1
|
Sit TPH, Feord RC, Dunn AWE, Chabros J, Oluigbo D, Smith HH, Burn L, Chang E, Boschi A, Yuan Y, Gibbons GM, Khayat-Khoei M, De Angelis F, Hemberg E, Hemberg M, Lancaster MA, Lakatos A, Eglen SJ, Paulsen O, Mierau SB. MEA-NAP: A flexible network analysis pipeline for neuronal 2D and 3D organoid multielectrode recordings. CELL REPORTS METHODS 2024; 4:100901. [PMID: 39520988 PMCID: PMC11706071 DOI: 10.1016/j.crmeth.2024.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Microelectrode array (MEA) recordings are commonly used to compare firing and burst rates in neuronal cultures. MEA recordings can also reveal microscale functional connectivity, topology, and network dynamics-patterns seen in brain networks across spatial scales. Network topology is frequently characterized in neuroimaging with graph theoretical metrics. However, few computational tools exist for analyzing microscale functional brain networks from MEA recordings. Here, we present a MATLAB MEA network analysis pipeline (MEA-NAP) for raw voltage time series acquired from single- or multi-well MEAs. Applications to 3D human cerebral organoids or 2D human-derived or murine cultures reveal differences in network development, including topology, node cartography, and dimensionality. MEA-NAP incorporates multi-unit template-based spike detection, probabilistic thresholding for determining significant functional connections, and normalization techniques for comparing networks. MEA-NAP can identify network-level effects of pharmacologic perturbation and/or disease-causing mutations and thus can provide a translational platform for revealing mechanistic insights and screening new therapeutic approaches. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Timothy P H Sit
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK; Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Rachael C Feord
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - Alexander W E Dunn
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - Jeremi Chabros
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - David Oluigbo
- Department of Neurology, Brigham & Women's Hospital, Boston, MA 02115, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hugo H Smith
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - Lance Burn
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - Elise Chang
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - Alessio Boschi
- Department of Neurology, Brigham & Women's Hospital, Boston, MA 02115, USA; Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Yin Yuan
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - George M Gibbons
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK; John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, CB2 0PY Cambridge, UK
| | - Mahsa Khayat-Khoei
- Department of Neurology, Brigham & Women's Hospital, Boston, MA 02115, USA
| | | | - Erik Hemberg
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martin Hemberg
- Gene Lay Institute for Immunology and Inflammation, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Madeline A Lancaster
- MRC Laboratory for Molecular Biology, University of Cambridge, CB2 0QH Cambridge, UK
| | - Andras Lakatos
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, CB2 0PY Cambridge, UK; Cambridge University Hospitals, Cambridge Biomedical Campus, CB2 0QQ Cambridge, UK
| | - Stephen J Eglen
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CB3 0WA Cambridge, UK
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK
| | - Susanna B Mierau
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY Cambridge, UK; Department of Neurology, Brigham & Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Yu S, Mao B, Zhou Y, Liu Y, Yi C, Li F, Yao D, Xu P, San Liang X, Zhang T. Large-Scale Cortical Network Analysis and Classification of MI-BCI Tasks Based on Bayesian Nonnegative Matrix Factorization. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2187-2197. [PMID: 38837930 DOI: 10.1109/tnsre.2024.3409872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Motor imagery (MI) is a high-level cognitive process that has been widely applied to clinical rehabilitation and brain-computer interfaces (BCIs). However, the decoding of MI tasks still faces challenges, and the neural mechanisms underlying its application are unclear, which seriously hinders the development of MI-based clinical applications and BCIs. Here, we combined EEG source reconstruction and Bayesian nonnegative matrix factorization (NMF) methods to construct large-scale cortical networks of left-hand and right-hand MI tasks. Compared to right-hand MI, the results showed that the significantly increased functional network connectivities (FNCs) mainly located among the visual network (VN), sensorimotor network (SMN), right temporal network, right central executive network, and right parietal network in the left-hand MI at the β (13-30Hz) and all (8-30Hz) frequency bands. For the network properties analysis, we found that the clustering coefficient, global efficiency, and local efficiency were significantly increased and characteristic path length was significantly decreased in left-hand MI compared to right-hand MI at the β and all frequency bands. These network pattern differences indicated that the left-hand MI may need more modulation of multiple large-scale networks (i.e., VN and SMN) mainly located in the right hemisphere. Finally, based on the spatial pattern network of FNC and network properties, we propose a classification model. The proposed model achieves a top classification accuracy of 78.2% in cross-subject two-class MI-BCI tasks. Overall, our findings provide new insights into the neural mechanisms of MI and a potential network biomarker to identify MI-BCI tasks.
Collapse
|
3
|
Sit TPH, Feord RC, Dunn AWE, Chabros J, Oluigbo D, Smith HH, Burn L, Chang E, Boschi A, Yuan Y, Gibbons GM, Khayat-Khoei M, De Angelis F, Hemberg E, Hemberg M, Lancaster MA, Lakatos A, Eglen SJ, Paulsen O, Mierau SB. MEA-NAP compares microscale functional connectivity, topology, and network dynamics in organoid or monolayer neuronal cultures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578738. [PMID: 38370637 PMCID: PMC10871179 DOI: 10.1101/2024.02.05.578738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Microelectrode array (MEA) recordings are commonly used to compare firing and burst rates in neuronal cultures. MEA recordings can also reveal microscale functional connectivity, topology, and network dynamics-patterns seen in brain networks across spatial scales. Network topology is frequently characterized in neuroimaging with graph theoretical metrics. However, few computational tools exist for analyzing microscale functional brain networks from MEA recordings. Here, we present a MATLAB MEA network analysis pipeline (MEA-NAP) for raw voltage time-series acquired from single- or multi-well MEAs. Applications to 3D human cerebral organoids or 2D human-derived or murine cultures reveal differences in network development, including topology, node cartography, and dimensionality. MEA-NAP incorporates multi-unit template-based spike detection, probabilistic thresholding for determining significant functional connections, and normalization techniques for comparing networks. MEA-NAP can identify network-level effects of pharmacologic perturbation and/or disease-causing mutations and, thus, can provide a translational platform for revealing mechanistic insights and screening new therapeutic approaches.
Collapse
Affiliation(s)
- Timothy PH Sit
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Rachael C Feord
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Alexander WE Dunn
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Jeremi Chabros
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - David Oluigbo
- Department of Neurology, Brigham & Women’s Hospital, Boston, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hugo H Smith
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Lance Burn
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Elise Chang
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Alessio Boschi
- Department of Neurology, Brigham & Women’s Hospital, Boston, MA, USA
- Istituto Italiano di Tecnologia, Genoa, Italy
| | - Yin Yuan
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - George M Gibbons
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | - Erik Hemberg
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Martin Hemberg
- Gene Lay Institute for Immunology and Inflammation, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Andras Lakatos
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK
| | - Stephen J Eglen
- Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Ole Paulsen
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Susanna B Mierau
- Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Department of Neurology, Brigham & Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Muzik O, Diwadkar VA. Depth and hierarchies in the predictive brain: From reaction to action. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1664. [PMID: 37518831 DOI: 10.1002/wcs.1664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/18/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
The human brain is a prediction device, a view widely accepted in neuroscience. Prediction is a rational and efficient response that relies on the brain's ability to create and employ generative models to optimize actions over unpredictable time horizons. We argue that extant predictive frameworks while compelling, have not explicitly accounted for the following: (a) The brain's generative models must incorporate predictive depth (i.e., rely on degrees of abstraction to enable predictions over different time horizons); (b) The brain's implementation scheme to account for varying predictive depth relies on dynamic predictive hierarchies formed using the brain's functional networks. We show that these hierarchies incorporate the ascending processes (driven by reaction), and the descending processes (related to prediction), eventually driving action. Because they are dynamically formed, predictive hierarchies allow the brain to address predictive challenges in virtually any domain. By way of application, we explain how this framework can be applied to heretofore poorly understood processes of human behavioral thermoregulation. Although mammalian thermoregulation has been closely tied to deep brain structures engaged in autonomic control such as the hypothalamus, this narrow conception does not translate well to humans. In addition to profound differences in evolutionary history, the human brain is bestowed with substantially increased functional complexity (that itself emerged from evolutionary differences). We argue that behavioral thermoregulation in humans is possible because, (a) ascending signals shaped by homeostatic sub-networks, interject with (b) descending signals related to prediction (implemented in interoceptive and executive sub-networks) and action (implemented in executive sub-networks). These sub-networks cumulatively form a predictive hierarchy for human thermoregulation, potentiating a range of viable responses to known and unknown thermoregulatory challenges. We suggest that our proposed extensions to the predictive framework provide a set of generalizable principles that can further illuminate the many facets of the predictive brain. This article is categorized under: Neuroscience > Behavior Philosophy > Action Psychology > Prediction.
Collapse
Affiliation(s)
- Otto Muzik
- Department of Pediatrics, Wayne State University School of Medicine, Children's Hospital of Michigan, Michigan, USA
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|