945112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cofilin, a critical player of actin dynamics, is spatially and temporally regulated to control the direction and force of membrane extension required for cell locomotion. In carcinoma cells, although the signaling pathways regulating cofilin activity to control cell direction have been established, the molecular machinery required to generate the force of the protrusion remains unclear. We show that the cofilin phosphatase chronophin (CIN) spatiotemporally regulates cofilin activity at the cell edge to generate persistent membrane extension. We show that CIN translocates to the leading edge in a PI3-kinase-, Rac1-, and cofilin-dependent manner after EGF stimulation to activate cofilin, promotes actin free barbed end formation, accelerates actin turnover, and enhances membrane protrusion. In addition, we establish that CIN is crucial for the balance of protrusion/retraction events during cell migration. Thus, CIN coordinates the leading edge dynamics by controlling active cofilin levels to promote MTLn3 cell protrusion.
Collapse
|
6
|
Guo CL, Cheng PL. Second messenger signaling for neuronal polarization: cell mechanics-dependent pattern formation. Dev Neurobiol 2014; 75:388-401. [PMID: 25059891 DOI: 10.1002/dneu.22217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 01/13/2023]
Abstract
Neuronal polarization is a critical step in the neuronal morphogenesis. Despite the identification of several evolutionarily conserved factors for neural polarization, the exact mechanisms by which cells initiate and maintain polarity remain to be characterized. Here, we review the recent progress on the roles of second messengers, specifically the cyclic nucleotides and membrane-associated phospholipids, in the initiation, propagation, and integration of polarization signals, and propose an inhibitor-free model for neural polarization. The characteristic features of neuron polarization include the formation of single axon and multiple dendrites. These features involve chemical and mechanical mechanisms such as reaction-diffusion and tug-of-war, by which second messengers can act in concert to initiate and stabilize the cellular asymmetry. Nevertheless, biochemical factors eliciting the long-range inhibition remain ambiguous. Thus, we provide a simple, inhibitor-free model that can incorporate known cytochemical and cytomechanical factors, and produce features of neuronal polarization in environments provided with minimized extracellular regulators.
Collapse
Affiliation(s)
- Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan
| | | |
Collapse
|
7
|
Samstag Y, John I, Wabnitz GH. Cofilin: a redox sensitive mediator of actin dynamics during T-cell activation and migration. Immunol Rev 2013; 256:30-47. [PMID: 24117811 PMCID: PMC3884758 DOI: 10.1111/imr.12115] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cofilin is an actin-binding protein that depolymerizes and/or severs actin filaments. This dual function of cofilin makes it one of the major regulators of actin dynamics important for T-cell activation and migration. The activity of cofilin is spatio-temporally regulated. Its main control mechanisms comprise a molecular toolbox of phospho-, phospholipid, and redox regulation. Phosphorylated cofilin is inactive and represents the dominant cofilin fraction in the cytoplasm of resting human T cells. A fraction of dephosphorylated cofilin is kept inactive at the plasma membrane by binding to phosphatidylinositol 4,5-bisphosphate. Costimulation via the T-cell receptor/CD3 complex (signal 1) together with accessory receptors (signal 2) or triggering through the chemokine SDF1α (stromal cell-derived factor 1α) induce Ras-dependent dephosphorylation of cofilin, which is important for immune synapse formation, T-cell activation, and T-cell migration. Recently, it became evident that cofilin is also highly sensitive for microenvironmental changes, particularly for alterations in the redox milieu. Cofilin is inactivated by oxidation, provoking T-cell hyporesponsiveness or necrotic-like programmed cell death. In contrast, in a reducing environment, even phosphatidylinositol 4,5-bisphosphate-bound cofilin becomes active, leading to actin dynamics in the vicinity of the plasma membrane. In addition to the well-established three signals for T-cell activation, this microenvironmental control of cofilin delivers a modulating signal for T-cell-dependent immune reactions. This fourth modulating signal highly impacts both initial T-cell activation and the effector phase of T-cell-mediated immune responses.
Collapse
Affiliation(s)
- Yvonne Samstag
- Institute for Immunology, Ruprecht-Karls-UniversityHeidelberg, Germany
| | - Isabel John
- Institute for Immunology, Ruprecht-Karls-UniversityHeidelberg, Germany
| | - Guido H Wabnitz
- Institute for Immunology, Ruprecht-Karls-UniversityHeidelberg, Germany
| |
Collapse
|
8
|
Bravo-Cordero JJ, Magalhaes MAO, Eddy RJ, Hodgson L, Condeelis J. Functions of cofilin in cell locomotion and invasion. Nat Rev Mol Cell Biol 2013; 14:405-15. [PMID: 23778968 DOI: 10.1038/nrm3609] [Citation(s) in RCA: 367] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, a consensus has emerged that cofilin severing activity can generate free actin filament ends that are accessible for F-actin polymerization and depolymerization without changing the rate of G-actin association and dissociation at either filament end. The structural basis of actin filament severing by cofilin is now better understood. These results have been integrated with recently discovered mechanisms for cofilin activation in migrating cells, which led to new models for cofilin function that provide insights into how cofilin regulation determines the temporal and spatial control of cell behaviour.
Collapse
Affiliation(s)
- Jose Javier Bravo-Cordero
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| | | | | | | | | |
Collapse
|
9
|
Sun Y, Thapa N, Hedman AC, Anderson RA. Phosphatidylinositol 4,5-bisphosphate: targeted production and signaling. Bioessays 2013; 35:513-22. [PMID: 23575577 DOI: 10.1002/bies.201200171] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI4,5P(2)) is a key lipid signaling molecule that regulates a vast array of biological activities. PI4,5P(2) can act directly as a messenger or can be utilized as a precursor to generate other messengers: inositol trisphosphate, diacylglycerol, or phosphatidylinositol 3,4,5-trisphosphate. PI4,5P(2) interacts with hundreds of different effector proteins. The enormous diversity of PI4,5P(2) effector proteins and the spatio-temporal control of PI4,5P(2) generation allow PI4,5P(2) signaling to control a broad spectrum of cellular functions. PI4,5P(2) is synthesized by phosphatidylinositol phosphate kinases (PIPKs). The array of PIPKs in cells enables their targeting to specific subcellular compartments through interactions with targeting factors that are often PI4,5P(2) effectors. These interactions are a mechanism to define spatial and temporal PI4,5P(2) synthesis and the specificity of PI4,5P(2) signaling. In turn, the regulation of PI4,5P(2) effectors at specific cellular compartments has implications for understanding how PI4,5P(2) controls cellular processes and its role in diseases.
Collapse
Affiliation(s)
- Yue Sun
- University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | | | | | | |
Collapse
|
10
|
Schönichen A, Webb BA, Jacobson MP, Barber DL. Considering protonation as a posttranslational modification regulating protein structure and function. Annu Rev Biophys 2013; 42:289-314. [PMID: 23451893 DOI: 10.1146/annurev-biophys-050511-102349] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Posttranslational modification is an evolutionarily conserved mechanism for regulating protein activity, binding affinity, and stability. Compared with established posttranslational modifications such as phosphorylation or ubiquitination, posttranslational modification by protons within physiological pH ranges is a less recognized mechanism for regulating protein function. By changing the charge of amino acid side chains, posttranslational modification by protons can drive dynamic changes in protein conformation and function. Addition and removal of a proton is rapid and reversible and, in contrast to most other posttranslational modifications, does not require an enzyme. Signaling specificity is achieved by only a minority of sites in proteins titrating within the physiological pH range. Here, we examine the structural mechanisms and functional consequences of proton posttranslational modification of pH-sensing proteins regulating different cellular processes.
Collapse
Affiliation(s)
- André Schönichen
- Department of Cell and Tissue Biology, University of California, San Francisco, USA
| | | | | | | |
Collapse
|
11
|
Alphaherpesviral US3 kinase induces cofilin dephosphorylation to reorganize the actin cytoskeleton. J Virol 2013; 87:4121-6. [PMID: 23365433 DOI: 10.1128/jvi.03107-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The conserved alphaherpesviral serine/threonine kinase US3 causes dramatic actin rearrangements, associated with increased viral spread. Here, we show that US3 of pseudorabies virus (PRV) leads to activation (dephosphorylation) of the central actin regulator cofilin. A mutation that impairs US3 kinase activity and the group I p21-activated kinase inhibitor IPA-3 inhibited US3-mediated cofilin activation. Additionally, expression of phosphomimetic S3D cofilin significantly suppressed the ability of US3 to cause cell projections and cell rounding. In conclusion, the US3 kinase of PRV leads to activation (dephosphorylation) of cofilin, and cofilin contributes to US3-mediated actin rearrangements.
Collapse
|
12
|
Schwab A, Fabian A, Hanley PJ, Stock C. Role of ion channels and transporters in cell migration. Physiol Rev 2013; 92:1865-913. [PMID: 23073633 DOI: 10.1152/physrev.00018.2011] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell motility is central to tissue homeostasis in health and disease, and there is hardly any cell in the body that is not motile at a given point in its life cycle. Important physiological processes intimately related to the ability of the respective cells to migrate include embryogenesis, immune defense, angiogenesis, and wound healing. On the other side, migration is associated with life-threatening pathologies such as tumor metastases and atherosclerosis. Research from the last ≈ 15 years revealed that ion channels and transporters are indispensable components of the cellular migration apparatus. After presenting general principles by which transport proteins affect cell migration, we will discuss systematically the role of channels and transporters involved in cell migration.
Collapse
|
13
|
Martins M, Warren S, Kimberley C, Margineanu A, Peschard P, McCarthy A, Yeo M, Marshall CJ, Dunsby C, French PMW, Katan M. Activity of PLCε contributes to chemotaxis of fibroblasts towards PDGF. J Cell Sci 2012; 125:5758-69. [PMID: 22992460 DOI: 10.1242/jcs.110007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cell chemotaxis, such as migration of fibroblasts towards growth factors during development and wound healing, requires precise spatial coordination of signalling events. Phosphoinositides and signalling enzymes involved in their generation and hydrolysis have been implicated in regulation of chemotaxis; however, the role and importance of specific components remain poorly understood. Here, we demonstrate that phospholipase C epsilon (PLCε) contributes to fibroblast chemotaxis towards platelet-derived growth factor (PDGF-BB). Using PLCe1 null fibroblasts we show that cells deficient in PLCε have greatly reduced directionality towards PDGF-BB without detrimental effect on their basal ability to migrate. Furthermore, we show that in intact fibroblasts, signalling events, such as activation of Rac, are spatially compromised by the absence of PLCε that affects the ability of cells to enlarge their protrusions in the direction of the chemoattractant. By further application of live cell imaging and the use of FRET-based biosensors, we show that generation of Ins(1,4,5)P(3) and recruitment of PLCε are most pronounced in protrusions responding to the PDGF-BB gradient. Furthermore, the phospholipase C activity of PLCε is critical for its role in chemotaxis, consistent with the importance of Ins(1,4,5)P(3) generation and sustained calcium responses in this process. As PLCε has extensive signalling connectivity, using transgenic fibroblasts we ruled out its activation by direct binding to Ras or Rap GTPases, and suggest instead new unexpected links for PLCε in the context of chemotaxis.
Collapse
Affiliation(s)
- Marta Martins
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tondeleir D, Lambrechts A, Müller M, Jonckheere V, Doll T, Vandamme D, Bakkali K, Waterschoot D, Lemaistre M, Debeir O, Decaestecker C, Hinz B, Staes A, Timmerman E, Colaert N, Gevaert K, Vandekerckhove J, Ampe C. Cells lacking β-actin are genetically reprogrammed and maintain conditional migratory capacity. Mol Cell Proteomics 2012; 11:255-71. [PMID: 22448045 DOI: 10.1074/mcp.m111.015099] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Vertebrate nonmuscle cells express two actin isoforms: cytoplasmic β- and γ-actin. Because of the presence and localized translation of β-actin at the leading edge, this isoform is generally accepted to specifically generate protrusive forces for cell migration. Recent evidence also implicates β-actin in gene regulation. Cell migration without β-actin has remained unstudied until recently and it is unclear whether other actin isoforms can compensate for this cytoplasmic function and/or for its nuclear role. Primary mouse embryonic fibroblasts lacking β-actin display compensatory expression of other actin isoforms. Consistent with this preservation of polymerization capacity, β-actin knockout cells have unchanged lamellipodial protrusion rates despite a severe migration defect. To solve this paradox we applied quantitative proteomics revealing a broad genetic reprogramming of β-actin knockout cells. This also explains why reintroducing β-actin in knockout cells does not restore the affected cell migration. Pathway analysis suggested increased Rho-ROCK signaling, consistent with observed phenotypic changes. We therefore developed and tested a model explaining the phenotypes in β-actin knockout cells based on increased Rho-ROCK signaling and increased TGFβ production resulting in increased adhesion and contractility in the knockout cells. Inhibiting ROCK or myosin restores migration of β-actin knockout cells indicating that other actins compensate for β-actin in this process. Consequently, isoactins act redundantly in providing propulsive forces for cell migration, but β-actin has a unique nuclear function, regulating expression on transcriptional and post-translational levels, thereby preventing myogenic differentiation.
Collapse
|
15
|
cAMP regulates DEP domain-mediated binding of the guanine nucleotide exchange factor Epac1 to phosphatidic acid at the plasma membrane. Proc Natl Acad Sci U S A 2012; 109:3814-9. [PMID: 22343288 DOI: 10.1073/pnas.1117599109] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Epac1 is a cAMP-regulated guanine nucleotide exchange factor for the small G protein Rap. Upon cAMP binding, Epac1 undergoes a conformational change that results in its release from autoinhibition. In addition, cAMP induces the translocation of Epac1 from the cytosol to the plasma membrane. This relocalization of Epac1 is required for efficient activation of plasma membrane-located Rap and for cAMP-induced cell adhesion. This translocation requires the Dishevelled, Egl-10, Pleckstrin (DEP) domain, but the molecular entity that serves as the plasma membrane anchor and the possible mechanism of regulated binding remains elusive. Here we show that Epac1 binds directly to phosphatidic acid. Similar to the cAMP-induced Epac1 translocation, this binding is regulated by cAMP and requires the DEP domain. Furthermore, depletion of phosphatidic acid by inhibition of phospholipase D1 prevents cAMP-induced translocation of Epac1 as well as the subsequent activation of Rap at the plasma membrane. Finally, mutation of a single basic residue within a polybasic stretch of the DEP domain, which abolishes translocation, also prevents binding to phosphatidic acid. From these results we conclude that cAMP induces a conformational change in Epac1 that enables DEP domain-mediated binding to phosphatidic acid, resulting in the tethering of Epac1 at the plasma membrane and subsequent activation of Rap.
Collapse
|
16
|
Huyck L, Van Troys M, Ampe C. Phosphosite conservation in single domain orthologs versus paralogs: a way to combine differential regulation with redundant core functions. FEBS Lett 2012; 586:296-302. [PMID: 22265693 DOI: 10.1016/j.febslet.2012.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/04/2012] [Accepted: 01/09/2012] [Indexed: 11/19/2022]
Abstract
Evolutionary conservation for structure function relations is commonly accepted. Here we hypothesize that closely related single domain paralogous proteins, having similar expression profiles and redundant biochemical core functions, additionally evolved to allow and maintain isoform specific differential regulation by single conserved amino acid substitutions. To substantiate this, we considered two families of closely related actin binding proteins combined with data mining of phosphorylated residues in human and mouse proteins. We show that such residues are identical in other orthologs whereas paralogs have a different, but also conserved, non-phosphorylatable residue at the equivalent positions.
Collapse
Affiliation(s)
- Lynn Huyck
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
17
|
Zhang L, Mao YS, Janmey PA, Yin HL. Phosphatidylinositol 4, 5 bisphosphate and the actin cytoskeleton. Subcell Biochem 2012; 59:177-215. [PMID: 22374091 DOI: 10.1007/978-94-007-3015-1_6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Dynamic changes in PM PIP(2) have been implicated in the regulation of many processes that are dependent on actin polymerization and remodeling. PIP(2) is synthesized primarily by the type I phosphatidylinositol 4 phosphate 5 kinases (PIP5Ks), and there are three major isoforms, called a, b and g. There is emerging evidence that these PIP5Ks have unique as well as overlapping functions. This review will focus on the isoform-specific roles of individual PIP5K as they relate to the regulation of the actin cytoskeleton. We will review recent advances that establish PIP(2) as a critical regulator of actin polymerization and cytoskeleton/membrane linkages, and show how binding of cytoskeletal proteins to membrane PIP(2) might alter lateral or transverse movement of lipids to affect raft formation or lipid asymmetry. The mechanisms for specifying localized increase in PIP(2) to regulate dynamic actin remodeling will also be discussed.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, 75390-9040, Dallas, TX, USA
| | | | | | | |
Collapse
|
18
|
Magalhaes MAO, Larson DR, Mader CC, Bravo-Cordero JJ, Gil-Henn H, Oser M, Chen X, Koleske AJ, Condeelis J. Cortactin phosphorylation regulates cell invasion through a pH-dependent pathway. ACTA ACUST UNITED AC 2011; 195:903-20. [PMID: 22105349 PMCID: PMC3257566 DOI: 10.1083/jcb.201103045] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Invadopodia are invasive protrusions with proteolytic activity uniquely found in tumor cells. Cortactin phosphorylation is a key step during invadopodia maturation, regulating Nck1 binding and cofilin activity. The precise mechanism of cortactin-dependent cofilin regulation and the roles of this pathway in invadopodia maturation and cell invasion are not fully understood. We provide evidence that cortactin-cofilin binding is regulated by local pH changes at invadopodia that are mediated by the sodium-hydrogen exchanger NHE1. Furthermore, cortactin tyrosine phosphorylation mediates the recruitment of NHE1 to the invadopodium compartment, where it locally increases the pH to cause the release of cofilin from cortactin. We show that this mechanism involving cortactin phosphorylation, local pH increase, and cofilin activation regulates the dynamic cycles of invadopodium protrusion and retraction and is essential for cell invasion in 3D. Together, these findings identify a novel pH-dependent regulation of cell invasion.
Collapse
Affiliation(s)
- Marco A O Magalhaes
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Johnsson AK, Karlsson R. Synaptotagmin 1 causes phosphatidyl inositol lipid-dependent actin remodeling in cultured non-neuronal and neuronal cells. Exp Cell Res 2011; 318:114-26. [PMID: 22036579 DOI: 10.1016/j.yexcr.2011.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 11/24/2022]
Abstract
Here we demonstrate that a dramatic actin polymerizing activity caused by ectopic expression of the synaptic vesicle protein synaptotagmin 1 that results in extensive filopodia formation is due to the presence of a lysine rich sequence motif immediately at the cytoplasmic side of the transmembrane domain of the protein. This polybasic sequence interacts with anionic phospholipids in vitro, and, consequently, the actin remodeling caused by this sequence is interfered with by expression of a phosphatidyl inositol (4,5)-bisphosphate (PIP2)-targeted phosphatase, suggesting that it intervenes with the function of PIP2-binding actin control proteins. The activity drastically alters the behavior of a range of cultured cells including the neuroblastoma cell line SH-SY5Y and primary cortical mouse neurons, and, since the sequence is conserved also in synaptotagmin 2, it may reflect an important fine-tuning role for these two proteins during synaptic vesicle fusion and neurotransmitter release.
Collapse
Affiliation(s)
- Anna-Karin Johnsson
- Department of Cell Biology, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
20
|
Zhao H, Hakala M, Lappalainen P. ADF/cofilin binds phosphoinositides in a multivalent manner to act as a PIP(2)-density sensor. Biophys J 2010; 98:2327-36. [PMID: 20483342 DOI: 10.1016/j.bpj.2010.01.046] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 01/21/2010] [Accepted: 01/22/2010] [Indexed: 11/27/2022] Open
Abstract
Actin-depolymerizing-factor (ADF)/cofilins have emerged as key regulators of cytoskeletal dynamics in cell motility, morphogenesis, endocytosis, and cytokinesis. The activities of ADF/cofilins are regulated by membrane phospholipid PI(4,5)P(2) in vitro and in cells, but the mechanism of the ADF/cofilin-PI(4,5)P(2) interaction has remained controversial. Recent studies suggested that ADF/cofilins interact with PI(4,5)P(2) through a specific binding pocket, and that this interaction is dependent on pH. Here, we combined systematic mutagenesis with biochemical and spectroscopic methods to elucidate the phosphoinositide-binding mechanism of ADF/cofilins. Our analysis revealed that cofilin does not harbor a specific PI(4,5)P(2)-binding pocket, but instead interacts with PI(4,5)P(2) through a large, positively charged surface of the molecule. Cofilin interacts simultaneously with multiple PI(4,5)P(2) headgroups in a cooperative manner. Consequently, interactions of cofilin with membranes and actin exhibit sharp sensitivity to PI(4,5)P(2) density. Finally, we show that cofilin binding to PI(4,5)P(2) is not sensitive to changes in the pH at physiological salt concentration, although the PI(4,5)P(2)-clustering activity of cofilin is moderately inhibited at elevated pH. Collectively, our data demonstrate that ADF/cofilins bind PI(4,5)P(2) headgroups through a multivalent, cooperative mechanism, and suggest that the actin filament disassembly activity of ADF/cofilin can be accurately regulated by small changes in the PI(4,5)P(2) density at cellular membranes.
Collapse
Affiliation(s)
- Hongxia Zhao
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
21
|
Abstract
There are numerous studies that suggest multiple links between the cellular phosphoinositide system and cancer. As key roles in cancer have been established for PI3K and PTEN - enzymes that regulate the levels of phosphatidylinositol-3,4,5-trisphosphate - compounds targeting this pathway are entering the clinic at a rapid pace. Several other phosphoinositide-modifying enzymes, including phosphoinositide kinases, phosphatases and phospholipase C enzymes, have been implicated in the generation and progression of tumours. Studies of these enzymes are providing new insights into the mechanisms and the extent of their involvement in cancer, highlighting new potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Tom D Bunney
- The Institute of Cancer Research, Section for Cell and Molecular Biology, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | | |
Collapse
|
22
|
ADF/cofilin: a functional node in cell biology. Trends Cell Biol 2010; 20:187-95. [PMID: 20133134 DOI: 10.1016/j.tcb.2010.01.001] [Citation(s) in RCA: 558] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 12/22/2009] [Accepted: 01/05/2010] [Indexed: 12/12/2022]
Abstract
Recent findings have significantly expanded our understanding of the regulation of actin-depolymerizing factor (ADF)/cofilin proteins and the profound multifaceted impact that these well-established regulators of actin dynamics have on cell biology. In this review we discuss new aspects of previously documented regulation, such as phosphorylation, but also cover novel recently established modes of regulation and functions of ADF (also known as destrin)/cofilin. We now understand that their activity responds to a vast array of inputs far greater than previously appreciated and that these proteins not only feed back to the crucially important dynamics of actin, but also to apoptosis cascades, phospholipid metabolism, and gene expression. We argue that this ability to respond to physiological changes by modulating those same changes makes the ADF/cofilin protein family a homeostatic regulator or 'functional node' in cell biology.
Collapse
|