1
|
Biegler MT, Belay K, Wang W, Szialta C, Collier P, Luo JD, Haase B, Gedman GL, Sidhu AV, Harter E, Rivera-López C, Amoako-Boadu K, Fedrigo O, Tilgner HU, Carroll T, Jarvis ED, Keyte AL. Pronounced early differentiation underlies zebra finch gonadal germ cell development. Dev Biol 2025; 517:73-90. [PMID: 39214328 DOI: 10.1016/j.ydbio.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
The diversity of germ cell developmental strategies has been well documented across many vertebrate clades. However, much of our understanding of avian primordial germ cell (PGC) specification and differentiation has derived from only one species, the chicken (Gallus gallus). Of the three major classes of birds, chickens belong to Galloanserae, representing less than 4% of species, while nearly 95% of extant bird species belong to Neoaves. This represents a significant gap in our knowledge of germ cell development across avian species, hampering efforts to adapt genome editing and reproductive technologies developed in chicken to other birds. We therefore applied single-cell RNA sequencing to investigate inter-species differences in germ cell development between chicken and zebra finch (Taeniopygia castanotis), a Neoaves songbird species and a common model of vocal learning. Analysis of early embryonic male and female gonads revealed the presence of two distinct early germ cell types in zebra finch and only one in chicken. Both germ cell types expressed zebra finch Germline Restricted Chromosome (GRC) genes, present only in songbirds among birds. One of the zebra finch germ cell types expressed the canonical PGC markers, as did chicken, but with expression differences in several signaling pathways and biological processes. The second zebra finch germ cell cluster was marked by proliferation and fate determination markers, indicating beginning of differentiation. Notably, these two zebra finch germ cell populations were present in both male and female zebra finch gonads as early as HH25. Using additional chicken developmental stages, similar germ cell heterogeneity was identified in the more developed gonads of females, but not males. Overall, our study demonstrates a substantial heterochrony in zebra finch germ cell development compared to chicken, indicating a richer diversity of avian germ cell developmental strategies than previously known.
Collapse
Affiliation(s)
| | | | - Wei Wang
- The Rockefeller University, New York NY, USA
| | | | | | - Ji-Dung Luo
- The Rockefeller University, New York NY, USA
| | | | | | | | | | | | | | | | | | | | - Erich D Jarvis
- The Rockefeller University, New York NY, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | | |
Collapse
|
2
|
Gulati GS, D'Silva JP, Liu Y, Wang L, Newman AM. Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics. Nat Rev Mol Cell Biol 2025; 26:11-31. [PMID: 39169166 DOI: 10.1038/s41580-024-00768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Single-cell transcriptomics has broadened our understanding of cellular diversity and gene expression dynamics in healthy and diseased tissues. Recently, spatial transcriptomics has emerged as a tool to contextualize single cells in multicellular neighbourhoods and to identify spatially recurrent phenotypes, or ecotypes. These technologies have generated vast datasets with targeted-transcriptome and whole-transcriptome profiles of hundreds to millions of cells. Such data have provided new insights into developmental hierarchies, cellular plasticity and diverse tissue microenvironments, and spurred a burst of innovation in computational methods for single-cell analysis. In this Review, we discuss recent advancements, ongoing challenges and prospects in identifying and characterizing cell states and multicellular neighbourhoods. We discuss recent progress in sample processing, data integration, identification of subtle cell states, trajectory modelling, deconvolution and spatial analysis. Furthermore, we discuss the increasing application of deep learning, including foundation models, in analysing single-cell and spatial transcriptomics data. Finally, we discuss recent applications of these tools in the fields of stem cell biology, immunology, and tumour biology, and the future of single-cell and spatial transcriptomics in biological research and its translation to the clinic.
Collapse
Affiliation(s)
- Gunsagar S Gulati
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Yunhe Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Aaron M Newman
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Cyndari KI, Scorza BM, Zacharias ZR, Pessôa-Pereira D, Strand L, Mahachi K, Oviedo JM, Gibbs L, Butler KL, Ausdal G, Hendricks D, Yahashiri R, Elkins JM, Gulbrandsen T, Peterson AR, Willey MC, Fairfax KC, Petersen CA. Resident synovial macrophages in synovial fluid: Implications for immunoregulation. Clin Immunol 2024; 271:110422. [PMID: 39701169 DOI: 10.1016/j.clim.2024.110422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Resident synovial macrophages (RSMs) are anti-inflammatory, self-renewing macrophages that provide physical immune sequestration of the joint space from the peripheral immune system. Increased permeability of this structure is associated with peripheral immune cells in the synovial fluid (SF). Direct measures of synovial barrier integrity are possible with tissue histology, but after barrier breakdown, if these cells perpetuate or initiate chronic inflammation in SF remains unknown. We sought to identify RSM in human SF as an indirect measure of synovial barrier integrity. To validate findings, we created a novel ex vivo explant model using human synovium. scRNA-seq revealed these SF RSMs upregulated pro-fibrotic and pro-osteoclastic pathways in inflammatory arthritis, but not septic arthritis. Increased frequencies of RSMs in SF was associated with increased sRANKL regardless of underlying pathology. These findings suggest the frequency of RSMs in SF may correlate with synovial barrier damage and in turn, potential damage to joint structures.
Collapse
Affiliation(s)
- Karen I Cyndari
- Department of Emergency Medicine, University of Iowa, Iowa City, IA, United States of America; Center for Emerging Infectious Diseases, United States of America.
| | - Breanna M Scorza
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Zeb R Zacharias
- Human Immunology Core, University of Iowa, Iowa City, IA, United States of America; Holden Comprehensive Cancer Center, Iowa City, IA, United States of America
| | - Danielle Pessôa-Pereira
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Leela Strand
- Harvard University, Cambridge, MA, United States of America
| | - Kurayi Mahachi
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Juan Marcos Oviedo
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Lisa Gibbs
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Katherine L Butler
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States of America
| | - Graham Ausdal
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Dylan Hendricks
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Rika Yahashiri
- Williams College, Williamstown, MA, United States of America
| | - Jacob M Elkins
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States of America
| | - Trevor Gulbrandsen
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States of America
| | - Andrew R Peterson
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States of America
| | - Michael C Willey
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States of America
| | - Keke C Fairfax
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Christine A Petersen
- College of Veterinary Medicine, Ohio State University, OH, United States of America
| |
Collapse
|
4
|
De Simone M, Hoover J, Lau J, Bennett HM, Wu B, Chen C, Menon H, Au-Yeung A, Lear S, Vaidya S, Shi M, Lund JM, Xavier-Magalhães A, Liang Y, Kurdoglu A, O'Gorman WE, Modrusan Z, Le D, Darmanis S. A comprehensive analysis framework for evaluating commercial single-cell RNA sequencing technologies. Nucleic Acids Res 2024:gkae1186. [PMID: 39675380 DOI: 10.1093/nar/gkae1186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
This study examined nine prominent commercially available single-cell RNA sequencing (scRNA-seq) kits across four technology groups. Each kit was characterized using peripheral blood mononuclear cells (PBMCs) from a single donor, which enabled consistent assessment of factors such as analytical performance, protocol duration and cost. The Chromium Fixed RNA Profiling kit from 10× Genomics, with its probe-based RNA detection method, demonstrated the best overall performance. The Rhapsody WTA kit from Becton Dickinson exhibited a balance between performance and cost. Importantly, we introduce the read utilization metric, which differentiates scRNA-seq kits based on the efficiency of converting sequencing reads into usable counts. Thus, read utilization is an important feature that substantially impacts sensitivity and cost. With data from 169, 262 cells, our work provides a comprehensive comparison of commercial scRNA-seq technologies to facilitate the effective implementation of single-cell studies.
Collapse
Affiliation(s)
- Marco De Simone
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Jonathan Hoover
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Julia Lau
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Hayley M Bennett
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Bing Wu
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Cynthia Chen
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Hari Menon
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Amelia Au-Yeung
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Sean Lear
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Samir Vaidya
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Minyi Shi
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Jessica M Lund
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Ana Xavier-Magalhães
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Yuxin Liang
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Ahmet Kurdoglu
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - William E O'Gorman
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Daniel Le
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| | - Spyros Darmanis
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, 94080, CA, USA
| |
Collapse
|
5
|
Cruz-Granados P, Frejo L, Perez-Carpena P, Amor-Dorado JC, Dominguez-Duran E, Fernandez-Nava MJ, Batuecas-Caletrio A, Haro-Hernandez E, Martinez-Martinez M, Lopez-Escamez JA. Multiomic-based immune response profiling in migraine, vestibular migraine and Meniere's disease. Immunology 2024; 173:768-779. [PMID: 39294737 DOI: 10.1111/imm.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024] Open
Abstract
Migraine (MI) is the most common neurological disease, affecting with 20% of the world population. A subset of 25% of MI patients showcase concurrent vestibular symptoms, which may classify as vestibular migraine (VM). Meniere's disease (MD) is a complex inner ear disorder defined by episodes of vertigo associated with tinnitus and sensorineural hearing loss with a significant autoimmune/autoinflammatory contribution, which symptoms overlap with VM. Blood samples from 18 patients with MI (5), VM (5) and MD (8) and 6 controls were collected and compared in a case-control study. Droplet-isolated nuclei from mononuclear cells used to generate scRNAseq and scATACseq data sets from MI, VM and MD. MI and VM have no differences in their immune transcriptome; therefore, they were considered as a single cluster for further analyses. Natural Killer (NK) cells transcriptomic data support a polarisation triggered by Type 1 innate immune cells via the release of interleukin (IL)-12, IL-15 and IL-18. According to the monocyte scRNAseq data, there were two MD clusters, one inactive and one driven by monocytes. The unique pathways of the MI + VM cluster were cellular responses to metal ions, whereas MD monocyte-driven cluster pathways showed responses to biotic stimuli. MI and MD have different immune responses. These findings support that MI and VM have a Type 1 immune lymphoid cell response, and that there are two clusters of MD patients, one inactive and one Monocyte-driven.
Collapse
Affiliation(s)
- Pablo Cruz-Granados
- Meniere Disease Neuroscience Research Program, Faculty of Medicine and Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Lidia Frejo
- Meniere Disease Neuroscience Research Program, Faculty of Medicine and Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Patricia Perez-Carpena
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Department of Otolaryngology, Hospital Universitario San Cecilio, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
| | | | | | - Maria Jose Fernandez-Nava
- Department of Otolaryngology, Hospital Universitario Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Division of Otolaryngology, Department of Surgery, Universidad de Salamanca, Salamanca, Spain
| | - Angel Batuecas-Caletrio
- Department of Otolaryngology, Hospital Universitario Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Division of Otolaryngology, Department of Surgery, Universidad de Salamanca, Salamanca, Spain
| | - Elisheba Haro-Hernandez
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Department of Otorhinolaryngology, Hospital de Baza, Granada, Spain
| | - Marta Martinez-Martinez
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Jose A Lopez-Escamez
- Meniere Disease Neuroscience Research Program, Faculty of Medicine and Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| |
Collapse
|
6
|
Tuddenham JF, Taga M, Haage V, Marshe VS, Roostaei T, White C, Lee AJ, Fujita M, Khairallah A, Zhang Y, Green G, Hyman B, Frosch M, Hopp S, Beach TG, Serrano GE, Corboy J, Habib N, Klein HU, Soni RK, Teich AF, Hickman RA, Alcalay RN, Shneider N, Schneider J, Sims PA, Bennett DA, Olah M, Menon V, De Jager PL. A cross-disease resource of living human microglia identifies disease-enriched subsets and tool compounds recapitulating microglial states. Nat Neurosci 2024; 27:2521-2537. [PMID: 39406950 DOI: 10.1038/s41593-024-01764-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/13/2024] [Indexed: 12/06/2024]
Abstract
Human microglia play a pivotal role in neurological diseases, but we still have an incomplete understanding of microglial heterogeneity, which limits the development of targeted therapies directly modulating their state or function. Here, we use single-cell RNA sequencing to profile 215,680 live human microglia from 74 donors across diverse neurological diseases and CNS regions. We observe a central divide between oxidative and heterocyclic metabolism and identify microglial subsets associated with antigen presentation, motility and proliferation. Specific subsets are enriched in susceptibility genes for neurodegenerative diseases or the disease-associated microglial signature. We validate subtypes in situ with an RNAscope-immunofluorescence pipeline and high-dimensional MERFISH. We also leverage our dataset as a classification resource, finding that induced pluripotent stem cell model systems capture substantial in vivo heterogeneity. Finally, we identify and validate compounds that recapitulate certain subtypes in vitro, including camptothecin, which downregulates the signature of disease-enriched subtypes and upregulates a signature previously associated with Alzheimer's disease.
Collapse
Affiliation(s)
- John F Tuddenham
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY, USA
| | - Mariko Taga
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Verena Haage
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Victoria S Marshe
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Tina Roostaei
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles White
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Annie J Lee
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Masashi Fujita
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anthony Khairallah
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Gilad Green
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bradley Hyman
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthew Frosch
- Neuropathology Service, C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Sarah Hopp
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | | | | | - John Corboy
- Department of Neurology, University of Colorado, and Rocky Mountain Multiple Sclerosis Center at the University of Colorado, Aurora, CO, USA
| | - Naomi Habib
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hans-Ulrich Klein
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Andrew F Teich
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard A Hickman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Neil Shneider
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Eleanor and Lou Gehrig ALS Center, Columbia University Medical Center, New York, NY, USA
| | - Julie Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Marta Olah
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
7
|
Amuso VM, Haas MR, Cooper PO, Chatterjee R, Hafiz S, Salameh S, Gohel C, Mazumder MF, Josephson V, Kleb SS, Khorsandi K, Horvath A, Rahnavard A, Shook BA. Fibroblast-Mediated Macrophage Recruitment Supports Acute Wound Healing. J Invest Dermatol 2024:S0022-202X(24)02956-7. [PMID: 39581458 DOI: 10.1016/j.jid.2024.10.609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024]
Abstract
Epithelial and immune cells have long been appreciated for their contribution to the early immune response after injury; however, much less is known about the role of mesenchymal cells. Using single-nuclei RNA sequencing, we defined changes in gene expression associated with inflammation 1 day after wounding in mouse skin. Compared with those in keratinocytes and myeloid cells, we detected enriched expression of proinflammatory genes in fibroblasts associated with deeper layers of the skin. In particular, SCA1+ fibroblasts were enriched for numerous chemokines, including CCL2, CCL7, and IL-33, compared with SCA1- fibroblasts. Genetic deletion of Ccl2 in fibroblasts resulted in fewer wound-bed macrophages and monocytes during injury-induced inflammation, with reduced revascularization and re-epithelialization during the proliferation phase of healing. These findings highlight the important contribution of fibroblast-derived factors to injury-induced inflammation and the impact of immune cell dysregulation on subsequent tissue repair.
Collapse
Affiliation(s)
- Veronica M Amuso
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - MaryEllen R Haas
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Paula O Cooper
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Ranojoy Chatterjee
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - Sana Hafiz
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Shatha Salameh
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Chiraag Gohel
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - Miguel F Mazumder
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Violet Josephson
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Sarah S Kleb
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Khatereh Khorsandi
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Anelia Horvath
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia, USA
| | - Brett A Shook
- The Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA; The Department of Dermatology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia, USA.
| |
Collapse
|
8
|
Dondi A, Borgsmüller N, Ferreira PF, Haas BJ, Jacob F, Heinzelmann-Schwarz V, Beerenwinkel N. De novo detection of somatic variants in high-quality long-read single-cell RNA sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583775. [PMID: 38496441 PMCID: PMC10942462 DOI: 10.1101/2024.03.06.583775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In cancer, genetic and transcriptomic variations generate clonal heterogeneity, leading to treatment resistance. Long-read single-cell RNA sequencing (LR scRNA-seq) has the potential to detect genetic and transcriptomic variations simultaneously. Here, we present LongSom, a computational workflow leveraging high-quality LR scRNA-seq data to call de novo somatic single-nucleotide variants (SNVs), including in mitochondria (mtSNVs), copy-number alterations (CNAs), and gene fusions, to reconstruct the tumor clonal heterogeneity. Before somatic variants calling, LongSom re-annotates marker gene based cell types using cell mutational profiles. LongSom distinguishes somatic SNVs from noise and germline polymorphisms by applying an extensive set of hard filters and statistical tests. Applying LongSom to human ovarian cancer samples, we detected clinically relevant somatic SNVs that were validated against matched DNA samples. Leveraging somatic SNVs and fusions, LongSom found subclones with different predicted treatment outcomes. In summary, LongSom enables de novo variant detection without the need for normal samples, facilitating the study of cancer evolution, clonal heterogeneity, and treatment resistance.
Collapse
|
9
|
Rodenberg RR, Spadafora D, Fitzpatrick S, Daly G, Lausch R, Barrington RA. γδ T17 Cells Regulate the Acute Antiviral Response of NK Cells in HSV-1-Infected Corneas. Invest Ophthalmol Vis Sci 2024; 65:16. [PMID: 39504049 PMCID: PMC11549926 DOI: 10.1167/iovs.65.13.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/13/2024] [Indexed: 11/09/2024] Open
Abstract
Purpose To determine whether γδ T cells regulate natural killer (NK) cells in the herpes simplex virus 1 (HSV-1)-infected cornea. Methods CD57Bl/6 (wild-type [WT]), TCRδ-/-, and IFN-γ-/- mice were infected intracorneally with HSV-1. TCR-/- mice were treated with IL-17A at 24 hours post-infection (PI), and the WT mice received treatments of fingolimod (FTY720) and anti-IL-17A. At 48 hours PI, corneas were excised, and intracellular staining flow cytometry was performed, as well as multiplex analysis. Additionally, single-cell RNA sequencing (scRNAseq) was done to analyze the transcriptome of NK cells from WT and TCRδ-/- mice. Results In mice lacking γδ T cells, there were significantly fewer NK cells following ocular HSV-1 infection. This reduction of NK cells corresponded with lower levels of cytokines and chemokines associated with the antiviral response. Furthermore, NK cells from WT mice had enriched IL-17A signaling compared to those from TCRδ-/- mice. The NK cell response was partially rescued in TCRδ-/- mice by administration of IL-17A. Correspondingly, the NK cell response could be blunted in WT mice by administration of anti-IL-17A. Finally, IFN-γ-/- mice had significantly less IL-17A production compared to WT mice. Conclusions γδ T17 cells promote NK cell accumulation in HSV-1-infected corneas. In turn, NK cells secrete IFN-γ, which negatively regulates further IL-17A production by γδ T cells.
Collapse
MESH Headings
- Animals
- Female
- Mice
- Cornea/virology
- Cornea/immunology
- Cornea/metabolism
- Cytokines/metabolism
- Disease Models, Animal
- Flow Cytometry
- Herpesvirus 1, Human/physiology
- Interferon-gamma/metabolism
- Interleukin-17/metabolism
- Intraepithelial Lymphocytes/immunology
- Keratitis, Herpetic/immunology
- Keratitis, Herpetic/virology
- Killer Cells, Natural/immunology
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
Collapse
Affiliation(s)
- Rachel R. Rodenberg
- Department of Microbiology & Immunology, University of South Alabama, Mobile, Alabama, United States
| | - Domenico Spadafora
- Flow Cytometry Shared Resources Laboratory, University of South Alabama, Mobile, Alabama, United States
| | - Steffani Fitzpatrick
- Department of Microbiology & Immunology, University of South Alabama, Mobile, Alabama, United States
| | - Grant Daly
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States
| | - Robert Lausch
- Department of Microbiology & Immunology, University of South Alabama, Mobile, Alabama, United States
| | - Robert A. Barrington
- Department of Microbiology & Immunology, University of South Alabama, Mobile, Alabama, United States
- Flow Cytometry Shared Resources Laboratory, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
10
|
Gies SE, Hänzelmann S, Kylies D, Lassé M, Lagies S, Hausmann F, Khatri R, Zolotarev N, Poets M, Zhang T, Demir F, Billing AM, Quaas J, Meister E, Engesser J, Mühlig AK, Lu S, Liu S, Chilla S, Edenhofer I, Czogalla J, Braun F, Kammerer B, Puelles VG, Bonn S, Rinschen MM, Lindenmeyer M, Huber TB. Optimized protocol for the multiomics processing of cryopreserved human kidney tissue. Am J Physiol Renal Physiol 2024; 327:F822-F844. [PMID: 39361723 DOI: 10.1152/ajprenal.00404.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/19/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Biobanking of tissue from clinically obtained kidney biopsies for later analysis with multiomic approaches, such as single-cell technologies, proteomics, metabolomics, and the different types of imaging, is an inevitable step to overcome the need of disease model systems and toward translational medicine. Hence, collection protocols that ensure integration into daily clinical routines by the usage of preservation media that do not require liquid nitrogen but instantly preserve kidney tissue for both clinical and scientific analyses are necessary. Thus, we modified a robust single-nucleus dissociation protocol for kidney tissue stored snap-frozen or in the preservation media RNAlater and CellCover. Using at first porcine kidney tissue as a surrogate for human kidney tissue, we conducted single-nucleus RNA sequencing with the widely recognized Chromium 10X Genomics platform. The resulting datasets from each storage condition were analyzed to identify any potential variations in transcriptomic profiles. Furthermore, we assessed the suitability of the preservation media for additional analysis techniques such as proteomics, metabolomics, and the preservation of tissue architecture for histopathological examination including immunofluorescence staining. In this study, we show that in daily clinical routines, the preservation medium RNAlater facilitates the collection of highly preserved human kidney biopsies and enables further analysis with cutting-edge techniques like single-nucleus RNA sequencing, proteomics, and histopathological evaluation. Only metabolome analysis is currently restricted to snap-frozen tissue. This work will contribute to build tissue biobanks with well-defined cohorts of the respective kidney disease that can be deeply molecularly characterized, opening up new horizons for the identification of unique cells, pathways and biomarkers for the prevention, early identification, and targeted therapy of kidney diseases.NEW & NOTEWORTHY In this study, we addressed challenges in integrating clinically obtained kidney biopsies into everyday clinical routines. Using porcine kidneys, we evaluated preservation media (RNAlater and CellCover) versus snap freezing for multi-omics processing. Our analyses highlighted RNAlater's suitability for single-nucleus RNA sequencing, proteome analysis and histopathological evaluation. Only metabolomics are currently restricted to snap-frozen biopsies. Our research established a cryopreservation protocol that facilitates tissue biobanking for advancing precision medicine in nephrology.
Collapse
Affiliation(s)
- Sydney E Gies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Hänzelmann
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Kylies
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Lassé
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Lagies
- Core Competence Metabolomics (Hilde-Mangold-Haus), University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Freiburg, Germany
| | - Fabian Hausmann
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robin Khatri
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikolay Zolotarev
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuela Poets
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tianran Zhang
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fatih Demir
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus, Denmark
| | - Anja M Billing
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus, Denmark
| | - Josephine Quaas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elisabeth Meister
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Engesser
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne K Mühlig
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shun Lu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shuya Liu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silvia Chilla
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ilka Edenhofer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Czogalla
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernd Kammerer
- Core Competence Metabolomics (Hilde-Mangold-Haus), University of Freiburg, Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus M Rinschen
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus, Denmark
| | - Maja Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Ravindran S, Rau CD. The multifaceted role of mitochondria in cardiac function: insights and approaches. Cell Commun Signal 2024; 22:525. [PMID: 39472951 PMCID: PMC11523909 DOI: 10.1186/s12964-024-01899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
Cardiovascular disease (CVD) remains a global economic burden even in the 21st century with 85% of deaths resulting from heart attacks. Despite efforts in reducing the risk factors, and enhancing pharmacotherapeutic strategies, challenges persist in early identification of disease progression and functional recovery of damaged hearts. Targeting mitochondrial dysfunction, a key player in the pathogenesis of CVD has been less successful due to its role in other coexisting diseases. Additionally, it is the only organelle with an agathokakological function that is a remedy and a poison for the cell. In this review, we describe the origins of cardiac mitochondria and the role of heteroplasmy and mitochondrial subpopulations namely the interfibrillar, subsarcolemmal, perinuclear, and intranuclear mitochondria in maintaining cardiac function and in disease-associated remodeling. The cumulative evidence of mitochondrial retrograde communication with the nucleus is addressed, highlighting the need to study the genotype-phenotype relationships of specific organelle functions with CVD by using approaches like genome-wide association study (GWAS). Finally, we discuss the practicality of computational methods combined with single-cell sequencing technologies to address the challenges of genetic screening in the identification of heteroplasmy and contributory genes towards CVD.
Collapse
Affiliation(s)
- Sriram Ravindran
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA
| | - Christoph D Rau
- Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA.
| |
Collapse
|
12
|
Zhang MG, Gallo RA, Tan CH, Camacho M, Fasih-Ahmad S, Moeyersoms AHM, Sayegh Y, Dubovy SR, Pelaez D, Rong AJ. Single-Cell RNA Profiling of Ocular Adnexal Sebaceous Carcinoma Reveals a Complex Tumor Microenvironment and Identifies New Biomarkers. Am J Ophthalmol 2024; 270:8-18. [PMID: 39393421 DOI: 10.1016/j.ajo.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
PURPOSE Ocular adnexal sebaceous carcinoma (OaSC) is an aggressive malignancy that often necessitates orbital exenteration. Its tumor composition and transcriptional profile remain largely unknown, which poses a significant barrier to medical advances. Here, we report the first in-depth transcriptomic analysis of OaSC at the single-cell resolution and discern mechanisms underlying cancer progression for the discovery of potential globe-sparing immunotherapies, targeted therapies, and biomarkers to guide clinical management. DESIGN Laboratory investigation with a retrospective observational case series. METHODS Single-cell RNA sequencing was performed on six patient specimens: three primary tumors, two tumors with pagetoid spread, and a normal tarsus sample. Cellular components were identified via gene signatures. Molecular pathways underlying tumorigenesis and pagetoid spread were discerned via gene ontology analysis of the differentially expressed genes between specimens. CALML5 immunohistochemistry was performed on an archival cohort of OaSC, squamous cell carcinoma, ocular surface squamous neoplasia (OSSN), and basal cell carcinoma cases. RESULTS Analysis of 29,219 cells from OaSC specimens revealed tumor, immune, and stromal cells. Tumor-infiltrating immune cells include a diversity of cell types, including exhausted T-cell populations. In primary OaSC tumors, mitotic nuclear division and oxidative phosphorylation pathways are upregulated, while lipid biosynthesis and metabolism pathways are downregulated. Epithelial tissue migration pathways are upregulated in tumor cells undergoing pagetoid spread. Single-cell RNA sequencing analyses also revealed that CALML5 is upregulated in OaSC tumor cells. Diffuse nuclear and cytoplasmic CALML5 staining was present in 28 of 28 (100%) OaSC cases. Diffuse nuclear and membranous CALML5 staining was present in 5 of 25 (20%) squamous cell carcinoma and OSSN cases, while diffuse nuclear staining was present in 1 of 12 (8%) basal cell carcinoma cases. CONCLUSIONS This study reveals a complex OaSC tumor microenvironment and confirms that the CALML5 immunohistochemical stain is a sensitive diagnostic marker.
Collapse
Affiliation(s)
- Michelle G Zhang
- From the Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center (M.G.Z., R.A.G., A.H.M., D.P., and A.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Sylvester Comprehensive Cancer Center (M.G.Z., R.A.G., D.P., and A.J.R.), University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ryan A Gallo
- From the Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center (M.G.Z., R.A.G., A.H.M., D.P., and A.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Sylvester Comprehensive Cancer Center (M.G.Z., R.A.G., D.P., and A.J.R.), University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Charissa H Tan
- Department of Ophthalmology (C.H.T., M.C., S.F.A., Y.S., and S.R.D.), Florida Lions Ocular Pathology Laboratory, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Matthew Camacho
- Department of Ophthalmology (C.H.T., M.C., S.F.A., Y.S., and S.R.D.), Florida Lions Ocular Pathology Laboratory, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sohaib Fasih-Ahmad
- Department of Ophthalmology (C.H.T., M.C., S.F.A., Y.S., and S.R.D.), Florida Lions Ocular Pathology Laboratory, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Acadia H M Moeyersoms
- From the Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center (M.G.Z., R.A.G., A.H.M., D.P., and A.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Sylvester Comprehensive Cancer Center (M.G.Z., R.A.G., D.P., and A.J.R.), University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yoseph Sayegh
- Department of Ophthalmology (C.H.T., M.C., S.F.A., Y.S., and S.R.D.), Florida Lions Ocular Pathology Laboratory, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sander R Dubovy
- Department of Ophthalmology (C.H.T., M.C., S.F.A., Y.S., and S.R.D.), Florida Lions Ocular Pathology Laboratory, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Daniel Pelaez
- From the Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center (M.G.Z., R.A.G., A.H.M., D.P., and A.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Sylvester Comprehensive Cancer Center (M.G.Z., R.A.G., D.P., and A.J.R.), University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Andrew J Rong
- From the Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center (M.G.Z., R.A.G., A.H.M., D.P., and A.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Sylvester Comprehensive Cancer Center (M.G.Z., R.A.G., D.P., and A.J.R.), University of Miami Miller School of Medicine, Miami, Florida, USA; Division of Oculofacial Plastic, Reconstructive, and Orbital Surgery (A.J.R.), Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
13
|
Wang H, Torous W, Gong B, Purdom E. Visualizing scRNA-Seq data at population scale with GloScope. Genome Biol 2024; 25:259. [PMID: 39380041 PMCID: PMC11463121 DOI: 10.1186/s13059-024-03398-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
Increasingly, scRNA-Seq studies explore cell populations across different samples and the effect of sample heterogeneity on organism's phenotype. However, relatively few bioinformatic methods have been developed which adequately address the variation between samples for such population-level analyses. We propose a framework for representing the entire single-cell profile of a sample, which we call a GloScope representation. We implement GloScope on scRNA-Seq datasets from study designs ranging from 12 to over 300 samples and demonstrate how GloScope allows researchers to perform essential bioinformatic tasks at the sample-level, in particular visualization and quality control assessment.
Collapse
Affiliation(s)
- Hao Wang
- Division of Biostatistics, University of California, Berkeley, CA, USA
| | - William Torous
- Department of Statistics, University of California, Berkeley, CA, USA
| | - Boying Gong
- Division of Biostatistics, University of California, Berkeley, CA, USA
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
14
|
Gibson A, Ram R, Gangula R, Li Y, Mukherjee E, Palubinsky AM, Campbell CN, Thorne M, Konvinse KC, Choshi P, Deshpande P, Pedretti S, Fear MW, Wood FM, O'Neil RT, Wanjalla CN, Kalams SA, Gaudieri S, Lehloenya RJ, Bailin SS, Chopra A, Trubiano JA, Peter JG, Mallal SA, Phillips EJ. Multiomic single-cell sequencing defines tissue-specific responses in Stevens-Johnson syndrome and toxic epidermal necrolysis. Nat Commun 2024; 15:8722. [PMID: 39379371 PMCID: PMC11461852 DOI: 10.1038/s41467-024-52990-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) is a rare but life-threatening cutaneous drug reaction mediated by human leukocyte antigen (HLA) class I-restricted CD8+ T cells. For unbiased assessment of cellular immunopathogenesis, here we perform single-cell (sc) transcriptome, surface proteome, and T cell receptor (TCR) sequencing on unaffected skin, affected skin, and blister fluid from 15 SJS/TEN patients. From 109,888 cells, we identify 15 scRNA-defined subsets. Keratinocytes express markers indicating HLA class I-restricted antigen presentation and appear to trigger the proliferation of and killing by cytotoxic CD8+ tissue-resident T cells that express granulysin, granzyme B, perforin, LAG3, CD27, and LINC01871, and signal through the PKM, MIF, TGFβ, and JAK-STAT pathways. In affected tissue, cytotoxic CD8+ T cells express private expanded and unexpanded TCRαβ that are absent or unexpanded in unaffected skin, and mixed populations of macrophages and fibroblasts express pro-inflammatory markers or those favoring repair. This data identifies putative cytotoxic TCRs and therapeutic targets.
Collapse
MESH Headings
- Humans
- Stevens-Johnson Syndrome/immunology
- Stevens-Johnson Syndrome/genetics
- Single-Cell Analysis/methods
- Keratinocytes/immunology
- Keratinocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Skin/immunology
- Skin/pathology
- T-Lymphocytes, Cytotoxic/immunology
- Granzymes/metabolism
- Granzymes/genetics
- Transcriptome
- Male
- Perforin/metabolism
- Perforin/genetics
- Female
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Macrophages/immunology
- Macrophages/metabolism
Collapse
Affiliation(s)
- Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | - Ramesh Ram
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | - Rama Gangula
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Yueran Li
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | - Eric Mukherjee
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Amy M Palubinsky
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Chelsea N Campbell
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Michael Thorne
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | | | - Phuti Choshi
- Department of Medicine, Groote Schuur Hospital, Cape Town, South Africa
| | - Pooja Deshpande
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | - Sarah Pedretti
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Mark W Fear
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Fiona M Wood
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
- Burn Service of Western Australia, Fiona Stanley Hospital, Perth, Australia
| | - Richard T O'Neil
- Ralph H Johnson VA Medical Center, Medical University of South Carolina, Charleston, USA
| | | | - Spyros A Kalams
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Silvana Gaudieri
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
- School of Human Sciences, The University of Western Australia, Perth, Australia
| | | | - Samuel S Bailin
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Jason A Trubiano
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- Centre for Antibiotic Allergy and Research, Austin Health, Melbourne, Australia
| | - Jonny G Peter
- Department of Medicine, Groote Schuur Hospital, Cape Town, South Africa
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Simon A Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia.
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA.
| |
Collapse
|
15
|
SoRelle ED, Haynes LE, Willard KA, Chang B, Ch'ng J, Christofk H, Luftig MA. Epstein-Barr virus reactivation induces divergent abortive, reprogrammed, and host shutoff states by lytic progression. PLoS Pathog 2024; 20:e1012341. [PMID: 39446925 PMCID: PMC11563402 DOI: 10.1371/journal.ppat.1012341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/14/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Viral infection leads to heterogeneous cellular outcomes ranging from refractory to abortive and fully productive states. Single cell transcriptomics enables a high resolution view of these distinct post-infection states. Here, we have interrogated the host-pathogen dynamics following reactivation of Epstein-Barr virus (EBV). While benign in most people, EBV is responsible for infectious mononucleosis, up to 2% of human cancers, and is a trigger for the development of multiple sclerosis. Following latency establishment in B cells, EBV reactivates and is shed in saliva to enable infection of new hosts. Beyond its importance for transmission, the lytic cycle is also implicated in EBV-associated oncogenesis. Conversely, induction of lytic reactivation in latent EBV-positive tumors presents a novel therapeutic opportunity. Therefore, defining the dynamics and heterogeneity of EBV lytic reactivation is a high priority to better understand pathogenesis and therapeutic potential. In this study, we applied single-cell techniques to analyze diverse fate trajectories during lytic reactivation in three B cell models. Consistent with prior work, we find that cell cycle and MYC expression correlate with cells refractory to lytic reactivation. We further found that lytic induction yields a continuum from abortive to complete reactivation. Abortive lytic cells upregulate NFκB and IRF3 pathway target genes, while cells that proceed through the full lytic cycle exhibit unexpected expression of genes associated with cellular reprogramming. Distinct subpopulations of lytic cells further displayed variable profiles for transcripts known to escape virus-mediated host shutoff. These data reveal previously unknown and promiscuous outcomes of lytic reactivation with broad implications for viral replication and EBV-associated oncogenesis.
Collapse
Affiliation(s)
- Elliott D SoRelle
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Center for Virology, Durham, North Carolina, United States of America
| | - Lauren E Haynes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Center for Virology, Durham, North Carolina, United States of America
| | - Katherine A Willard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Center for Virology, Durham, North Carolina, United States of America
| | - Beth Chang
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - James Ch'ng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Heather Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, United States of America
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Center for Virology, Durham, North Carolina, United States of America
| |
Collapse
|
16
|
Soll D, Chu CF, Sun S, Lutz V, Arunkumar M, Gachechiladze M, Schäuble S, Alissa-Alkhalaf M, Nguyen T, Khalil MA, Garcia-Ribelles I, Mueller M, Buder K, Michalke B, Panagiotou G, Ziegler-Martin K, Benz P, Schatzlmaier P, Hiller K, Stockinger H, Luu M, Schober K, Moosmann C, Schamel WW, Huber M, Zielinski CE. Sodium chloride in the tumor microenvironment enhances T cell metabolic fitness and cytotoxicity. Nat Immunol 2024; 25:1830-1844. [PMID: 39198632 PMCID: PMC11436365 DOI: 10.1038/s41590-024-01918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/04/2024] [Indexed: 09/01/2024]
Abstract
The efficacy of antitumor immunity is associated with the metabolic state of cytotoxic T cells, which is sensitive to the tumor microenvironment. Whether ionic signals affect adaptive antitumor immune responses is unclear. In the present study, we show that there is an enrichment of sodium in solid tumors from patients with breast cancer. Sodium chloride (NaCl) enhances the activation state and effector functions of human CD8+ T cells, which is associated with enhanced metabolic fitness. These NaCl-induced effects translate into increased tumor cell killing in vitro and in vivo. Mechanistically, NaCl-induced changes in CD8+ T cells are linked to sodium-induced upregulation of Na+/K+-ATPase activity, followed by membrane hyperpolarization, which magnifies the electromotive force for T cell receptor (TCR)-induced calcium influx and downstream TCR signaling. We therefore propose that NaCl is a positive regulator of acute antitumor immunity that might be modulated for ex vivo conditioning of therapeutic T cells, such as CAR T cells.
Collapse
Affiliation(s)
| | - Chang-Feng Chu
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Shan Sun
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Veronika Lutz
- Institute of Systems Immunology, Philipps-University Marburg, Marburg, Germany
| | - Mahima Arunkumar
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Mariam Gachechiladze
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Sascha Schäuble
- Department of Microbiome Dynamics, Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Maha Alissa-Alkhalaf
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Trang Nguyen
- Institute of Biology III, Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Michelle-Amirah Khalil
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology, Technical University of Braunschweig, Braunschweig, Germany
| | - Ignacio Garcia-Ribelles
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Michael Mueller
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | | | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich-German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Kai Ziegler-Martin
- Chair for Cellular Immunotherapy, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Pascal Benz
- Chair for Cellular Immunotherapy, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Philipp Schatzlmaier
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology, Technical University of Braunschweig, Braunschweig, Germany
| | - Hannes Stockinger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Maik Luu
- Chair for Cellular Immunotherapy, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Kilian Schober
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Carolin Moosmann
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang W Schamel
- Institute of Biology III, Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Magdalena Huber
- Institute of Systems Immunology, Philipps-University Marburg, Marburg, Germany
| | - Christina E Zielinski
- Technical University of Munich, Munich, Germany.
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
17
|
Martini T, Gobet C, Salati A, Blanc J, Mookhoek A, Reinehr M, Knott G, Sordet-Dessimoz J, Naef F. A sexually dimorphic hepatic cycle of periportal VLDL generation and subsequent pericentral VLDLR-mediated re-uptake. Nat Commun 2024; 15:8422. [PMID: 39341814 PMCID: PMC11438914 DOI: 10.1038/s41467-024-52751-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Recent single-cell transcriptomes revealed spatiotemporal programmes of liver function on the sublobular scale. However, how sexual dimorphism affected this space-time logic remained poorly understood. We addressed this by performing scRNA-seq in the mouse liver, which revealed that sex, space and time together markedly influence xenobiotic detoxification and lipoprotein metabolism. The very low density lipoprotein receptor (VLDLR) exhibits a pericentral expression pattern, with significantly higher mRNA and protein levels in female mice. Conversely, VLDL assembly is periportally biased, suggesting a sexually dimorphic hepatic cycle of periportal formation and pericentral uptake of VLDL. In humans, VLDLR expression is also pericentral, with higher mRNA and protein levels in premenopausal women compared to similarly aged men. Individuals with low hepatic VLDLR expression show a high prevalence of atherosis in the coronary artery already at an early age and an increased incidence of heart attack.
Collapse
Affiliation(s)
- Tomaz Martini
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Cédric Gobet
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrea Salati
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jérôme Blanc
- Bioelectron Microscopy Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Aart Mookhoek
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Michael Reinehr
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Graham Knott
- Bioelectron Microscopy Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jessica Sordet-Dessimoz
- Histology Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
18
|
McQueen LW, Ladak SS, Layton GR, Wozniak M, Solomon C, El-Dean Z, Murphy GJ, Zakkar M. Spatial Transcriptomic Profiling of Human Saphenous Vein Exposed to Ex Vivo Arterial Haemodynamics-Implications for Coronary Artery Bypass Graft Patency and Vein Graft Disease. Int J Mol Sci 2024; 25:10368. [PMID: 39408698 PMCID: PMC11476946 DOI: 10.3390/ijms251910368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Vein graft disease is the process by which saphenous vein grafts, utilised for revascularisation during coronary artery bypass graft surgery, undergo an inflammation-driven intimal hyperplasia and accelerated atherosclerosis process in subsequent years after implantation. The role of the arterial circulation, particularly the haemodynamic properties' impact on graft patency, have been investigated but have not to date been explored in depth at the transcriptomic level. We have undertaken the first-in-man spatial transcriptomic analysis of the long saphenous vein in response to ex vivo acute arterial haemodynamic stimulation, utilising a combination of a custom 3D-printed perfusion bioreactor and the 10X Genomics Visium Spatial Gene Expression technology. We identify a total of 413 significant genes (372 upregulated and 41 downregulated) differentially expressed in response to arterial haemodynamic conditions. These genes were associated with pathways including NFkB, TNF, MAPK, and PI3K/Akt, among others. These are established pathways involved in the initiation of an early pro-inflammatory response, leukocyte activation and adhesion signalling, tissue remodelling, and cellular differentiation. Utilising unsupervised clustering analysis, we have been able to classify subsets of the expression based on cell type and with spatial resolution. These findings allow for further characterisation of the early saphenous vein graft transcriptional landscape during the earliest stage of implantation that contributes to vein graft disease, in particular validation of pathways and druggable targets that could contribute towards the therapeutic inhibition of processes underpinning vein graft disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mustafa Zakkar
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK; (L.W.M.); (S.S.L.); (G.R.L.); (M.W.); (C.S.); (Z.E.-D.); (G.J.M.)
| |
Collapse
|
19
|
Ellman DG, Bjerre FA, Bak ST, Mathiesen SB, Harvald EB, Jensen CH, Andersen DC. Protocol to achieve high-resolution single-cell transcriptomics of cardiomyocytes in multiple species. STAR Protoc 2024; 5:103194. [PMID: 39096494 PMCID: PMC11345562 DOI: 10.1016/j.xpro.2024.103194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 08/05/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) remains state-of-the-art for transcriptomic cell-mapping. Here, we provide a protocol to generate high-resolution scRNA-seq of rare cardiomyocyte populations (e.g., regenerating/dividing, etc.) from mouse and zebrafish hearts as well as induced pluripotent stem cells, collected in time to achieve detailed transcriptomic insight. We describe the serial steps of viability staining, methanol fixation, storage, and cell sorting to preserve RNA integrity suited for scRNA-seq as well as the quality assessment of the data as shown by examples. For complete details on the use and execution of this protocol, please refer to Bak et al.1.
Collapse
Affiliation(s)
- Ditte Gry Ellman
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark.
| | - Frederik Adam Bjerre
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark; Amplexa Genetics, 5000 Odense C, Denmark
| | - Sara Thornby Bak
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark
| | - Sabrina Bech Mathiesen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark
| | - Eva Bang Harvald
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark
| | - Charlotte Harken Jensen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark
| | - Ditte Caroline Andersen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense C, Denmark; Clinical Institute, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
20
|
Zaragoza MV, Bui TA, Widyastuti HP, Mehrabi M, Cang Z, Sha Y, Grosberg A, Nie Q. LMNA-Related Dilated Cardiomyopathy: Single-Cell Transcriptomics during Patient-Derived iPSC Differentiation Support Cell Type and Lineage-Specific Dysregulation of Gene Expression and Development for Cardiomyocytes and Epicardium-Derived Cells with Lamin A/C Haploinsufficiency. Cells 2024; 13:1479. [PMID: 39273049 PMCID: PMC11394257 DOI: 10.3390/cells13171479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
LMNA-related dilated cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C (LMNA) gene encoding Type-A nuclear lamin proteins involved in nuclear integrity, epigenetic regulation of gene expression, and differentiation. The molecular mechanisms of the disease are not completely understood, and there are no definitive treatments to reverse progression or prevent mortality. We investigated possible mechanisms of LMNA-related DCM using induced pluripotent stem cells derived from a family with a heterozygous LMNA c.357-2A>G splice-site mutation. We differentiated one LMNA-mutant iPSC line derived from an affected female (Patient) and two non-mutant iPSC lines derived from her unaffected sister (Control) and conducted single-cell RNA sequencing for 12 samples (four from Patients and eight from Controls) across seven time points: Day 0, 2, 4, 9, 16, 19, and 30. Our bioinformatics workflow identified 125,554 cells in raw data and 110,521 (88%) high-quality cells in sequentially processed data. Unsupervised clustering, cell annotation, and trajectory inference found complex heterogeneity: ten main cell types; many possible subtypes; and lineage bifurcation for cardiac progenitors to cardiomyocytes (CMs) and epicardium-derived cells (EPDCs). Data integration and comparative analyses of Patient and Control cells found cell type and lineage-specific differentially expressed genes (DEGs) with enrichment, supporting pathway dysregulation. Top DEGs and enriched pathways included 10 ZNF genes and RNA polymerase II transcription in pluripotent cells (PP); BMP4 and TGF Beta/BMP signaling, sarcomere gene subsets and cardiogenesis, CDH2 and EMT in CMs; LMNA and epigenetic regulation, as well as DDIT4 and mTORC1 signaling in EPDCs. Top DEGs also included XIST and other X-linked genes, six imprinted genes (SNRPN, PWAR6, NDN, PEG10, MEG3, MEG8), and enriched gene sets related to metabolism, proliferation, and homeostasis. We confirmed Lamin A/C haploinsufficiency by allelic expression and Western blot. Our complex Patient-derived iPSC model for Lamin A/C haploinsufficiency in PP, CM, and EPDC provided support for dysregulation of genes and pathways, many previously associated with Lamin A/C defects, such as epigenetic gene expression, signaling, and differentiation. Our findings support disruption of epigenomic developmental programs, as proposed in other LMNA disease models. We recognized other factors influencing epigenetics and differentiation; thus, our approach needs improvement to further investigate this mechanism in an iPSC-derived model.
Collapse
Affiliation(s)
- Michael V. Zaragoza
- UCI Cardiogenomics Program, Pediatrics and Biological Chemistry, UC Irvine School of Medicine, Irvine, CA 92697, USA
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Thuy-Anh Bui
- UCI Cardiogenomics Program, Pediatrics and Biological Chemistry, UC Irvine School of Medicine, Irvine, CA 92697, USA
| | - Halida P. Widyastuti
- UCI Cardiogenomics Program, Pediatrics and Biological Chemistry, UC Irvine School of Medicine, Irvine, CA 92697, USA
| | - Mehrsa Mehrabi
- Biomedical Engineering and Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Zixuan Cang
- Mathematics and NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Yutong Sha
- Mathematics and NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Anna Grosberg
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
- Biomedical Engineering and Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Qing Nie
- Mathematics and NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
21
|
Kim GD, Lim C, Park J. A practical handbook on single-cell RNA sequencing data quality control and downstream analysis. Mol Cells 2024; 47:100103. [PMID: 39094968 PMCID: PMC11374959 DOI: 10.1016/j.mocell.2024.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Advancements in single-cell analysis have facilitated high-resolution observation of the transcriptome in individual cells. However, standards for obtaining high-quality cells and data analysis pipelines remain variable. Here, we provide the groundwork for improving the quality of single-cell analysis by delineating guidelines for selecting high-quality cells and considerations throughout the analysis. This review will streamline researchers' access to single-cell analysis and serve as a valuable guide for analysis.
Collapse
Affiliation(s)
- Gyeong Dae Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Chaemin Lim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
22
|
Johnston KG, Grieco SF, Nie Q, Theis FJ, Xu X. Small data methods in omics: the power of one. Nat Methods 2024; 21:1597-1602. [PMID: 39174710 DOI: 10.1038/s41592-024-02390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 07/24/2024] [Indexed: 08/24/2024]
Abstract
Over the last decade, biology has begun utilizing 'big data' approaches, resulting in large, comprehensive atlases in modalities ranging from transcriptomics to neural connectomics. However, these approaches must be complemented and integrated with 'small data' approaches to efficiently utilize data from individual labs. Integration of smaller datasets with major reference atlases is critical to provide context to individual experiments, and approaches toward integration of large and small data have been a major focus in many fields in recent years. Here we discuss progress in integration of small data with consortium-sized atlases across multiple modalities, and its potential applications. We then examine promising future directions for utilizing the power of small data to maximize the information garnered from small-scale experiments. We envision that, in the near future, international consortia comprising many laboratories will work together to collaboratively build reference atlases and foundation models using small data methods.
Collapse
Affiliation(s)
- Kevin G Johnston
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Steven F Grieco
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
- Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA.
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
| | - Fabian J Theis
- Helmholtz Center Munich-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany.
- School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
- Department of Mathematics, Technical University of Munich, Munich, Germany.
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA.
- Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
23
|
Brunner M, Lopez-Rodriguez D, Estrada-Meza J, Dali R, Rohrbach A, Deglise T, Messina A, Thorens B, Santoni F, Langlet F. Fasting induces metabolic switches and spatial redistributions of lipid processing and neuronal interactions in tanycytes. Nat Commun 2024; 15:6604. [PMID: 39098920 PMCID: PMC11298547 DOI: 10.1038/s41467-024-50913-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
The ependyma lining the third ventricle (3V) in the mediobasal hypothalamus plays a crucial role in energy balance and glucose homeostasis. It is characterized by a high functional heterogeneity and plasticity, but the underlying molecular mechanisms governing its features are not fully understood. Here, 5481 hypothalamic ependymocytes were cataloged using FACS-assisted scRNAseq from fed, 12h-fasted, and 24h-fasted adult male mice. With standard clustering analysis, typical ependymal cells and β2-tanycytes appear sharply defined, but other subpopulations, β1- and α-tanycytes, display fuzzy boundaries with few or no specific markers. Pseudospatial approaches, based on the 3V neuroanatomical distribution, enable the identification of specific versus shared tanycyte markers and subgroup-specific versus general tanycyte functions. We show that fasting dynamically shifts gene expression patterns along the 3V, leading to a spatial redistribution of cell type-specific responses. Altogether, we show that changes in energy status induce metabolic and functional switches in tanycyte subpopulations, providing insights into molecular and functional diversity and plasticity within the tanycyte population.
Collapse
Affiliation(s)
- Maxime Brunner
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - David Lopez-Rodriguez
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Judith Estrada-Meza
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Rafik Dali
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Antoine Rohrbach
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tamara Deglise
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Andrea Messina
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Federico Santoni
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland.
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Institute for Genetic and Biomedical Research (IRGB) - CNR, Monserrato, Italy.
| | - Fanny Langlet
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
24
|
Yang S, Deng C, Pu C, Bai X, Tian C, Chang M, Feng M. Single-Cell RNA Sequencing and Its Applications in Pituitary Research. Neuroendocrinology 2024; 114:875-893. [PMID: 39053437 PMCID: PMC11460981 DOI: 10.1159/000540352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Mounting evidence underscores the significance of cellular diversity within the endocrine system and the intricate interplay between different cell types and tissues, essential for preserving physiological balance and influencing disease trajectories. The pituitary gland, a central player in the endocrine orchestra, exemplifies this complexity with its assortment of hormone-secreting and nonsecreting cells. SUMMARY The pituitary gland houses several types of cells responsible for hormone production, alongside nonsecretory cells like fibroblasts and endothelial cells, each playing a crucial role in the gland's function and regulatory mechanisms. Despite the acknowledged importance of these cellular interactions, the detailed mechanisms by which they contribute to pituitary gland physiology and pathology remain largely uncharted. The last decade has seen the emergence of groundbreaking technologies such as single-cell RNA sequencing, offering unprecedented insights into cellular heterogeneity and interactions. However, the application of this advanced tool in exploring the pituitary gland's complexities has been scant. This review provides an overview of this methodology, highlighting its strengths and limitations, and discusses future possibilities for employing it to deepen our understanding of the pituitary gland and its dysfunction in disease states. KEY MESSAGE Single-cell RNA sequencing technology offers an unprecedented means to study the heterogeneity and interactions of pituitary cells, though its application has been limited thus far. Further utilization of this tool will help uncover the complex physiological and pathological mechanisms of the pituitary, advancing research and treatment of pituitary diseases.
Collapse
Affiliation(s)
- Shuangjian Yang
- Department of Neurosurgery, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Congcong Deng
- Department of Neurosurgery, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Changqin Pu
- Department of Neurosurgery, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xuexue Bai
- Department of Neurosurgery, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chenxin Tian
- Department of Neurosurgery, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mengqi Chang
- Department of Neurosurgery, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Feng
- Department of Neurosurgery, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Colella P, Sayana R, Suarez-Nieto MV, Sarno J, Nyame K, Xiong J, Pimentel Vera LN, Arozqueta Basurto J, Corbo M, Limaye A, Davis KL, Abu-Remaileh M, Gomez-Ospina N. CNS-wide repopulation by hematopoietic-derived microglia-like cells corrects progranulin deficiency in mice. Nat Commun 2024; 15:5654. [PMID: 38969669 PMCID: PMC11226701 DOI: 10.1038/s41467-024-49908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/17/2024] [Indexed: 07/07/2024] Open
Abstract
Hematopoietic stem cell transplantation can deliver therapeutic proteins to the central nervous system (CNS) through transplant-derived microglia-like cells. However, current conditioning approaches result in low and slow engraftment of transplanted cells in the CNS. Here we optimized a brain conditioning regimen that leads to rapid, robust, and persistent microglia replacement without adverse effects on neurobehavior or hematopoiesis. This regimen combines busulfan myeloablation and six days of Colony-stimulating factor 1 receptor inhibitor PLX3397. Single-cell analyses revealed unappreciated heterogeneity of microglia-like cells with most cells expressing genes characteristic of homeostatic microglia, brain-border-associated macrophages, and unique markers. Cytokine analysis in the CNS showed transient inductions of myeloproliferative and chemoattractant cytokines that help repopulate the microglia niche. Bone marrow transplant of progranulin-deficient mice conditioned with busulfan and PLX3397 restored progranulin in the brain and eyes and normalized brain lipofuscin storage, proteostasis, and lipid metabolism. This study advances our understanding of CNS repopulation by hematopoietic-derived cells and demonstrates its therapeutic potential for treating progranulin-dependent neurodegeneration.
Collapse
Affiliation(s)
- Pasqualina Colella
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Ruhi Sayana
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Jolanda Sarno
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900, Monza, Italy
| | - Kwamina Nyame
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, 94305, USA
| | - Jian Xiong
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, 94305, USA
| | | | | | - Marco Corbo
- MedGenome, Inc, 348 Hatch Dr, Foster City, CA, 94404, USA
| | - Anay Limaye
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- MedGenome, Inc, 348 Hatch Dr, Foster City, CA, 94404, USA
| | - Kara L Davis
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, 94305, USA
| | - Natalia Gomez-Ospina
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
26
|
Abu Nahia K, Sulej A, Migdał M, Ochocka N, Ho R, Kamińska B, Zagorski M, Winata CL. scRNA-seq reveals the diversity of the developing cardiac cell lineage and molecular players in heart rhythm regulation. iScience 2024; 27:110083. [PMID: 38872974 PMCID: PMC11170199 DOI: 10.1016/j.isci.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/26/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
We utilized scRNA-seq to delineate the diversity of cell types in the zebrafish heart. Transcriptome profiling of over 50,000 cells at 48 and 72 hpf defined at least 18 discrete cell lineages of the developing heart. Utilizing well-established gene signatures, we identified a population of cells likely to be the primary pacemaker and characterized the transcriptome profile defining this critical cell type. Two previously uncharacterized genes, atp1b3b and colec10, were found to be enriched in the sinoatrial cardiomyocytes. CRISPR/Cas9-mediated knockout of these two genes significantly reduced heart rate, implicating their role in cardiac development and conduction. Additionally, we describe other cardiac cell lineages, including the endothelial and neural cells, providing their expression profiles as a resource. Our results established a detailed atlas of the developing heart, providing valuable insights into cellular and molecular mechanisms, and pinpointed potential new players in heart rhythm regulation.
Collapse
Affiliation(s)
- Karim Abu Nahia
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agata Sulej
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Migdał
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Natalia Ochocka
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Richard Ho
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Cracow, Poland
- The Njord Centre, Department of Physics, University of Oslo, Oslo, Norway
| | - Bożena Kamińska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marcin Zagorski
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Cracow, Poland
| | | |
Collapse
|
27
|
Beliën J, Swinnen S, D'hondt R, Verdú de Juan L, Dedoncker N, Matthys P, Bauer J, Vens C, Moylett S, Dubois B. CHIT1 at diagnosis predicts faster disability progression and reflects early microglial activation in multiple sclerosis. Nat Commun 2024; 15:5013. [PMID: 38866782 PMCID: PMC11169395 DOI: 10.1038/s41467-024-49312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
Multiple sclerosis (MS) is characterized by heterogeneity in disease course and prediction of long-term outcome remains a major challenge. Here, we investigate five myeloid markers - CHIT1, CHI3L1, sTREM2, GPNMB and CCL18 - in the cerebrospinal fluid (CSF) at diagnostic lumbar puncture in a longitudinal cohort of 192 MS patients. Through mixed-effects and machine learning models, we show that CHIT1 is a robust predictor for faster disability progression. Integrative analysis of 11 CSF and 26 central nervous system (CNS) parenchyma single-cell/nucleus RNA sequencing samples reveals CHIT1 to be predominantly expressed by microglia located in active MS lesions and enriched for lipid metabolism pathways. Furthermore, we find CHIT1 expression to accompany the transition from a homeostatic towards a more activated, MS-associated cell state in microglia. Neuropathological evaluation in post-mortem tissue from 12 MS patients confirms CHIT1 production by lipid-laden phagocytes in actively demyelinating lesions, already in early disease stages. Altogether, we provide a rationale for CHIT1 as an early biomarker for faster disability progression in MS.
Collapse
Affiliation(s)
- Jarne Beliën
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Stijn Swinnen
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Robbe D'hondt
- Department of Public Health and Primary Care, KU Leuven, Kortrijk, Belgium
- Imec research group itec, KU Leuven, Kortrijk, Belgium
| | - Laia Verdú de Juan
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Nina Dedoncker
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Celine Vens
- Department of Public Health and Primary Care, KU Leuven, Kortrijk, Belgium
- Imec research group itec, KU Leuven, Kortrijk, Belgium
| | - Sinéad Moylett
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bénédicte Dubois
- Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
28
|
Totty M, Hicks SC, Guo B. SpotSweeper: spatially-aware quality control for spatial transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597765. [PMID: 38895212 PMCID: PMC11185656 DOI: 10.1101/2024.06.06.597765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Quality control (QC) is a crucial step to ensure the reliability and accuracy of the data obtained from RNA sequencing experiments, including spatially-resolved transcriptomics (SRT). Existing QC approaches for SRT that have been adopted from single-nucleus RNA sequencing (snRNA-seq) methods are confounded by spatial biology and are inappropriate for SRT data. In addition, no methods currently exist for identifying histological tissue artifacts unique to SRT. Here, we introduce SpotSweeper, spatially-aware QC methods for identifying local outliers and regional artifacts in SRT. SpotSweeper evaluates the quality of individual spots relative to their local neighborhood, thus minimizing bias due to biological heterogeneity, and uses multiscale methods to detect regional artifacts. Using SpotSweeper on publicly available data, we identified a consistent set of Visium barcodes/spots as systematically low quality and demonstrate that SpotSweeper accurately identifies two distinct types of regional artifacts, resulting in improved downstream clustering and marker gene detection for spatial domains.
Collapse
Affiliation(s)
- Michael Totty
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Stephanie C. Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA
| | - Boyi Guo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
29
|
Nagy N, Hádinger N, Tóth O, Rácz GA, Pintér T, Gál Z, Urbán M, Gócza E, Hiripi L, Acsády L, Vértessy BG. Characterization of dUTPase expression in mouse postnatal development and adult neurogenesis. Sci Rep 2024; 14:13139. [PMID: 38849394 PMCID: PMC11161619 DOI: 10.1038/s41598-024-63405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
The enzyme dUTPase has an essential role in maintaining genomic integrity. In mouse, nuclear and mitochondrial isoforms of the enzyme have been described. Here we present the isoform-specific mRNA expression levels in different murine organs during development using RT-qPCR. In this study, we analyzed organs of 14.5-day embryos and of postnatal 2-, 4-, 10-week- and 13-month-old mice. We demonstrate organ-, sex- and developmental stage-specific differences in the mRNA expression levels of both isoforms. We found high mRNA expression level of the nuclear isoform in the embryo brain, and the expression level remained relatively high in the adult brain as well. This was surprising, since dUTPase is known to play an important role in proliferating cells, and mass production of neural cells is completed by adulthood. Thus, we investigated the pattern of the dUTPase protein expression specifically in the adult brain with immunostaining and found that dUTPase is present in the germinative zones, the subventricular and the subgranular zones, where neurogenesis occurs and in the rostral migratory stream where neuroblasts migrate to the olfactory bulb. These novel findings suggest that dUTPase may have a role in cell differentiation and indicate that accurate dTTP biosynthesis can be vital, especially in neurogenesis.
Collapse
Affiliation(s)
- Nikolett Nagy
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary.
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok körútja 2, 1117, Budapest, Hungary.
| | - Nóra Hádinger
- Laboratory of Thalamus Research, Institute of Experimental Medicine, HUN-REN, Szigony utca 43, 1083, Budapest, Hungary
| | - Otília Tóth
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Department of Applied Biotechnology and Food Sciences, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Gergely Attila Rácz
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Department of Applied Biotechnology and Food Sciences, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Tímea Pintér
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert utca 4, 2100, Gödöllő, Hungary
| | - Zoltán Gál
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert utca 4, 2100, Gödöllő, Hungary
| | - Martin Urbán
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert utca 4, 2100, Gödöllő, Hungary
| | - Elen Gócza
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert utca 4, 2100, Gödöllő, Hungary
| | - László Hiripi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert utca 4, 2100, Gödöllő, Hungary
- Laboratory Animal Science Coordination Center, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - László Acsády
- Laboratory of Thalamus Research, Institute of Experimental Medicine, HUN-REN, Szigony utca 43, 1083, Budapest, Hungary
| | - Beáta G Vértessy
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok körútja 2, 1117, Budapest, Hungary.
- Department of Applied Biotechnology and Food Sciences, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary.
| |
Collapse
|
30
|
Ahn SI, Choi SK, Kim MJ, Wie J, You JS. Mdivi-1: Effective but complex mitochondrial fission inhibitor. Biochem Biophys Res Commun 2024; 710:149886. [PMID: 38581953 DOI: 10.1016/j.bbrc.2024.149886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Mdivi-1, Mitochondrial DIVIsion inhibitor 1, has been widely employed in research under the assumption that it exclusively influences mitochondrial fusion, but effects other than mitochondrial dynamics have been underinvestigated. This paper provides transcriptome and DNA methylome-wide analysis for Mdivi-1 treated SH-SY5Y human neuroblastoma cells using RNA sequencing (RNA-seq) and methyl capture sequencing (MC-seq) methods. Gene ontology analysis of RNA sequences revealed that p53 transcriptional gene network and DNA replication initiation-related genes were significantly up and down-regulated, respectively, showing the correlation with the arrest cell cycle in the G1 phase. MC-seq, a powerful sequencing method for capturing DNA methylation status in CpG sites, revealed that although Mdivi-1 does not induce dramatic DNA methylation change, the subtle alterations were concentrated within the CpG island. Integrative analysis of both sequencing data disclosed that the p53 transcriptional network was activated while the Parkinson's disease pathway was halted. Next, we investigated several changes in mitochondria in response to Mdivi-1. Copy number and transcription of mitochondrial DNA were suppressed. ROS levels increased, and elevated ROS triggered mitochondrial retrograde signaling rather than inducing direct DNA damage. In this study, we could better understand the molecular network of Mdivi-1 by analyzing DNA methylation and mRNA transcription in the nucleus and further investigating various changes in mitochondria, providing inspiration for studying nuclear-mitochondrial communications.
Collapse
Affiliation(s)
- Seor I Ahn
- Department of Biochemistry, School of Medicine, Konkuk University, Chungju, Republic of Korea
| | - Sung Kyung Choi
- Department of Biochemistry, School of Medicine, Konkuk University, Chungju, Republic of Korea
| | - Myoung Jun Kim
- Department of Biochemistry, School of Medicine, Konkuk University, Chungju, Republic of Korea
| | - Jinhong Wie
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jueng Soo You
- Department of Biochemistry, School of Medicine, Konkuk University, Chungju, Republic of Korea; KU Open Innovation Center, Research Institute of Medical Science, Konkuk University, Republic of Korea.
| |
Collapse
|
31
|
Zou C, Shen J, Xu F, Ye Y, Wu Y, Xu S. Immunoreactive Microenvironment Modulator GBP5 Suppresses Ovarian Cancer Progression by Inducing Canonical Pyroptosis. J Cancer 2024; 15:3510-3530. [PMID: 38817865 PMCID: PMC11134437 DOI: 10.7150/jca.94616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
Ovarian cancer has the highest mortality among gynecological malignancies, and exploring effective strategies to reverse the immunosuppressive tumor microenvironment in patients remains a pressing scientific challenge. In this study, we identified a pyroptosis-related protective factor, GBP5, which significantly inhibits the growth of ovarian cancer cells and patient-derived ovarian cancer organoids, impeding the invasion and migration of ovarian cancer cells. Results of immunohistochemistry and external single-cell data verification were consistent. Further research confirmed that GBP5 in ovarian cancer cell can induce canonical pyroptosis through JAK2/STAT1 pathway, thereby restraining the progression of ovarian cancer. Interestingly, in this study, we also discovered that ovarian cancer cells with high GBP5 expression exhibit increased expressions of CXCL9/10/11 in a co-culture assay. Subsequent immune cell infiltration analyses revealed the remodeling of immunosuppressive microenvironment in ovarian cancer patients, characterized by increased infiltration and polarization of M1 macrophages. External immunotherapy database analysis showed profound potential for the application of GBP5 in immunotherapy strategies for ovarian cancer. Overall, our study demonstrates that the protective factor GBP5 significantly inhibits ovarian cancer progression, triggering canonical pyroptosis through the JAK2-STAT1 pathway. Driven by its pro-inflammatory nature, it can also enhance M1 macrophages polarization and reverse immunosuppressive microenvironment, thus providing new insights for ovarian cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Yuanyuan Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shaohua Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
32
|
Fancy NN, Smith AM, Caramello A, Tsartsalis S, Davey K, Muirhead RCJ, McGarry A, Jenkyns MH, Schneegans E, Chau V, Thomas M, Boulger S, Cheung TKD, Adair E, Papageorgopoulou M, Willumsen N, Khozoie C, Gomez-Nicola D, Jackson JS, Matthews PM. Characterisation of premature cell senescence in Alzheimer's disease using single nuclear transcriptomics. Acta Neuropathol 2024; 147:78. [PMID: 38695952 PMCID: PMC11065703 DOI: 10.1007/s00401-024-02727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 05/05/2024]
Abstract
Aging is associated with cell senescence and is the major risk factor for AD. We characterized premature cell senescence in postmortem brains from non-diseased controls (NDC) and donors with Alzheimer's disease (AD) using imaging mass cytometry (IMC) and single nuclear RNA (snRNA) sequencing (> 200,000 nuclei). We found increases in numbers of glia immunostaining for galactosidase beta (> fourfold) and p16INK4A (up to twofold) with AD relative to NDC. Increased glial expression of genes related to senescence was associated with greater β-amyloid load. Prematurely senescent microglia downregulated phagocytic pathways suggesting reduced capacity for β-amyloid clearance. Gene set enrichment and pseudo-time trajectories described extensive DNA double-strand breaks (DSBs), mitochondrial dysfunction and ER stress associated with increased β-amyloid leading to premature senescence in microglia. We replicated these observations with independent AD snRNA-seq datasets. Our results describe a burden of senescent glia with AD that is sufficiently high to contribute to disease progression. These findings support the hypothesis that microglia are a primary target for senolytic treatments in AD.
Collapse
Affiliation(s)
- Nurun N Fancy
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Amy M Smith
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Centre for Brain Research and Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Alessia Caramello
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Stergios Tsartsalis
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Karen Davey
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
- UK Dementia Research Institute Centre, King's College London, London, UK
| | - Robert C J Muirhead
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
- UK Dementia Research Institute Centre, King's College London, London, UK
| | - Aisling McGarry
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marion H Jenkyns
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Eleonore Schneegans
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Vicky Chau
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Michael Thomas
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Sam Boulger
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - To Ka Dorcas Cheung
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Emily Adair
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Marianna Papageorgopoulou
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Nanet Willumsen
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Combiz Khozoie
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Johanna S Jackson
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
- UK Dementia Research Institute Centre, Imperial College London, London, UK.
| |
Collapse
|
33
|
Ouwendijk WJD, Roychoudhury P, Cunningham AL, Jerome KR, Koelle DM, Kinchington PR, Mohr I, Wilson AC, Verjans GGMGM, Depledge DP. Reanalysis of single-cell RNA sequencing data does not support herpes simplex virus 1 latency in non-neuronal ganglionic cells in mice. J Virol 2024; 98:e0185823. [PMID: 38445887 PMCID: PMC11019907 DOI: 10.1128/jvi.01858-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Most individuals are latently infected with herpes simplex virus type 1 (HSV-1), and it is well-established that HSV-1 establishes latency in sensory neurons of peripheral ganglia. However, it was recently proposed that latent HSV-1 is also present in immune cells recovered from the ganglia of experimentally infected mice. Here, we reanalyzed the single-cell RNA sequencing (scRNA-Seq) data that formed the basis for that conclusion. Unexpectedly, off-target priming in 3' scRNA-Seq experiments enabled the detection of non-polyadenylated HSV-1 latency-associated transcript (LAT) intronic RNAs. However, LAT reads were near-exclusively detected in mixed populations of cells undergoing cell death. Specific loss of HSV-1 LAT and neuronal transcripts during quality control filtering indicated widespread destruction of neurons, supporting the presence of contaminating cell-free RNA in other cells following tissue processing. In conclusion, the reported detection of latent HSV-1 in non-neuronal cells is best explained using compromised scRNA-Seq datasets.IMPORTANCEMost people are infected with herpes simplex virus type 1 (HSV-1) during their life. Once infected, the virus generally remains in a latent (silent) state, hiding within the neurons of peripheral ganglia. Periodic reactivation (reawakening) of the virus may cause fresh diseases such as cold sores. A recent study using single-cell RNA sequencing (scRNA-Seq) proposed that HSV-1 can also establish latency in the immune cells of mice, challenging existing dogma. We reanalyzed the data from that study and identified several flaws in the methodologies and analyses performed that invalidate the published conclusions. Specifically, we showed that the methodologies used resulted in widespread destruction of neurons which resulted in the presence of contaminants that confound the data analysis. We thus conclude that there remains little to no evidence for HSV-1 latency in immune cells.
Collapse
Affiliation(s)
- Werner J. D. Ouwendijk
- HerpesLabNL, Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - David M. Koelle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Translational Research, Benaroya Research Institute, Seattle, Washington, USA
| | - Paul R. Kinchington
- Department of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Angus C. Wilson
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | | | - Daniel P. Depledge
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF) partner site Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
34
|
Salcher S, Heidegger I, Untergasser G, Fotakis G, Scheiber A, Martowicz A, Noureen A, Krogsdam A, Schatz C, Schäfer G, Trajanoski Z, Wolf D, Sopper S, Pircher A. Comparative analysis of 10X Chromium vs. BD Rhapsody whole transcriptome single-cell sequencing technologies in complex human tissues. Heliyon 2024; 10:e28358. [PMID: 38689972 PMCID: PMC11059509 DOI: 10.1016/j.heliyon.2024.e28358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
The development of single-cell omics tools has enabled scientists to study the tumor microenvironment (TME) in unprecedented detail. However, each of the different techniques may have its unique strengths and limitations. Here we directly compared two commercially available high-throughput single-cell RNA sequencing (scRNA-seq) technologies - droplet-based 10X Chromium vs. microwell-based BD Rhapsody - using paired samples from patients with localized prostate cancer (PCa) undergoing a radical prostatectomy. Although high technical consistency was observed in unraveling the whole transcriptome, the relative abundance of cell populations differed. Cells with low mRNA content such as T cells were underrepresented in the droplet-based system, at least partly due to lower RNA capture rates. In contrast, microwell-based scRNA-seq recovered less cells of epithelial origin. Moreover, we discovered platform-dependent variabilities in mRNA quantification and cell-type marker annotation. Overall, our study provides important information for selection of the appropriate scRNA-seq platform and for the interpretation of published results.
Collapse
Affiliation(s)
- Stefan Salcher
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Isabel Heidegger
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerold Untergasser
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Georgios Fotakis
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Austria
| | - Alexandra Scheiber
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Agnieszka Martowicz
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Asma Noureen
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Austria
| | - Anne Krogsdam
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Austria
| | - Christoph Schatz
- Department of Pathology, Medical University Innsbruck, Innsbruck, Austria
| | - Georg Schäfer
- Department of Pathology, Medical University Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Austria
| | - Dominik Wolf
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Sieghart Sopper
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Andreas Pircher
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| |
Collapse
|
35
|
Koster CC, Kleefeldt AA, van den Broek M, Luttik M, Daran JM, Daran-Lapujade P. Long-read direct RNA sequencing of the mitochondrial transcriptome of Saccharomyces cerevisiae reveals condition-dependent intron abundance. Yeast 2024; 41:256-278. [PMID: 37642136 DOI: 10.1002/yea.3893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023] Open
Abstract
Mitochondria fulfil many essential roles and have their own genome, which is expressed as polycistronic transcripts that undergo co- or posttranscriptional processing and splicing. Due to the inherent complexity and limited technical accessibility of the mitochondrial transcriptome, fundamental questions regarding mitochondrial gene expression and splicing remain unresolved, even in the model eukaryote Saccharomyces cerevisiae. Long-read sequencing could address these fundamental questions. Therefore, a method for the enrichment of mitochondrial RNA and sequencing using Nanopore technology was developed, enabling the resolution of splicing of polycistronic genes and the quantification of spliced RNA. This method successfully captured the full mitochondrial transcriptome and resolved RNA splicing patterns with single-base resolution and was applied to explore the transcriptome of S. cerevisiae grown with glucose or ethanol as the sole carbon source, revealing the impact of growth conditions on mitochondrial RNA expression and splicing. This study uncovered a remarkable difference in the turnover of Group II introns between yeast grown in either mostly fermentative or fully respiratory conditions. Whether this accumulation of introns in glucose medium has an impact on mitochondrial functions remains to be explored. Combined with the high tractability of the model yeast S. cerevisiae, the developed method enables to monitor mitochondrial transcriptome responses in a broad range of relevant contexts, including oxidative stress, apoptosis and mitochondrial diseases.
Collapse
Affiliation(s)
- Charlotte C Koster
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Askar A Kleefeldt
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Marijke Luttik
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
36
|
Osorio D, Capasso A, Eckhardt SG, Giri U, Somma A, Pitts TM, Lieu CH, Messersmith WA, Bagby SM, Singh H, Das J, Sahni N, Yi SS, Kuijjer ML. Population-level comparisons of gene regulatory networks modeled on high-throughput single-cell transcriptomics data. NATURE COMPUTATIONAL SCIENCE 2024; 4:237-250. [PMID: 38438786 DOI: 10.1038/s43588-024-00597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/17/2024] [Indexed: 03/06/2024]
Abstract
Single-cell technologies enable high-resolution studies of phenotype-defining molecular mechanisms. However, data sparsity and cellular heterogeneity make modeling biological variability across single-cell samples difficult. Here we present SCORPION, a tool that uses a message-passing algorithm to reconstruct comparable gene regulatory networks from single-cell/nuclei RNA-sequencing data that are suitable for population-level comparisons by leveraging the same baseline priors. Using synthetic data, we found that SCORPION outperformed 12 existing gene regulatory network reconstruction techniques. Using supervised experiments, we show that SCORPION can accurately identify differences in regulatory networks between wild-type and transcription factor-perturbed cells. We demonstrate SCORPION's scalability to population-level analyses using a single-cell RNA-sequencing atlas containing 200,436 cells from colorectal cancer and adjacent healthy tissues. The differences between tumor regions detected by SCORPION are consistent across multiple cohorts as well as with our understanding of disease progression, and elucidate phenotypic regulators that may impact patient survival.
Collapse
Affiliation(s)
- Daniel Osorio
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| | - Anna Capasso
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - S Gail Eckhardt
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Uma Giri
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Alexander Somma
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Todd M Pitts
- Division of Medical Oncology, University of Colorado Cancer Center, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Christopher H Lieu
- Division of Medical Oncology, University of Colorado Cancer Center, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Wells A Messersmith
- Division of Medical Oncology, University of Colorado Cancer Center, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Stacey M Bagby
- Division of Medical Oncology, University of Colorado Cancer Center, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Harinder Singh
- Department of Immunology, Center for Systems Immunology, University of Pittsburg, Pittsburg, PA, USA
| | - Jishnu Das
- Department of Immunology, Center for Systems Immunology, University of Pittsburg, Pittsburg, PA, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- Department of Bioinformatics and Computational Biology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - S Stephen Yi
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA.
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, USA.
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Marieke L Kuijjer
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway.
- Department of Pathology, Leiden University Medical Center (LUMC), Leiden University, Leiden, The Netherlands.
- Leiden Center for Computational Oncology, Leiden University Medical Center (LUMC), Leiden University, Leiden, The Netherlands.
| |
Collapse
|
37
|
Gianopoulos I, Daskalopoulou SS. Macrophage profiling in atherosclerosis: understanding the unstable plaque. Basic Res Cardiol 2024; 119:35-56. [PMID: 38244055 DOI: 10.1007/s00395-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 01/22/2024]
Abstract
The development and rupture of atherosclerotic plaques is a major contributor to myocardial infarctions and ischemic strokes. The dynamic evolution of the plaque is largely attributed to monocyte/macrophage functions, which respond to various stimuli in the plaque microenvironment. To this end, macrophages play a central role in atherosclerotic lesions through the uptake of oxidized low-density lipoprotein that gets trapped in the artery wall, and the induction of an inflammatory response that can differentially affect the stability of the plaque in men and women. In this environment, macrophages can polarize towards pro-inflammatory M1 or anti-inflammatory M2 phenotypes, which represent the extremes of the polarization spectrum that include Mhem, M(Hb), Mox, and M4 populations. However, this traditional macrophage model paradigm has been redefined to include numerous immune and nonimmune cell clusters based on in-depth unbiased single-cell approaches. The goal of this review is to highlight (1) the phenotypic and functional properties of monocyte subsets in the circulation, and macrophage populations in atherosclerotic plaques, as well as their contribution towards stable or unstable phenotypes in men and women, and (2) single-cell RNA sequencing studies that have advanced our knowledge of immune, particularly macrophage signatures present in the atherosclerotic niche. We discuss the importance of performing high-dimensional approaches to facilitate the development of novel sex-specific immunotherapies that aim to reduce the risk of cardiovascular events.
Collapse
Affiliation(s)
- Ioanna Gianopoulos
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| | - Stella S Daskalopoulou
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada.
- Division of Internal Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, McGill University Health Centre, McGill University, Montreal, Canada.
- Department of Medicine, Research Institute of the McGill University Health Centre, Glen Site, 1001 Decarie Boulevard, EM1.2210, Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
38
|
Chen H, Fang X, Shao J, Zhang Q, Xu L, Chen J, Mei Y, Jiang M, Wang Y, Li Z, Chen Z, Chen Y, Yu C, Ma L, Zhang P, Zhang T, Liao Y, Lv Y, Wang X, Yang L, Fu Y, Chen D, Jiang L, Yan F, Lu W, Chen G, Shen H, Wang J, Wang C, Liang T, Han X, Wang Y, Guo G. Pan-Cancer Single-Nucleus Total RNA Sequencing Using snHH-Seq. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304755. [PMID: 38010945 PMCID: PMC10837386 DOI: 10.1002/advs.202304755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/11/2023] [Indexed: 11/29/2023]
Abstract
Tumor heterogeneity and its drivers impair tumor progression and cancer therapy. Single-cell RNA sequencing is used to investigate the heterogeneity of tumor ecosystems. However, most methods of scRNA-seq amplify the termini of polyadenylated transcripts, making it challenging to perform total RNA analysis and somatic mutation analysis.Therefore, a high-throughput and high-sensitivity method called snHH-seq is developed, which combines random primers and a preindex strategy in the droplet microfluidic platform. This innovative method allows for the detection of total RNA in single nuclei from clinically frozen samples. A robust pipeline to facilitate the analysis of full-length RNA-seq data is also established. snHH-seq is applied to more than 730 000 single nuclei from 32 patients with various tumor types. The pan-cancer study enables it to comprehensively profile data on the tumor transcriptome, including expression levels, mutations, splicing patterns, clone dynamics, etc. New malignant cell subclusters and exploring their specific function across cancers are identified. Furthermore, the malignant status of epithelial cells is investigated among different cancer types with respect to mutation and splicing patterns. The ability to detect full-length RNA at the single-nucleus level provides a powerful tool for studying complex biological systems and has broad implications for understanding tumor pathology.
Collapse
|
39
|
Long X, Wei J, Fang Q, Yuan X, Du J. Single-cell RNA sequencing reveals the transcriptional heterogeneity of Tbx18-positive cardiac cells during heart development. Funct Integr Genomics 2024; 24:18. [PMID: 38265516 DOI: 10.1007/s10142-024-01290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024]
Abstract
The T-box family transcription factor 18 (Tbx18) has been found to play a critical role in regulating the development of the mammalian heart during the primary stages of embryonic development while the cellular heterogeneity and landscape of Tbx18-positive (Tbx18+) cardiac cells remain incompletely characterized. Here, we analyzed prior published single-cell RNA sequencing (scRNA-seq) mouse heart data to explore the heterogeneity of Tbx18+ cardiac cell subpopulations and provide a comprehensive transcriptional landscape of Tbx18+ cardiac cells during their development. Bioinformatic analysis methods were utilized to identify the heterogeneity between cell groups. Based on the gene expression characteristics, Tbx18+ cardiac cells can be classified into a minimum of two distinct cell populations, namely fibroblast-like cells and cardiomyocytes. In terms of temporal heterogeneity, these cells exhibit three developmental stages, namely the MEM stage, ML_P0 stage, and P stage Tbx18+ cardiac cells. Furthermore, Tbx18+ cardiac cells encompass several cell types, including cardiac progenitor-like cells, cardiomyocytes, and epicardial/stromal cells, as determined by specific transcriptional regulatory networks. The scRNA-seq results revealed the involvement of extracellular matrix (ECM) signals and epicardial epithelial-to-mesenchymal transition (EMT) in the development of Tbx18+ cardiac cells. The utilization of a lineage-tracing model served to validate the crucial function of Tbx18 in the differentiation of cardiac cells. Consequently, these findings offer a comprehensive depiction of the cellular heterogeneity within Tbx18+ cardiac cells.
Collapse
Affiliation(s)
- Xianglin Long
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jiangjun Wei
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qinghua Fang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
40
|
Flotho M, Amand J, Hirsch P, Grandke F, Wyss-Coray T, Keller A, Kern F. ZEBRA: a hierarchically integrated gene expression atlas of the murine and human brain at single-cell resolution. Nucleic Acids Res 2024; 52:D1089-D1096. [PMID: 37941147 PMCID: PMC10767845 DOI: 10.1093/nar/gkad990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023] Open
Abstract
The molecular causes and mechanisms of neurodegenerative diseases remain poorly understood. A growing number of single-cell studies have implicated various neural, glial, and immune cell subtypes to affect the mammalian central nervous system in many age-related disorders. Integrating this body of transcriptomic evidence into a comprehensive and reproducible framework poses several computational challenges. Here, we introduce ZEBRA, a large single-cell and single-nucleus RNA-seq database. ZEBRA integrates and normalizes gene expression and metadata from 33 studies, encompassing 4.2 million human and mouse brain cells sampled from 39 brain regions. It incorporates samples from patients with neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and Multiple sclerosis, as well as samples from relevant mouse models. We employed scVI, a deep probabilistic auto-encoder model, to integrate the samples and curated both cell and sample metadata for downstream analysis. ZEBRA allows for cell-type and disease-specific markers to be explored and compared between sample conditions and brain regions, a cell composition analysis, and gene-wise feature mappings. Our comprehensive molecular database facilitates the generation of data-driven hypotheses, enhancing our understanding of mammalian brain function during aging and disease. The data sets, along with an interactive database are freely available at https://www.ccb.uni-saarland.de/zebra.
Collapse
Affiliation(s)
- Matthias Flotho
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Jérémy Amand
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Pascal Hirsch
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Friederike Grandke
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
| | - Andreas Keller
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Fabian Kern
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
41
|
Peruzzotti-Jametti L, Willis CM, Hamel R, Krzak G, Reisz JA, Prag HA, Wu V, Xiang Y, van den Bosch AMR, Nicaise AM, Roth L, Bates GR, Huang H, Vincent AE, Frezza C, Viscomi C, Marioni JC, D'Alessandro A, Takats Z, Murphy MP, Pluchino S. Mitochondrial reverse electron transport in myeloid cells perpetuates neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574059. [PMID: 38260262 PMCID: PMC10802366 DOI: 10.1101/2024.01.03.574059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Sustained smouldering, or low grade, activation of myeloid cells is a common hallmark of several chronic neurological diseases, including multiple sclerosis (MS) 1 . Distinct metabolic and mitochondrial features guide the activation and the diverse functional states of myeloid cells 2 . However, how these metabolic features act to perpetuate neuroinflammation is currently unknown. Using a multiomics approach, we identified a new molecular signature that perpetuates the activation of myeloid cells through mitochondrial complex II (CII) and I (CI) activity driving reverse electron transport (RET) and the production of reactive oxygen species (ROS). Blocking RET in pro-inflammatory myeloid cells protected the central nervous system (CNS) against neurotoxic damage and improved functional outcomes in animal disease models in vivo . Our data show that RET in myeloid cells is a potential new therapeutic target to foster neuroprotection in smouldering inflammatory CNS disorders 3 .
Collapse
|
42
|
Ju J, Ma M, Zhang Y, Ding Z, Chen J. State transition and intercellular communication of synovial fibroblasts in response to chronic and acute shoulder injuries unveiled by single-cell transcriptomic analyses. Connect Tissue Res 2024; 65:73-87. [PMID: 38090785 DOI: 10.1080/03008207.2023.2295322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE We aimed to investigate the heterogeneity of synovial fibroblasts and their potential to undergo cell state transitions at the resolution of single cells. MATERIALS AND METHODS We employed the single-cell RNA sequencing (scRNA-seq) approach to comprehensively map the cellular landscape of the shoulder synovium in individuals with chronic rotator cuff tears (RCTs) and acute proximal humerus fractures (PHFs). Utilizing unbiased clustering analysis, we successfully identified distinct subpopulations of fibroblasts within the synovial environment. We utilized Monocle 3 to delineate the trajectory of synovial fibroblast state transition. And we used CellPhone DB v2.1.0 to predict cell-cell communication patterns within the synovial microenvironment. RESULTS We identified eight main cell clusters in the shoulder synovium. Unbiased clustering analysis identified four synovial fibroblast subpopulations, with diverse biological functions associated with protein secretion, ECM remodeling, inflammation regulation and cell division. Lining, mesenchymal, pro-inflammatory and proliferative fibroblasts subsets were identified. Combining the results from StemID and characteristic gene features, mesenchymal fibroblasts exhibited characteristics of fibroblast progenitor cells. The trajectory of synovial fibroblast state transition showed a transition from mesenchymal to pro-inflammatory and lining phenotypes. In addition, the cross talk between fibroblast subclusters increased in degenerative shoulder diseases compared to acute trauma. CONCLUSION We successfully generated the scRNA-seq transcriptomic atlas of the shoulder synovium, which provides a comprehensive understanding of the heterogeneity of synovial fibroblasts, their potential to undergo state transitions, and their intercellular communication in the context of chronic degenerative and acute traumatic shoulder diseases.
Collapse
Affiliation(s)
- Jiabao Ju
- Department of Trauma & Orthopedics, Peking University People's Hospital, Beijing, China
| | - Mingtai Ma
- Department of Trauma & Orthopedics, Peking University People's Hospital, Beijing, China
| | - Yichong Zhang
- Department of Trauma & Orthopedics, Peking University People's Hospital, Beijing, China
| | - Zhentao Ding
- Department of Trauma & Orthopedics, Peking University People's Hospital, Beijing, China
| | - Jianhai Chen
- Department of Trauma & Orthopedics, Peking University People's Hospital, Beijing, China
| |
Collapse
|
43
|
Hornung BVH, Azmani Z, den Dekker AT, Oole E, Ozgur Z, Brouwer RWW, van den Hout MCGN, van IJcken WFJ. Comparison of Single Cell Transcriptome Sequencing Methods: Of Mice and Men. Genes (Basel) 2023; 14:2226. [PMID: 38137048 PMCID: PMC10743076 DOI: 10.3390/genes14122226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Single cell RNAseq has been a big leap in many areas of biology. Rather than investigating gene expression on a whole organism level, this technology enables scientists to get a detailed look at rare single cells or within their cell population of interest. The field is growing, and many new methods appear each year. We compared methods utilized in our core facility: Smart-seq3, PlexWell, FLASH-seq, VASA-seq, SORT-seq, 10X, Evercode, and HIVE. We characterized the equipment requirements for each method. We evaluated the performances of these methods based on detected features, transcriptome diversity, mitochondrial RNA abundance and multiplets, among others and benchmarked them against bulk RNA sequencing. Here, we show that bulk transcriptome detects more unique transcripts than any single cell method. While most methods are comparable in many regards, FLASH-seq and VASA-seq yielded the best metrics, e.g., in number of features. If no equipment for automation is available or many cells are desired, then HIVE or 10X yield good results. In general, more recently developed methods perform better. This also leads to the conclusion that older methods should be phased out, and that the development of single cell RNAseq methods is still progressing considerably.
Collapse
Affiliation(s)
- Bastian V. H. Hornung
- Department of Cell Biology, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (B.V.H.H.); (M.C.G.N.v.d.H.)
- Genomics Core Facility, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3015CN Rotterdam, The Netherlands
| | - Zakia Azmani
- Department of Cell Biology, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (B.V.H.H.); (M.C.G.N.v.d.H.)
- Genomics Core Facility, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3015CN Rotterdam, The Netherlands
| | - Alexander T. den Dekker
- Department of Cell Biology, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (B.V.H.H.); (M.C.G.N.v.d.H.)
- Genomics Core Facility, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3015CN Rotterdam, The Netherlands
| | - Edwin Oole
- Department of Cell Biology, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (B.V.H.H.); (M.C.G.N.v.d.H.)
- Genomics Core Facility, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3015CN Rotterdam, The Netherlands
| | - Zeliha Ozgur
- Department of Cell Biology, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (B.V.H.H.); (M.C.G.N.v.d.H.)
- Genomics Core Facility, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3015CN Rotterdam, The Netherlands
| | - Rutger W. W. Brouwer
- Department of Cell Biology, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (B.V.H.H.); (M.C.G.N.v.d.H.)
- Genomics Core Facility, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3015CN Rotterdam, The Netherlands
| | - Mirjam C. G. N. van den Hout
- Department of Cell Biology, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (B.V.H.H.); (M.C.G.N.v.d.H.)
- Genomics Core Facility, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3015CN Rotterdam, The Netherlands
| | - Wilfred F. J. van IJcken
- Department of Cell Biology, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (B.V.H.H.); (M.C.G.N.v.d.H.)
- Genomics Core Facility, Erasmus University Medical Center Rotterdam, Wytemaweg 80, 3015CN Rotterdam, The Netherlands
| |
Collapse
|
44
|
Kavaliauskaite G, Madsen JS. Automatic quality control of single-cell and single-nucleus RNA-seq using valiDrops. NAR Genom Bioinform 2023; 5:lqad101. [PMID: 38025048 PMCID: PMC10657416 DOI: 10.1093/nargab/lqad101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/05/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Single-cell and single-nucleus RNA-sequencing (sxRNA-seq) measures gene expression in individual cells or nuclei enabling comprehensive characterization of cell types and states. However, isolation of cells or nuclei for sxRNA-seq releases contaminating RNA, which can distort biological signals, through, for example, cell damage and transcript leakage. Thus, identifying barcodes containing high-quality cells or nuclei is a critical analytical step in the processing of sxRNA-seq data. Here, we present valiDrops, an automated method to identify high-quality barcodes and flag dead cells. In valiDrops, barcodes are initially filtered using data-adaptive thresholding on community-standard quality metrics, and subsequently, valiDrops uses a novel clustering-based approach to identify barcodes with distinct biological signals. We benchmark valiDrops and show that biological signals from cell types and states are more distinct, easier to separate and more consistent after filtering by valiDrops compared to existing tools. Finally, we show that valiDrops can predict and flag dead cells with high accuracy. This novel classifier can further improve data quality or be used to identify dead cells to interrogate the biology of cell death. Thus, valiDrops is an effective and easy-to-use method to improve data quality and biological interpretation. Our method is openly available as an R package at www.github.com/madsen-lab/valiDrops.
Collapse
Affiliation(s)
- Gabija Kavaliauskaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Odense M 5230, Denmark
| | - Jesper Grud Skat Madsen
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Odense M 5230, Denmark
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense M 5230, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
45
|
Sato Y, Asahi T, Kataoka K. Integrative single-cell RNA-seq analysis of vascularized cerebral organoids. BMC Biol 2023; 21:245. [PMID: 37940920 PMCID: PMC10634128 DOI: 10.1186/s12915-023-01711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Cerebral organoids are three-dimensional in vitro cultured brains that mimic the function and structure of the human brain. One of the major challenges for cerebral organoids is the lack of functional vasculature. Without perfusable vessels, oxygen and nutrient supplies may be insufficient for long-term culture, hindering the investigation of the neurovascular interactions. Recently, several strategies for the vascularization of human cerebral organoids have been reported. However, the generalizable trends and variability among different strategies are unclear due to the lack of a comprehensive characterization and comparison of these vascularization strategies. In this study, we aimed to explore the effect of different vascularization strategies on the nervous system and vasculature in human cerebral organoids. RESULTS We integrated single-cell RNA sequencing data of multiple vascularized and vascular organoids and fetal brains from publicly available datasets and assessed the protocol-dependent and culture-day-dependent effects on the cell composition and transcriptomic profiles in neuronal and vascular cells. We revealed the similarities and uniqueness of multiple vascularization strategies and demonstrated the transcriptomic effects of vascular induction on neuronal and mesodermal-like cell populations. Moreover, our data suggested that the interaction between neurons and mesodermal-like cell populations is important for the cerebrovascular-specific profile of endothelial-like cells. CONCLUSIONS This study highlights the current challenges to vascularization strategies in human cerebral organoids and offers a benchmark for the future fabrication of vascularized organoids.
Collapse
Affiliation(s)
- Yuya Sato
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Toru Asahi
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
- Comprehensive Research Organization, Waseda University, Tokyo, Japan.
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan.
| | - Kosuke Kataoka
- Comprehensive Research Organization, Waseda University, Tokyo, Japan.
| |
Collapse
|
46
|
Thibord F, Johnson AD. Sources of variability in the human platelet transcriptome. Thromb Res 2023; 231:255-263. [PMID: 37357099 DOI: 10.1016/j.thromres.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
Platelets are anucleated cells produced by megakaryocytes, from which they inherit all the components necessary to carry their functions. They circulate in blood vessels where they play essential roles in coagulation, wound repair or inflammation, and have been implicated in various pathological conditions such as thrombosis, viral infection or cancer progression. The importance of these cells has been established over a century ago, and effective anti-platelet medications with different mechanisms of action have since been developed. However, these therapies are not always effective and can incur adverse events, thus a better understanding of platelets molecular processes is needed to address these issues and improve our understanding of platelet functions. In recent years, an increasing number of studies have leveraged OMICs technologies to analyze their content and identify molecular signatures and mechanisms associated with platelet functions and platelet related disorders. In particular, the increased accessibility of microarrays and RNA sequencing opened the way for studies of the platelet transcriptome under a wide array of conditions. These studies revealed distinct expression profiles in diverse pathologies, which could lead to the discovery of novel biomarkers and therapeutic targets, and suggests a dynamic transcriptome that could influence platelet mechanisms. In this review, we highlight the different sources of transcript level variability in platelets while summarizing recent advances and discoveries from this emerging field.
Collapse
Affiliation(s)
- Florian Thibord
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, 73 Mt. Wayte, Suite #2, Framingham, MA 01702, USA; The Framingham Heart Study, Boston University and NHLBI, 73 Mt. Wayte Ave, Suite #2, Framingham, MA 01702, USA.
| | - Andrew D Johnson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, 73 Mt. Wayte, Suite #2, Framingham, MA 01702, USA; The Framingham Heart Study, Boston University and NHLBI, 73 Mt. Wayte Ave, Suite #2, Framingham, MA 01702, USA
| |
Collapse
|
47
|
Zhang Z, Mou L, Pu Z, Zhuang X. Construction of a hepatocytes-related and protein kinase-related gene signature in HCC based on ScRNA-Seq analysis and machine learning algorithm. J Physiol Biochem 2023; 79:771-785. [PMID: 37458958 DOI: 10.1007/s13105-023-00973-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/29/2023] [Indexed: 11/10/2023]
Abstract
With recent advancements in single-cell sequencing and machine learning methods, new insights into hepatocellular carcinoma (HCC) progression have been provided. Protein kinase-related genes (PKRGs) affect cell growth, differentiation, apoptosis, and signaling during HCC progression, making the predictive relevance of PKRGs in HCC highly necessary for personalized medicine. In this study, we analyzed single-cell data of HCC and used the machine learning method of LASSO regression to construct PKRG prediction models in six major cell types. CDK4 and AURKB were found to be the best PKRG prognostic signature for predicting the overall survival of HCC patients (including TCGA, ICGC, and GEO datasets) in hepatocytes. Independent clinical factors were further screened out using the COX regression method, and a nomogram combining PKRGs and cancer status was created. Treatment with Palbociclib (CDK4 Inhibitor) and Barasertib (AURKB Inhibitor) inhibited HCC cell migration. Patients classified as PKRG high- or low-risk groups showed different tumor mutation burdens, immune infiltrations, and gene enrichment. The PKRG high-risk group showed higher tumor mutation burdens and gene set enrichment analysis indicated that cell cycle, base excision repair, and RNA degradation pathways were more enriched in these patients. Additionally, the PKRG high-risk group demonstrated higher infiltration levels of Naïve CD8+ T cells, Endothelial cells, M2 macrophage, and Tregs than the low-risk group. In summary, this study established the hepatocytes-related PKRG signature for prognostic stratification at the single-cell level by using machine learning algorithms in HCC and identified potential HCC treatment targets based on the PKRG signature.
Collapse
Affiliation(s)
- Zhuoer Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lisha Mou
- Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, NO. 3002 Sungang Road, Shenzhen, 518035, Futian District, China
| | - Zuhui Pu
- Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, NO. 3002 Sungang Road, Shenzhen, 518035, Futian District, China.
| | - Xiaoduan Zhuang
- Department of Gastroenterology, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
48
|
Wang KT, Adler CE. CRISPR/Cas9-based depletion of 16S ribosomal RNA improves library complexity of single-cell RNA-sequencing in planarians. BMC Genomics 2023; 24:625. [PMID: 37864134 PMCID: PMC10588366 DOI: 10.1186/s12864-023-09724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/08/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Single-cell RNA-sequencing (scRNA-seq) relies on PCR amplification to retrieve information from vanishingly small amounts of starting material. To selectively enrich mRNA from abundant non-polyadenylated transcripts, poly(A) selection is a key step during library preparation. However, some transcripts, such as mitochondrial genes, can escape this elimination and overwhelm libraries. Often, these transcripts are removed in silico, but whether physical depletion improves detection of rare transcripts in single cells is unclear. RESULTS We find that a single 16S ribosomal RNA is widely enriched in planarian scRNA-seq datasets, independent of the library preparation method. To deplete this transcript from scRNA-seq libraries, we design 30 single-guide RNAs spanning its length. To evaluate the effects of depletion, we perform a side-by-side comparison of the effects of eliminating the 16S transcript and find a substantial increase in the number of genes detected per cell, coupled with virtually complete loss of the 16S RNA. Moreover, we systematically determine that library complexity increases with a limited number of PCR cycles following CRISPR treatment. When compared to in silico depletion of 16S, physically removing it reduces dropout rates, retrieves more clusters, and reveals more differentially expressed genes. CONCLUSIONS Our results show that abundant transcripts reduce the retrieval of informative transcripts in scRNA-seq and distort the analysis. Physical removal of these contaminants enables the detection of rare transcripts at lower sequencing depth, and also outperforms in silico depletion. Importantly, this method can be easily customized to deplete any abundant transcript from scRNA-seq libraries.
Collapse
Affiliation(s)
- Kuang-Tse Wang
- Department of Molecular Medicine, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Carolyn E Adler
- Department of Molecular Medicine, Cornell University College of Veterinary Medicine, Ithaca, NY, USA.
| |
Collapse
|
49
|
Agarwal S, Aznar MA, Rech AJ, Good CR, Kuramitsu S, Da T, Gohil M, Chen L, Hong SJA, Ravikumar P, Rennels AK, Salas-Mckee J, Kong W, Ruella M, Davis MM, Plesa G, Fraietta JA, Porter DL, Young RM, June CH. Deletion of the inhibitory co-receptor CTLA-4 enhances and invigorates chimeric antigen receptor T cells. Immunity 2023; 56:2388-2407.e9. [PMID: 37776850 PMCID: PMC10591801 DOI: 10.1016/j.immuni.2023.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 06/08/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy targeting CD19 has achieved tremendous success treating B cell malignancies; however, some patients fail to respond due to poor autologous T cell fitness. To improve response rates, we investigated whether disruption of the co-inhibitory receptors CTLA4 or PD-1 could restore CART function. CRISPR-Cas9-mediated deletion of CTLA4 in preclinical models of leukemia and myeloma improved CAR T cell proliferation and anti-tumor efficacy. Importantly, this effect was specific to CTLA4 and not seen upon deletion of CTLA4 and/or PDCD1 in CAR T cells. Mechanistically, CTLA4 deficiency permitted unopposed CD28 signaling and maintenance of CAR expression on the T cell surface under conditions of high antigen load. In clinical studies, deletion of CTLA4 rescued the function of T cells from patients with leukemia that previously failed CAR T cell treatment. Thus, selective deletion of CTLA4 reinvigorates dysfunctional chronic lymphocytic leukemia (CLL) patient T cells, providing a strategy for increasing patient responses to CAR T cell therapy.
Collapse
Affiliation(s)
- Sangya Agarwal
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Angela Aznar
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Andrew J Rech
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charly R Good
- Department Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shunichiro Kuramitsu
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tong Da
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mercy Gohil
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Linhui Chen
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Seok-Jae Albert Hong
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Pranali Ravikumar
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Austin K Rennels
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - January Salas-Mckee
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Weimin Kong
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute of Cancer immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Hematology/Oncology, Department of Medicine and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Megan M Davis
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute of Cancer immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David L Porter
- Division of Hematology/Oncology, Department of Medicine and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Regina M Young
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute of Cancer immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute of Cancer immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Sánchez-Carbonell M, Jiménez Peinado P, Bayer-Kaufmann C, Hennings JC, Hofmann Y, Schmidt S, Witte OW, Urbach A. Effect of methanol fixation on single-cell RNA sequencing of the murine dentate gyrus. Front Mol Neurosci 2023; 16:1223798. [PMID: 37860083 PMCID: PMC10582346 DOI: 10.3389/fnmol.2023.1223798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) provides a powerful tool to evaluate the transcriptomic landscape and heterogeneity of thousands of cells in parallel. However, complex study designs or the unavailability of in-house instruments require the temporal disconnection between sample preparation and library construction, raising the need for efficient sample preservation methods which are compatible with scRNA-seq downstream analysis. Several studies evaluated the effect of methanol fixation as preservation method, yet none of them deeply assessed its effect on adult primary dissociated brain tissue. Here, we evaluated its effect on murine dentate gyrus (DG) single cell suspensions and on subsequent scRNA-seq downstream analysis by performing SOrting and Robot-assisted Transcriptome SEQuencing (SORT-seq), a partially robotized version of the CEL-seq2 protocol. Our results show that MeOH fixation preserves RNA integrity and has no apparent effects on cDNA library construction. They also suggest that fixation protects from sorting-induced cell stress and increases the proportion of high-quality cells. Despite evidence of mRNA leakage in fixed cells, their relative gene expression levels correlate well with those of fresh cells and fixation does not significantly affect the variance of the dataset. Moreover, it allows the identification of all major DG cell populations, including neural precursors, granule neurons and different glial cell types, with a tendency to preserve more neurons that are underrepresented in fresh samples. Overall, our data show that MeOH fixation is suitable for preserving primary neural cells for subsequent single-cell RNA profiling, helping to overcome challenges arising from complex workflows, improve experimental flexibility and facilitate scientific collaboration.
Collapse
Affiliation(s)
| | | | | | | | - Yvonne Hofmann
- Department of Internal Medicine V, Jena University Hospital, Jena, Germany
| | - Silvio Schmidt
- Department of Neurology, Jena University Hospital, Jena, Germany
- Jena Center for Healthy Aging, Jena University Hospital, Jena, Germany
- Brain Imaging Center, Jena University Hospital, Jena, Germany
| | - Otto W. Witte
- Department of Neurology, Jena University Hospital, Jena, Germany
- Jena Center for Healthy Aging, Jena University Hospital, Jena, Germany
- Aging Research Center (ARC) Jena, Jena, Germany
| | - Anja Urbach
- Department of Neurology, Jena University Hospital, Jena, Germany
- Jena Center for Healthy Aging, Jena University Hospital, Jena, Germany
- Aging Research Center (ARC) Jena, Jena, Germany
| |
Collapse
|