1
|
Pietilä S, Suomi T, Paulin N, Laiho A, Sclivagnotis YS, Elo LL. Adaptive sequence alignment for metagenomic data analysis. Comput Biol Med 2025; 186:109743. [PMID: 39869988 DOI: 10.1016/j.compbiomed.2025.109743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/29/2025]
Abstract
With advances in sequencing technologies, the use of high-throughput sequencing to characterize microbial communities is becoming increasingly feasible. However, metagenomic assembly poses computational challenges in reconstructing genes and organisms from complex samples. To address this issue, we introduce a new concept called Adaptive Sequence Alignment (ASA) for analyzing metagenomic DNA sequence data. By iteratively adapting a set of partial alignments of reference sequences to match the sample data, the approach can be applied in multiple scenarios, from taxonomic identification to assembly of target regions of interest. To demonstrate the benefits of ASA, we present two application scenarios and compare the results with state-of-the-art methods conventionally used for the same tasks. In the first, ASA accurately detected microorganisms from a sequenced metagenomic sample with a known composition. The second illustrated the utility of ASA in assembling target genetic regions of the microorganisms. An example implementation of the ASA concept is available at https://github.com/elolab/ASA.
Collapse
Affiliation(s)
- Sami Pietilä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Niklas Paulin
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | | | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland; Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland.
| |
Collapse
|
2
|
Wawryk MMH, Ley P, Vasquez-Cardenas D, Tabor RF, Cook PLM. Multidisciplinary methodologies used in the study of cable bacteria. FEMS Microbiol Rev 2025; 49:fuae030. [PMID: 39673715 PMCID: PMC11774119 DOI: 10.1093/femsre/fuae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/21/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024] Open
Abstract
Cable bacteria are a unique type of filamentous microorganism that can grow up to centimetres long and are capable of long-distance electron transport over their entire lengths. Due to their unique metabolism and conductive capacities, the study of cable bacteria has required technical innovations, both in adapting existing techniques and developing entirely new ones. This review discusses the existing methods used to study eight distinct aspects of cable bacteria research, including the challenges of culturing them in laboratory conditions, performing physical and biochemical extractions, and analysing the conductive mechanism. As cable bacteria research requires an interdisciplinary approach, methods from a range of fields are discussed, such as biogeochemistry, genomics, materials science, and electrochemistry. A critical analysis of the current state of each approach is presented, highlighting the advantages and drawbacks of both commonly used and emerging methods.
Collapse
Affiliation(s)
| | - Philip Ley
- Department of Biology, University of Antwerp, Wilrijk 2020, Belgium
| | | | - Rico F Tabor
- School of Chemistry, Monash University, Clayton 3800 VIC, Australia
| | - Perran L M Cook
- School of Chemistry, Monash University, Clayton 3800 VIC, Australia
| |
Collapse
|
3
|
Maday SDM, Kingsbury JM, Weaver L, Pantos O, Wallbank JA, Doake F, Masterton H, Hopkins M, Dunlop R, Gaw S, Theobald B, Risani R, Abbel R, Smith D, Handley KM, Lear G. Taxonomic variation, plastic degradation, and antibiotic resistance traits of plastisphere communities in the maturation pond of a wastewater treatment plant. Appl Environ Microbiol 2024; 90:e0071524. [PMID: 39329490 PMCID: PMC11497791 DOI: 10.1128/aem.00715-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Wastewater treatment facilities can filter out some plastics before they reach the open environment, yet microplastics often persist throughout these systems. As they age, microplastics in wastewater may both leach and sorb pollutants and fragment to provide an increased surface area for bacterial attachment and conjugation, possibly impacting antimicrobial resistance (AMR) traits. Despite this, little is known about the effects of persistent plastic pollution on microbial functioning. To address this knowledge gap, we deployed five different artificially weathered plastic types and a glass control into the final maturation pond of a municipal wastewater treatment plant in Ōtautahi-Christchurch, Aotearoa/New Zealand. We sampled the plastic-associated biofilms (plastisphere) at 2, 6, 26, and 52 weeks, along with the ambient pond water, at three different depths (20, 40, and 60 cm from the pond water surface). We investigated the changes in plastisphere microbial diversity and functional potential through metagenomic sequencing. Bacterial 16S ribosomal RNA genes composition did not vary among plastic types and glass controls (P = 0.997) but varied among sampling times [permutational multivariate analysis of variance (PERMANOVA), P = 0.001] and depths (PERMANOVA, P = 0.011). Overall, there was no polymer-substrate specificity evident in the total composition of genes (PERMANOVA, P = 0.67), but sampling time (PERMANOVA, P = 0.002) and depth were significant factors (PERMANOVA, P = 0.001). The plastisphere housed diverse AMR gene families, potentially influenced by biofilm-meditated conjugation. The plastisphere also harbored an increased abundance of genes associated with the biodegradation of nylon, or nylon-associated substances, including nylon oligomer-degrading enzymes and hydrolases.IMPORTANCEPlastic pollution is pervasive and ubiquitous. Occurrences of plastics causing entanglement or ingestion, the leaching of toxic additives and persistent organic pollutants from environmental plastics, and their consequences for marine macrofauna are widely reported. However, little is known about the effects of persistent plastic pollution on microbial functioning. Shotgun metagenomics sequencing provides us with the necessary tools to examine broad-scale community functioning to further investigate how plastics influence microbial communities. This study provides insight into the functional consequence of continued exposure to waste plastic by comparing the prokaryotic functional potential of biofilms on five types of plastic [linear low-density polyethylene (LLDPE), nylon-6, polyethylene terephthalate, polylactic acid, and oxygen-degradable LLDPE], glass, and ambient pond water over 12 months and at different depths (20, 40, and 60 cm) within a tertiary maturation pond of a municipal wastewater treatment plant.
Collapse
Affiliation(s)
- Stefan D. M. Maday
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Louise Weaver
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Olga Pantos
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Jessica A. Wallbank
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Fraser Doake
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Hayden Masterton
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Maisie Hopkins
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Rosa Dunlop
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sally Gaw
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | - Kim M. Handley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Jochheim A, Jochheim FA, Kolodyazhnaya A, Morice É, Steinegger M, Söding J. Strain-resolved de-novo metagenomic assembly of viral genomes and microbial 16S rRNAs. MICROBIOME 2024; 12:187. [PMID: 39354646 PMCID: PMC11443906 DOI: 10.1186/s40168-024-01904-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/07/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Metagenomics is a powerful approach to study environmental and human-associated microbial communities and, in particular, the role of viruses in shaping them. Viral genomes are challenging to assemble from metagenomic samples due to their genomic diversity caused by high mutation rates. In the standard de Bruijn graph assemblers, this genomic diversity leads to complex k-mer assembly graphs with a plethora of loops and bulges that are challenging to resolve into strains or haplotypes because variants more than the k-mer size apart cannot be phased. In contrast, overlap assemblers can phase variants as long as they are covered by a single read. RESULTS Here, we present PenguiN, a software for strain resolved assembly of viral DNA and RNA genomes and bacterial 16S rRNA from shotgun metagenomics. Its exhaustive detection of all read overlaps in linear time combined with a Bayesian model to select strain-resolved extensions allow it to assemble longer viral contigs, less fragmented genomes, and more strains than existing assembly tools, on both real and simulated datasets. We show a 3-40-fold increase in complete viral genomes and a 6-fold increase in bacterial 16S rRNA genes. CONCLUSION PenguiN is the first overlap-based assembler for viral genome and 16S rRNA assembly from large and complex metagenomic datasets, which we hope will facilitate studying the key roles of viruses in microbial communities. Video Abstract.
Collapse
Affiliation(s)
- Annika Jochheim
- Quantitative and Computational Biology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max-Planck Research School for Genome Sciences, University of Göttingen, Göttingen, Germany
| | - Florian A Jochheim
- International Max-Planck Research School for Genome Sciences, University of Göttingen, Göttingen, Germany
- Dep. of Molecular Biology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandra Kolodyazhnaya
- Quantitative and Computational Biology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Étienne Morice
- Quantitative and Computational Biology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max-Planck Research School for Genome Sciences, University of Göttingen, Göttingen, Germany
| | - Martin Steinegger
- School of Biological Sciences, Seoul National University, Seoul, South Korea.
- Artificial Intelligence Institute, Seoul National University, Seoul, South Korea.
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
| | - Johannes Söding
- Quantitative and Computational Biology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- International Max-Planck Research School for Genome Sciences, University of Göttingen, Göttingen, Germany.
- Campus Institute Data Science (CIDAS), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
5
|
Cabuslay C, Wertz JT, Béchade B, Hu Y, Braganza S, Freeman D, Pradhan S, Mukhanova M, Powell S, Moreau C, Russell JA. Domestication and evolutionary histories of specialized gut symbionts across cephalotine ants. Mol Ecol 2024; 33:e17454. [PMID: 39005142 DOI: 10.1111/mec.17454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 07/16/2024]
Abstract
The evolution of animals and their gut symbionts is a complex phenomenon, obscured by lability and diversity. In social organisms, transmission of symbionts among relatives may yield systems with more stable associations. Here, we study the history of a social insect symbiosis involving cephalotine ants and their extracellular gut bacteria, which come predominantly from host-specialized lineages. We perform multi-locus phylogenetics for symbionts from nine bacterial orders, and map prior amplicon sequence data to lineage-assigned symbiont genomes, studying distributions of rigorously defined symbionts across 20 host species. Based on monophyly and additional hypothesis testing, we estimate that these specialized gut bacteria belong to 18 distinct lineages, of which 15 have been successfully isolated and cultured. Several symbiont lineages showed evidence for domestication events that occurred later in cephalotine evolutionary history, and only one lineage was ubiquitously detected in all 20 host species and 48 colonies sampled with amplicon 16S rRNA sequencing. We found evidence for phylogenetically constrained distributions in four symbionts, suggesting historical or genetic impacts on community composition. Two lineages showed evidence for frequent intra-lineage co-infections, highlighting the potential for niche divergence after initial domestication. Nearly all symbionts showed evidence for occasional host switching, but four may, more often, co-diversify with their hosts. Through our further assessment of symbiont localization and genomic functional profiles, we demonstrate distinct niches for symbionts with shared evolutionary histories, prompting further questions on the forces underlying the evolution of hosts and their gut microbiomes.
Collapse
Affiliation(s)
- Christian Cabuslay
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - John T Wertz
- Department of Biology, Calvin College, Grand Rapids, Michigan, USA
| | - Benoît Béchade
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Yi Hu
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
- State key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Sonali Braganza
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Daniel Freeman
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Shreyansh Pradhan
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Maria Mukhanova
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Scott Powell
- Department of Biological Sciences, George Washington University, Washington, District of Columbia, USA
| | - Corrie Moreau
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Zhang Z, Xiao J, Wang H, Yang C, Huang Y, Yue Z, Chen Y, Han L, Yin K, Lyu A, Fang X, Zhang L. Exploring high-quality microbial genomes by assembling short-reads with long-range connectivity. Nat Commun 2024; 15:4631. [PMID: 38821971 PMCID: PMC11143213 DOI: 10.1038/s41467-024-49060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 05/17/2024] [Indexed: 06/02/2024] Open
Abstract
Although long-read sequencing enables the generation of complete genomes for unculturable microbes, its high cost limits the widespread adoption of long-read sequencing in large-scale metagenomic studies. An alternative method is to assemble short-reads with long-range connectivity, which can be a cost-effective way to generate high-quality microbial genomes. Here, we develop Pangaea, a bioinformatic approach designed to enhance metagenome assembly using short-reads with long-range connectivity. Pangaea leverages connectivity derived from physical barcodes of linked-reads or virtual barcodes by aligning short-reads to long-reads. Pangaea utilizes a deep learning-based read binning algorithm to assemble co-barcoded reads exhibiting similar sequence contexts and abundances, thereby improving the assembly of high- and medium-abundance microbial genomes. Pangaea also leverages a multi-thresholding algorithm strategy to refine assembly for low-abundance microbes. We benchmark Pangaea on linked-reads and a combination of short- and long-reads from simulation data, mock communities and human gut metagenomes. Pangaea achieves significantly higher contig continuity as well as more near-complete metagenome-assembled genomes (NCMAGs) than the existing assemblers. Pangaea also generates three complete and circular NCMAGs on the human gut microbiomes.
Collapse
Grants
- This research was partially supported by the Young Collaborative Research Grant (C2004-23Y, L.Z.), HMRF (11221026, L.Z.), the open project of BGI-Shenzhen, Shenzhen 518000, China (BGIRSZ20220012, L.Z.), the Hong Kong Research Grant Council Early Career Scheme (HKBU 22201419, L.Z.), HKBU Start-up Grant Tier 2 (RC-SGT2/19-20/SCI/007, L.Z.), HKBU IRCMS (No. IRCMS/19-20/D02, L.Z.).
- This research was partially supported by the open project of BGI-Shenzhen, Shenzhen 518000, China (BGIRSZ20220014, KJ.Y.).
- The study were partially supported by the Science Technology and Innovation Committee of Shenzhen Municipality, China (SGDX20190919142801722, XD.F.),
Collapse
Affiliation(s)
- Zhenmiao Zhang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong, China
| | - Jin Xiao
- Department of Computer Science, Hong Kong Baptist University, Hong Kong, China
| | - Hongbo Wang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong, China
| | - Chao Yang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong, China
| | | | - Zhen Yue
- BGI Research, Sanya, 572025, China
| | - Yang Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese, Guangzhou, China
| | - Lijuan Han
- Department of Scientific Research, Kangmeihuada GeneTech Co., Ltd (KMHD), Shenzhen, China
| | - Kejing Yin
- Department of Computer Science, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaodong Fang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Sanya, 572025, China
- Department of Scientific Research, Kangmeihuada GeneTech Co., Ltd (KMHD), Shenzhen, China
| | - Lu Zhang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong, China.
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China.
| |
Collapse
|
7
|
Wang YC, Mao Y, Fu HM, Wang J, Weng X, Liu ZH, Xu XW, Yan P, Fang F, Guo JS, Shen Y, Chen YP. New insights into functional divergence and adaptive evolution of uncultured bacteria in anammox community by complete genome-centric analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171530. [PMID: 38453092 DOI: 10.1016/j.scitotenv.2024.171530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Anaerobic ammonium-oxidation (anammox) bacteria play a crucial role in global nitrogen cycling and wastewater nitrogen removal, but they share symbiotic relationships with various other microorganisms. Functional divergence and adaptive evolution of uncultured bacteria in anammox community remain underexplored. Although shotgun metagenomics based on short reads has been widely used in anammox research, metagenome-assembled genomes (MAGs) are often discontinuous and highly contaminated, which limits in-depth analyses of anammox communities. Here, for the first time, we performed Pacific Biosciences high-fidelity (HiFi) long-read sequencing on the anammox granule sludge sample from a lab-scale bioreactor, and obtained 30 accurate and complete metagenome-assembled genomes (cMAGs). These cMAGs were obtained by selecting high-quality circular contigs from initial assemblies of long reads generated by HiFi sequencing, eliminating the need for Illumina short reads, binning, and reassembly. One new anammox species affiliated with Candidatus Jettenia and three species affiliated with novel families were found in this anammox community. cMAG-centric analysis revealed functional divergence in general and nitrogen metabolism among the anammox community members, and they might adopt a cross-feeding strategy in organic matter, cofactors, and vitamins. Furthermore, we identified 63 mobile genetic elements (MGEs) and 50 putative horizontal gene transfer (HGT) events within these cMAGs. The results suggest that HGT events and MGEs related to phage and integration or excision, particularly transposons containing tnpA in anammox bacteria, might play important roles in the adaptive evolution of this anammox community. The cMAGs generated in the present study could be used to establish of a comprehensive database for anammox bacteria and associated microorganisms. These findings highlight the advantages of HiFi sequencing for the studies of complex mixed cultures and advance the understanding of anammox communities.
Collapse
Affiliation(s)
- Yi-Cheng Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, Guangdong, China
| | - Hui-Min Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China; National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Jin Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Xun Weng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Zi-Hao Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Xiao-Wei Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
8
|
St John E, Reysenbach AL. Genomic comparison of deep-sea hydrothermal genera related to Aeropyrum, Thermodiscus and Caldisphaera, and proposed emended description of the family Acidilobaceae. Syst Appl Microbiol 2024; 47:126507. [PMID: 38703419 DOI: 10.1016/j.syapm.2024.126507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/02/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
Deep-sea hydrothermal vents host archaeal and bacterial thermophilic communities, including taxonomically and functionally diverse Thermoproteota. Despite their prevalence in high-temperature submarine communities, Thermoproteota are chronically under-represented in genomic databases and issues have emerged regarding their nomenclature, particularly within the Aeropyrum-Thermodiscus-Caldisphaera. To resolve some of these problems, we identified 47 metagenome-assembled genomes (MAGs) within this clade, from 20 previously published deep-sea hydrothermal vent and submarine volcano metagenomes, and 24 MAGs from public databases. Using phylogenomic analysis, Genome Taxonomy Database Toolkit (GTDB-Tk) taxonomic assessment, 16S rRNA gene phylogeny, average amino acid identity (AAI) and functional gene patterns, we re-evaluated of the taxonomy of the Aeropyrum-Thermodiscus-Caldisphaera. At least nine genus-level clades were identified with two or more MAGs. In accordance with SeqCode requirements and recommendations, we propose names for three novel genera, viz. Tiamatella incendiivivens, Hestiella acidicharens and Calypsonella navitae. A fourth genus was also identified related to Thermodiscus maritimus, for which no available sequenced genome exists. We propose the novel species Thermodiscus eudorianus to describe our high-quality Thermodiscus MAG, which represents the type genome for the genus. All three novel genera and T. eudorianus are likely anaerobic heterotrophs, capable of fermenting protein-rich carbon sources, while some Tiamatella, Calypsonella and T. eudorianus may also reduce polysulfides, thiosulfate, sulfur and/or selenite, and the likely acidophile, Hestiella, may reduce nitrate and/or perchlorate. Based on phylogenomic evidence, we also propose the family Acidilobaceae be amended to include Caldisphaera, Aeropyrum, Thermodiscus and Stetteria and the novel genera described here.
Collapse
Affiliation(s)
- Emily St John
- Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA.
| | - Anna-Louise Reysenbach
- Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA.
| |
Collapse
|
9
|
Chorlton SD. Ten common issues with reference sequence databases and how to mitigate them. FRONTIERS IN BIOINFORMATICS 2024; 4:1278228. [PMID: 38560517 PMCID: PMC10978663 DOI: 10.3389/fbinf.2024.1278228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Metagenomic sequencing has revolutionized our understanding of microbiology. While metagenomic tools and approaches have been extensively evaluated and benchmarked, far less attention has been given to the reference sequence database used in metagenomic classification. Issues with reference sequence databases are pervasive. Database contamination is the most recognized issue in the literature; however, it remains relatively unmitigated in most analyses. Other common issues with reference sequence databases include taxonomic errors, inappropriate inclusion and exclusion criteria, and sequence content errors. This review covers ten common issues with reference sequence databases and the potential downstream consequences of these issues. Mitigation measures are discussed for each issue, including bioinformatic tools and database curation strategies. Together, these strategies present a path towards more accurate, reproducible and translatable metagenomic sequencing.
Collapse
|
10
|
Zhang L, Zhao H, Qin S, Hu C, Shen Y, Qu B, Bai Y, Liu B. Genome-Resolved Metagenomics and Denitrifying Strain Isolation Reveal New Insights into Microbial Denitrification in the Deep Vadose Zone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2323-2334. [PMID: 38267389 DOI: 10.1021/acs.est.3c06466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The heavy use of nitrogen fertilizer in intensive agricultural areas often leads to nitrate accumulation in subsurface soil and nitrate contamination in groundwater, which poses a serious risk to public health. Denitrifying microorganisms in the subsoil convert nitrate to gaseous forms of nitrogen, thereby mitigating the leaching of nitrate into groundwater. Here, we investigated denitrifying microorganisms in the deep vadose zone of a typical intensive agricultural area in China through microcosm enrichment, genome-resolved metagenomic analysis, and denitrifying bacteria isolation. A total of 1000 metagenome-assembled genomes (MAGs) were reconstructed, resulting in 98 high-quality, dereplicated MAGs that contained denitrification genes. Among them, 32 MAGs could not be taxonomically classified at the genus or species level, indicating that a broader spectrum of taxonomic groups is involved in subsoil denitrification than previously recognized. A denitrifier isolate library was constructed by using a strategy combining high-throughput and conventional cultivation techniques. Assessment of the denitrification characteristics of both the MAGs and isolates demonstrated the dominance of truncated denitrification. Functional screening revealed the highest denitrification activity in two complete denitrifiers belonging to the genus Pseudomonas. These findings greatly expand the current knowledge of the composition and function of denitrifying microorganisms in subsoils. The constructed isolate library provided the first pool of subsoil-denitrifying microorganisms that could facilitate the development of microbe-based technologies for nitrate attenuation in groundwater.
Collapse
Affiliation(s)
- Linqi Zhang
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Huicheng Zhao
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Shuping Qin
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Chunsheng Hu
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Yanjun Shen
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Baoyuan Qu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- CAS-JIC Centre of Excellence for Plant and Microbial Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- CAS-JIC Centre of Excellence for Plant and Microbial Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Binbin Liu
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
- Xiong'an Institute of Innovation, Chinese Academy of Sciences, Xiong'an 071700, China
| |
Collapse
|
11
|
Kantor EJH, Robicheau BM, Tolman J, Archibald JM, LaRoche J. Metagenomics reveals the genetic diversity between sublineages of UCYN-A and their algal host plastids. ISME COMMUNICATIONS 2024; 4:ycae150. [PMID: 39670058 PMCID: PMC11637426 DOI: 10.1093/ismeco/ycae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
UCYN-A (or Cand. Atelocyanobacterium thalassa) has been recognized as a globally distributed, early stage, nitrogen-fixing organelle (the "nitroplast") of cyanobacterial origin present in the haptophyte alga Braarudosphaera bigelowii. Although the nitroplast was recognized as UCYN-A2, not all sublineages of UCYN-A have been confirmed as nitroplasts, and full genomes are still lacking for several known sublineages. We investigated the differences between UCYN-A sublineages by sequencing and assembly of metagenomic sequences acquired from cultured biomass from NW Atlantic seawater, which yielded near-complete Metagenome Assembled Genomes (MAGs) corresponding to UCYN-A1, -A4, and the plastid of the UCYN-A4-associated B. bigelowii. Weekly time-series data paired with the recurrence of specific microbes in cultures used for metagenomics gave further insight into the microbial community associated with the algal/UCYN-A complex. The UCYN-A1 MAG was found to have 99% average nucleotide identity (ANI) to the Pacific-derived reference genome despite its Atlantic Ocean origin. Comparison of the UCYN-A4 MAG (the initial genome sequenced from this sublineage) to other genomes showed that UCYN-A4 is sufficiently genetically distinct from both UCYN-A1 and UCYN-A2 (ANI of ~83% and ~85%, respectively) to be considered its own sublineage, but more similar to UCYN-A2 than -A1, supporting its possible classification as a nitroplast. The B. bigelowii plastid sequence was compared with published plastid sequences (sharing 78% ANI with Chrysochromulina parva) adding to our understanding of genomic variation across Haptophyta organelles and emphasizing the need for further full genomic sequencing of B. bigelowii genotypes and their organelles.
Collapse
Affiliation(s)
- Ella Joy H Kantor
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| | | | - Jennifer Tolman
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| | - John M Archibald
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
12
|
Ma B, Lu C, Wang Y, Yu J, Zhao K, Xue R, Ren H, Lv X, Pan R, Zhang J, Zhu Y, Xu J. A genomic catalogue of soil microbiomes boosts mining of biodiversity and genetic resources. Nat Commun 2023; 14:7318. [PMID: 37951952 PMCID: PMC10640626 DOI: 10.1038/s41467-023-43000-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023] Open
Abstract
Soil harbors a vast expanse of unidentified microbes, termed as microbial dark matter, presenting an untapped reservo)ir of microbial biodiversity and genetic resources, but has yet to be fully explored. In this study, we conduct a large-scale excavation of soil microbial dark matter by reconstructing 40,039 metagenome-assembled genome bins (the SMAG catalogue) from 3304 soil metagenomes. We identify 16,530 of 21,077 species-level genome bins (SGBs) as unknown SGBs (uSGBs), which expand archaeal and bacterial diversity across the tree of life. We also illustrate the pivotal role of uSGBs in augmenting soil microbiome's functional landscape and intra-species genome diversity, providing large proportions of the 43,169 biosynthetic gene clusters and 8545 CRISPR-Cas genes. Additionally, we determine that uSGBs contributed 84.6% of previously unexplored viral-host associations from the SMAG catalogue. The SMAG catalogue provides an useful genomic resource for further studies investigating soil microbial biodiversity and genetic resources.
Collapse
Affiliation(s)
- Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Caiyu Lu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Yiling Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Jingwen Yu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Ran Xue
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Hao Ren
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Xiaofei Lv
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Ronghui Pan
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yongguan Zhu
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Sepúlveda-Correa A, Monsalve L, Polania J, Mestanza O, Vanegas J. Effect of salinity on genes involved in the stress response in mangrove soils. Antonie Van Leeuwenhoek 2023; 116:1171-1184. [PMID: 37682363 DOI: 10.1007/s10482-023-01856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/02/2023] [Indexed: 09/09/2023]
Abstract
Mangroves are a challenging ecosystem for the microorganisms that inhabit them, considering they are subjected to stressful conditions such as high and fluctuating salinity. Metagenomic analysis of mangrove soils under contrasting salinity conditions was performed at the mouth of the Ranchera River to the Caribbean Sea in La Guajira, Colombia, using shotgun sequencing and the Illumina Hiseq 2500 platform. Functional gene analysis demonstrated that salinity could influence the abundance of microbial genes involved in osmoprotectant transport, DNA repair, heat shock proteins (HSP), and Quorum Sensing, among others. In total, 135 genes were discovered to be linked to 12 pathways. Thirty-four genes out of 10 pathways had statistical differences for a p-value and FDR < 0.05. UvrA and uvrB (nucleotide excision repair), groEL (HSP), and secA (bacterial secretion system) genes were the most abundant and were enriched by high salinity. The results of this study showed the prevalence of diverse genetic mechanisms that bacteria use as a response to survive in the challenging mangrove, as well as the presence of various genes that are recruited in order to maintain bacterial homeostasis under conditions of high salinity.
Collapse
Affiliation(s)
- Alejandro Sepúlveda-Correa
- Natural Sciences Department, Université du Québec en Outaouais, 58 Rue Principale, Ripon, QC, J0V 1V0, Canada
- Universidad Nacional de Colombia Sede Medellín, Cra. 65 #59a-110, Medellín, Colombia
| | | | - Jaime Polania
- Universidad Nacional de Colombia Sede Medellín, Cra. 65 #59a-110, Medellín, Colombia
| | - Orson Mestanza
- Instituto Nacional de Salud, Cápac Yupanqui 1400 - Jesus María, Lima, Perú
| | - Javier Vanegas
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| |
Collapse
|
14
|
Arikawa K, Hosokawa M. Uncultured prokaryotic genomes in the spotlight: An examination of publicly available data from metagenomics and single-cell genomics. Comput Struct Biotechnol J 2023; 21:4508-4518. [PMID: 37771751 PMCID: PMC10523443 DOI: 10.1016/j.csbj.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 09/30/2023] Open
Abstract
Owing to the ineffectiveness of traditional culture techniques for the vast majority of microbial species, culture-independent analyses utilizing next-generation sequencing and bioinformatics have become essential for gaining insight into microbial ecology and function. This mini-review focuses on two essential methods for obtaining genetic information from uncultured prokaryotes, metagenomics and single-cell genomics. We analyzed the registration status of uncultured prokaryotic genome data from major public databases and assessed the advantages and limitations of both the methods. Metagenomics generates a significant quantity of sequence data and multiple prokaryotic genomes using straightforward experimental procedures. However, in ecosystems with high microbial diversity, such as soil, most genes are presented as brief, disconnected contigs, and lack association of highly conserved genes and mobile genetic elements with individual species genomes. Although technically more challenging, single-cell genomics offers valuable insights into complex ecosystems by providing strain-resolved genomes, addressing issues in metagenomics. Recent technological advancements, such as long-read sequencing, machine learning algorithms, and in silico protein structure prediction, in combination with vast genomic data, have the potential to overcome the current technical challenges and facilitate a deeper understanding of uncultured microbial ecosystems and microbial dark matter genes and proteins. In light of this, it is imperative that continued innovation in both methods and technologies take place to create high-quality reference genome databases that will support future microbial research and industrial applications.
Collapse
Affiliation(s)
- Koji Arikawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Masahito Hosokawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
15
|
Shen K, Din AU, Sinha B, Zhou Y, Qian F, Shen B. Translational informatics for human microbiota: data resources, models and applications. Brief Bioinform 2023; 24:7152256. [PMID: 37141135 DOI: 10.1093/bib/bbad168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
With the rapid development of human intestinal microbiology and diverse microbiome-related studies and investigations, a large amount of data have been generated and accumulated. Meanwhile, different computational and bioinformatics models have been developed for pattern recognition and knowledge discovery using these data. Given the heterogeneity of these resources and models, we aimed to provide a landscape of the data resources, a comparison of the computational models and a summary of the translational informatics applied to microbiota data. We first review the existing databases, knowledge bases, knowledge graphs and standardizations of microbiome data. Then, the high-throughput sequencing techniques for the microbiome and the informatics tools for their analyses are compared. Finally, translational informatics for the microbiome, including biomarker discovery, personalized treatment and smart healthcare for complex diseases, are discussed.
Collapse
Affiliation(s)
- Ke Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Ahmad Ud Din
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Baivab Sinha
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Yi Zhou
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Fuliang Qian
- Center for Systems Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Suzhou 215123, China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| |
Collapse
|
16
|
Nguyen VH, Wemheuer B, Song W, Bennett H, Webster N, Thomas T. Identification, classification, and functional characterization of novel sponge-associated acidimicrobiial species. Syst Appl Microbiol 2023; 46:126426. [PMID: 37141831 DOI: 10.1016/j.syapm.2023.126426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
Sponges are known to harbour an exceptional diversity of uncultured microorganisms, including members of the phylum Actinobacteriota. While members of the actinobacteriotal class Actinomycetia have been studied intensively due to their potential for secondary metabolite production, the sister class of Acidimicrobiia is often more abundant in sponges. However, the taxonomy, functions, and ecological roles of sponge-associated Acidimicrobiia are largely unknown. Here, we reconstructed and characterized 22 metagenome-assembled genomes (MAGs) of Acidimicrobiia from three sponge species. These MAGs represented six novel species, belonging to five genera, four families, and two orders, which are all uncharacterized (except the order Acidimicrobiales) and for which we propose nomenclature. These six uncultured species have either only been found in sponges and/or corals and have varying degrees of specificity to their host species. Functional gene profiling indicated that these six species shared a similar potential to non-symbiotic Acidimicrobiia with respect to amino acid biosynthesis and utilization of sulfur compounds. However, sponge-associated Acidimicrobiia differed from their non-symbiotic counterparts by relying predominantly on organic rather than inorganic sources of energy, and their predicted capacity to synthesise bioactive compounds or their precursors implicated in host defence. Additionally, the species possess the genetic capacity to degrade aromatic compounds that are frequently found in sponges. The novel Acidimicrobiia may also potentially mediate host development by modulating Hedgehog signalling and by the production of serotonin, which can affect host body contractions and digestion. These results highlight unique genomic and metabolic features of six new acidimicrobiial species that potentially support a sponge-associated lifestyle.
Collapse
Affiliation(s)
- Viet Hung Nguyen
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Bernd Wemheuer
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Weizhi Song
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Holly Bennett
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Nicole Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia; Australian Antarctic Division, Hobart, Tasmania, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
17
|
Jia L, Wu Y, Dong Y, Chen J, Chen WH, Zhao XM. A survey on computational strategies for genome-resolved gut metagenomics. Brief Bioinform 2023; 24:7145904. [PMID: 37114640 DOI: 10.1093/bib/bbad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Recovering high-quality metagenome-assembled genomes (HQ-MAGs) is critical for exploring microbial compositions and microbe-phenotype associations. However, multiple sequencing platforms and computational tools for this purpose may confuse researchers and thus call for extensive evaluation. Here, we systematically evaluated a total of 40 combinations of popular computational tools and sequencing platforms (i.e. strategies), involving eight assemblers, eight metagenomic binners and four sequencing technologies, including short-, long-read and metaHiC sequencing. We identified the best tools for the individual tasks (e.g. the assembly and binning) and combinations (e.g. generating more HQ-MAGs) depending on the availability of the sequencing data. We found that the combination of the hybrid assemblies and metaHiC-based binning performed best, followed by the hybrid and long-read assemblies. More importantly, both long-read and metaHiC sequencings link more mobile elements and antibiotic resistance genes to bacterial hosts and improve the quality of public human gut reference genomes with 32% (34/105) HQ-MAGs that were either of better quality than those in the Unified Human Gastrointestinal Genome catalog version 2 or novel.
Collapse
Affiliation(s)
- Longhao Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Yingjian Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yanqi Dong
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Jingchao Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
- Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Ministry of Education, Shanghai 200433, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Nguyen VH, Wemheuer B, Song W, Bennett H, Palladino G, Burgsdorf I, Sizikov S, Steindler L, Webster NS, Thomas T. Functional characterization and taxonomic classification of novel gammaproteobacterial diversity in sponges. Syst Appl Microbiol 2023; 46:126401. [PMID: 36774720 DOI: 10.1016/j.syapm.2023.126401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Sponges harbour exceptionally diverse microbial communities, whose members are largely uncultured. The class Gammaproteobacteria often dominates the microbial communities of various sponge species, but most of its diversity remains functional and taxonomically uncharacterised. Here we reconstructed and characterised 32 metagenome-assembled genomes (MAGs) derived from three sponge species. These MAGs represent ten novel species and belong to seven orders, of which one is new. We propose nomenclature for all these taxa. These new species comprise sponge-specific bacteria with varying levels of host specificity. Functional gene profiling highlights significant differences in metabolic capabilities across the ten species, though each also often exhibited a large degree of metabolic diversity involving various nitrogen- and sulfur-based compounds. The genomic features of the ten species suggest they have evolved to form symbiotic interaction with their hosts or are well-adapted to survive within the sponge environment. These Gammaproteobacteria are proposed to scavenge substrates from the host environment, including metabolites or cellular components of the sponge. Their diverse metabolic capabilities may allow for efficient cycling of organic matter in the sponge environment, potentially to the benefit of the host and other symbionts.
Collapse
Affiliation(s)
- Viet Hung Nguyen
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Bernd Wemheuer
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Weizhi Song
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Holly Bennett
- Australian Institute of Marine Science, Townsville, Queensland, Australia; Cawthron Institute, Nelson, New Zealand
| | - Giorgia Palladino
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia; Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | | | | | | | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia; Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia; Australian Antarctic Division, Kingston, Tasmania, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
19
|
Improved Assembly of Metagenome-Assembled Genomes and Viruses in Tibetan Saline Lake Sediment by HiFi Metagenomic Sequencing. Microbiol Spectr 2023; 11:e0332822. [PMID: 36475839 PMCID: PMC9927493 DOI: 10.1128/spectrum.03328-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
With the development and reduced costs of high-throughput sequencing technology, environmental dark matter, such as novel metagenome-assembled genomes (MAGs) and viruses, is now being discovered easily. However, due to read length limitations, MAGs and viromes often suffer from genome discontinuity and deficiencies in key functional elements. Here, by applying long-read sequencing technology to sediment samples from a Tibetan saline lake, we comprehensively analyzed the performance of high-fidelity (HiFi) reads and the possibility of integration with short-read next-generation sequencing (NGS) data. In total, 207 full-length nonredundant 16S rRNA gene sequences and 19 full-length nonredundant 18S rRNA genes were directly obtained from HiFi reads, which greatly surpassed the retrieval performance of NGS technology. We carried out a cross-sectional comparison among multiple assembly strategies, referred to as 'NGS', 'Hybrid (NGS+HiFi)', and 'HiFi'. Two MAGs and 29 viruses with circular genomes were reconstructed using HiFi reads alone, indicating the great power of the 'HiFi' approach to assemble high-quality microbial genomes. Among the 3 strategies, the 'Hybrid' approach produced the highest number of medium/high-quality MAGs and viral genomes, while the ratio of MAGs containing 16S rRNA genes was significantly improved in the 'HiFi' assembly results. Overall, our study provides a practical metagenomic resolution for analyzing complex environmental samples by taking advantage of both the short-read and HiFi long-read sequencing methods to extract the maximum amount of information, including data on prokaryotes, eukaryotes, and viruses, via the 'Hybrid' approach. IMPORTANCE To expand the understanding of microbial dark matter in the environment, we did the first comparative evaluation of multiple assembly strategies based on high-throughput short-read and HiFi data from lake sediments metagenomic sequencing. The results demonstrated great improvement of the 'Hybrid' assembly method (short-read next-generation sequencing data plus HiFi data) in the recovery of medium/high-quality MAGs and viral genomes. Further analysis showed that HiFi data is important to retrieve the complete circular prokaryotic and viral genomes. Meanwhile, hundreds of full-length 16S/18S rRNA genes were assembled directly from HiFi data, which facilitated the species composition studies of complex environmental samples, especially for understanding micro-eukaryotes. Therefore, the application of the latest HiFi long-read sequencing could greatly improve the metagenomic assembly integrity and promote environmental microbiome research.
Collapse
|
20
|
Environmental Selection and Biogeography Shape the Microbiome of Subsurface Petroleum Reservoirs. mSystems 2023; 8:e0088422. [PMID: 36786580 PMCID: PMC10134868 DOI: 10.1128/msystems.00884-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Petroleum reservoirs within the deep biosphere are extreme environments inhabited by diverse microbial communities and represent biogeochemical hot spots in the subsurface. Despite the ecological and industrial importance of oil reservoir microbiomes, systematic study of core microbial taxa and their associated genomic attributes spanning different environmental conditions is limited. Here, we compile and compare 343 16S rRNA gene amplicon libraries and 25 shotgun metagenomic libraries from oil reservoirs in different parts of the world to test for the presence of core taxa and functions. These oil reservoir libraries do not share any core taxa at the species, genus, family, or order levels, and Gammaproteobacteria was the only taxonomic class detected in all samples. Instead, taxonomic composition varies among reservoirs with different physicochemical characteristics and with geographic distance highlighting environmental selection and biogeography in these deep biosphere habitats. Gene-centric metagenomic analysis reveals a functional core of metabolic pathways including carbon acquisition and energy-yielding strategies consistent with biogeochemical cycling in other subsurface environments. Genes for anaerobic hydrocarbon degradation are observed in a subset of the samples and are therefore not considered to represent core functions in oil reservoirs despite hydrocarbons representing an abundant source of carbon in these deep biosphere settings. Overall, this work reveals common and divergent features of oil reservoir microbiomes that are shaped by and responsive to environmental factors, highlighting controls on subsurface microbial community assembly. IMPORTANCE This comprehensive analysis showcases how environmental selection and geographic distance influence the microbiome of subsurface petroleum reservoirs. We reveal substantial differences in the taxonomy of the inhabiting microbes but shared metabolic function between reservoirs with different in situ temperatures and between reservoirs separated by large distances. The study helps understand and advance the field of deep biosphere science by providing an ecological framework and footing for geologists, chemists, and microbiologists studying these habitats to elucidate major controls on deep biosphere microbial ecology.
Collapse
|
21
|
Kim CY, Ma J, Lee I. HiFi metagenomic sequencing enables assembly of accurate and complete genomes from human gut microbiota. Nat Commun 2022; 13:6367. [PMID: 36289209 PMCID: PMC9606305 DOI: 10.1038/s41467-022-34149-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Advances in metagenomic assembly have led to the discovery of genomes belonging to uncultured microorganisms. Metagenome-assembled genomes (MAGs) often suffer from fragmentation and chimerism. Recently, 20 complete MAGs (cMAGs) have been assembled from Oxford Nanopore long-read sequencing of 13 human fecal samples, but with low nucleotide accuracy. Here, we report 102 cMAGs obtained by Pacific Biosciences (PacBio) high-accuracy long-read (HiFi) metagenomic sequencing of five human fecal samples, whose initial circular contigs were selected for complete prokaryotic genomes using our bioinformatics workflow. Nucleotide accuracy of the final cMAGs was as high as that of Illumina sequencing. The cMAGs could exceed 6 Mbp and included complete genomes of diverse taxa, including entirely uncultured RF39 and TANB77 orders. Moreover, cMAGs revealed that regions hard to assemble by short-read sequencing comprised mostly genomic islands and rRNAs. HiFi metagenomic sequencing will facilitate cataloging accurate and complete genomes from complex microbial communities, including uncultured species.
Collapse
Affiliation(s)
- Chan Yeong Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Junyeong Ma
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
22
|
Okazaki Y, Nakano SI, Toyoda A, Tamaki H. Long-Read-Resolved, Ecosystem-Wide Exploration of Nucleotide and Structural Microdiversity of Lake Bacterioplankton Genomes. mSystems 2022; 7:e0043322. [PMID: 35938717 PMCID: PMC9426551 DOI: 10.1128/msystems.00433-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
Reconstruction of metagenome-assembled genomes (MAGs) has become a fundamental approach in microbial ecology. However, a MAG is hardly complete and overlooks genomic microdiversity because metagenomic assembly fails to resolve microvariants among closely related genotypes. Aiming at understanding the universal factors that drive or constrain prokaryotic genome diversification, we performed an ecosystem-wide high-resolution metagenomic exploration of microdiversity by combining spatiotemporal (2 depths × 12 months) sampling from a pelagic freshwater system, high-quality MAG reconstruction using long- and short-read metagenomic sequences, and profiling of single nucleotide variants (SNVs) and structural variants (SVs) through mapping of short and long reads to the MAGs, respectively. We reconstructed 575 MAGs, including 29 circular assemblies, providing high-quality reference genomes of freshwater bacterioplankton. Read mapping against these MAGs identified 100 to 101,781 SNVs/Mb and 0 to 305 insertions, 0 to 467 deletions, 0 to 41 duplications, and 0 to 6 inversions for each MAG. Nonsynonymous SNVs were accumulated in genes potentially involved in cell surface structural modification to evade phage recognition. Most (80.2%) deletions overlapped with a gene coding region, and genes of prokaryotic defense systems were most frequently (>8% of the genes) overlapped with a deletion. Some such deletions exhibited a monthly shift in their allele frequency, suggesting a rapid turnover of genotypes in response to phage predation. MAGs with extremely low microdiversity were either rare or opportunistic bloomers, suggesting that population persistency is key to their genomic diversification. The results concluded that prokaryotic genomic diversification is driven primarily by viral load and constrained by a population bottleneck. IMPORTANCE Identifying intraspecies genomic diversity (microdiversity) is crucial to understanding microbial ecology and evolution. However, microdiversity among environmental assemblages is not well investigated, because most microbes are difficult to culture. In this study, we performed cultivation-independent exploration of bacterial genomic microdiversity in a lake ecosystem using a combination of short- and long-read metagenomic analyses. The results revealed the broad spectrum of genomic microdiversity among the diverse bacterial species in the ecosystem, which has been overlooked by conventional approaches. Our ecosystem-wide exploration further allowed comparative analysis among the genomes and genes and revealed factors behind microbial genomic diversification, namely, that diversification is driven primarily by resistance against viral infection and constrained by the population size.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Shin-ichi Nakano
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima City, Shizuoka, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
23
|
Song W, Zhang S, Thomas T. MarkerMAG: linking metagenome-assembled genomes (MAGs) with 16S rRNA marker genes using paired-end short reads. Bioinformatics 2022; 38:3684-3688. [PMID: 35713513 DOI: 10.1093/bioinformatics/btac398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Metagenome-assembled genomes (MAGs) have substantially extended our understanding of microbial functionality. However, 16S rRNA genes, which are commonly used in phylogenetic analysis and environmental surveys, are often missing from MAGs. Here, we developed MarkerMAG, a pipeline that links 16S rRNA genes to MAGs using paired-end sequencing reads. RESULTS Assessment of MarkerMAG on three benchmarking metagenomic datasets with various degrees of complexity shows substantial increases in the number of MAGs with 16S rRNA genes and a 100% assignment accuracy. MarkerMAG also estimates the copy number of 16S rRNA genes in MAGs with high accuracy. Assessments on three real metagenomic datasets demonstrates 1.1- to 14.2-fold increases in the number of MAGs with 16S rRNA genes. We also show that MarkerMAG-improved MAGs increase the accuracy of functional prediction from 16S rRNA gene amplicon data. MarkerMAG is helpful in connecting information in MAG database with those in 16S rRNA databases and surveys and hence contributes to our increasing understanding of microbial diversity, function, and phylogeny. AVAILABILITY MarkerMAG is implemented in Python3 and freely available at https://github.com/songweizhi/MarkerMAG. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Weizhi Song
- Centre for Marine Science & Innovation, University of New South Wales, Sydney, 2052, Australia.,School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Shan Zhang
- Centre for Marine Science & Innovation, University of New South Wales, Sydney, 2052, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Torsten Thomas
- Centre for Marine Science & Innovation, University of New South Wales, Sydney, 2052, Australia.,School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
24
|
Cai Y, Yun J, Jia Z. Phylogeny and Metabolic Potential of the Methanotrophic Lineage MO3 in Beijerinckiaceae from the Paddy Soil through Metagenome-Assembled Genome Reconstruction. Microorganisms 2022; 10:microorganisms10050955. [PMID: 35630399 PMCID: PMC9145241 DOI: 10.3390/microorganisms10050955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
Although the study of aerobic methane-oxidizing bacteria (MOB, methanotrophs) has been carried out for more than a hundred years, there are many uncultivated methanotrophic lineages whose metabolism is largely unknown. Here, we reconstructed a nearly complete genome of a Beijerinckiaceae methanotroph from the enrichment of paddy soil by using nitrogen-free M2 medium. The methanotroph labeled as MO3_YZ.1 had a size of 3.83 Mb, GC content of 65.6%, and 3442 gene-coding regions. Based on phylogeny of pmoA gene and genome and the genomic average nucleotide identity, we confirmed its affiliation to the MO3 lineage and a close relationship to Methylocapsa. MO3_YZ.1 contained mxaF- and xoxF-type methanol dehydrogenase. MO3_YZ.1 used the serine cycle to assimilate carbon and regenerated glyoxylate through the glyoxylate shunt as it contained isocitrate lyase and complete tricarboxylic acid cycle-coding genes. The ethylmalonyl-CoA pathway and Calvin–Benson–Bassham cycle were incomplete in MO3_YZ.1. Three acetate utilization enzyme-coding genes were identified, suggesting its potential ability to utilize acetate. The presence of genes for N2 fixation, sulfur transformation, and poly-β-hydroxybutyrate synthesis enable its survival in heterogeneous habitats with fluctuating supplies of carbon, nitrogen, and sulfur.
Collapse
Affiliation(s)
- Yuanfeng Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Correspondence: (Y.C.); (Z.J.); Tel.: +86-25-8688-1850 (Y.C.); +86-25-8688-1311 (Z.J.)
| | - Juanli Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- Correspondence: (Y.C.); (Z.J.); Tel.: +86-25-8688-1850 (Y.C.); +86-25-8688-1311 (Z.J.)
| |
Collapse
|
25
|
Jüttner M, Ferreira-Cerca S. Looking through the Lens of the Ribosome Biogenesis Evolutionary History: Possible Implications for Archaeal Phylogeny and Eukaryogenesis. Mol Biol Evol 2022; 39:msac054. [PMID: 35275997 PMCID: PMC8997704 DOI: 10.1093/molbev/msac054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Our understanding of microbial diversity and its evolutionary relationships has increased substantially over the last decade. Such an understanding has been greatly fueled by culture-independent metagenomics analyses. However, the outcome of some of these studies and their biological and evolutionary implications, such as the origin of the eukaryotic lineage from the recently discovered archaeal Asgard superphylum, is debated. The sequences of the ribosomal constituents are amongst the most used phylogenetic markers. However, the functional consequences underlying the analysed sequence diversity and their putative evolutionary implications are essentially not taken into consideration. Here, we propose to exploit additional functional hallmarks of ribosome biogenesis to help disentangle competing evolutionary hypotheses. Using selected examples, such as the multiple origins of halophily in archaea or the evolutionary relationship between the Asgard archaea and Eukaryotes, we illustrate and discuss how function-aware phylogenetic framework can contribute to refining our understanding of archaeal phylogeny and the origin of eukaryotic cells.
Collapse
Affiliation(s)
- Michael Jüttner
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Sébastien Ferreira-Cerca
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
26
|
Biessy L, Pearman JK, Waters S, Vandergoes MJ, Wood SA. Metagenomic insights to the functional potential of sediment microbial communities in freshwater lakes. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.79265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Molecular-based techniques offer considerable potential to provide new insights into the impact of anthropogenic stressors on lake ecosystems. Microbial communities are involved in many geochemical cycling processes in lakes and a greater understanding of their functions could assist in guiding more targeted remedial actions. Recent advances in metagenomics now make it possible to determine the functional potential of entire microbial communities. The present study investigated microbial communities and their functional potential in surface sediments collected from three lakes with differing trophic states and characteristics. Surface sediments were analysed for their nutrient and elemental contents and metagenomics and metabarcoding analysis undertaken. The nutrients content of the surface sediments did not show as distinct a gradient as water chemistry monitoring data, likely reflecting effects of other lake characteristics, in particular, depth. Metabarcoding and metagenomics revealed differing bacterial community composition and functional potential amongst lakes. Amongst the differentially abundant metabolic pathways, the most prominent were clusters in the energy and xenobiotics pathways. Differences in the energy metabolism paths of photosynthesis and oxidative phosphorylation were observed. These were most likely related to changes in the community composition and especially the presence of cyanobacteria in two of the three lakes. Xenobiotic pathways, such as those involving polycyclic aromatic hydrocarbons, were highest in the lakes with the greatest agricultural land-use in their catchment. These results highlight how microbial metagenomics can be used to gain insights into the causes of differences in trophic status amongst lakes.
Collapse
|
27
|
Murakami T, Takeuchi N, Mori H, Hirose Y, Edwards A, Irvine-Fynn T, Li Z, Ishii S, Segawa T. Metagenomics reveals global-scale contrasts in nitrogen cycling and cyanobacterial light-harvesting mechanisms in glacier cryoconite. MICROBIOME 2022; 10:50. [PMID: 35317857 PMCID: PMC8941735 DOI: 10.1186/s40168-022-01238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cryoconite granules are mineral-microbial aggregates found on glacier surfaces worldwide and are hotspots of biogeochemical reactions in glacier ecosystems. However, despite their importance within glacier ecosystems, the geographical diversity of taxonomic assemblages and metabolic potential of cryoconite communities around the globe remain unclear. In particular, the genomic content of cryoconite communities on Asia's high mountain glaciers, which represent a substantial portion of Earth's ice masses, has rarely been reported. Therefore, in this study, to elucidate the taxonomic and ecological diversities of cryoconite bacterial consortia on a global scale, we conducted shotgun metagenomic sequencing of cryoconite acquired from a range of geographical areas comprising Polar (Arctic and Antarctic) and Asian alpine regions. RESULTS Our metagenomic data indicate that compositions of both bacterial taxa and functional genes are particularly distinctive for Asian cryoconite. Read abundance of the genes responsible for denitrification was significantly more abundant in Asian cryoconite than the Polar cryoconite, implying that denitrification is more enhanced in Asian glaciers. The taxonomic composition of Cyanobacteria, the key primary producers in cryoconite communities, also differs between the Polar and Asian samples. Analyses on the metagenome-assembled genomes and fluorescence emission spectra reveal that Asian cryoconite is dominated by multiple cyanobacterial lineages possessing phycoerythrin, a green light-harvesting component for photosynthesis. In contrast, Polar cryoconite is dominated by a single cyanobacterial species Phormidesmis priestleyi that does not possess phycoerythrin. These findings suggest that the assemblage of cryoconite bacterial communities respond to regional- or glacier-specific physicochemical conditions, such as the availability of nutrients (e.g., nitrate and dissolved organic carbon) and light (i.e., incident shortwave radiation). CONCLUSIONS Our genome-resolved metagenomics provides the first characterization of the taxonomic and metabolic diversities of cryoconite from contrasting geographical areas, highlighted by the distinct light-harvesting approaches of Cyanobacteria and nitrogen utilization between Polar and Asian cryoconite, and implies the existence of environmental controls on the assemblage of cryoconite communities. These findings deepen our understanding of the biodiversity and biogeochemical cycles of glacier ecosystems, which are susceptible to ongoing climate change and glacier decline, on a global scale. Video abstract.
Collapse
Affiliation(s)
- Takumi Murakami
- Department of Informatics, National Institute of Genetics, Shizuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, Japan
| | - Nozomu Takeuchi
- Department of Earth Sciences, Graduate School of Science, Chiba University, Chiba, Japan
| | - Hiroshi Mori
- Department of Informatics, National Institute of Genetics, Shizuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Aichi, Japan
| | - Arwyn Edwards
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK
- Interdisciplinary Centre for Environmental Microbiology, Aberystwyth University, Aberystwyth, UK
| | - Tristram Irvine-Fynn
- Interdisciplinary Centre for Environmental Microbiology, Aberystwyth University, Aberystwyth, UK
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK
| | - Zhongqin Li
- State Key Laboratory of Cryospheric Sciences/Tien Shan Glaciological Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Satoshi Ishii
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN USA
| | - Takahiro Segawa
- Center for Life Science Research, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
28
|
Cuscó A, Pérez D, Viñes J, Fàbregas N, Francino O. Novel canine high-quality metagenome-assembled genomes, prophages and host-associated plasmids provided by long-read metagenomics together with Hi-C proximity ligation. Microb Genom 2022; 8. [PMID: 35298370 PMCID: PMC9176287 DOI: 10.1099/mgen.0.000802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human gut microbiome has been extensively studied, yet the canine gut microbiome is still largely unknown. The availability of high-quality genomes is essential in the fields of veterinary medicine and nutrition to unravel the biological role of key microbial members in the canine gut environment. Our aim was to evaluate nanopore long-read metagenomics and Hi-C (high-throughput chromosome conformation capture) proximity ligation to provide high-quality metagenome-assembled genomes (HQ MAGs) of the canine gut environment. By combining nanopore long-read metagenomics and Hi-C proximity ligation, we retrieved 27 HQ MAGs and 7 medium-quality MAGs of a faecal sample of a healthy dog. Canine MAGs (CanMAGs) improved genome contiguity of representatives from the animal and human MAG catalogues – short-read MAGs from public datasets – for the species they represented: they were more contiguous with complete ribosomal operons and at least 18 canonical tRNAs. Both canine-specific bacterial species and gut generalists inhabit the dog’s gastrointestinal environment. Most of them belonged to Firmicutes, followed by Bacteroidota and Proteobacteria. We also assembled one Actinobacteriota and one Fusobacteriota MAG. CanMAGs harboured antimicrobial-resistance genes (ARGs) and prophages and were linked to plasmids. ARGs conferring resistance to tetracycline were most predominant within CanMAGs, followed by lincosamide and macrolide ones. At the functional level, carbohydrate transport and metabolism was the most variable within the CanMAGs, and mobilome function was abundant in some MAGs. Specifically, we assigned the mobilome functions and the associated mobile genetic elements to the bacterial host. The CanMAGs harboured 50 bacteriophages, providing novel bacterial-host information for eight viral clusters, and Hi-C proximity ligation data linked the six potential plasmids to their bacterial host. Long-read metagenomics and Hi-C proximity ligation are likely to become a comprehensive approach to HQ MAG discovery and assignment of extra-chromosomal elements to their bacterial host. This will provide essential information for studying the canine gut microbiome in veterinary medicine and animal nutrition.
Collapse
Affiliation(s)
- Anna Cuscó
- Vetgenomics, Edificio Eureka, Parc de Recerca UAB, Barcelona, Spain.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
| | - Daniel Pérez
- Molecular Genetics Veterinary Service (SVGM), Veterinary School, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquim Viñes
- Vetgenomics, Edificio Eureka, Parc de Recerca UAB, Barcelona, Spain.,Molecular Genetics Veterinary Service (SVGM), Veterinary School, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Norma Fàbregas
- Vetgenomics, Edificio Eureka, Parc de Recerca UAB, Barcelona, Spain
| | - Olga Francino
- Molecular Genetics Veterinary Service (SVGM), Veterinary School, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Malyarchuk AB, Andreeva TV, Kuznetsova IL, Kunizheva SS, Protasova MS, Uralsky LI, Tyazhelova TV, Gusev FE, Manakhov AD, Rogaev EI. Genomics of Ancient Pathogens: First Advances and Prospects. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:242-258. [PMID: 35526849 PMCID: PMC8916790 DOI: 10.1134/s0006297922030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022]
Abstract
Paleogenomics is one of the urgent and promising areas of interdisciplinary research in the today's world science. New genomic methods of ancient DNA (aDNA) analysis, such as next generation sequencing (NGS) technologies, make it possible not only to obtain detailed genetic information about historical and prehistoric human populations, but also to study individual microbial and viral pathogens and microbiomes from different ancient and historical objects. Studies of aDNA of pathogens by reconstructing their genomes have so far yielded complete sequences of the ancient pathogens that played significant role in the history of the world: Yersinia pestis (plague), Variola virus (smallpox), Vibrio cholerae (cholera), HBV (hepatitis B virus), as well as the equally important endemic human infectious agents: Mycobacterium tuberculosis (tuberculosis), Mycobacterium leprae (leprosy), and Treponema pallidum (syphilis). Genomic data from these pathogens complemented the information previously obtained by paleopathologists and allowed not only to identify pathogens from the past pandemics, but also to recognize the pathogen lineages that are now extinct, to refine chronology of the pathogen appearance in human populations, and to reconstruct evolutionary history of the pathogens that are still relevant to public health today. In this review, we describe state-of-the-art genomic research of the origins and evolution of many ancient pathogens and viruses and examine mechanisms of the emergence and spread of the ancient infections in the mankind history.
Collapse
Affiliation(s)
- Alexandra B Malyarchuk
- Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Tatiana V Andreeva
- Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Irina L Kuznetsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Svetlana S Kunizheva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Maria S Protasova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Lev I Uralsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Tatiana V Tyazhelova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Fedor E Gusev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Andrey D Manakhov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Evgeny I Rogaev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia.
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
- Department of Psychiatry, UMass Chan Medical School, Shrewsbury, MA 01545, USA
| |
Collapse
|
30
|
Hiseni P, Snipen L, Wilson RC, Furu K, Rudi K. Questioning the Quality of 16S rRNA Gene Sequences Derived From Human Gut Metagenome-Assembled Genomes. Front Microbiol 2022; 12:822301. [PMID: 35185835 PMCID: PMC8855107 DOI: 10.3389/fmicb.2021.822301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/28/2021] [Indexed: 12/04/2022] Open
Affiliation(s)
- Pranvera Hiseni
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
- Genetic Analysis AS, Oslo, Norway
- *Correspondence: Pranvera Hiseni
| | - Lars Snipen
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Robert C. Wilson
- Department of Biotechnology, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | | | - Knut Rudi
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
- Department of Biotechnology, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| |
Collapse
|
31
|
Cabral L, Persinoti GF, Paixão DAA, Martins MP, Morais MAB, Chinaglia M, Domingues MN, Sforca ML, Pirolla RAS, Generoso WC, Santos CA, Maciel LF, Terrapon N, Lombard V, Henrissat B, Murakami MT. Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides. Nat Commun 2022; 13:629. [PMID: 35110564 PMCID: PMC8810776 DOI: 10.1038/s41467-022-28310-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
The largest living rodent, capybara, can efficiently depolymerize and utilize lignocellulosic biomass through microbial symbiotic mechanisms yet elusive. Herein, we elucidate the microbial community composition, enzymatic systems and metabolic pathways involved in the conversion of dietary fibers into short-chain fatty acids, a main energy source for the host. In this microbiota, the unconventional enzymatic machinery from Fibrobacteres seems to drive cellulose degradation, whereas a diverse set of carbohydrate-active enzymes from Bacteroidetes, organized in polysaccharide utilization loci, are accounted to tackle complex hemicelluloses typically found in gramineous and aquatic plants. Exploring the genetic potential of this community, we discover a glycoside hydrolase family of β-galactosidases (named as GH173), and a carbohydrate-binding module family (named as CBM89) involved in xylan binding that establishes an unprecedented three-dimensional fold among associated modules to carbohydrate-active enzymes. Together, these results demonstrate how the capybara gut microbiota orchestrates the depolymerization and utilization of plant fibers, representing an untapped reservoir of enzymatic mechanisms to overcome the lignocellulose recalcitrance, a central challenge toward a sustainable and bio-based economy.
Collapse
Affiliation(s)
- Lucelia Cabral
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Gabriela F Persinoti
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil.
| | - Douglas A A Paixão
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Marcele P Martins
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
- Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Mariana A B Morais
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Mariana Chinaglia
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
- Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Mariane N Domingues
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Mauricio L Sforca
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Renan A S Pirolla
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Wesley C Generoso
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Clelton A Santos
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Lucas F Maciel
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Nicolas Terrapon
- The Institut National de la Recherche Agronomique, USC 1408 AFMB, 13288, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Vincent Lombard
- The Institut National de la Recherche Agronomique, USC 1408 AFMB, 13288, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mario T Murakami
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil.
| |
Collapse
|
32
|
Vigneron A, Cruaud P, Lovejoy C, Vincent WF. Genomic evidence of functional diversity in DPANN archaea, from oxic species to anoxic vampiristic consortia. ISME COMMUNICATIONS 2022; 2:4. [PMID: 37938653 PMCID: PMC9723730 DOI: 10.1038/s43705-022-00088-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 04/26/2023]
Abstract
DPANN archaea account for half of the archaeal diversity of the biosphere, but with few cultivated representatives, their metabolic potential and environmental functions are poorly understood. The extreme geochemical and environmental conditions in meromictic ice-capped Lake A, in the Canadian High Arctic, provided an isolated, stratified model ecosystem to resolve the distribution and metabolism of uncultured aquatic DPANN archaea living across extreme redox and salinity gradients, from freshwater oxygenated conditions, to saline, anoxic, sulfidic waters. We recovered 28 metagenome-assembled genomes (MAGs) of DPANN archaea that provided genetic insights into their ecological function. Thiosulfate oxidation potential was detected in aerobic Woesearchaeota, whereas diverse metabolic functions were identified in anaerobic DPANN archaea, including degradation and fermentation of cellular compounds, and sulfide and polysulfide reduction. We also found evidence for "vampiristic" metabolism in several MAGs, with genes coding for pore-forming toxins, peptidoglycan degradation, and RNA scavenging. The vampiristic MAGs co-occurred with other DPANNs having complementary metabolic capacities, leading to the possibility that DPANN form interspecific consortia that recycle microbial carbon, nutrients and complex molecules through a DPANN archaeal shunt, adding hidden novel complexity to anaerobic microbial food webs.
Collapse
Affiliation(s)
- Adrien Vigneron
- Département de Biologie, Université Laval, Québec, QC, Canada.
- Centre d'études nordiques (CEN), Université Laval, Québec, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
- Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada.
| | - Perrine Cruaud
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC, Canada
| | - Connie Lovejoy
- Département de Biologie, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada
- Québec Océan, Université Laval, Québec, QC, Canada
| | - Warwick F Vincent
- Département de Biologie, Université Laval, Québec, QC, Canada
- Centre d'études nordiques (CEN), Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada
| |
Collapse
|
33
|
Marre S, Gasc C, Forest C, Lebbaoui Y, Mosoni P, Peyret P. Revealing microbial species diversity using sequence capture by hybridization. Microb Genom 2021; 7. [PMID: 34882529 PMCID: PMC8767324 DOI: 10.1099/mgen.0.000714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Targeting small parts of the 16S rDNA phylogenetic marker by metabarcoding reveals microorganisms of interest but cannot achieve a taxonomic resolution at the species level, precluding further precise characterizations. To identify species behind operational taxonomic units (OTUs) of interest, even in the rare biosphere, we developed an innovative strategy using gene capture by hybridization. From three OTU sequences detected upon polyphenol supplementation and belonging to the rare biosphere of the human gut microbiota, we revealed 59 nearly full-length 16S rRNA genes, highlighting high bacterial diversity hidden behind OTUs while evidencing novel taxa. Inside each OTU, revealed 16S rDNA sequences could be highly distant from each other with similarities down to 85 %. We identified one new family belonging to the order Clostridiales, 39 new genera and 52 novel species. Related bacteria potentially involved in polyphenol degradation have also been identified through genome mining and our results suggest that the human gut microbiota could be much more diverse than previously thought.
Collapse
Affiliation(s)
- Sophie Marre
- Université Clermont Auvergne, INRAE, MEDIS, F-63000, Clermont-Ferrand, France
| | - Cyrielle Gasc
- Université Clermont Auvergne, INRAE, MEDIS, F-63000, Clermont-Ferrand, France.,Present address: MaaT Pharma, F-69007 LYON, France
| | - Camille Forest
- Université Clermont Auvergne, INRAE, MEDIS, F-63000, Clermont-Ferrand, France
| | - Yacine Lebbaoui
- Université Clermont Auvergne, INRAE, MEDIS, F-63000, Clermont-Ferrand, France
| | - Pascale Mosoni
- Université Clermont Auvergne, INRAE, MEDIS, F-63000, Clermont-Ferrand, France
| | - Pierre Peyret
- Université Clermont Auvergne, INRAE, MEDIS, F-63000, Clermont-Ferrand, France
| |
Collapse
|
34
|
Nuccio EE, Nguyen NH, Nunes da Rocha U, Mayali X, Bougoure J, Weber PK, Brodie E, Firestone M, Pett-Ridge J. Community RNA-Seq: multi-kingdom responses to living versus decaying roots in soil. ISME COMMUNICATIONS 2021; 1:72. [PMID: 36765158 PMCID: PMC9723751 DOI: 10.1038/s43705-021-00059-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022]
Abstract
Roots are a primary source of organic carbon input in most soils. The consumption of living and detrital root inputs involves multi-trophic processes and multiple kingdoms of microbial life, but typical microbial ecology studies focus on only one or two major lineages. We used Illumina shotgun RNA sequencing to conduct PCR-independent SSU rRNA community analysis ("community RNA-Seq") and simultaneously assess the bacteria, archaea, fungi, and microfauna surrounding both living and decomposing roots of the annual grass, Avena fatua. Plants were grown in 13CO2-labeled microcosms amended with 15N-root litter to identify the preferences of rhizosphere organisms for root exudates (13C) versus decaying root biomass (15N) using NanoSIMS microarray imaging (Chip-SIP). When litter was available, rhizosphere and bulk soil had significantly more Amoebozoa, which are potentially important yet often overlooked top-down drivers of detritusphere community dynamics and nutrient cycling. Bulk soil containing litter was depleted in Actinobacteria but had significantly more Bacteroidetes and Proteobacteria. While Actinobacteria were abundant in the rhizosphere, Chip-SIP showed Actinobacteria preferentially incorporated litter relative to root exudates, indicating this group's more prominent role in detritus elemental cycling in the rhizosphere. Our results emphasize that decomposition is a multi-trophic process involving complex interactions, and our methodology can be used to track the trajectory of carbon through multi-kingdom soil food webs.
Collapse
Affiliation(s)
- Erin E Nuccio
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - Nhu H Nguyen
- Department of Tropical Plant and Soil Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jeremy Bougoure
- Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, Perth, Australia
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Eoin Brodie
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Mary Firestone
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
- Life and Environmental Sciences Department, University of California Merced, Merced, CA, USA.
| |
Collapse
|
35
|
Yang C, Chowdhury D, Zhang Z, Cheung WK, Lu A, Bian Z, Zhang L. A review of computational tools for generating metagenome-assembled genomes from metagenomic sequencing data. Comput Struct Biotechnol J 2021; 19:6301-6314. [PMID: 34900140 PMCID: PMC8640167 DOI: 10.1016/j.csbj.2021.11.028] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
Metagenomic sequencing provides a culture-independent avenue to investigate the complex microbial communities by constructing metagenome-assembled genomes (MAGs). A MAG represents a microbial genome by a group of sequences from genome assembly with similar characteristics. It enables us to identify novel species and understand their potential functions in a dynamic ecosystem. Many computational tools have been developed to construct and annotate MAGs from metagenomic sequencing, however, there is a prominent gap to comprehensively introduce their background and practical performance. In this paper, we have thoroughly investigated the computational tools designed for both upstream and downstream analyses, including metagenome assembly, metagenome binning, gene prediction, functional annotation, taxonomic classification, and profiling. We have categorized the commonly used tools into unique groups based on their functional background and introduced the underlying core algorithms and associated information to demonstrate a comparative outlook. Furthermore, we have emphasized the computational requisition and offered guidance to the users to select the most efficient tools. Finally, we have indicated current limitations, potential solutions, and future perspectives for further improving the tools of MAG construction and annotation. We believe that our work provides a consolidated resource for the current stage of MAG studies and shed light on the future development of more effective MAG analysis tools on metagenomic sequencing.
Collapse
Key Words
- CNN, convolutional neural network
- DBG, De Bruijn graph
- GTDB, Genome Taxonomy Database
- Gene functional annotation
- Gene prediction
- Genome assembly
- HMM, Hidden Markov Model
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LCA, lowest common ancestor
- LPA, label propagation algorithm
- MAGs, metagenome-assembled genomes
- Metagenome binning
- Metagenome-assembled genomes
- Metagenomic sequencing
- Microbial abundance profiling
- OLC, overlap-layout consensus
- ONT, Oxford Nanopore Technologies
- ORFs, open reading frames
- PacBio, Pacific Biosciences
- QC, quality control
- SLR, synthetic long reads
- TNFs, tetranucleotide frequencies
- Taxonomic classification
Collapse
Affiliation(s)
- Chao Yang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Debajyoti Chowdhury
- Computational Medicine Lab, Hong Kong Baptist University, Hong Kong Special Administrative Region
- Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zhenmiao Zhang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - William K. Cheung
- Department of Computer Science, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Aiping Lu
- Computational Medicine Lab, Hong Kong Baptist University, Hong Kong Special Administrative Region
- Institute of Integrated Bioinformedicine and Translational Sciences, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zhaoxiang Bian
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
- Chinese Medicine Clinical Study Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Lu Zhang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong Special Administrative Region
- Computational Medicine Lab, Hong Kong Baptist University, Hong Kong Special Administrative Region
| |
Collapse
|
36
|
Transcriptomic evidence for versatile metabolic activities of mercury cycling microorganisms in brackish microbial mats. NPJ Biofilms Microbiomes 2021; 7:83. [PMID: 34799579 PMCID: PMC8605020 DOI: 10.1038/s41522-021-00255-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/22/2021] [Indexed: 01/29/2023] Open
Abstract
Methylmercury, biomagnifying through food chains, is highly toxic for aquatic life. Its production and degradation are largely driven by microbial transformations; however, diversity and metabolic activity of mercury transformers, resulting in methylmercury concentrations in environments, remain poorly understood. Microbial mats are thick biofilms where oxic and anoxic metabolisms cooccur, providing opportunities to investigate the complexity of the microbial mercury transformations over contrasted redox conditions. Here, we conducted a genome-resolved metagenomic and metatranscriptomic analysis to identify putative activity of mercury reducers, methylators and demethylators in microbial mats strongly contaminated by mercury. Our transcriptomic results revealed the major role of rare microorganisms in mercury cycling. Mercury methylators, mainly related to Desulfobacterota, expressed a large panel of metabolic activities in sulfur, iron, nitrogen, and halogen compound transformations, extending known activities of mercury methylators under suboxic to anoxic conditions. Methylmercury detoxification processes were dissociated in the microbial mats with methylmercury cleavage being carried out by sulfide-oxidizing Thiotrichaceae and Rhodobacteraceae populations, whereas mercury reducers included members of the Verrucomicrobia, Bacteroidetes, Gammaproteobacteria, and different populations of Rhodobacteraceae. However most of the mercury reduction was potentially carried out anaerobically by sulfur- and iron-reducing Desulfuromonadaceae, revising our understanding of mercury transformers ecophysiology.
Collapse
|
37
|
Abstract
Reconstructing microbial genomes from metagenomic short-read data can be challenging due to the unknown and uneven complexity of microbial communities. This complexity encompasses highly diverse populations, which often includes strain variants. Reconstructing high-quality genomes is a crucial part of the metagenomic workflow, as subsequent ecological and metabolic inferences depend on their accuracy, quality, and completeness. In contrast to microbial communities in other ecosystems, there has been no systematic assessment of genome-centric metagenomic workflows for drinking water microbiomes. In this study, we assessed the performance of a combination of assembly and binning strategies for time series drinking water metagenomes that were collected over 6 months. The goal of this study was to identify the combination of assembly and binning approaches that result in high-quality and -quantity metagenome-assembled genomes (MAGs), representing most of the sequenced metagenome. Our findings suggest that the metaSPAdes coassembly strategies had the best performance, as they resulted in larger and less fragmented assemblies, with at least 85% of the sequence data mapping to contigs greater than 1 kbp. Furthermore, a combination of metaSPAdes coassembly strategies and MetaBAT2 produced the highest number of medium-quality MAGs while capturing at least 70% of the metagenomes based on read recruitment. Utilizing different assembly/binning approaches also assists in the reconstruction of unique MAGs from closely related species that would have otherwise collapsed into a single MAG using a single workflow. Overall, our study suggests that leveraging multiple binning approaches with different metaSPAdes coassembly strategies may be required to maximize the recovery of good-quality MAGs. IMPORTANCE Drinking water contains phylogenetic diverse groups of bacteria, archaea, and eukarya that affect the esthetic quality of water, water infrastructure, and public health. Taxonomic, metabolic, and ecological inferences of the drinking water microbiome depend on the accuracy, quality, and completeness of genomes that are reconstructed through the application of genome-resolved metagenomics. Using time series metagenomic data, we present reproducible genome-centric metagenomic workflows that result in high-quality and -quantity genomes, which more accurately signifies the sequenced drinking water microbiome. These genome-centric metagenomic workflows will allow for improved taxonomic and functional potential analysis that offers enhanced insights into the stability and dynamics of drinking water microbial communities.
Collapse
|
38
|
Music of metagenomics-a review of its applications, analysis pipeline, and associated tools. Funct Integr Genomics 2021; 22:3-26. [PMID: 34657989 DOI: 10.1007/s10142-021-00810-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
This humble effort highlights the intricate details of metagenomics in a simple, poetic, and rhythmic way. The paper enforces the significance of the research area, provides details about major analytical methods, examines the taxonomy and assembly of genomes, emphasizes some tools, and concludes by celebrating the richness of the ecosystem populated by the "metagenome."
Collapse
|
39
|
Murphy SMC, Bautista MA, Cramm MA, Hubert CRJ. Diesel and Crude Oil Biodegradation by Cold-Adapted Microbial Communities in the Labrador Sea. Appl Environ Microbiol 2021; 87:e0080021. [PMID: 34378990 PMCID: PMC8478444 DOI: 10.1128/aem.00800-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/24/2021] [Indexed: 11/20/2022] Open
Abstract
Oil spills in the subarctic marine environment off the coast of Labrador, Canada, are increasingly likely due to potential oil production and increases in ship traffic in the region. To understand the microbiome response and how nutrient biostimulation promotes biodegradation of oil spills in this cold marine setting, marine sediment microcosms amended with diesel or crude oil were incubated at in situ temperature (4°C) for several weeks. Sequencing of 16S rRNA genes following these spill simulations revealed decreased microbial diversity and enrichment of putative hydrocarbonoclastic bacteria that differed depending on the petroleum product. Metagenomic sequencing revealed that the genus Paraperlucidibaca harbors previously unrecognized capabilities for alkane biodegradation, which were also observed in Cycloclasticus. Genomic and amplicon sequencing together suggest that Oleispira and Thalassolituus degraded alkanes from diesel, while Zhongshania and the novel PGZG01 lineage contributed to crude oil alkane biodegradation. Greater losses in PAHs from crude oil than from diesel were consistent with Marinobacter, Pseudomonas_D, and Amphritea genomes exhibiting aromatic hydrocarbon biodegradation potential. Biostimulation with nitrogen and phosphorus (4.67 mM NH4Cl and 1.47 mM KH2PO4) was effective at enhancing n-alkane and PAH degradation following low-concentration (0.1% [vol/vol]) diesel and crude oil amendments, while at higher concentrations (1% [vol/vol]) only n-alkanes in diesel were consumed, suggesting toxicity induced by compounds in unrefined crude oil. Biostimulation allowed for a more rapid shift in the microbial community in response to petroleum amendments, more than doubling the rates of CO2 increase during the first few weeks of incubation. IMPORTANCE Increases in transportation of diesel and crude oil in the Labrador Sea will pose a significant threat to remote benthic and shoreline environments, where coastal communities and wildlife are particularly vulnerable to oil spill contaminants. Whereas marine microbiology has not been incorporated into environmental assessments in the Labrador Sea, there is a growing demand for microbial biodiversity evaluations given the pronounced impact of climate change in this region. Benthic microbial communities are important to consider given that a fraction of spilled oil typically sinks such that its biodegradation occurs at the seafloor, where novel taxa with previously unrecognized potential to degrade hydrocarbons were discovered in this work. Understanding how cold-adapted microbiomes catalyze hydrocarbon degradation at low in situ temperature is crucial in the Labrador Sea, which remains relatively cold throughout the year.
Collapse
Affiliation(s)
- Sean M. C. Murphy
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - María A. Bautista
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Margaret A. Cramm
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
40
|
Wu X, Chauhan A, Layton AC, Lau Vetter MCY, Stackhouse BT, Williams DE, Whyte L, Pfiffner SM, Onstott TC, Vishnivetskaya TA. Comparative Metagenomics of the Active Layer and Permafrost from Low-Carbon Soil in the Canadian High Arctic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12683-12693. [PMID: 34472853 DOI: 10.1021/acs.est.1c00802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Approximately 87% of the Arctic consists of low-organic carbon mineral soil, but knowledge of microbial activity in low-carbon permafrost (PF) and active layer soils remains limited. This study investigated the taxonomic composition and genetic potential of microbial communities at contrasting depths of the active layer (5, 35, and 65 cm below surface, bls) and PF (80 cm bls). We showed microbial communities in PF to be taxonomically and functionally different from those in the active layer. 16S rRNA gene sequence analysis revealed higher biodiversity in the active layer than in PF, and biodiversity decreased significantly with depth. The reconstructed 91 metagenome-assembled genomes showed that PF was dominated by heterotrophic, fermenting Bacteroidota using nitrite as their main electron acceptor. Prevalent microbes identified in the active layer belonged to bacterial taxa, gaining energy via aerobic respiration. Gene abundance in metagenomes revealed enrichment of genes encoding the plant-derived polysaccharide degradation and metabolism of nitrate and sulfate in PF, whereas genes encoding methane/ammonia oxidation, cold-shock protein, and two-component systems were generally more abundant in the active layer, particularly at 5 cm bls. The results of this study deepen our understanding of the low-carbon Arctic soil microbiome and improve prediction of the impacts of thawing PF.
Collapse
Affiliation(s)
- Xiaofen Wu
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Archana Chauhan
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Alice C Layton
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Maggie C Y Lau Vetter
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Brandon T Stackhouse
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniel E Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tullis C Onstott
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Tatiana A Vishnivetskaya
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
41
|
Montes-Carreto LM, Aguirre-Noyola JL, Solís-García IA, Ortega J, Martinez-Romero E, Guerrero JA. Diverse methanogens, bacteria and tannase genes in the feces of the endangered volcano rabbit ( Romerolagus diazi). PeerJ 2021; 9:e11942. [PMID: 34458021 PMCID: PMC8378336 DOI: 10.7717/peerj.11942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
Background The volcano rabbit is the smallest lagomorph in Mexico, it is monotypic and endemic to the Trans-Mexican Volcanic Belt. It is classified as endangered by Mexican legislation and as critically endangered by the IUCN, in the Red List. Romerolagus diazi consumes large amounts of grasses, seedlings, shrubs, and trees. Pines and oaks contain tannins that can be toxic to the organisms which consume them. The volcano rabbit microbiota may be rich in bacteria capable of degrading fiber and phenolic compounds. Methods We obtained the fecal microbiome of three adults and one young rabbit collected in Coajomulco, Morelos, Mexico. Taxonomic assignments and gene annotation revealed the possible roles of different bacteria in the rabbit gut. We searched for sequences encoding tannase enzymes and enzymes associated with digestion of plant fibers such as cellulose and hemicellulose. Results The most representative phyla within the Bacteria domain were: Proteobacteria, Firmicutes and Actinobacteria for the young rabbit sample (S1) and adult rabbit sample (S2), which was the only sample not confirmed by sequencing to correspond to the volcano rabbit. Firmicutes, Actinobacteria and Cyanobacteria were found in adult rabbit samples S3 and S4. The most abundant phylum within the Archaea domain was Euryarchaeota. The most abundant genera of the Bacteria domain were Lachnoclostridium (Firmicutes) and Acinetobacter (Proteobacteria), while Methanosarcina predominated from the Archaea. In addition, the potential functions of metagenomic sequences were identified, which include carbohydrate and amino acid metabolism. We obtained genes encoding enzymes for plant fiber degradation such as endo 1,4 β-xylanases, arabinofuranosidases, endoglucanases and β-glucosidases. We also found 18 bacterial tannase sequences.
Collapse
Affiliation(s)
- Leslie M Montes-Carreto
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - José Luis Aguirre-Noyola
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Itzel A Solís-García
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
| | - Jorge Ortega
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | | | - José Antonio Guerrero
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
42
|
Haro-Moreno JM, López-Pérez M, Rodriguez-Valera F. Enhanced Recovery of Microbial Genes and Genomes From a Marine Water Column Using Long-Read Metagenomics. Front Microbiol 2021; 12:708782. [PMID: 34512586 PMCID: PMC8430335 DOI: 10.3389/fmicb.2021.708782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Third-generation sequencing has penetrated little in metagenomics due to the high error rate and dependence for assembly on short-read designed bioinformatics. However, second-generation sequencing metagenomics (mostly Illumina) suffers from limitations, particularly in the assembly of microbes with high microdiversity and retrieval of the flexible (adaptive) fraction of prokaryotic genomes. Here, we have used a third-generation technique to study the metagenome of a well-known marine sample from the mixed epipelagic water column of the winter Mediterranean. We have compared PacBio Sequel II with the classical approach using Illumina Nextseq short reads followed by assembly to study the metagenome. Long reads allow for efficient direct retrieval of complete genes avoiding the bias of the assembly step. Besides, the application of long reads on metagenomic assembly allows for the reconstruction of much more complete metagenome-assembled genomes (MAGs), particularly from microbes with high microdiversity such as Pelagibacterales. The flexible genome of reconstructed MAGs was much more complete containing many adaptive genes (some with biotechnological potential). PacBio Sequel II CCS appears particularly suitable for cellular metagenomics due to its low error rate. For most applications of metagenomics, from community structure analysis to ecosystem functioning, long reads should be applied whenever possible. Specifically, for in silico screening of biotechnologically useful genes, or population genomics, long-read metagenomics appears presently as a very fruitful approach and can be analyzed from raw reads before a computationally demanding (and potentially artifactual) assembly step.
Collapse
Affiliation(s)
- Jose M. Haro-Moreno
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
43
|
Liu B, Thippabhotla S, Zhang J, Zhong C. DRAGoM: Classification and Quantification of Noncoding RNA in Metagenomic Data. Front Genet 2021; 12:669495. [PMID: 34025724 PMCID: PMC8131839 DOI: 10.3389/fgene.2021.669495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Noncoding RNAs (ncRNAs) play important regulatory and functional roles in microorganisms, such as regulation of gene expression, signaling, protein synthesis, and RNA processing. Hence, their classification and quantification are central tasks toward the understanding of the function of the microbial community. However, the majority of the current metagenomic sequencing technologies generate short reads, which may contain only a partial secondary structure that complicates ncRNA homology detection. Meanwhile, de novo assembly of the metagenomic sequencing data remains challenging for complex communities. To tackle these challenges, we developed a novel algorithm called DRAGoM (Detection of RNA using Assembly Graph from Metagenomic data). DRAGoM first constructs a hybrid graph by merging an assembly string graph and an assembly de Bruijn graph. Then, it classifies paths in the hybrid graph and their constituent readsinto differentncRNA families based on both sequence and structural homology. Our benchmark experiments show that DRAGoMcan improve the performance and robustness over traditional approaches on the classification and quantification of a wide class of ncRNA families.
Collapse
Affiliation(s)
- Ben Liu
- Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS, United States
| | - Sirisha Thippabhotla
- Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS, United States
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, The University of Kansas, Lawrence, KS, United States.,Bioengineering Program, The University of Kansas, Lawrence, KS, United States.,Center for Computational Biology, The University of Kansas, Lawrence, KS, United States
| |
Collapse
|
44
|
Recovering prokaryotic genomes from host-associated, short-read shotgun metagenomic sequencing data. Nat Protoc 2021; 16:2520-2541. [PMID: 33864056 DOI: 10.1038/s41596-021-00508-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/12/2021] [Indexed: 02/02/2023]
Abstract
Recovering genomes from shotgun metagenomic sequence data allows detailed taxonomic and functional characterization of individual species or strains in a microbial community. Retrieving these metagenome-assembled genomes (MAGs) involves seven stages. First, low-quality bases, along with adapter and host sequences, are removed. Second, overlapping sequences are assembled to create longer contiguous fragments. Third, these fragments are clustered based on sequence composition and abundance. Fourth, these sequence clusters, or bins, undergo rounds of quality assessment and refinement to yield MAGs. The optional fifth stage is dereplication of MAGs to select representatives. Next, each MAG is taxonomically classified. The optional seventh stage is assessing the fraction of diversity that has been recovered. The output of this protocol is draft genomes, which can provide invaluable clues about uncultured organisms. This protocol takes ~1 week to run, depending on computational resources available, and requires prior experience with high-performance computing, shell script programming and Python.
Collapse
|
45
|
Beaudry MS, Wang J, Kieran TJ, Thomas J, Bayona-Vásquez NJ, Gao B, Devault A, Brunelle B, Lu K, Wang JS, Rhodes OE, Glenn TC. Improved Microbial Community Characterization of 16S rRNA via Metagenome Hybridization Capture Enrichment. Front Microbiol 2021; 12:644662. [PMID: 33986735 PMCID: PMC8110821 DOI: 10.3389/fmicb.2021.644662] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/22/2021] [Indexed: 01/04/2023] Open
Abstract
Environmental microbial diversity is often investigated from a molecular perspective using 16S ribosomal RNA (rRNA) gene amplicons and shotgun metagenomics. While amplicon methods are fast, low-cost, and have curated reference databases, they can suffer from amplification bias and are limited in genomic scope. In contrast, shotgun metagenomic methods sample more genomic regions with fewer sequence acquisition biases, but are much more expensive (even with moderate sequencing depth) and computationally challenging. Here, we develop a set of 16S rRNA sequence capture baits that offer a potential middle ground with the advantages from both approaches for investigating microbial communities. These baits cover the diversity of all 16S rRNA sequences available in the Greengenes (v. 13.5) database, with no sequence having <78% sequence identity to at least one bait for all segments of 16S. The use of our baits provide comparable results to 16S amplicon libraries and shotgun metagenomic libraries when assigning taxonomic units from 16S sequences within the metagenomic reads. We demonstrate that 16S rRNA capture baits can be used on a range of microbial samples (i.e., mock communities and rodent fecal samples) to increase the proportion of 16S rRNA sequences (average > 400-fold) and decrease analysis time to obtain consistent community assessments. Furthermore, our study reveals that bioinformatic methods used to analyze sequencing data may have a greater influence on estimates of community composition than library preparation method used, likely due in part to the extent and curation of the reference databases considered. Thus, enriching existing aliquots of shotgun metagenomic libraries and obtaining modest numbers of reads from them offers an efficient orthogonal method for assessment of bacterial community composition.
Collapse
Affiliation(s)
- Megan S. Beaudry
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Jincheng Wang
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States
| | - Troy J. Kieran
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Jesse Thomas
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States
| | - Natalia J. Bayona-Vásquez
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Bei Gao
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | | | | | - Kun Lu
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Jia-Sheng Wang
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States
| | - Olin E. Rhodes
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States
| | - Travis C. Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| |
Collapse
|
46
|
Pascoal F, Costa R, Magalhães C. The microbial rare biosphere: current concepts, methods and ecological principles. FEMS Microbiol Ecol 2021; 97:5974270. [PMID: 33175111 DOI: 10.1093/femsec/fiaa227] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/06/2020] [Indexed: 01/04/2023] Open
Abstract
Our ability to describe the highly diverse pool of low abundance populations present in natural microbial communities is increasing at an unprecedented pace. Yet we currently lack an integrative view of the key taxa, functions and metabolic activity which make-up this communal pool, usually referred to as the 'rare biosphere', across the domains of life. In this context, this review examines the microbial rare biosphere in its broader sense, providing an historical perspective on representative studies which enabled to bridge the concept from macroecology to microbial ecology. It then addresses our current knowledge of the prokaryotic rare biosphere, and covers emerging insights into the ecology, taxonomy and evolution of low abundance microeukaryotic, viral and host-associated communities. We also review recent methodological advances and provide a synthetic overview on how the rare biosphere fits into different conceptual models used to explain microbial community assembly mechanisms, composition and function.
Collapse
Affiliation(s)
- Francisco Pascoal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixoes, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Rodrigo Costa
- Department of Bioengineering, Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1049-001, Lisbon, Portugal.,Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.,U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, CA 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, CA 94720 Berkeley, USA
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixoes, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.,School of Science, University of Waikato, Gate 1, Knighton Road 3240, Hamilton, New Zealand.,Ocean Frontier Institute, Dalhousie University, Steele Ocean Sciences Building, Dalhousie University 1355 Oxford St., B3H4R2 Halifax, NS, Canada
| |
Collapse
|
47
|
Alanin KWS, Jørgensen TS, Browne PD, Petersen B, Riber L, Kot W, Hansen LH. An improved direct metamobilome approach increases the detection of larger-sized circular elements across kingdoms. Plasmid 2021; 115:102576. [PMID: 33872684 DOI: 10.1016/j.plasmid.2021.102576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Mobile genetic elements (MGEs) are instrumental in natural prokaryotic genome editing, permitting genome plasticity and allowing microbes to accumulate genetic diversity. MGEs serve as a vast communal gene pool and include DNA elements such as plasmids and bacteriophages (phages) among others. These mobile DNA elements represent a human health risk as they can introduce new traits, such as antibiotic resistance or virulence, to a bacterial strain. Sequencing libraries targeting environmental circular MGEs, referred to as metamobilomes, may broaden our current understanding of the mechanisms behind the mobility, prevalence and content of these elements. However, metamobilomics is affected by a severe bias towards small circular elements, introduced by multiple displacement amplification (MDA). MDA is typically used to overcome limiting DNA quantities after the removal of non-circular DNA during library preparations. By examining the relationship between sequencing coverage and the size of circular MGEs in paired metamobilome datasets with and without MDA, we show that larger circular elements are lost when using MDA. This study is the first to systematically demonstrate that MDA is detrimental to detecting larger-sized plasmids if small plasmids are present. It is also the first to show that MDA can be omitted when using enzyme-based DNA fragmentation and PCR in library preparation kits such as Nextera XT® from Illumina.
Collapse
Affiliation(s)
- Katrine Wacenius Skov Alanin
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tue Sparholt Jørgensen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark; Department of Science and Environment, Roskilde University, Denmark
| | - Patrick Denis Browne
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bent Petersen
- Globe Institute, Faculty of Health and Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Leise Riber
- Department of Biology, Functional Genomics, University of Copenhagen, Copenhagen, Denmark
| | - Witold Kot
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lars Hestbjerg Hansen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
48
|
Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, Wu D, Paez-Espino D, Chen IM, Huntemann M, Palaniappan K, Ladau J, Mukherjee S, Reddy TBK, Nielsen T, Kirton E, Faria JP, Edirisinghe JN, Henry CS, Jungbluth SP, Chivian D, Dehal P, Wood-Charlson EM, Arkin AP, Tringe SG, Visel A, Woyke T, Mouncey NJ, Ivanova NN, Kyrpides NC, Eloe-Fadrosh EA. A genomic catalog of Earth's microbiomes. Nat Biotechnol 2021; 39:499-509. [PMID: 33169036 PMCID: PMC8041624 DOI: 10.1038/s41587-020-0718-6] [Citation(s) in RCA: 409] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 09/28/2020] [Indexed: 01/02/2023]
Abstract
The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes collected from diverse habitats covering all of Earth's continents and oceans, including metagenomes from human and animal hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacteria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic modeling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic potential and for resolving thousands of new host linkages to uncultivated viruses. This resource underscores the value of genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes.
Collapse
Affiliation(s)
| | - Simon Roux
- DOE Joint Genome Institute, Berkeley, CA, USA
| | | | | | | | | | - Dongying Wu
- DOE Joint Genome Institute, Berkeley, CA, USA
| | | | - I-Min Chen
- DOE Joint Genome Institute, Berkeley, CA, USA
| | | | | | | | | | - T B K Reddy
- DOE Joint Genome Institute, Berkeley, CA, USA
| | | | | | | | | | | | - Sean P Jungbluth
- DOE Joint Genome Institute, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Dylan Chivian
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Paramvir Dehal
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Adam P Arkin
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Axel Visel
- DOE Joint Genome Institute, Berkeley, CA, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, CA, USA
| | | | | | | | | |
Collapse
|
49
|
Vigneron A, Cruaud P, Culley AI, Couture RM, Lovejoy C, Vincent WF. Genomic evidence for sulfur intermediates as new biogeochemical hubs in a model aquatic microbial ecosystem. MICROBIOME 2021; 9:46. [PMID: 33593438 PMCID: PMC7887784 DOI: 10.1186/s40168-021-00999-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/04/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND The sulfur cycle encompasses a series of complex aerobic and anaerobic transformations of S-containing molecules and plays a fundamental role in cellular and ecosystem-level processes, influencing biological carbon transfers and other biogeochemical cycles. Despite their importance, the microbial communities and metabolic pathways involved in these transformations remain poorly understood, especially for inorganic sulfur compounds of intermediate oxidation states (thiosulfate, tetrathionate, sulfite, polysulfides). Isolated and highly stratified, the extreme geochemical and environmental features of meromictic ice-capped Lake A, in the Canadian High Arctic, provided an ideal model ecosystem to resolve the distribution and metabolism of aquatic sulfur cycling microorganisms along redox and salinity gradients. RESULTS Applying complementary molecular approaches, we identified sharply contrasting microbial communities and metabolic potentials among the markedly distinct water layers of Lake A, with similarities to diverse fresh, brackish and saline water microbiomes. Sulfur cycling genes were abundant at all depths and covaried with bacterial abundance. Genes for oxidative processes occurred in samples from the oxic freshwater layers, reductive reactions in the anoxic and sulfidic bottom waters and genes for both transformations at the chemocline. Up to 154 different genomic bins with potential for sulfur transformation were recovered, revealing a panoply of taxonomically diverse microorganisms with complex metabolic pathways for biogeochemical sulfur reactions. Genes for the utilization of sulfur cycle intermediates were widespread throughout the water column, co-occurring with sulfate reduction or sulfide oxidation pathways. The genomic bin composition suggested that in addition to chemical oxidation, these intermediate sulfur compounds were likely produced by the predominant sulfur chemo- and photo-oxidisers at the chemocline and by diverse microbial degraders of organic sulfur molecules. CONCLUSIONS The Lake A microbial ecosystem provided an ideal opportunity to identify new features of the biogeochemical sulfur cycle. Our detailed metagenomic analyses across the broad physico-chemical gradients of this permanently stratified lake extend the known diversity of microorganisms involved in sulfur transformations over a wide range of environmental conditions. The results indicate that sulfur cycle intermediates and organic sulfur molecules are major sources of electron donors and acceptors for aquatic and sedimentary microbial communities in association with the classical sulfur cycle. Video abstract.
Collapse
Affiliation(s)
- Adrien Vigneron
- Département de Biologie, Université Laval, Québec, QC, Canada.
- Centre d'études nordiques (CEN), Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
| | - Perrine Cruaud
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, QC, Canada
| | - Alexander I Culley
- Centre d'études nordiques (CEN), Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Raoul-Marie Couture
- Centre d'études nordiques (CEN), Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada
- Département de Chimie, Université Laval, Québec, QC, Canada
| | - Connie Lovejoy
- Département de Biologie, Université Laval, Québec, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
- Québec Océan, Université Laval, Québec, QC, Canada.
| | - Warwick F Vincent
- Département de Biologie, Université Laval, Québec, QC, Canada
- Centre d'études nordiques (CEN), Takuvik Joint International Laboratory, Université Laval, Québec, QC, Canada
| |
Collapse
|
50
|
Syntrophic Hydrocarbon Degradation in a Decommissioned Off-Shore Subsea Oil Storage Structure. Microorganisms 2021; 9:microorganisms9020356. [PMID: 33670234 PMCID: PMC7916938 DOI: 10.3390/microorganisms9020356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/02/2022] Open
Abstract
Over the last decade, metagenomic studies have revealed the impact of oil production on the microbial ecology of petroleum reservoirs. However, despite their fundamental roles in bioremediation of hydrocarbons, biocorrosion, biofouling and hydrogen sulfide production, oil field and oil production infrastructure microbiomes are poorly explored. Understanding of microbial activities within oil production facilities is therefore crucial for environmental risk mitigation, most notably during decommissioning. The analysis of the planktonic microbial community from the aqueous phase of a subsea oil-storage structure was conducted. This concrete structure was part of the production platform of the Brent oil field (North Sea), which is currently undergoing decommissioning. Quantification and sequencing of microbial 16S rRNA genes, metagenomic analysis and reconstruction of metagenome assembled genomes (MAGs) revealed a unique microbiome, strongly dominated by organisms related to Dethiosulfatibacter and Cloacimonadetes. Consistent with the hydrocarbon content in the aqueous phase of the structure, a strong potential for degradation of low molecular weight aromatic hydrocarbons was apparent in the microbial community. These degradation pathways were associated with taxonomically diverse microorganisms, including the predominant Dethiosulfatibacter and Cloacimonadetes lineages, expanding the list of potential hydrocarbon degraders. Genes associated with direct and indirect interspecies exchanges (multiheme type-C cytochromes, hydrogenases and formate/acetate metabolism) were widespread in the community, suggesting potential syntrophic hydrocarbon degradation processes in the system. Our results illustrate the importance of genomic data for informing decommissioning strategies in marine environments and reveal that hydrocarbon-degrading community composition and metabolisms in man-made marine structures might differ markedly from natural hydrocarbon-rich marine environments.
Collapse
|