1
|
Lao Y, Wang X, Xu N, Zhang H, Xu H. Application of proteomics to determine the mechanism of action of traditional Chinese medicine remedies. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:1-8. [PMID: 24862488 DOI: 10.1016/j.jep.2014.05.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/18/2014] [Accepted: 05/18/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The rationale for using traditional Chinese medicine (TCM) is based on the experience that has been gained from its wide use over thousands of years. However, the mechanisms of action of many TCM are still unclear. Proteomics, which mainly characterizes protein functions, protein-protein interactions, and protein modification in tissues or animals, can be used to investigate signaling pathway perturbations in cells or the whole body. Proteomics has improved the discovery process of effective TCM compounds, and has helped to elucidate their possible mechanisms of action. Therefore, a systematic review of the application of proteomics on TCM research is of great importance and necessity. This review strives to describe the literature on the application of proteomics to elucidate the mechanism of action of TCM on various diseases, and provide the essential discussion on the further utilization of proteomics data to accelerate TCM research. MATERIALS AND METHODS Literature survey was performed via electronic search on Pubmed with keywords 'Proteomics' and 'Traditional Chinese Medicine'. The papers written in English were acquired and analyzed in this review. RESULTS This review mainly summarizes the application of proteomics to investigate TCM remedies for neuronal disease, cancer, cardiovascular disease, diabetes, and immunology-related disease. CONCLUSIONS Researchers have applied proteomics to study the mechanism of action of TCM and made substantial progresses. Further studies are required to determine the protein targets of the active compounds, analyze the mechanism of actions in patients, compare the clinical effects with western medicine.
Collapse
Affiliation(s)
- Yuanzhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, PR China
| | - Xiaoyu Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, PR China
| | - Naihan Xu
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Hongmei Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, PR China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, PR China.
| |
Collapse
|
2
|
Muehsam D, Ventura C. Life rhythm as a symphony of oscillatory patterns: electromagnetic energy and sound vibration modulates gene expression for biological signaling and healing. Glob Adv Health Med 2014; 3:40-55. [PMID: 24808981 PMCID: PMC4010966 DOI: 10.7453/gahmj.2014.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- David Muehsam
- Visual Institute of Developmental Sciences, Bologna, Italy (Dr Muehsam)
| | - Carlo Ventura
- National Institute of Biostructures and Biosystems, Visual Institute of Developmental Sciences, Bologna; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna (Dr Ventura), Italy
| |
Collapse
|
3
|
A systematic review of experimental and clinical acupuncture in chemotherapy-induced peripheral neuropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:516916. [PMID: 23983788 PMCID: PMC3741953 DOI: 10.1155/2013/516916] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 11/18/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect that can be very disabling and can limit or delay the dose of chemotherapy that can be administered. Acupuncture may be effective for treating peripheral neuropathy. The aim of this study was to review the available literature on the use of acupuncture for CIPN. The systematic literature search was performed using MEDLINE, Google Scholar, Cochrane Database, CINHAL, and ISI Proceedings. Hand searching was conducted, and consensus was reached on all extracted data. Only papers in the English language were included, irrespective of study design. From 3989 retrieved papers, 8 relevant papers were identified. One was an experimental study which showed that electroacupuncture suppressed CIPN pain in rats. In addition, there were 7 very heterogeneous clinical studies, 1 controlled randomised study using auricular acupuncture, 2 randomized controlled studies using somatic acupuncture, and 3 case series/case reports which suggested a positive effect of acupuncture in CIPN. Conclusions. Only one controlled randomised study demonstrated that acupuncture may be beneficial for CIPN. All the clinical studies reviewed had important methodological limitations. Further studies with robust methodology are needed to demonstrate the role of acupuncture for treating CIPN resulting from cancer treatment.
Collapse
|
4
|
Cho WCS. Application of Proteomics in Chinese Medicine Research. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 35:911-22. [DOI: 10.1142/s0192415x07005375] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proteomics technologies can be applied to simultaneously study the function, organization, diversity, and dynamic variety of a cell or a whole tissue. The integrative approach of proteomics is in line with the holistic concept and practices of traditional Chinese medicine (TCM). In this review, the technologies of proteomics, their adoption leverages the depth and breadth of TCM research are introduced. This article presents some examples to illustrate the use of proteomics technologies in the study of pharmacological effects and their action mechanisms relevant to TCM. Proteomics technologies could be used to screen the target molecules of the TCM actions, identify new bioactive components, and elucidate the underlying mechanisms of their effects. With proteomics approaches, it was found that the Siwu decoction could regulate the protein expression of the bone marrow of blood (Xue) deficient mice, including some proteins and enzymes involved in the hemopoiesis system. Ganoderma lucidum spores might promote the survival and axon regeneration of injured spinal motor neurons in rats by regulating the expression levels of proteins involved in the energy and tissue regeneration system. Polygonatum zanlanscianense Pamp exhibited cytotoxicity towards human myeloblast leukemia HL-60 cells through multiple apoptosis-including pathways. Panax ginseng might be beneficial to patients suffering from diabetes mellitus and its complications by alleviating inflammation. Taken together with a discussion on the challenges and perspectives, this paper provides an overview of the recent developments of proteomics technologies in TCM research, and contends that proteomics will play an important role in the modernization and internationalization of TCM.
Collapse
|
5
|
|
6
|
Cooper EL. eCAM: Integrative Genomics and Fecundity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 6:129-31. [PMID: 19470523 PMCID: PMC2686634 DOI: 10.1093/ecam/nep046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Edwin L Cooper
- Laboratory of Comparative Neuroimmunology, Department of Neurobiology, David Geffen School Of Medicine at UCLA, University of California, Los Angeles, CA 90095-1763, USA.
| |
Collapse
|
7
|
Cooper EL. Regional Strength in CAM. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 3:291-2. [PMID: 16951712 PMCID: PMC1513147 DOI: 10.1093/ecam/nel048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Rocca G, Dioni F, Rocca N, Oliveri F, Brunetto MR, Bonino F. Thermal care of functional dyspepsia based on bicarbonate-sulphate-calcium water: a sequential clinical trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 4:381-91. [PMID: 17965771 PMCID: PMC1978226 DOI: 10.1093/ecam/nel100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 10/30/2006] [Indexed: 02/07/2023]
Abstract
Drug treatment of functional dyspepsia is often unsatisfactory. We assessed the efficacy of a bicarbonate-sulphate-calcium thermal water cycle of 12 days, in patients with functional dyspepsia. Patients with functional dyspepsia were sent by their general practitioners to 12 days of treatment with thermal water, 200–400 ml in the morning, at temperature of 33°C (91.4 F) and were evaluated on a strict intention to treat basis. Four efficacy endpoints were analyzed as follows: (i) reduction of the global symptoms score, (ii) reduction of intensity to a level not interfering with everyday activities, (iii) specific efficacy on ulcer-like or dysmotility-like dyspepsia and (iv) esophageal or abdominal-associated symptoms. Statistical significance was reached for all three primary outcomes after the first 29 consecutive patients. Thermal water reduced the global symptom score, reduced intensity of symptoms to a level not interfering with everyday activity, but was unable to completely suppress all symptoms. A parallel effect emerged for ulcer-like and dyspepsia-like subgroups. The effect on heartburn and abdominal symptoms was not significant, suggesting a specific effect of the water on the gastric and duodenal wall. The Roma II criteria identify a natural kind of dyspepsia that improves with thermal water. Ulcer-like and dysmotility-like are not therapeutically distinguishable subgroups. Patients with dominant esophageal or abdominal symptoms should receive a different therapy. Sequential methods are very effective for the evaluation of traditional care practices and should be considered preliminary and integrative to randomized controlled trials in this context.
Collapse
Affiliation(s)
- Giuseppe Rocca
- Direzione Scientifica of Fondazione Ospedale Maggiore Policlinico Mangiagalli e Regina Elena Milan, Italy.
| | | | | | | | | | | |
Collapse
|
9
|
Johnston MF, Ortiz Sánchez E, Vujanovic NL, Li W. Acupuncture May Stimulate Anticancer Immunity via Activation of Natural Killer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2011; 2011:481625. [PMID: 21785626 PMCID: PMC3135660 DOI: 10.1093/ecam/nep236] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 12/19/2009] [Indexed: 02/07/2023]
Abstract
This article presents the hypothesis that acupuncture enhances anticancer immune functions by stimulating natural killer (NK) cells. It provides background information on acupuncture, summarizes the current scientific understanding of the mechanisms through which NK cells act to eliminate cancer cells, and reviews evidence that acupuncture is associated with increases in NK cell quantity and function in both animals and humans. The key contribution of this article involves the use of cellular immunology and molecular biological theory to interpret and synthesize evidence from disparate animal and human studies in formulating the 'acupuncture immuno-enhancement hypothesis': clinicians may use acupuncture to promote the induction and secretion of NK-cell activating cytokines that engage specific NK cell receptors that endogenously enhance anticancer immune function.
Collapse
Affiliation(s)
| | - Elizabeth Ortiz Sánchez
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, CA, USA
| | - Nikola L. Vujanovic
- University of Pittsburgh Cancer Institute, Departments of Pathology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wenhui Li
- Department of Chemistry, University of California, Los Angeles, CA, USA
| |
Collapse
|
10
|
A cytological observation of the fluid in the primo-nodes and vessels on the surfaces of mammalian internal organs. Biologia (Bratisl) 2010. [DOI: 10.2478/s11756-010-0099-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Liu Y, Fukuwatari Y, Okumura K, Takeda K, Ishibashi KI, Furukawa M, Ohno N, Mori K, Gao M, Motoi M. Immunomodulating Activity of Agaricus brasiliensis KA21 in Mice and in Human Volunteers. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2008; 5:205-19. [PMID: 18604247 PMCID: PMC2396466 DOI: 10.1093/ecam/nem016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Accepted: 01/16/2007] [Indexed: 01/25/2023]
Abstract
We performed studies on murine models and human volunteers to examine the immunoenhancing effects of the naturally outdoor-cultivated fruit body of Agaricus brasiliensis KA21 (i.e. Agaricus blazei). Antitumor, leukocyte-enhancing, hepatopathy-alleviating and endotoxin shock-alleviating effects were found in mice. In the human study, percentage body fat, percentage visceral fat, blood cholesterol level and blood glucose level were decreased, and natural killer cell activity was increased. Taken together, the results strongly suggest that the A. brasiliensis fruit body is useful as a health-promoting food.
Collapse
Affiliation(s)
- Ying Liu
- Mibyou Medical Research Center, Institute of Preventive Medicine, Tokyo, Japan Department of Immunology, School of Medicine, Juntendo University School of Medicine, Tokyo, Japan Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan Department of Acupuncture and Moxibustion, Suzuka University of Medical Science and Mie, Japan, and Toei Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Yasushi Fukuwatari
- Mibyou Medical Research Center, Institute of Preventive Medicine, Tokyo, Japan Department of Immunology, School of Medicine, Juntendo University School of Medicine, Tokyo, Japan Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan Department of Acupuncture and Moxibustion, Suzuka University of Medical Science and Mie, Japan, and Toei Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Ko Okumura
- Mibyou Medical Research Center, Institute of Preventive Medicine, Tokyo, Japan Department of Immunology, School of Medicine, Juntendo University School of Medicine, Tokyo, Japan Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan Department of Acupuncture and Moxibustion, Suzuka University of Medical Science and Mie, Japan, and Toei Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Kazuyoshi Takeda
- Mibyou Medical Research Center, Institute of Preventive Medicine, Tokyo, Japan Department of Immunology, School of Medicine, Juntendo University School of Medicine, Tokyo, Japan Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan Department of Acupuncture and Moxibustion, Suzuka University of Medical Science and Mie, Japan, and Toei Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Ken-ichi Ishibashi
- Mibyou Medical Research Center, Institute of Preventive Medicine, Tokyo, Japan Department of Immunology, School of Medicine, Juntendo University School of Medicine, Tokyo, Japan Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan Department of Acupuncture and Moxibustion, Suzuka University of Medical Science and Mie, Japan, and Toei Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Mai Furukawa
- Mibyou Medical Research Center, Institute of Preventive Medicine, Tokyo, Japan Department of Immunology, School of Medicine, Juntendo University School of Medicine, Tokyo, Japan Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan Department of Acupuncture and Moxibustion, Suzuka University of Medical Science and Mie, Japan, and Toei Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Naohito Ohno
- Mibyou Medical Research Center, Institute of Preventive Medicine, Tokyo, Japan Department of Immunology, School of Medicine, Juntendo University School of Medicine, Tokyo, Japan Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan Department of Acupuncture and Moxibustion, Suzuka University of Medical Science and Mie, Japan, and Toei Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Kazu Mori
- Mibyou Medical Research Center, Institute of Preventive Medicine, Tokyo, Japan Department of Immunology, School of Medicine, Juntendo University School of Medicine, Tokyo, Japan Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan Department of Acupuncture and Moxibustion, Suzuka University of Medical Science and Mie, Japan, and Toei Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Ming Gao
- Mibyou Medical Research Center, Institute of Preventive Medicine, Tokyo, Japan Department of Immunology, School of Medicine, Juntendo University School of Medicine, Tokyo, Japan Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan Department of Acupuncture and Moxibustion, Suzuka University of Medical Science and Mie, Japan, and Toei Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Masuro Motoi
- Mibyou Medical Research Center, Institute of Preventive Medicine, Tokyo, Japan Department of Immunology, School of Medicine, Juntendo University School of Medicine, Tokyo, Japan Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan Department of Acupuncture and Moxibustion, Suzuka University of Medical Science and Mie, Japan, and Toei Pharmaceutical Co., Ltd., Tokyo, Japan
| |
Collapse
|
12
|
Cooper EL. eCAM: On To Year 4. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2006; 3:395-6. [PMID: 17173102 PMCID: PMC1697738 DOI: 10.1093/ecam/nel086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
13
|
Chavan P, Joshi K, Patwardhan B. DNA microarrays in herbal drug research. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2006; 3:447-57. [PMID: 17173108 PMCID: PMC1697755 DOI: 10.1093/ecam/nel075] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 09/19/2006] [Indexed: 12/18/2022]
Abstract
Natural products are gaining increased applications in drug discovery and development. Being chemically diverse they are able to modulate several targets simultaneously in a complex system. Analysis of gene expression becomes necessary for better understanding of molecular mechanisms. Conventional strategies for expression profiling are optimized for single gene analysis. DNA microarrays serve as suitable high throughput tool for simultaneous analysis of multiple genes. Major practical applicability of DNA microarrays remains in DNA mutation and polymorphism analysis. This review highlights applications of DNA microarrays in pharmacodynamics, pharmacogenomics, toxicogenomics and quality control of herbal drugs and extracts.
Collapse
|
14
|
Kim E, Clark AL, Kiss A, Hahn JW, Wesselschmidt R, Coscia CJ, Belcheva MM. Mu- and kappa-opioids induce the differentiation of embryonic stem cells to neural progenitors. J Biol Chem 2006; 281:33749-60. [PMID: 16954126 PMCID: PMC2587057 DOI: 10.1074/jbc.m603862200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Growth factors, hormones, and neurotransmitters have been implicated in the regulation of stem cell fate. Since various neural precursors express functional neurotransmitter receptors, which include G protein-coupled receptors, it is anticipated that they are involved in cell fate decisions. We detected mu-opioid receptor (MOR-1) and kappa-opioid receptor (KOR-1) expression and immunoreactivity in embryonic stem (ES) cells and in retinoic acid-induced ES cell-derived, nestin-positive, neural progenitors. Moreover, these G protein-coupled receptors are functional, since [D-Ala(2),MePhe(4),Gly-ol(5)]enkephalin, a MOR-selective agonist, and U69,593, a KOR-selective agonist, induce a sustained activation of extracellular signal-regulated kinase (ERK) signaling throughout a 24-h treatment period in undifferentiated, self-renewing ES cells. Both opioids promote limited proliferation of undifferentiated ES cells via the ERK/MAP kinase signaling pathway. Importantly, biochemical and immunofluorescence data suggest that [D-Ala(2),MePhe(4),Gly-ol(5)]enkephalin and U69,593 divert ES cells from self-renewal and coax the cells to differentiate. In retinoic acid-differentiated ES cells, opioid-induced signaling features a biphasic ERK activation profile and an opioid-induced, ERK-independent inhibition of proliferation in these neural progenitors. Collectively, the data suggest that opioids may have opposite effects on ES cell self-renewal and ES cell differentiation and that ERK activation is only required by the latter. Finally, opioid modulation of ERK activity may play an important role in ES cell fate decisions by directing the cells to specific lineages.
Collapse
Affiliation(s)
- Eunhae Kim
- E. A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Amy L. Clark
- E. A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Alexi Kiss
- E. A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Jason W. Hahn
- E. A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | | | - Carmine J. Coscia
- E. A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Mariana M. Belcheva
- E. A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
- To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, MO, 63104. Tel.: 314-977-9256; Fax: 314-977-9205; E-mail:
| |
Collapse
|
15
|
Johng HM, Yoo JS, Yoon TJ, Shin HS, Lee BC, Lee C, Lee JK, Soh KS. Use of magnetic nanoparticles to visualize threadlike structures inside lymphatic vessels of rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2006; 4:77-82. [PMID: 17342244 PMCID: PMC1810370 DOI: 10.1093/ecam/nel057] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 07/25/2006] [Indexed: 11/14/2022]
Abstract
A novel application of fluorescent magnetic nanoparticles was made to visualize a new tissue which had not been detectable by using simple stereomicroscopes. This unfamiliar threadlike structure inside the lymphatic vessels of rats was demonstrated in vivo by injecting nanoparticles into lymph nodes and applying magnetic fields on the collecting lymph vessels so that the nanoparticles were taken up by the threadlike structures. Confocal laser scanning microscope images of cryosectioned specimens exhibited that the nanoparticles were absorbed more strongly by the threadlike structure than by the lymphatic vessels. Further examination using a transmission electron microscope revealed that the nanoparticles had been captured between the reticular fibers in the extracellular matrix of the threadlike structures. The emerging technology of nanoparticles not only allows the extremely elusive threadlike structures to be visualized but also is expected to provide a magnetically controllable means to investigate their physiological functions.
Collapse
Affiliation(s)
- Hyeon-Min Johng
- Biomedical Physics Laboratory, FPRD School of Physics and Astronomy, Materials Chemistry Laboratory School of Chemistry and Research Institute of Basic Sciences Seoul National University, Seoul, Korea
| | - Jung Sun Yoo
- Biomedical Physics Laboratory, FPRD School of Physics and Astronomy, Materials Chemistry Laboratory School of Chemistry and Research Institute of Basic Sciences Seoul National University, Seoul, Korea
| | - Tae-Jong Yoon
- Biomedical Physics Laboratory, FPRD School of Physics and Astronomy, Materials Chemistry Laboratory School of Chemistry and Research Institute of Basic Sciences Seoul National University, Seoul, Korea
| | - Hak-Soo Shin
- Biomedical Physics Laboratory, FPRD School of Physics and Astronomy, Materials Chemistry Laboratory School of Chemistry and Research Institute of Basic Sciences Seoul National University, Seoul, Korea
| | - Byung-Cheon Lee
- Biomedical Physics Laboratory, FPRD School of Physics and Astronomy, Materials Chemistry Laboratory School of Chemistry and Research Institute of Basic Sciences Seoul National University, Seoul, Korea
| | - Changhoon Lee
- Biomedical Physics Laboratory, FPRD School of Physics and Astronomy, Materials Chemistry Laboratory School of Chemistry and Research Institute of Basic Sciences Seoul National University, Seoul, Korea
| | - Jin-Kyu Lee
- Biomedical Physics Laboratory, FPRD School of Physics and Astronomy, Materials Chemistry Laboratory School of Chemistry and Research Institute of Basic Sciences Seoul National University, Seoul, Korea
| | - Kwang-Sup Soh
- Biomedical Physics Laboratory, FPRD School of Physics and Astronomy, Materials Chemistry Laboratory School of Chemistry and Research Institute of Basic Sciences Seoul National University, Seoul, Korea
| |
Collapse
|
16
|
Saad B, Dakwar S, Said O, Abu-Hijleh G, Al Battah F, Kmeel A, Aziazeh H. Evaluation of medicinal plant hepatotoxicity in co-cultures of hepatocytes and monocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2006; 3:93-8. [PMID: 16550229 PMCID: PMC1375247 DOI: 10.1093/ecam/nel002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 01/17/2006] [Indexed: 02/02/2023]
Abstract
Non-parenchymal cells might play an important role in the modulation of xenobiotic metabolism in liver and its pharmacological and toxicological consequences. Therefore, the role of cell-to-cell interactions in herbal induced liver toxicity was investigated in monocultures of cells from the human hepatocyte cell line (HepG2) and in co-cultures of cells from the HepG2 cell line and cells from the human monocyte cell line (THP1). Cells were treated with various concentrations (1-500 microg ml(-1)) of extracts of Pistacia palaestina, Juglans regia and Quercus ithaburensis for 24 h. Extracts from Cleome droserifolia, a known toxic plant, were taken as positive control. In the co-culture system, toxic effects were observed after exposure to extracts of Pistacia palestina and C. droserifolia. These two extracts significantly reduced by cell viability as measured the MTT test and the LDH assay. Whereas in hepatocyte cultures, only extracts of C. droserifolia were found to affect the cell viability. The production levels of albumin from hepatocytes were not affected by treatment with plant extracts in both culture systems. It seems that the observed reduction in cell viability after exposure to extracts of P. palestina in co-cultures but not in monocultures is a result of monocyte-derived factors. The use of liver cell co-cultures is therefore a useful approach to investigate the influence of intercellular communication on xenobiotic metabolism in liver.
Collapse
Affiliation(s)
- Bashar Saad
- Research and Development Regional Center--The Galilee Society, Shefa Amr, Israel.
| | | | | | | | | | | | | |
Collapse
|
17
|
Bellavite P, Conforti A, Pontarollo F, Ortolani R. Immunology and homeopathy. 2. Cells of the immune system and inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2006; 3:13-24. [PMID: 16550219 PMCID: PMC1375241 DOI: 10.1093/ecam/nek018] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 01/05/2006] [Indexed: 11/14/2022]
Abstract
Here we describe the results of some experimental laboratory studies aimed at verifying the efficacy of high dilutions of substances and of homeopathic medicines in models of inflammation and immunity. Studies carried out on basophils, lymphocytes, granulocytes and fibroblasts are reviewed. This approach may help to test under controlled conditions the main principles of homeopathy such as 'similarity' of drug action at the cellular level and the effects of dilution/dynamization on the drug activity. The current situation is that few and rather small groups are working on laboratory models for homeopathy. Regarding the interpretation of data in view of the simile principle, we observe that there are different levels of similarity and that the laboratory data give support to this principle, but have not yet yielded the ultimate answer to the action mechanism of homeopathy. Evidence of the biological activity in vitro of highly diluted-dynamized solutions is slowly accumulating, with some conflicting reports. It is our hope that this review of literature unknown to most people will give an original and useful insight into the 'state-of-the-art' of homeopathy, without final conclusions 'for' or 'against' this modality. This kind of uncertainty may be difficult to accept, but is conceivably the most open-minded position now.
Collapse
Affiliation(s)
- Paolo Bellavite
- Department of Scienze Morfologico-Biomediche, University of Verona, Italy.
| | | | | | | |
Collapse
|
18
|
Vojdani A, Erde J. Regulatory T cells, a potent immunoregulatory target for CAM researchers: the ultimate antagonist (I). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2006; 3:25-30. [PMID: 16550220 PMCID: PMC1375245 DOI: 10.1093/ecam/nek022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 01/07/2006] [Indexed: 12/27/2022]
Abstract
Over the past decade, great interest has been given to regulatory T (T(reg)) cells. A vast body of evidence has shown the existence and highlighted the importance of T(reg) cells in the active suppression of immune system responses. This form of immunoregulation is the dominant means utilized by the immune system to reach a harmony between reciprocal response processes in order to ensure adequate host defense with minimal host detriment. Therapeutically targeting T(reg) cells is a direct and powerful means to manipulate the immune system to achieve beneficial effects on various disease pathologies, including allergy, autoimmunity and cancer, as well as the facilitation of organ transplantation. This powerful target for immunoregulation is of much concern to practitioners and researchers of complementary and alternative medicine because it allows a great deal of control and certainty in dealing with the prevalence of debilitating immune system-related disorders for which there has been little remedy outside of Western Medicine.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Laboratory, Inc., Beverly Hills, CA 90211, USA.
| | | |
Collapse
|
19
|
Cooper EL. ECAM is waiting for eCAM. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2006; 2:427-8. [PMID: 16322798 PMCID: PMC1297508 DOI: 10.1093/ecam/neh135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|