1
|
Keshavam CC, Naz S, Gupta A, Sanyal P, Kochar M, Gangwal A, Sangwan N, Kumar N, Tyagi E, Goel S, Singh NK, Sowpati DT, Khare G, Ganguli M, Raze D, Locht C, Basu-Modak S, Gupta M, Nandicoori VK, Singh Y. The heparin-binding hemagglutinin protein of Mycobacterium tuberculosis is a nucleoid-associated protein. J Biol Chem 2023; 299:105364. [PMID: 37865319 PMCID: PMC10665949 DOI: 10.1016/j.jbc.2023.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023] Open
Abstract
Nucleoid-associated proteins (NAPs) regulate multiple cellular processes such as gene expression, virulence, and dormancy throughout bacterial species. NAPs help in the survival and adaptation of Mycobacterium tuberculosis (Mtb) within the host. Fourteen NAPs have been identified in Escherichia coli; however, only seven NAPs are documented in Mtb. Given its complex lifestyle, it is reasonable to assume that Mtb would encode for more NAPs. Using bioinformatics tools and biochemical experiments, we have identified the heparin-binding hemagglutinin (HbhA) protein of Mtb as a novel sequence-independent DNA-binding protein which has previously been characterized as an adhesion molecule required for extrapulmonary dissemination. Deleting the carboxy-terminal domain of HbhA resulted in a complete loss of its DNA-binding activity. Atomic force microscopy showed HbhA-mediated architectural modulations in the DNA, which may play a regulatory role in transcription and genome organization. Our results showed that HbhA colocalizes with the nucleoid region of Mtb. Transcriptomics analyses of a hbhA KO strain revealed that it regulates the expression of ∼36% of total and ∼29% of essential genes. Deletion of hbhA resulted in the upregulation of ∼73% of all differentially expressed genes, belonging to multiple pathways suggesting it to be a global repressor. The results show that HbhA is a nonessential NAP regulating gene expression globally and acting as a plausible transcriptional repressor.
Collapse
Affiliation(s)
| | - Saba Naz
- Department of Zoology, University of Delhi, Delhi, India; CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Aanchal Gupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Priyadarshini Sanyal
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Centre for Cellular and Molecular Biology (CSIR-CCMB) Campus, Hyderabad, India
| | - Manisha Kochar
- Department of Zoology, University of Delhi, Delhi, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | | | - Nitika Sangwan
- Department of Zoology, University of Delhi, Delhi, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Delhi, India
| | - Ekta Tyagi
- Department of Zoology, University of Delhi, Delhi, India
| | - Simran Goel
- Department of Zoology, University of Delhi, Delhi, India
| | | | | | - Garima Khare
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Dominique Raze
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Centre for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Centre for Infection and Immunity of Lille, Lille, France
| | | | - Meetu Gupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.
| | - Vinay Kumar Nandicoori
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Centre for Cellular and Molecular Biology (CSIR-CCMB) Campus, Hyderabad, India; National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India.
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, India; Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi, India.
| |
Collapse
|
2
|
Seki K, Galindo JL, Karim AS, Jewett MC. A Cell-Free Gene Expression Platform for Discovering and Characterizing Stop Codon Suppressing tRNAs. ACS Chem Biol 2023; 18:1324-1334. [PMID: 37257197 DOI: 10.1021/acschembio.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/02/2023]
Abstract
Non-canonical amino acids (ncAAs) can be incorporated into peptides and proteins to create new properties and functions. Site-specific ncAA incorporation is typically enabled by orthogonal translation systems comprising a stop codon suppressing tRNA (typically UAG), an aminoacyl-tRNA synthetase, and an ncAA of interest. Unfortunately, methods to discover and characterize suppressor tRNAs are limited because of laborious and time-consuming workflows in living cells. In this work, we develop anEscherichia coli crude extract-based cell-free gene expression system to rapidly express and characterize functional suppressor tRNAs. Our approach co-expresses orthogonal tRNAs using endogenous machinery alongside a stop-codon containing superfolder green fluorescent protein (sfGFP) reporter, which can be used as a simple read-out for suppression. As a model, we evaluate the UAG and UAA suppressing activity of several orthogonal tRNAs. Then, we demonstrate that co-transcription of two mutually orthogonal tRNAs can direct the incorporation of two unique ncAAs within a single modified sfGFP. Finally, we show that the cell-free workflow can be used to discover putative UAG-suppressor tRNAs found in metagenomic data, which are nonspecifically recognized by endogenous aminoacyl-tRNA synthetases. We anticipate that our cell-free system will accelerate the development of orthogonal translation systems for synthetic biology.
Collapse
Affiliation(s)
- Kosuke Seki
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Joey L Galindo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center and Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
3
|
Muskhelishvili G, Sobetzko P, Travers A. Spatiotemporal Coupling of DNA Supercoiling and Genomic Sequence Organization-A Timing Chain for the Bacterial Growth Cycle? Biomolecules 2022; 12:biom12060831. [PMID: 35740956 PMCID: PMC9221221 DOI: 10.3390/biom12060831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023] Open
Abstract
In this article we describe the bacterial growth cycle as a closed, self-reproducing, or autopoietic circuit, reestablishing the physiological state of stationary cells initially inoculated in the growth medium. In batch culture, this process of self-reproduction is associated with the gradual decline in available metabolic energy and corresponding change in the physiological state of the population as a function of "travelled distance" along the autopoietic path. We argue that this directional alteration of cell physiology is both reflected in and supported by sequential gene expression along the chromosomal OriC-Ter axis. We propose that during the E. coli growth cycle, the spatiotemporal order of gene expression is established by coupling the temporal gradient of supercoiling energy to the spatial gradient of DNA thermodynamic stability along the chromosomal OriC-Ter axis.
Collapse
Affiliation(s)
- Georgi Muskhelishvili
- School of Natural Sciences, Biology Program, Agricultural University of Georgia, 0159 Tbilisi, Georgia
- Correspondence:
| | - Patrick Sobetzko
- Synmikro, Loewe Center for Synthetic Microbiology, Philipps-Universität Marburg, 35043 Marburg, Germany;
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
| |
Collapse
|
4
|
Dages S, Zhi X, Leng F. Fis protein forms DNA topological barriers to confine transcription-coupled DNA supercoiling in Escherichia coli. FEBS Lett 2020; 594:791-798. [PMID: 31639222 PMCID: PMC10857741 DOI: 10.1002/1873-3468.13643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2019] [Revised: 08/30/2019] [Accepted: 10/18/2019] [Indexed: 01/07/2023]
Abstract
Previously, we demonstrated that transcription-coupled DNA supercoiling (TCDS) potently activated or inhibited nearby promoters in Escherichia coli even in the presence of all four DNA topoisomerases, suggesting that DNA topoisomerases are not the only factors regulating TCDS. A different mechanism exists to confine this localized DNA supercoiling. Using an in vivo system containing the TCDS-activated leu-500 promoter (Pleu-500 ), we find that the nucleoid-associated Fis protein potently inhibits the TCDS-mediated activation of Pleu-500 . We also find that deletion of the fis gene significantly enhances TCDS-mediated inhibition of transcription of three genes purH, yieP, and yrdA divergently coupled to different rrn operons in the early log phase. These results suggest that Fis protein forms DNA topological barriers upon binding to its recognition sites, blocks TCDS diffusion, and potently inhibits the TCDS-activated Pleu-500 .
Collapse
Affiliation(s)
- Samantha Dages
- Biomolecular Sciences Institute and Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
| | - Xiaoduo Zhi
- Biomolecular Sciences Institute and Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
| | - Fenfei Leng
- Biomolecular Sciences Institute and Department of Chemistry & Biochemistry, Florida International University, Miami, FL, USA
| |
Collapse
|
5
|
NapA (Rv0430), a Novel Nucleoid-Associated Protein that Regulates a Virulence Operon in Mycobacterium tuberculosis in a Supercoiling-Dependent Manner. J Mol Biol 2019; 431:1576-1591. [DOI: 10.1016/j.jmb.2019.02.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/10/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022]
|
6
|
Chromosomal organization of transcription: in a nutshell. Curr Genet 2017; 64:555-565. [PMID: 29184972 DOI: 10.1007/s00294-017-0785-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/25/2023]
Abstract
Early studies of transcriptional regulation focused on individual gene promoters defined specific transcription factors as central agents of genetic control. However, recent genome-wide data propelled a different view by linking spatially organized gene expression patterns to chromosomal dynamics. Therefore, the major problem in contemporary molecular genetics concerned with transcriptional gene regulation is to establish a unifying model that reconciles these two views. This problem, situated at the interface of polymer physics and network theory, requires development of an integrative methodology. In this review, we discuss recent achievements in classical model organism E. coli and provide some novel insights gained from studies of a bacterial plant pathogen, D. dadantii. We consider DNA topology and the basal transcription machinery as key actors of regulation, in which activation of functionally relevant genes is coupled to and coordinated with the establishment of extended chromosomal domains of coherent transcription. We argue that the spatial organization of genome plays a fundamental role in its own regulation.
Collapse
|
7
|
Noy A, Sutthibutpong T, A Harris S. Protein/DNA interactions in complex DNA topologies: expect the unexpected. Biophys Rev 2016; 8:145-155. [PMID: 28035245 PMCID: PMC5153831 DOI: 10.1007/s12551-016-0241-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2016] [Accepted: 06/13/2016] [Indexed: 01/09/2023] Open
Abstract
DNA supercoiling results in compacted DNA structures that can bring distal sites into close proximity. It also changes the local structure of the DNA, which can in turn influence the way it is recognised by drugs, other nucleic acids and proteins. Here, we discuss how DNA supercoiling and the formation of complex DNA topologies can affect the thermodynamics of DNA recognition. We then speculate on the implications for transcriptional control and the three-dimensional organisation of the genetic material, using examples from our own simulations and from the literature. We introduce and discuss the concept of coupling between the multiple length-scales associated with hierarchical nuclear structural organisation through DNA supercoiling and topology.
Collapse
Affiliation(s)
- Agnes Noy
- Department of Physics, Biological Physical Sciences Institute, University of York, York, YO10 5DD UK
| | - Thana Sutthibutpong
- Theoretical and Computational Physics Group, Department of Physics, King Mongkut University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok, Thailand 10140
| | - Sarah A Harris
- School of Physics and Astronomy, University of Leeds, 192 Woodhouse Lane, Leeds, UK LS2 9JT ; Astbury Centre for Structural and Molecular Biology, University of Leeds, 192 Woodhouse Lane, Leeds, UK LS2 9JT
| |
Collapse
|
8
|
Muskhelishvili G, Travers A. The regulatory role of DNA supercoiling in nucleoprotein complex assembly and genetic activity. Biophys Rev 2016; 8:5-22. [PMID: 28510220 PMCID: PMC5425797 DOI: 10.1007/s12551-016-0237-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2016] [Accepted: 10/21/2016] [Indexed: 01/06/2023] Open
Abstract
We argue that dynamic changes in DNA supercoiling in vivo determine both how DNA is packaged and how it is accessed for transcription and for other manipulations such as recombination. In both bacteria and eukaryotes, the principal generators of DNA superhelicity are DNA translocases, supplemented in bacteria by DNA gyrase. By generating gradients of superhelicity upstream and downstream of their site of activity, translocases enable the differential binding of proteins which preferentially interact with respectively more untwisted or more writhed DNA. Such preferences enable, in principle, the sequential binding of different classes of protein and so constitute an essential driver of chromatin organization.
Collapse
Affiliation(s)
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
9
|
Noy A, Sutthibutpong T, A Harris S. Protein/DNA interactions in complex DNA topologies: expect the unexpected. Biophys Rev 2016; 8:233-243. [PMID: 27738452 PMCID: PMC5039213 DOI: 10.1007/s12551-016-0208-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2016] [Accepted: 06/13/2016] [Indexed: 12/31/2022] Open
Abstract
DNA supercoiling results in compacted DNA structures that can bring distal sites into close proximity. It also changes the local structure of the DNA, which can in turn influence the way it is recognised by drugs, other nucleic acids and proteins. Here, we discuss how DNA supercoiling and the formation of complex DNA topologies can affect the thermodynamics of DNA recognition. We then speculate on the implications for transcriptional control and the three-dimensional organisation of the genetic material, using examples from our own simulations and from the literature. We introduce and discuss the concept of coupling between the multiple length-scales associated with hierarchical nuclear structural organisation through DNA supercoiling and topology.
Collapse
Affiliation(s)
- Agnes Noy
- Department of Physics, Biological Physical Sciences Institute, University of York, York, YO10 5DD UK
| | - Thana Sutthibutpong
- Theoretical and Computational Physics Group, Department of Physics, King Mongkut University of Technology Thonburi, 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok, Thailand 10140
| | - Sarah A Harris
- School of Physics and Astronomy, University of Leeds, 192 Woodhouse Lane, Leeds, UK LS2 9JT ; Astbury Centre for Structural and Molecular Biology, University of Leeds, 192 Woodhouse Lane, Leeds, UK LS2 9JT
| |
Collapse
|
10
|
Sreenivasan R, Heitkamp S, Chhabra M, Saecker R, Lingeman E, Poulos M, McCaslin D, Capp MW, Artsimovitch I, Record MT. Fluorescence Resonance Energy Transfer Characterization of DNA Wrapping in Closed and Open Escherichia coli RNA Polymerase-λP(R) Promoter Complexes. Biochemistry 2016; 55:2174-86. [PMID: 26998673 DOI: 10.1021/acs.biochem.6b00125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
Initial recognition of promoter DNA by RNA polymerase (RNAP) is proposed to trigger a series of conformational changes beginning with bending and wrapping of the 40-50 bp of DNA immediately upstream of the -35 region. Kinetic studies demonstrated that the presence of upstream DNA facilitates bending and entry of the downstream duplex (to +20) into the active site cleft to form an advanced closed complex (CC), prior to melting of ∼13 bp (-11 to +2), including the transcription start site (+1). Atomic force microscopy and footprinting revealed that the stable open complex (OC) is also highly wrapped (-60 to +20). To test the proposed bent-wrapped model of duplex DNA in an advanced RNAP-λP(R) CC and compare wrapping in the CC and OC, we use fluorescence resonance energy transfer (FRET) between cyanine dyes at far-upstream (-100) and downstream (+14) positions of promoter DNA. Similarly large intrinsic FRET efficiencies are observed for the CC (0.30 ± 0.07) and the OC (0.32 ± 0.11) for both probe orientations. Fluorescence enhancements at +14 are observed in the single-dye-labeled CC and OC. These results demonstrate that upstream DNA is extensively wrapped and the start site region is bent into the cleft in the advanced CC, reducing the distance between positions -100 and +14 on promoter DNA from >300 to <100 Å. The proximity of upstream DNA to the downstream cleft in the advanced CC is consistent with the proposed mechanism for facilitation of OC formation by upstream DNA.
Collapse
Affiliation(s)
- Raashi Sreenivasan
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Sara Heitkamp
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Munish Chhabra
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Ruth Saecker
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Emily Lingeman
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Mikaela Poulos
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Darrell McCaslin
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Michael W Capp
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Irina Artsimovitch
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - M Thomas Record
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
11
|
Abstract
This review focuses on more recent studies concerning the systems biology of branched-chain amino acid biosynthesis, that is, the pathway-specific and global metabolic and genetic regulatory networks that enable the cell to adjust branched-chain amino acid synthesis rates to changing nutritional and environmental conditions. It begins with an overview of the enzymatic steps and metabolic regulatory mechanisms of the pathways and descriptions of the genetic regulatory mechanisms of the individual operons of the isoleucine-leucine-valine (ilv) regulon. This is followed by more-detailed discussions of recent evidence that global control mechanisms that coordinate the expression of the operons of this regulon with one another and the growth conditions of the cell are mediated by changes in DNA supercoiling that occur in response to changes in cellular energy charge levels that, in turn, are modulated by nutrient and environmental signals. Since the parallel pathways for isoleucine and valine biosynthesis are catalyzed by a single set of enzymes, and because the AHAS-catalyzed reaction is the first step specific for valine biosynthesis but the second step of isoleucine biosynthesis, valine inhibition of a single enzyme for this enzymatic step might compromise the cell for isoleucine or result in the accumulation of toxic intermediates. The operon-specific regulatory mechanisms of the operons of the ilv regulon are discussed in the review followed by a consideration and brief review of global regulatory proteins such as integration host factor (IHF), Lrp, and CAP (CRP) that affect the expression of these operons.
Collapse
|
12
|
Sobetzko P, Glinkowska M, Travers A, Muskhelishvili G. DNA thermodynamic stability and supercoil dynamics determine the gene expression program during the bacterial growth cycle. MOLECULAR BIOSYSTEMS 2013; 9:1643-51. [PMID: 23493878 DOI: 10.1039/c3mb25515h] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023]
Abstract
The chromosomal DNA polymer constituting the cellular genetic material is primarily a device for coding information. Whilst the gene sequences comprise the digital (discontinuous) linear code, physiological alterations of the DNA superhelical density generate in addition analog (continuous) three-dimensional information essential for regulation of both chromosome compaction and gene expression. Insight into the relationship between the DNA analog information and the digital linear code is of fundamental importance for understanding genetic regulation. Our previous study in the model organism Escherichia coli suggested that the chromosomal gene order and a spatiotemporal gradient of DNA superhelicity associated with DNA replication determine the growth phase-dependent gene transcription. In this study we reveal a general gradient of DNA thermodynamic stability correlated with the polarity of chromosomal replication and manifest in the spatiotemporal pattern of gene transcription during the bacterial growth cycle. Furthermore, by integrating the physical and dynamic features of the transcribed sequences with their functional content we identify spatiotemporal domains of gene expression encompassing different functions. We thus provide both an insight into the organisational principle of the bacterial growth program and a novel holistic methodology for exploring chromosomal dynamics.
Collapse
Affiliation(s)
- Patrick Sobetzko
- Jacobs University Bremen, School of Engineering and Science, Campus Ring 1, D-28759 Bremen, Germany
| | | | | | | |
Collapse
|
13
|
Abstract
Emerging models of the bacterial nucleoid show that nucleoid-associated proteins (NAPs) and transcription contribute in combination to the dynamic nature of nucleoid structure. NAPs and other DNA-binding proteins that display gene-silencing and anti-silencing activities are emerging as key antagonistic regulators of nucleoid structure. Furthermore, it is becoming clear that the boundary between NAPs and conventional transcriptional regulators is quite blurred and that NAPs facilitate the evolution of novel gene regulatory circuits. Here, NAP biology is considered from the standpoints of both gene regulation and nucleoid structure.
Collapse
|
14
|
Bradley MD, Beach MB, de Koning APJ, Pratt TS, Osuna R. Effects of Fis on Escherichia coli gene expression during different growth stages. MICROBIOLOGY-SGM 2007; 153:2922-2940. [PMID: 17768236 DOI: 10.1099/mic.0.2007/008565-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
Abstract
Fis is a nucleoid-associated protein in Escherichia coli that is abundant during early exponential growth in rich medium but is in short supply during stationary phase. Its role as a transcriptional regulator has been demonstrated for an increasing number of genes. In order to gain insight into the global effects of Fis on E. coli gene expression during different stages of growth in rich medium, DNA microarray analyses were conducted in fis and wild-type strains during early, mid-, late-exponential and stationary growth phases. The results uncovered 231 significantly regulated genes that were distributed over 15 functional categories. Regulatory effects were observed at all growth stages examined. Coordinate upregulation was observed for a number of genes involved in translation, flagellar biosynthesis and motility, nutrient transport, carbon compound metabolism, and energy metabolism at different growth stages. Coordinate down-regulation was also observed for genes involved in stress response, amino acid and nucleotide biosynthesis, energy and intermediary metabolism, and nutrient transport. As cells transitioned from the early to the late-exponential growth phase, different functional categories of genes were regulated, and a gradual shift occurred towards mostly down-regulation. The results demonstrate that the growth phase-dependent Fis expression triggers coordinate regulation of 15 categories of functionally related genes during specific stages of growth of an E. coli culture.
Collapse
Affiliation(s)
- Meranda D Bradley
- Department of Biological Science, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Michael B Beach
- Department of Biology, Chemistry, and Physics, Southern Polytechnic State University, 1100 South Marietta Parkway, Marietta, GA 30060-2896, USA
| | - A P Jason de Koning
- Department of Biological Science, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Timothy S Pratt
- New York University - School of Medicine, Department of Environmental Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - Robert Osuna
- Department of Biological Science, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
15
|
Abstract
We previously reported that the P1 promoter of topA encoding topoisomerase I of Escherichia coli is activated in response to oxidative stress, in a Fis-dependent manner. Here we show that Fis regulation of topA varies with the intracellular concentrations of Fis. Thus, when Fis levels are low, hydrogen peroxide treatment results in topA activation, whereas at high Fis levels hydrogen peroxide treatment renders topA P1 inactive. In vivo DMS footprinting indicates that only at low Fis levels, when exposed to the stress, the region of the topA promoter changes and P1 becomes active. Potassium permanganate experiments indicate that low levels of Fis activate P1 transcription by facilitating the formation of open complexes, while high levels of this protein shut off the promoter. DNase I footprinting show that Fis binds the promoter region of topA at eight sites with different affinities. One low affinity site overlaps the -10, -35 hexamers of RNA polymerase. We propose that in response to oxidative stress, when present at low levels, Fis binds the promoter region of topA at its high affinity sites, thereby facilitating the recruitment of RNA polymerase to P1, while at high levels, Fis occupies the low affinity sites as well, and thus prevents the binding of RNA polymerase. Our results indicate that the oxidative stress response varies in response to changes in growth phase and nutritional environment.
Collapse
Affiliation(s)
- Dalit Weinstein-Fischer
- Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
16
|
Bouffartigues E, Buckle M, Badaut C, Travers A, Rimsky S. H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing. Nat Struct Mol Biol 2007; 14:441-8. [PMID: 17435766 DOI: 10.1038/nsmb1233] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2006] [Accepted: 03/14/2007] [Indexed: 12/19/2022]
Abstract
H-NS is a protein of the bacterial nucleoid involved in DNA compaction and transcription regulation. In vivo, H-NS selectively silences specific genes of the bacterial chromosome. However, many studies have concluded that H-NS binds sequence-independently to DNA, leaving the molecular basis for its selectivity unexplained. We show that the negative regulatory element (NRE) of the supercoiling-sensitive Escherichia coliproU gene contains two identical high-affinity binding sites for H-NS. Cooperative binding of H-NS is abrogated by changes in DNA superhelical density and temperature. We further demonstrate that the high-affinity sites nucleate cooperative binding and establish a nucleoprotein structure required for silencing. Mutations in these sites result in loss of repression by H-NS. In this model, silencing at proU, and by inference at other genes directly regulated by H-NS, is tightly controlled by the cooperativity between bound H-NS molecules.
Collapse
Affiliation(s)
- Emeline Bouffartigues
- Laboratoire de Biotechnologie et Pharmacologie génétique Appliquée (LBPA), UMR 8113 CNRS, Ecole Normale Supérieure, 61 Avenue du Président Wilson, 94235 Cachan, France
| | | | | | | | | |
Collapse
|
17
|
Moriarty DF, Fiorillo C, Miller C, Colón W. A truncated peptide model of the mutant P61A FIS forms a stable dimer. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1774:78-85. [PMID: 17118726 DOI: 10.1016/j.bbapap.2006.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/05/2006] [Revised: 09/13/2006] [Accepted: 09/19/2006] [Indexed: 05/12/2023]
Abstract
Factor for inversion stimulation (FIS) is a 98-residue homodimeric DNA-binding protein involved in several different cellular processes including DNA inversion and the regulation of multiple genes. FIS contains a flexible and functionally important N-terminus followed by four helices (A-D), the last two of which consist of the DNA-binding region. Helix B, which comprises the main dimerization interface has a 20 degrees kink at its center that was originally thought to be caused by the presence of a proline at position 61. However, it was later shown that the kink remained largely intact and that FIS retained its native-like function when the proline was mutated to an alanine. We previously showed that the P61A mutation increased the stability of FIS, but decreased its equilibrium denaturation cooperativity apparently due to preferential stabilization of the B-helix. Here we studied a peptide of P61A FIS, corresponding to residues 26-71 (26-71(A3) FIS), which encompasses the dimer interface (helices A and B). Circular dichroism (CD) and size-exclusion chromatography/multi-angle light scattering showed that the peptide was alpha-helical and dimeric, respectively, as expected based on the 3D structure of FIS. Urea-induced equilibrium denaturation experiments monitored by far-UV CD revealed a concentration-dependent transition, and data analysis based on a N2<-->2U model yielded a DeltaG of approximately -10 kcal/mol. Our results suggest that 26-71(A3) FIS can form a stable dimeric structure despite lacking the N- and C-terminus of native FIS.
Collapse
Affiliation(s)
- Daniel F Moriarty
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | | | | | | |
Collapse
|
18
|
Maurer S, Fritz J, Muskhelishvili G, Travers A. RNA polymerase and an activator form discrete subcomplexes in a transcription initiation complex. EMBO J 2006; 25:3784-90. [PMID: 16888625 PMCID: PMC1553194 DOI: 10.1038/sj.emboj.7601261] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2006] [Accepted: 07/06/2006] [Indexed: 11/09/2022] Open
Abstract
Using high-resolution atomic force microscopy (AFM) we show that in a ternary complex of an activator protein, FIS, and RNA polymerase containing the sigma(70) specificity factor at the Escherichia coli tyrT promoter the polymerase and the activator form discrete, but connected, subcomplexes in close proximity. This is the first time that a ternary complex between an activator, a sigma(70) polymerase holoenzyme and promoter DNA has been visualised. Individually FIS and RNA polymerase wrap approximately 80 and 150 bp of promoter DNA, respectively. We suggest that the architecture of the ternary complex provides a general paradigm for the facilitation of direct, but weak, interactions between polymerase and an activator.
Collapse
Affiliation(s)
| | - Jürgen Fritz
- International University Bremen, Bremen, Germany
| | | | - Andrew Travers
- MRC Laboratory of Molecular Biology, Cambridge, UK
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK. Tel.: +44 1223 402419; Fax: +44 1223 412142; E-mail:
| |
Collapse
|
19
|
Ryu Y, Schultz PG. Efficient incorporation of unnatural amino acids into proteins in Escherichia coli. Nat Methods 2006; 3:263-5. [PMID: 16554830 DOI: 10.1038/nmeth864] [Citation(s) in RCA: 252] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/04/2005] [Accepted: 02/09/2006] [Indexed: 11/09/2022]
Abstract
We have developed a single-plasmid system for the efficient bacterial expression of mutant proteins containing unnatural amino acids at specific sites designated by amber nonsense codons. In this system, multiple copies of a gene encoding an amber suppressor tRNA derived from a Methanocaldococcus jannaschii tyrosyl-tRNA (MjtRNATyrCUA) are expressed under control of the proK promoter and terminator, and a gene encoding the desired mutant M. jannaschii tyrosyl-tRNA synthetase (MjTyrRS) is expressed under control of a mutant glnS (glnS') promoter.
Collapse
Affiliation(s)
- Youngha Ryu
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
20
|
Chakraborty A, Nagaraja V. Dual role for transactivator protein C in activation of mom promoter of bacteriophage Mu. J Biol Chem 2006; 281:8511-7. [PMID: 16446361 DOI: 10.1074/jbc.m512906200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Transactivator C protein of bacteriophage Mu activates the mom gene of the phage by an unusual mechanism. DNA binding by C to its site results in unwinding of the neighboring sequences, realigning the out-of-phase promoter elements to facilitate RNA polymerase (RNAP) binding. High level stimulation of a C-independent constitutive promoter mutant (where RNAP is already bound) by the transactivator suggested an additional mechanism of transcription activation at a step after RNAP recruitment. In this study, we have investigated the various steps of promoter-polymerase interactions during transcription initiation by using both the promoter mutant and a positive control (pc) mutant of C protein. The transactivator does not influence formation of the open complex or its stability after facilitating the RNAP binding. However, at a subsequent step, the protein exerts an important role, enhancing the promoter clearance by increasing the productive RNAP.promoter complex. The pc mutant of the transactivator C is compromised at this step, supporting the additional downstream role for C in mom transcription activation. We suggest that this unusual multistep activation of Pmom has evolved to ensure irreversibility of the switch during the late lytic cycle of the phage.
Collapse
Affiliation(s)
- Atanu Chakraborty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
21
|
Hillebrand A, Wurm R, Menzel A, Wagner R. The seven E. coli ribosomal RNA operon upstream regulatory regions differ in structure and transcription factor binding efficiencies. Biol Chem 2005; 386:523-34. [PMID: 16006239 DOI: 10.1515/bc.2005.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
Ribosomal RNAs in E. coli are transcribed from seven operons, which are highly conserved in their organization and sequence. However, the upstream regulatory DNA regions differ considerably, suggesting differences in regulation. We have therefore analyzed the conformation of all seven DNA elements located upstream of the major E. coli rRNA P1 promoters. As judged by temperature-dependent gel electrophoresis with isolated DNA fragments comprising the individual P1 promoters and the complete upstream regulatory regions, all seven rRNA upstream sequences are intrinsically curved. The degree of intrinsic curvature was highest for the rrnB and rrnD fragments and less pronounced for the rrnA and rrnE operons. Comparison of the experimentally determined differences in curvature with programs for the prediction of DNA conformation revealed a generally high degree of conformity. Moreover, the analysis showed that the center of curvature is located at about the same position in all fragments. The different upstream regions were analyzed for their capacity to bind the transcription factors FIS and H-NS, which are known as antagonists in the regulation of rRNA synthesis. Gel retardation experiments revealed that both proteins interact with the upstream promoter regions of all seven rDNA fragments, with the affinities of the different DNA fragments for FIS and H-NS and the structure of the resulting complexes deviating considerably. FIS binding was non-cooperative, and at comparable protein concentrations the occupancy of the different DNA fragments varied between two and four binding sites. In contrast, H-NS was shown to bind cooperatively and intermediate states of occupancy could not be resolved for each fragment. The different gel electrophoretic mobilities of the individual DNA/protein complexes indicate variable structures and topologies of the upstream activating sequence regulatory complexes. Our results are highly suggestive of differential regulation of the individual rRNA operons.
Collapse
Affiliation(s)
- Annette Hillebrand
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
22
|
Pul U, Wurm R, Lux B, Meltzer M, Menzel A, Wagner R. LRP and H-NS - cooperative partners for transcription regulation atEscherichia colirRNA promoters. Mol Microbiol 2005; 58:864-76. [PMID: 16238633 DOI: 10.1111/j.1365-2958.2005.04873.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
The synthesis of ribosomal RNAs in bacteria is tightly coupled to changes in the environment. This rapid adaptation is the result of several intertwined regulatory networks. The two proteins FIS and H-NS have previously been described to act as antagonistic transcription factors for rRNA synthesis. Here we provide evidence for another player, the regulatory protein LRP, which binds with high specificity to all seven Escherichia coli rRNA P1 promoter upstream regions (UAS). Comparison of the binding properties of LRP and H-NS, and characterization of the stabilities of the various complexes formed with the rRNA UAS regions revealed different binding modes. Binding studies with LRP and H-NS in combination demonstrated that the two proteins interacted with obvious synergism. The efficiency of LRP binding to the rRNA regulatory region is modified by the presence of the effector amino acid leucine, as has been shown for several other operons regulated by this transcription factor. The effect of LRP on the binding of RNA polymerase to the rrnB P1 promoter and in vitro transcription experiments indicated that LRP acts as a transcriptional repressor, thus resembling the activity of H-NS described previously. The results show for the first time that LRP binds to the regulatory region of bacterial rRNA promoters, and very likely contributes in combination with H-NS to the control of rRNA synthesis. From the known properties of LRP a mechanism can be inferred that couples rRNA synthesis to changes in nutritional quality.
Collapse
Affiliation(s)
- Umit Pul
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Travers A, Muskhelishvili G. DNA supercoiling — a global transcriptional regulator for enterobacterial growth? Nat Rev Microbiol 2005; 3:157-69. [PMID: 15685225 DOI: 10.1038/nrmicro1088] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Abstract
A fundamental principle of exponential bacterial growth is that no more ribosomes are produced than are necessary to support the balance between nutrient availability and protein synthesis. Although this conclusion was first expressed more than 40 years ago, a full understanding of the molecular mechanisms involved remains elusive and the issue is still controversial. There is currently agreement that, although many different systems are undoubtedly involved in fine-tuning this balance, an important control, and in our opinion perhaps the main control, is regulation of the rate of transcription initiation of the stable (ribosomal and transfer) RNA transcriptons. In this review, we argue that regulation of DNA supercoiling provides a coherent explanation for the main modes of transcriptional control - stringent control, growth-rate control and growth-phase control - during the normal growth of Escherichia coli.
Collapse
Affiliation(s)
- Andrew Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | |
Collapse
|
24
|
Rochman M, Blot N, Dyachenko M, Glaser G, Travers A, Muskhelishvili G. Buffering of stable RNA promoter activity against DNA relaxation requires a far upstream sequence. Mol Microbiol 2004; 53:143-52. [PMID: 15225310 DOI: 10.1111/j.1365-2958.2004.04126.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
The stable RNA promoters of Escherichia coli are exquisitely sensitive to variations in the superhelical density of DNA. Previously, we have shown that binding of the DNA architectural protein FIS at the upstream activating sequences (UASs) of stable RNA promoters prevents the transcription complexes from inactivation induced by changes in the supercoiling level of DNA. Here, we identify a strong FIS binding site 89 bp upstream of the previously described cluster of FIS binding sites located between positions -64 and -150 in the rrnA P1 UAS. Binding of FIS to this 'far upstream sequence' allows the recruitment of additional FIS molecules to the region. We demonstrate that, upon DNA relaxation, the maintenance of promoter activity requires, in addition to UAS, the presence of the far upstream sequence. The far upstream sequence shows no effect in the absence of an intact cluster. This requirement for the integrity of the region encompassing the far upstream sequence and the UAS cluster is correlated with the in vitro modulation of binding of FIS to UAS and interaction of RNA polymerase with the UP element and the region around the transcriptional start point. Our results suggest that, at the rrnA P1 promoter, the entire region comprising the UAS and the far upstream sequence is involved in the assembly of the transcription initiation complex. We propose that the extensive engagement of upstream DNA in this nucleoprotein complex locally compensates for the lack of torsional strain in relaxed DNA, thus increasing the resistance of the promoter to global DNA relaxation.
Collapse
Affiliation(s)
- Mark Rochman
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Opel ML, Aeling KA, Holmes WM, Johnson RC, Benham CJ, Hatfield GW. Activation of transcription initiation from a stable RNA promoter by a Fis protein-mediated DNA structural transmission mechanism. Mol Microbiol 2004; 53:665-74. [PMID: 15228542 DOI: 10.1111/j.1365-2958.2004.04147.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
The leuV operon of Escherichia coli encodes three of the four genes for the tRNA1Leu isoacceptors. Transcription from this and other stable RNA promoters is known to be affected by a cis-acting UP element and by Fis protein interactions with the carboxyl-terminal domain of the alpha-subunits of RNA polymerase. In this report, we suggest that transcription from the leuV promoter also is activated by a Fis-mediated, DNA supercoiling-dependent mechanism similar to the IHF-mediated mechanism described previously for the ilvP(G) promoter (S. D. Sheridan et al., 1998, J Biol Chem 273: 21298-21308). We present evidence that Fis binding results in the translocation of superhelical energy from the promoter-distal portion of a supercoiling-induced DNA duplex destabilized (SIDD) region to the promoter-proximal portion of the leuV promoter that is unwound within the open complex. A mutant Fis protein, which is defective in contacting the carboxyl-terminal domain of the alpha-subunits of RNA polymerase, remains competent for stimulating open complex formation, suggesting that this DNA supercoiling-dependent component of Fis-mediated activation occurs in the absence of specific protein interactions between Fis and RNA polymerase. Fis-mediated translocation of superhelical energy from upstream binding sites to the promoter region may be a general feature of Fis-mediated activation of transcription at stable RNA promoters, which often contain A+T-rich upstream sequences.
Collapse
Affiliation(s)
- Michael L Opel
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
26
|
Zhang K, Showalter M, Revollo J, Hsu FF, Turk J, Beverley SM. Sphingolipids are essential for differentiation but not growth in Leishmania. EMBO J 2004; 22:6016-26. [PMID: 14609948 PMCID: PMC275442 DOI: 10.1093/emboj/cdg584] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids (SLs) play critical roles in eukaryotic cells in the formation of lipid rafts, membrane trafficking, and signal transduction. Here we created a SL null mutant in the protozoan parasite Leishmania major through targeted deletion of the key de novo biosynthetic enzyme serine palmitoyltransferase subunit 2 (SPT2). Although SLs are typically essential, spt2- Leishmania were viable, yet were completely deficient in de novo sphingolipid synthesis, and lacked inositol phosphorylceramides and other SLs. Remarkably, spt2- parasites maintained 'lipid rafts' as defined by Triton X-100 detergent resistant membrane formation. Upon entry to stationary phase spt2- failed to differentiate to infective metacyclic parasites and died instead. Death occurred not by apoptosis or changes in metacyclic gene expression, but from catastrophic problems leading to accumulation of small vesicles characteristic of the multivesicular body/multivesicular tubule network. Stage specificity may reflect changes in membrane structure as well as elevated demands in vesicular trafficking required for parasite remodeling during differentiation. We suggest that SL-deficient Leishmania provide a useful biological setting for tests of essential SL enzymes in other organisms where SL perturbation is lethal.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Molecular Microbiology, Box 8230, Washington University School of Medicine, 660 S. Euclid Ave, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
27
|
Zhi H, Wang X, Cabrera JE, Johnson RC, Jin DJ. Fis stabilizes the interaction between RNA polymerase and the ribosomal promoter rrnB P1, leading to transcriptional activation. J Biol Chem 2003; 278:47340-9. [PMID: 13679374 DOI: 10.1074/jbc.m305430200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
It has been shown that Fis activates transcription of the ribosomal promoter rrnB P1; however, the mechanism by which Fis activates rrnB P1 transcription is not fully understood. Paradoxically, although Fis activates transcription of rrnB P1 in vitro, transcription from the promoter containing Fis sites (as measured from rrnB P1-lacZ fusions) is not reduced in a fis null mutant strain. In this study, we further investigated the mechanism by which Fis activates transcription of the rrnB P1 promoter and the role of Fis in rRNA synthesis and cell growth in Escherichia coli. Like all other stringent promoters investigated so far, open complex of rrnB P1 has been shown to be intrinsically unstable, making open complex stability a potential regulatory step in transcription of this class of promoters. Our results show that Fis acts at this regulatory step by stabilizing the interaction between RNA polymerase and rrnB P1 in the absence of NTPs. Mutational analysis of the Fis protein demonstrates that there is a complete correlation between Fis-mediated transcriptional activation of rrnB P1 and Fis-mediated stabilization of preinitiation complexes of the promoter. Thus, our study indicates that Fis-mediated stabilization of RNA polymerase-rrnB P1 preinitiation complexes, presumably at the open complex step, contributes prominently to transcriptional activation. Furthermore, our in vivo results show that rRNA synthesis from the P1 promoters of several rRNA operons are reduced 2-fold in a fis null mutant compared with the wild type strain, indicating that Fis plays an important role in the establishment of robust rRNA synthesis when E. coli cells are emerging from a growth-arrested phase to a rapid growth phase. Thus, our results resolve an apparent paradox of the role of Fis in vitro and in vivo in the field.
Collapse
Affiliation(s)
- Huijun Zhi
- Laboratory of Molecular Biology, National Cancer Institute/NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
28
|
Auner H, Buckle M, Deufel A, Kutateladze T, Lazarus L, Mavathur R, Muskhelishvili G, Pemberton I, Schneider R, Travers A. Mechanism of transcriptional activation by FIS: role of core promoter structure and DNA topology. J Mol Biol 2003; 331:331-44. [PMID: 12888342 DOI: 10.1016/s0022-2836(03)00727-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
Abstract
The Escherichia coli DNA architectural protein FIS activates transcription from stable RNA promoters on entry into exponential growth and also reduces the level of negative supercoiling. Here we show that such a reduction decreases the activity of the tyrT promoter but that activation by FIS rescues tyrT transcription at non-optimal superhelical densities. Additionally we show that three different "up" mutations in the tyrT core promoter either abolish or reduce the dependence of tyrT transcription on both high negative superhelicity and FIS in vivo and infer that the specific sequence organisation of the core promoter couples the control of transcription initiation by negative superhelicity and FIS. In vitro all the mutations potentiate FIS-independent untwisting of the -10 region while at the wild-type promoter FIS facilitates this step. We propose that this untwisting is a crucial limiting step in the initiation of tyrT RNA synthesis. The tyrT core promoter structure is thus optimised to combine high transcriptional activity with acute sensitivity to at least three major independent regulatory inputs: negative superhelicity, FIS and ppGpp.
Collapse
Affiliation(s)
- Helge Auner
- Institut für Genetik und Mikrobiologie, LMU, München, Maria-Ward-Str 1a, 80638, München, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Because the level of DNA superhelicity varies with the cellular energy charge, it can change rapidly in response to a wide variety of altered nutritional and environmental conditions. This is a global alteration, affecting the entire chromosome and the expression levels of all operons whose promoters are sensitive to superhelicity. In this way, the global pattern of gene expression may be dynamically tuned to changing needs of the cell under a wide variety of circumstances. In this article, we propose a model in which chromosomal superhelicity serves as a global regulator of gene expression in Escherichia coli, tuning expression patterns across multiple operons, regulons, and stimulons to suit the growth state of the cell. This model is illustrated by the DNA supercoiling-dependent mechanisms that coordinate basal expression levels of operons of the ilv regulon both with one another and with cellular growth conditions.
Collapse
Affiliation(s)
- G Wesley Hatfield
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, California 92697, USA.
| | | |
Collapse
|
30
|
Ghochikyan A, Karaivanova IM, Lecocq M, Vusio P, Arnaud MC, Snapyan M, Weigel P, Guével L, Buckle M, Sakanyan V. Arginine operator binding by heterologous and chimeric ArgR repressors from Escherichia coli and Bacillus stearothermophilus. J Bacteriol 2002; 184:6602-14. [PMID: 12426349 PMCID: PMC135427 DOI: 10.1128/jb.184.23.6602-6614.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2002] [Accepted: 08/27/2002] [Indexed: 11/20/2022] Open
Abstract
Bacillus stearothermophilus ArgR binds efficiently to the Escherichia coli carAB operator, whereas the E. coli repressor binds very poorly to the argCo operator of B. stearothermophilus. In order to elucidate this contradictory behavior between ArgRs, we constructed chimeric proteins by swapping N-terminal DNA-binding and C-terminal oligomerization domains or by exchanging the linker peptide. Chimeras carrying the E. coli DNA-binding domain and the B. stearothermophilus oligomerization domain showed sequence-nonspecific rather than sequence-specific interactions with arg operators. Chimeras carrying the B. stearothermophilus DNA-binding domain and E. coli oligomerization domain exhibited a high DNA-binding affinity for the B. stearothermophilus argCo and E. coli carAB operators and repressed the reporter-gene transcription from the B. stearothermophilus PargCo control region in vitro; arginine had no effect on, and indeed even decreased, their DNA-binding affinity. With the protein array method, we showed that the wild-type B. stearothermophilus ArgR and derivatives of it containing only the exchanged linker from E. coli ArgR or carrying the B. stearothermophilus DNA-binding domain along with the linker and the alpha4 regions were able to bind argCo containing the single Arg box. This binding was weaker than binding to the two-box operator but was no longer arginine dependent. Several lines of observations indicate that the alpha4 helix in the oligomerization domain and the linker peptide can contribute to the recognition of single or double Arg boxes and therefore to the operator DNA-binding specificity in similar but not identical ArgR repressors from two distant bacteria.
Collapse
Affiliation(s)
- Anahit Ghochikyan
- Laboratoire de Biotechnologie, FRE CNRS 2230, Unité Biocatalyse, Faculté des Sciences et des Techniques, Université de Nantes, 44322 Nantes. IFR 26, INSERM, 44035 Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hobart SA, Meinhold DW, Osuna R, Colón W. From two-state to three-state: the effect of the P61A mutation on the dynamics and stability of the factor for inversion stimulation results in an altered equilibrium denaturation mechanism. Biochemistry 2002; 41:13744-54. [PMID: 12427037 DOI: 10.1021/bi0265224] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
Factor for inversion stimulation (FIS) is a 22 kDa homodimeric protein found in enteric bacteria that is involved in the stimulation of certain DNA recombination events and transcription regulation of many genes. FIS has a central helix with a 20 degrees kink, which is only reduced by 4 degrees after a proline 61 to alanine mutation (P61A). This mutation appears to have little effect on FIS function, yet it is striking that proline 61 is highly conserved among fis genes. Therefore, we studied the role of proline 61 on the stability and flexibility of FIS. The urea-induced equilibrium denaturation of P61A FIS was monitored by circular dichroism and fluorescence anisotropy. Despite the apparent two-state transition, the concentration dependence of the transition slope (m value) shows that a two-state model, as seen for wild-type (WT) FIS, did not adequately describe the denaturation of P61A FIS. Global fitting of the data indicates that the denaturation of P61A FIS occurs via a three-state process involving a dimeric intermediate and has an overall DeltaG(H2O) for unfolding of 18.6 kcal/mol, 4 kcal/mol higher than that for WT FIS. Limited trypsin proteolysis experiments show that the DNA binding C-terminus of P61A FIS is more labile to cleavage than that of WT FIS, suggesting an increased flexibility of this region in P61A FIS. In contrast, the resulting dimeric core (residues 6-71) of P61A FIS is more resistant to proteolysis, consistent with the presence of a dimeric intermediate not seen in WT FIS. Model transition curves generated using the parameters obtained by global fitting predicted a two-state-like transition at low P61A concentrations that becomes less cooperative with increasing protein concentration, as was experimentally observed. At concentrations of P61A FIS much higher than are experimentally feasible, a biphasic transition is predicted. Thus, this work demonstrates that a single mutation may be sufficient to alter a protein's denaturation mechanism and underscores the importance of analyzing the denaturation mechanism of oligomeric proteins over a wide concentration range. These results suggest that proline 61 in FIS may be conserved in order to optimize the global stability and the dynamics of the functionally important C-terminus.
Collapse
Affiliation(s)
- Sarah A Hobart
- Department of Chemistry, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, USA
| | | | | | | |
Collapse
|
32
|
Pemberton IK, Muskhelishvili G, Travers AA, Buckle M. FIS modulates the kinetics of successive interactions of RNA polymerase with the core and upstream regions of the tyrT promoter. J Mol Biol 2002; 318:651-63. [PMID: 12054813 DOI: 10.1016/s0022-2836(02)00142-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
We have applied laser UV photo-footprinting to characterise kinetically complexes involving the activator protein FIS, RNA polymerase and the tyrT promoter of Escherichia coli. FIS photo-footprints strongly to three binding sites upstream of the core promoter. The polymerase photo-footprints in the near-consensus -35 hexamer on the non-template strand of DNA in a fashion similar to that of stable complexes involving the lacUV5 promoter. The kinetics of the interactions of polymerase alone with the tyrT promoter differ from those observed previously at the lacUV5 promoter. In the absence of FIS, we observe an upstream polymerase-induced signal at -122 within FIS site III that occurs subsequent to changes in the core promoter region and is strongly dependent on negative supercoiling. These observations support the proposal that the upstream region of the promoter is wrapped around the polymerase. We propose that the wrapped DNA allows the polymerase to overcome, at least in part, the barrier to DNA untwisting imparted by the G+C-rich discriminator. We further suggest that FIS plays a similar role and may facilitate polymerase escape.
Collapse
Affiliation(s)
- Iain K Pemberton
- Enzymologie et Cinétique Structurale, UMR 8532 du CNRS, LBPA, Ecole Normale Supérieure de Cachan, 94235 Cachan, France
| | | | | | | |
Collapse
|
33
|
Rochman M, Aviv M, Glaser G, Muskhelishvili G. Promoter protection by a transcription factor acting as a local topological homeostat. EMBO Rep 2002; 3:355-60. [PMID: 11897661 PMCID: PMC1084055 DOI: 10.1093/embo-reports/kvf067] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
Binding of the Escherichia coli global transcription factor FIS to the upstream activating sequence (UAS) of stable RNA promoters activates transcription on the outgrowth of cells from stationary phase. Paradoxically, while these promoters require negative supercoiling of DNA for optimal activity, FIS counteracts the increase of negative superhelical density by DNA gyrase. We demonstrate that binding of FIS at the UAS protects the rrnA P1 promoter from inactivation at suboptimal superhelical densities. This effect is correlated with FIS-dependent constraint of writhe and facilitated untwisting of promoter DNA. We infer that FIS maintains stable RNA transcription by stabilizing local writhe in the UAS. These results suggest a novel mechanism of transcriptional regulation by a transcription factor acting as a local topological homeostat.
Collapse
Affiliation(s)
- Mark Rochman
- Max Planck Institute for terrestrial Microbiology, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany
| | | | | | | |
Collapse
|
34
|
Hirvonen CA, Ross W, Wozniak CE, Marasco E, Anthony JR, Aiyar SE, Newburn VH, Gourse RL. Contributions of UP elements and the transcription factor FIS to expression from the seven rrn P1 promoters in Escherichia coli. J Bacteriol 2001; 183:6305-14. [PMID: 11591675 PMCID: PMC100122 DOI: 10.1128/jb.183.21.6305-6314.2001] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
The high activity of the rrnB P1 promoter in Escherichia coli results from a cis-acting DNA sequence, the UP element, and a trans-acting transcription factor, FIS. In this study, we examine the effects of FIS and the UP element at the other six rrn P1 promoters. We find that UP elements are present at all of the rrn P1 promoters, but they make different relative contributions to promoter activity. Similarly, FIS binds upstream of, and activates, all seven rrn P1 promoters but to different extents. The total number of FIS binding sites, as well as their positions relative to the transcription start site, differ at each rrn P1 promoter. Surprisingly, the FIS sites upstream of site I play a much larger role in transcription from most rrn P1 promoters compared to rrnB P1. Our studies indicate that the overall activities of the seven rrn P1 promoters are similar, and the same contributors are responsible for these high activities, but these inputs make different relative contributions and may act through slightly different mechanisms at each promoter. These studies have implications for the control of gene expression of unlinked multigene families.
Collapse
Affiliation(s)
- C A Hirvonen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Falconi M, Prosseda G, Giangrossi M, Beghetto E, Colonna B. Involvement of FIS in the H-NS-mediated regulation of virF gene of Shigella and enteroinvasive Escherichia coli. Mol Microbiol 2001; 42:439-52. [PMID: 11703666 DOI: 10.1046/j.1365-2958.2001.02646.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
The mechanism of pathogenicity in Shigella and enteroinvasive Escherichia coli (EIEC) requires the co-ordinated expression of several genes located on both the virulence plasmid and the chromosome. We found that cells lacking a functional FIS protein (factor for inversion stimulation) are partially impaired in expressing the virulence genes and that full expression is totally restored when Shigella wild-type fis gene is offered in trans. We also identified virF, among the virulence genes, as a target of FIS-mediated activation and showed that FIS binds to four specific sites in the promoter region of virF. Previous studies have demonstrated that the expression of VirF, the first positive activator of a multistep regulatory cascade, is subject to temperature-dependent regulation by H-NS, one of the main nucleoid-associated proteins. We now demonstrate that two of the four FIS sites overlap one of the two H-NS sites responsible for thermoregulation (H-NS site I). FIS was found to exercise a direct positive transcriptional control at permissive temperature (37 degrees C), when H-NS fails to repress virF, as well as an indirect effect by partially counteracting H-NS inhibition at the transition temperature (32 degrees C). Our data indicate that FIS may be relevant for the rapid increase in virF expression after penetration of bacteria into the host.
Collapse
Affiliation(s)
- M Falconi
- Laboratorio di Genetica, Dipartimento di Biologia MCA, Università di Camerino, 62032 Camerino (MC), Italy
| | | | | | | | | |
Collapse
|
36
|
Abstract
Nucleoid proteins are a group of abundant DNA binding proteins that modulate the structure of the bacterial chromosome. They have been recruited as specific negative and positive regulators of gene transcription and their fluctuating patterns of expression are often exploited to impart an additional level of control with respect to environmental conditions.
Collapse
Affiliation(s)
- S M McLeod
- Department of Biological Chemistry, School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | | |
Collapse
|
37
|
Abstract
The nucleoid-associated protein FIS modulates the topology of DNA in a growth-phase dependent manner functioning homeostatically to counteract excessive levels of negative superhelicity. We propose that this is achieved by at least two mechanisms: the physical constraint of low levels of negative superhelicity by FIS binding to DNA and by a reduction in the expression and effectiveness of DNA gyrase. In addition, high levels of expression of the fis gene do themselves require a high negative superhelical density. On DNA substrates containing phased high affinity binding sites, as exemplified by the upstream activating sequence of the tyrT promoter, FIS forms tightly bent DNA structures, or microloops, that are necessary for the optimal expression of the promoter. We suggest that these microloops compensate in part for the FIS-induced lowering of the superhelical density.
Collapse
Affiliation(s)
- A Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | |
Collapse
|
38
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
|
39
|
Bartlett MS, Gaal T, Ross W, Gourse RL. Regulation of rRNA transcription is remarkably robust: FIS compensates for altered nucleoside triphosphate sensing by mutant RNA polymerases at Escherichia coli rrn P1 promoters. J Bacteriol 2000; 182:1969-77. [PMID: 10715005 PMCID: PMC101898 DOI: 10.1128/jb.182.7.1969-1977.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
We recently identified Escherichia coli RNA polymerase (RNAP) mutants (RNAP beta' Delta215-220 and beta RH454) that form extremely unstable complexes with rRNA P1 (rrn P1) core promoters. The mutant RNAPs reduce transcription and alter growth rate-dependent regulation of rrn P1 core promoters, because the mutant RNAPs require higher concentrations of the initiating nucleoside triphosphate (NTP) for efficient transcription from these promoters than are present in vivo. Nevertheless, the mutants grow almost as well as wild-type cells, suggesting that rRNA synthesis is not greatly perturbed. We report here that the rrn transcription factor FIS activates the mutant RNAPs more strongly than wild-type RNAP, thereby compensating for the altered properties of the mutant RNAPs. FIS activates the mutant RNAPs, at least in part, by reducing the apparent K(ATP) for the initiating NTP. This and other results suggest that FIS affects a step in transcription initiation after closed-complex formation in addition to its stimulatory effect on initial RNAP binding. FIS and NTP levels increase with growth rate, suggesting that changing FIS concentrations, in conjunction with changing NTP concentrations, are responsible for growth rate-dependent regulation of rrn P1 transcription in the mutant strains. These results provide a dramatic demonstration of the interplay between regulatory mechanisms in rRNA transcription.
Collapse
Affiliation(s)
- M S Bartlett
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The wild-type Escherichia coli bgl promoter is silent in vivo but active in vitro. Silencing in vivo is directed by silencer sequences that flank the promoter, and requires nucleoid-associated protein H-NS and other unidentified cellular factors. Here we show that the DNA bending protein FIS is a repressor of the bgl promoter. Two FIS binding sites, centred at positions -52 and -27, overlap the CAP binding site and the -35 box respectively. FIS efficiently competes with CAP for binding to the wild-type promoter. However, FIS does not prevent binding of RNA polymerase. It interferes with the formation of a heparin-resistant complex and represses transcription initiation up to 40-fold. The presence of CAP has very little effect on the FIS-mediated repression of the wild-type bgl promoter in vitro. However, when a bgl promoter allele was tested that carries an improved CAP binding site (which leads to activation in vivo) CAP effectively counteracted repression by FIS in vitro. These results suggest that FIS contributes to silencing of the wild-type bgl promoter in vivo, presumably in the early exponential phase when FIS is predominantly expressed.
Collapse
Affiliation(s)
- A Caramel
- Institut für Genetik, der Universität zu Köln, Weyertal 121, D-50931 Köln, Germany
| | | |
Collapse
|
41
|
Schneider R, Travers A, Kutateladze T, Muskhelishvili G. A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli. Mol Microbiol 1999; 34:953-64. [PMID: 10594821 DOI: 10.1046/j.1365-2958.1999.01656.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, the transcriptional activity of many promoters is strongly dependent on the negative superhelical density of chromosomal DNA. This, in turn, varies with the growth phase, and is correlated with the overall activity of DNA gyrase, the major topoisomerase involved in the elevation of negative superhelicity. The DNA architectural protein FIS is a regulator of the metabolic reorganization of the cell during early exponential growth phase. We have previously shown that FIS modulates the superhelical density of plasmid DNA in vivo, and on binding reshapes the supercoiled DNA in vitro. Here, we show that, in addition, FIS represses the gyrA and gyrB promoters and reduces DNA gyrase activity. Our results indicate that FIS determines DNA topology both by regulation of topoisomerase activity and, as previously inferred, by directly reshaping DNA. We propose that FIS is involved in coupling cellular physiology to the topology of the bacterial chromosome.
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- DNA Footprinting
- DNA Gyrase
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Directed RNA Polymerases/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli/physiology
- Escherichia coli Proteins
- Factor For Inversion Stimulation Protein
- Gene Expression Regulation, Bacterial
- Integration Host Factors
- Molecular Sequence Data
- Promoter Regions, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- R Schneider
- Institut für Genetik und Mikrobiologie, LMU München, Maria-Ward-Str. 1a, 80638 München, Germany
| | | | | | | |
Collapse
|
42
|
Membrillo-Hernández J, Kwon O, De Wulf P, Finkel SE, Lin EC. Regulation of adhE (encoding ethanol oxidoreductase) by the Fis protein in Escherichia coli. J Bacteriol 1999; 181:7390-3. [PMID: 10572146 PMCID: PMC103705 DOI: 10.1128/jb.181.23.7390-7393.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
The adhE gene of Escherichia coli encodes a multifunctional ethanol oxidoreductase whose expression is 10-fold higher under anaerobic than aerobic conditions. Transcription of the gene is under the negative control of the Cra (catabolite repressor-activator) protein, whereas translation of the adhE mRNA requires processing by RNase III. In this report, we show that the expression of adhE also depends on the Fis (factor for inversion stimulation) protein. A strain bearing a fis::kan null allele failed to grow anaerobically on glucose solely because of inadequate adhE transcription. However, fis expression itself is not under redox control. Sequence inspection of the adhE promoter revealed three potential Fis binding sites. Electrophoretic mobility shift analysis, using purified Fis protein and adhE promoter DNA, showed three different complexes.
Collapse
Affiliation(s)
- J Membrillo-Hernández
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
The transcription factor FIS has been implicated in the regulation of several stable RNA promoters, including that for the major tRNALeu species in Escherichia coli, tRNA1Leu. However, no evidence for direct involvement of FIS in tRNA1Leu expression has been reported. We show here that FIS binds to a site upstream of the leuV promoter (centered at -71) and that it directly stimulates leuV transcription in vitro. A mutation in the FIS binding site reduces transcription from a leuV promoter in strains containing FIS but has no effect on transcription in strains lacking FIS, indicating that FIS contributes to leuV expression in vivo. We also find that RNA polymerase forms an unusual heparin-sensitive complex with the leuV promoter, having a downstream protection boundary of approximately -7, and that the first two nucleotides of the transcript, GTP and UTP, are required for formation of a heparin-stable complex that extends downstream of the transcription start site. These studies have implications for the regulation of leuV transcription.
Collapse
Affiliation(s)
- W Ross
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
44
|
Stockley PG, Baron AJ, Wild CM, Parsons ID, Miller CM, Holtham CA, Baumberg S. Dissecting the molecular details of prokaryotic transcriptional control by surface plasmon resonance: the methionine and arginine repressor proteins. Biosens Bioelectron 1998; 13:637-50. [PMID: 9828358 DOI: 10.1016/s0956-5663(98)00019-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
Abstract
The commercial surface plasmon resonance (SPR) biosensors, BIACORE, have been used to investigate the molecular details of macromolecular interactions at prokaryotic promoter-operators. For the Escherichia coli methionine repressor, MetJ, we have quantitated the interaction of the protein with synthetic and natural operator sites and shown that the SPR response is directly related to the stoichiometry of the complexes being formed. The utility of a continuous flow system has also been exploited to investigate transcription from an immobilised promoter-operator fragment; with transcripts collected and subsequently characterised by RT-PCR. This technique has enabled us to investigate how repressor binding affects (i) the interaction of the RNA polymerase (RNAP) with the promoter and (ii) the ability of RNAP to initiate transcription. Remarkably, the repression complex appears to stabilise binding of RNAP, whilst having the expected effects on the levels of transcripts produced. This may well be a general mechanism allowing rapid transcription initiation to occur as soon as the repression complex dissociates. These techniques have also been used to examine protein-DNA interactions in the E. coli and Bacillus subtilis arginine repressor systems. The repressors are the products of the argR and ahrC genes, respectively. Both proteins form hexamers in rapid equilibrium with smaller subunits believed to be trimers. There are three types of operator in these systems, autoregulatory, biosynthetic and catabolic (B. subtilis only). Sensorgrams show that each protein recognises the three types of immobilised operator differently and that binding is stimulated over 100-fold by the presence of L-arginine.
Collapse
|
45
|
Cue D, Feiss M. Termination of packaging of the bacteriophage lambda chromosome: cosQ is required for nicking the bottom strand of cosN. J Mol Biol 1998; 280:11-29. [PMID: 9653028 DOI: 10.1006/jmbi.1998.1841] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Termination of packaging of the lambda chromosome involves completion of translocation of the DNA into the head shell, and conversion of the translocation complex into a cleavage complex. The cleavage reaction introduces staggered nicks into the downstream cosN to generate the right cohesive end of the chromosome. cosQ, a site adjacent to cosN, was found to be required for nicking the bottom strand of cosN; bottom strand nicking was also sequence-specific for bps at the nick site. Nicking of the top strand of cosN (cosNL) was stimulated by cosQ, but fidelity and efficiency of cosNL nicking were largely dictated by other cos subsites (i.e. cosB and I2). Aberrant top-strand cleavage within cosQ was observed in the absence of I2, and nicking at a site 8 nt 5' to the normal cosNL nick site occurred in the absence of cosB. The presence of cosQ was found to be insufficient to arrest DNA translocation in vivo, indicating that cosQ, per se, is not a packaging stop signal. A model is presented in which the role of cosQ is to depolarize the asymmetric arrangement of terminase protomers in the translocation complex so that protomers are configured to match the 2-fold rotational symmetry of cosN.
Collapse
Affiliation(s)
- D Cue
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
46
|
Travers A, Muskhelishvili G. DNA microloops and microdomains: a general mechanism for transcription activation by torsional transmission. J Mol Biol 1998; 279:1027-43. [PMID: 9642081 DOI: 10.1006/jmbi.1998.1834] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Prokaryotic transcriptional activation often involves the formation of DNA microloops upstream of the polymerase binding site. There is substantial evidence that these microloops function to bring activator and polymerase into close spatial proximity. However additional functions are suggested by the ability of certain activators, of which FIS is the best characterised example, to facilitate polymerase binding, promoter opening and polymerase escape. We review here the evidence for the concept that the topology of the microloop formed by such activators is tightly coupled to the structural transitions in DNA mediated by RNA polymerase. In this process, which we term torsional transmission, a major function of the activator is to act as a local topological homeostat. We argue that the same mechanism may also be employed in site-specific DNA inversion.
Collapse
Affiliation(s)
- A Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, England
| | | |
Collapse
|
47
|
González-Gil G, Kahmann R, Muskhelishvili G. Regulation of crp transcription by oscillation between distinct nucleoprotein complexes. EMBO J 1998; 17:2877-85. [PMID: 9582281 PMCID: PMC1170628 DOI: 10.1093/emboj/17.10.2877] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023] Open
Abstract
FIS belongs to the group of small abundant DNA-binding proteins of Escherichia coli. We recently demonstrated that, in vivo, FIS regulates the expression of several genes needed for catabolism of sugars and nucleic acids, a majority of which are also transcriptionally regulated by cAMP-cAMP-receptor protein (CRP) complex. Here we provide evidence that FIS represses transcription of the crp gene both in vivo and in vitro. Employing crp promoter-lacZ fusions, we demonstrate that both FIS and cAMP-CRP are required to keep the crp promoter in a repressed state. We have identified in the crp promoter other transcription initiation sites which are located 73, 79 and 80 bp downstream from the previously mapped start site. Two CRP- and several FIS-binding sites with different affinities are located in the crp promoter region, one of them overlapping the downstream transcription initiation sites. We show that initiation of transcription at the crp promoter is affected by the composition of nucleoprotein complexes resulting from the outcome of competition between proteins for overlapping binding sites. Our results suggest that the control of crp transcription is achieved by oscillation in the composition of these regulatory nucleoprotein complexes in response to the physiological state of the cell.
Collapse
Affiliation(s)
- G González-Gil
- Institut für Genbiologische Forschung Berlin GmbH, Berlin, Germany.
| | | | | |
Collapse
|
48
|
Abstract
Most bacterial transcription activators function by making direct contact with RNA polymerase at target promoters. Some activators contact the carboxy-terminal domain of the RNA polymerase alpha subunit, some contact region 4 of the sigma70 subunit, whilst others interact with other contact sites. A number of activators are ambidextrous and can, apparently simultaneously, contact more than one target site on RNA polymerase. Expression from many promoters is co-dependent on two or more activators. There are several different mechanisms for coupling promoter activity to more than one activator: in one such mechanism, the different activators make independent contacts with different target sites on RNA polymerase.
Collapse
Affiliation(s)
- V A Rhodius
- School of Biochemistry, The University of Birmingham, Birmingham, B15 2TT, UK
| | | |
Collapse
|
49
|
Muskhelishvili G, Travers A. Stabilization of DNA Microloops by FIS — A Mechanism for Torsional Transmission in Transcription Activation and DNA Inversion. MECHANISMS OF TRANSCRIPTION 1997. [DOI: 10.1007/978-3-642-60691-5_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023]
|