1
|
Lu J, Koo SC, Weissman BP, Harris ME, Li NS, Piccirilli JA. Evidence That Nucleophile Deprotonation Exceeds Bond Formation in the HDV Ribozyme Transition State. Biochemistry 2018; 57:3465-3472. [PMID: 29733591 DOI: 10.1021/acs.biochem.8b00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Steric constraints imposed by the active sites of protein and RNA enzymes pose major challenges to the investigation of structure-function relationships within these systems. As a strategy to circumvent such constraints in the HDV ribozyme, we have synthesized phosphoramidites from propanediol derivatives and incorporated them at the 5'-termini of RNA and DNA oligonucleotides to generate a series of novel substrates with nucleophiles perturbed electronically through geminal fluorination. In nonenzymatic, hydroxide-catalyzed intramolecular transphosphorylation of the DNA substrates, pH-rate profiles revealed that fluorine substitution reduces the maximal rate and the kinetic p Ka, consistent with the expected electron-withdrawing effect. In HDV ribozyme reactions, we observed that the RNA substrates undergo transphosphorylation relatively efficiently, suggesting that the conformational constraints imposed by a ribofuranose ring are not strictly required for ribozyme catalysis. In contrast to the nonenzymatic reactions, however, substrate fluorination modestly increases the ribozyme reaction rate, consistent with a mechanism in which (1) the 2'-hydroxyl nucleophile exists predominantly in its neutral, protonated form in the ground state and (2) the 2'-hydroxyl bears some negative charge in the rate-determining step, consistent with a transition state in which the extent of 2'-OH deprotonation exceeds the extent of P-O bond formation.
Collapse
Affiliation(s)
- Jun Lu
- Department of Biochemistry and Molecular Biology and Department of Chemistry , University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| | - Selene C Koo
- Department of Biochemistry and Molecular Biology and Department of Chemistry , University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| | - Benjamin P Weissman
- Department of Biochemistry and Molecular Biology and Department of Chemistry , University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| | - Michael E Harris
- Department of Chemistry , University of Florida , 214 Leigh Hall , Gainesville , Florida 32611 , United States
| | - Nan-Sheng Li
- Department of Biochemistry and Molecular Biology and Department of Chemistry , University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| | - Joseph A Piccirilli
- Department of Biochemistry and Molecular Biology and Department of Chemistry , University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| |
Collapse
|
2
|
Webb CHT, Lupták A. Kinetic Parameters of trans Scission by Extended HDV-like Ribozymes and the Prospect for the Discovery of Genomic trans-Cleaving RNAs. Biochemistry 2018; 57:1440-1450. [PMID: 29388767 DOI: 10.1021/acs.biochem.7b00789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepatitis delta virus (HDV)-like ribozymes are self-cleaving catalytic RNAs with a widespread distribution in nature and biological roles ranging from self-scission during rolling-circle replication in viroids to co-transcriptional processing of eukaryotic retrotransposons, among others. The ribozymes fold into a double pseudoknot with a common catalytic core motif and highly variable peripheral domains. Like other self-cleaving ribozymes, HDV-like ribozymes can be converted into trans-acting catalytic RNAs by bisecting the self-cleaving variants at non-essential loops. Here we explore the trans-cleaving activity of ribozymes derived from the largest examples of the ribozymes (drz-Agam-2 family), which contain an extended domain between the substrate strand and the rest of the RNA. When this peripheral domain is bisected at its distal end, the substrate strand is recognized through two helices, rather than just one 7 bp helix common among the HDV ribozymes, resulting in stronger binding and increased sequence specificity. Kinetic characterization of the extended trans-cleaving ribozyme revealed an efficient trans-cleaving system with a surprisingly high KM', supporting a model that includes a recently proposed activation barrier related to the assembly of the catalytically competent ribozyme. The ribozymes also exhibit a very long koff for the products (∼2 weeks), resulting in a trade-off between sequence specificity and turnover. Finally, structure-based searches for the catalytic cores of these ribozymes in the genome of the mosquito Anopheles gambiae, combined with sequence searches for their putative substrates, revealed two potential ribozyme-substrate pairs that may represent examples of natural trans-cleaving ribozymes.
Collapse
Affiliation(s)
- Chiu-Ho T Webb
- Department of Molecular Biology and Biochemistry , University of California-Irvine , Irvine , California 92697 , United States
| | - Andrej Lupták
- Department of Molecular Biology and Biochemistry , University of California-Irvine , Irvine , California 92697 , United States.,Department of Pharmaceutical Sciences , University of California-Irvine , Irvine , California 92697 , United States.,Department of Chemistry , University of California-Irvine , Irvine , California 92697 , United States
| |
Collapse
|
3
|
Topological constraints of structural elements in regulation of catalytic activity in HDV-like self-cleaving ribozymes. Sci Rep 2016; 6:28179. [PMID: 27302490 PMCID: PMC4908430 DOI: 10.1038/srep28179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/31/2016] [Indexed: 11/09/2022] Open
Abstract
Self-cleaving ribozymes fold into intricate structures, which orient active site groups into catalytically competent conformations. Most ribozyme families have distinct catalytic cores stabilized by tertiary interactions between domains peripheral to those cores. We show that large hepatitis delta virus (HDV)-like ribozymes are activated by peripheral domains that bring two helical segments, P1 and P2, into proximity – a “pinch” that results in rate acceleration by almost three orders of magnitude. Kinetic analysis of ribozymes with systematically altered length and stability of the peripheral domain revealed that about one third of its free energy of formation is used to lower an activation energy barrier, likely related to a rate-limiting conformational change leading to the pre-catalytic state. These findings provide a quantitative view of enzyme regulation by peripheral domains and may shed light on the energetics of allosteric regulation.
Collapse
|
4
|
Nam K, Cui Q, Gao J, York DM. Specific Reaction Parametrization of the AM1/d Hamiltonian for Phosphoryl Transfer Reactions: H, O, and P Atoms. J Chem Theory Comput 2015; 3:486-504. [PMID: 26637030 DOI: 10.1021/ct6002466] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A semiempirical AM1/d Hamiltonian is developed to model phosphoryl transfer reactions catalyzed by enzymes and ribozymes for use in linear-scaling calculations and combined quantum mechanical/molecular mechanical simulations. The model, designated AM1/d-PhoT, is parametrized for H, O, and P atoms to reproduce high-level density-functional results from a recently constructed database of quantum calculations for RNA catalysis ( http://theory.chem.umn.edu/Database/QCRNA ), including geometries and relative energies of minima, transition states and reactive intermediates, dipole moments, proton affinities, and other relevant properties. The model is tested in the gas phase and in solution using a QM/MM potential. The results indicate that the method provides significantly higher accuracy than MNDO/d, AM1, and PM3 methods and, for the transphosphorylation reactions, is in close agreement with the density-functional calculations at the B3LYP/6-311++G(3df,2p) level with a reduction in computational cost of 3-4 orders of magnitude. The model is expected to have considerable impact on the application of semiempirical QM/MM methods to transphosphorylation reactions in solution, enzymes, and ribozymes and to ultimately facilitate the design of improved next-generation multiscale quantum models.
Collapse
Affiliation(s)
- Kwangho Nam
- Department of Chemistry and Supercomputing Institute and the Digital Technology Center, University of Minnesota, Minneapolis, Minnesota 55455-0431, and Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706
| | - Qiang Cui
- Department of Chemistry and Supercomputing Institute and the Digital Technology Center, University of Minnesota, Minneapolis, Minnesota 55455-0431, and Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute and the Digital Technology Center, University of Minnesota, Minneapolis, Minnesota 55455-0431, and Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706
| | - Darrin M York
- Department of Chemistry and Supercomputing Institute and the Digital Technology Center, University of Minnesota, Minneapolis, Minnesota 55455-0431, and Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706
| |
Collapse
|
5
|
Kellerman DL, Simmons KS, Pedraza M, Piccirilli JA, York DM, Harris ME. Determination of hepatitis delta virus ribozyme N(-1) nucleobase and functional group specificity using internal competition kinetics. Anal Biochem 2015; 483:12-20. [PMID: 25937290 DOI: 10.1016/j.ab.2015.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 12/16/2022]
Abstract
Biological catalysis involves interactions distant from the site of chemistry that can position the substrate for reaction. Catalysis of RNA 2'-O-transphosphorylation by the hepatitis delta virus (HDV) ribozyme is sensitive to the identity of the N(-1) nucleotide flanking the reactive phosphoryl group. However, the interactions that affect the conformation of this position, and in turn the 2'O nucleophile, are unclear. Here, we describe the application of multiple substrate internal competition kinetic analyses to understand how the N(-1) nucleobase contributes to HDV catalysis and test the utility of this approach for RNA structure-function studies. Internal competition reactions containing all four substrate sequence variants at the N(-1) position in reactions using ribozyme active site mutations at A77 and A78 were used to test a proposed base-pairing interaction. Mutants A78U, A78G, and A79G retain significant catalytic activity but do not alter the specificity for the N(-1) nucleobase. Effects of nucleobase analog substitutions at N(-1) indicate that U is preferred due to the ability to donate an H-bond in the Watson-Crick face and avoid minor groove steric clash. The results provide information essential for evaluating models of the HDV active site and illustrate multiple substrate kinetic analyses as a practical approach for characterizing structure-function relationships in RNA reactions.
Collapse
Affiliation(s)
- Daniel L Kellerman
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kandice S Simmons
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Mayra Pedraza
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Joseph A Piccirilli
- Department of Chemistry and Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Darrin M York
- Center for Integrative Proteomics Research, BioMaPS Institute for Quantitative Biology and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael E Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
6
|
Lee TS, Giambaşu G, Harris ME, York DM. Characterization of the Structure and Dynamics of the HDV Ribozyme at Different Stages Along the Reaction Path. J Phys Chem Lett 2011; 2:2538-2543. [PMID: 22200005 PMCID: PMC3244300 DOI: 10.1021/jz201106y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The structure and dynamics of the hepatitis delta virus ribozyme (HDVr) are studies using molecular dynamics simulations at several stages along its catalytic reaction path, including reactant, activated precursor, transition state mimic and product states, departing from an initial structure based on the C75U mutant crystal structure (PDB: 1VC7). Results of five 350 ns molecular dynamics simulations reveal a spontaneous rotation of U-1 that leads to an in-line conformation and support the role of protonated C75 as the general acid in the transition state. Our results provide rationale for the interpretation of several important experimental results, and make experimentally testable predictions regarding the roles of key active site residues that are not obvious from any available crystal structures.
Collapse
|
7
|
Chen JH, Yajima R, Chadalavada DM, Chase E, Bevilacqua PC, Golden BL. A 1.9 Å Crystal Structure of the HDV Ribozyme Precleavage Suggests both Lewis Acid and General Acid Mechanisms Contribute to Phosphodiester Cleavage. Biochemistry 2010; 49:6508-18. [DOI: 10.1021/bi100670p] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jui-Hui Chen
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47906
| | - Rieko Yajima
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802
| | - Durga M. Chadalavada
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802
| | - Elaine Chase
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47906
| | - Philip C. Bevilacqua
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802
| | - Barbara L. Golden
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47906
| |
Collapse
|
8
|
Swiatkowska A, Dutkiewicz M, Ciesiołka J. Structural Features of Target RNA Molecules Greatly Modulate the Cleavage Efficiency of trans-Acting Delta Ribozymes. Biochemistry 2007; 46:5523-33. [PMID: 17425288 DOI: 10.1021/bi6024287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this work was to shed some more light on factors influencing the effectiveness of delta ribozyme cleavage of structured RNA molecules. An oligoribonucleotide that corresponds to the 3'-terminal region X of HCV RNA and yeast tRNAPhe were used as representative RNA targets. Only a few sites susceptible to ribozyme cleavage were identified in these targets using a combinatorial library of ribozyme variants, in which the region responsible for ribozyme-target interaction was randomized. On the other hand, the targets were fairly accessible for binding of complementary oligonucleotides, as was shown by 6-mer DNA libraries and RNase H approach. Moreover, the specifically acting ribozymes cleaved the targets precisely but with unexpectedly modest efficacy. To explain these observations, six model RNA molecules were designed, in which the same seven nucleotide long sequence recognized by the delta ribozyme was always single stranded but was embedded into different RNA structural context. These molecules were cleaved with differentiated rates, and the corresponding k2 values were in the range of 0.91-0.021 min-1; thus they differed almost 50-fold. This clearly shows that cleavage of structured RNAs might be much slower than cleavage of a short unstructured oligoribonucleotide, despite full accessibility of the targeted regions for hybridization. Restricted possibilities of conformational transitions, which are necessary to occur on the cleavage reaction trajectory, seem to be responsible for these differences. Their magnitude, which was evaluated in this work, should be taken into account while considering the use of delta ribozymes for practical applications.
Collapse
Affiliation(s)
- Agata Swiatkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | | | | |
Collapse
|
9
|
Sefcikova J, Krasovska MV, Šponer J, Walter NG. The genomic HDV ribozyme utilizes a previously unnoticed U-turn motif to accomplish fast site-specific catalysis. Nucleic Acids Res 2007; 35:1933-46. [PMID: 17337436 PMCID: PMC1874588 DOI: 10.1093/nar/gkl1104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The genome of the human hepatitis delta virus (HDV) harbors a self-cleaving catalytic RNA motif, the genomic HDV ribozyme, whose crystal structure shows the dangling nucleotides 5′ of the cleavage site projecting away from the catalytic core. This 5′-sequence contains a clinically conserved U − 1 that we find to be essential for fast cleavage, as the order of activity follows U − 1 > C − 1 > A − 1 > G − 1, with a >25-fold activity loss from U − 1 to G − 1. Terbium(III) footprinting detects conformations for the P1.1 stem, the cleavage site wobble pair and the A-minor motif of the catalytic trefoil turn that depend on the identity of the N − 1 base. The most tightly folded catalytic core, resembling that of the reaction product, is found in the U − 1 wild-type precursor. Molecular dynamics simulations demonstrate that a U − 1 forms the most robust kink around the scissile phosphate, exposing it to the catalytic C75 in a previously unnoticed U-turn motif found also, for example, in the hammerhead ribozyme and tRNAs. Strikingly, we find that the common structural U-turn motif serves distinct functions in the HDV and hammerhead ribozymes.
Collapse
Affiliation(s)
- Jana Sefcikova
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA and Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Maryna V. Krasovska
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA and Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA and Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA and Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- *To whom correspondence should be addressed. +1-(734) 615-2060+1-(734) 647-4865
| |
Collapse
|
10
|
Gondert ME, Tinsley RA, Rueda D, Walter NG. Catalytic core structure of the trans-acting HDV ribozyme is subtly influenced by sequence variation outside the core. Biochemistry 2006; 45:7563-73. [PMID: 16768452 DOI: 10.1021/bi052116j] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human pathogenic hepatitis delta virus (HDV) employs a unique self-cleaving catalytic RNA motif, the HDV ribozyme, during double-rolling circle replication. Fluorescence spectroscopy, circular dichroism, terbium(III) footprinting, and X-ray crystallography of precursor and product forms have revealed that a conformational change accompanies catalysis. In addition, fluorescence resonance energy transfer (FRET) has previously been used on a trans-acting HDV ribozyme to demonstrate surprisingly significant catalytic and global conformational effects of substrate analogues with varying 5' sequences, which reside as dangling overhangs outside the catalytic core. Here, we use the fluorescent guanine analogue 2-aminopurine (AP) in nucleotide position 76, immediately downstream of the catalytically involved C75, to monitor the relative structural effects of these substrate analogues on the ribozyme's trefoil turn of the catalytic core. Steady-state and time-resolved AP fluorescence spectroscopies show that the binding of each substrate analogue induces a unique local conformation with a specific AP76 stacking equilibrium. Binding of the 3' product results in a relative increase in AP fluorescence, suggesting that AP76 becomes more unstacked upon catalysis. These local conformational changes are kinetically concomitant with global conformational changes monitored by FRET. Finally, the rate constant of the local conformational change upon 3' product binding is fast and independent of 3' product concentration yet Mg2+ dependent. Our results demonstrate that the trefoil turn of the HDV ribozyme catalytic core is in a state of dynamic equilibrium not captured by static crystal structures and is highly sensitive to the identity of the 5' sequence and Mg2+ ions.
Collapse
Affiliation(s)
- Melissa E Gondert
- Department of Chemistry, The University of Michigan, 930 North University, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | |
Collapse
|
11
|
Saksmerprome V, Burke DH. Deprotonation stimulates productive folding in allosteric TRAP hammerhead ribozymes. J Mol Biol 2004; 341:685-94. [PMID: 15288779 DOI: 10.1016/j.jmb.2004.06.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Revised: 06/09/2004] [Accepted: 06/10/2004] [Indexed: 10/26/2022]
Abstract
Hammerhead ribozymes in crystals change conformation in response to deprotonation of the nucleophilic 2' OH, thereby aligning the hydroxyl for in-line displacement at the scissile phosphate. Published data do not address whether deprotonation affects folding in solution. Allosteric hammerhead "TRAPs," when activated by the appropriate oligonucleotide, show the expected log-linear relation between initial cleavage rate and pH. In contrast, attenuated TRAPs shows biphasic kinetics in which a rapid burst is followed by slow cleavage that is nearly independent of pH. Attenuated ribozymes are stimulated by urea at both low and high pH, confirming that rearrangement of secondary structure is rate-limiting for the attenuated ribozymes once they have folded. Plots of burst magnitude versus pH in the absence of urea show a sharp transition around pH 8.3, which is near the kinetic pKa for the cleavage reaction in Mg2+. Raising the pH after folding at pH 7.5 did not activate attenuated ribozymes even when the RNA was incubated at the elevated pH for extended periods prior to addition of Mg2+. In contrast, lowering the pH after folding at pH 9.5 rapidly re-established attenuation. Deprotonation of the ribozyme-substrate complex thus appears to alter the folding landscape such that a metastable "pre-activated" complex forms before the thermodynamically more stable attenuated state can be attained. From the initial partition into active and inactive conformers, we estimate that this deprotonation contributes approximately 1.2 kcal/mol toward stabilization of the active fold at a crucial step during folding of the TRAP. Assuming that the nucleophilic 2' OH is the relevant acid, its deprotonation would thus serve a dual role of favoring productive fold and enhancing the nucleophilicity of this oxygen.
Collapse
|
12
|
Tinsley RA, Harris DA, Walter NG. Magnesium dependence of the amplified conformational switch in the trans-acting hepatitis delta virus ribozyme. Biochemistry 2004; 43:8935-45. [PMID: 15248751 DOI: 10.1021/bi049471e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability of divalent metal ions to participate in both structure formation and catalytic chemistry of RNA enzymes (ribozymes) has made it difficult to separate their cause and effect in ribozyme function. For example, the recently solved crystal structures of precursor and product forms of the cis-cleaving genomic hepatitis delta virus (HDV) ribozyme show a divalent metal ion bound in the active site that is released upon catalysis due to an RNA conformational change. This conformational switch is associated with a repositioning of the catalytically involved base C75 in the active-site cleft, thus controlling catalysis. These findings confirm previous data from fluorescence resonance energy transfer (FRET) on a trans-acting form of the HDV ribozyme that found a global conformational change to accompany catalysis. Here, we further test the conformational switch model by measuring the Mg(2+) dependence of the global conformational change of the trans-acting HDV ribozyme, using circular dichroism and time-resolved FRET as complementary probes of secondary and tertiary structure formation, respectively. We observe significant differences in both structure and Mg(2+) affinity of the precursor and product forms, in the presence and absence of 300 mM Na(+) background. The precursor shortens while the product extends with increasing Mg(2+) concentration, essentially amplifying the structural differences observed in the crystal structures. In addition, the precursor has an approximately 2-fold and approximately 13-fold lower Mg(2+) affinity than the product in secondary and tertiary structure formation, respectively. We also have compared the C75 wild-type with the catalytically inactive C75U mutant and find significant differences in global structure and Mg(2+) affinity for both their precursor and product forms. Significantly, the Mg(2+) affinity of the C75 wild-type is 1.7-2.1-fold lower than that of the C75U mutant, in accord with the notion that C75 is essential for a catalytic conformational change that leads to a decrease in the local divalent metal ion affinity and release of a catalytic metal. Thus, a consistent picture emerges in which divalent metal ions and RNA functional groups are intimately intertwined in affecting structural dynamics and catalysis in the HDV ribozyme.
Collapse
Affiliation(s)
- Rebecca A Tinsley
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
13
|
Harris DA, Tinsley RA, Walter NG. Terbium-mediated Footprinting Probes a Catalytic Conformational Switch in the Antigenomic Hepatitis Delta Virus Ribozyme. J Mol Biol 2004; 341:389-403. [PMID: 15276831 DOI: 10.1016/j.jmb.2004.05.074] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 05/17/2004] [Accepted: 05/19/2004] [Indexed: 12/20/2022]
Abstract
The two forms of the hepatitis delta virus ribozyme are derived from the genomic and antigenomic RNA strands of the human hepatitis delta virus (HDV), where they serve a crucial role in pathogen replication by catalyzing site-specific self-cleavage reactions. The HDV ribozyme requires divalent metal ions for formation of its tertiary structure, consisting of a tight double-nested pseudoknot, and for efficient self- (or cis-) cleavage. Comparison of recently solved crystal structures of the cleavage precursor and 3' product indicates that a significant conformational switch is required for catalysis by the genomic HDV ribozyme. Here, we have used the lanthanide metal ion terbium(III) to footprint the precursor and product solution structures of the cis-acting antigenomic HDV ribozyme. Inhibitory Tb(3+) binds with high affinity to similar sites on RNA as Mg(2+) and subsequently promotes slow backbone scission. We find subtle, yet significant differences in the terbium(III) footprinting pattern between the precursor and product forms of the antigenomic HDV ribozyme, consistent with differences in conformation as observed in the crystal structures of the genomic ribozyme. In addition, UV melting profiles provide evidence for a less tight tertiary structure in the precursor. In both the precursor and product we observe high-affinity terbium(III) binding sites in joining sequence J4/2 (Tb(1/2) approximately 4 microM) and loop L3, which are key structural components forming the catalytic core of the HDV ribozyme, as well as in several single-stranded regions such as J1/2 and the L4 tetraloop (Tb(1/2) approximately 50 microM). Sensitized luminescence spectroscopy confirms that there are at least two affinity classes of Tb(3+) binding sites. Our results thus demonstrate that a significant conformational change accompanies catalysis in the antigenomic HDV ribozyme in solution, similar to the catalytic conformational switch observed in crystals of the genomic form, and that structural and perhaps catalytic metal ions bind close to the catalytic core.
Collapse
Affiliation(s)
- Dinari A Harris
- Department of Chemistry, The University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055, USA
| | | | | |
Collapse
|
14
|
Ke A, Zhou K, Ding F, Cate JHD, Doudna JA. A conformational switch controls hepatitis delta virus ribozyme catalysis. Nature 2004; 429:201-5. [PMID: 15141216 DOI: 10.1038/nature02522] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 03/23/2004] [Indexed: 11/09/2022]
Abstract
Ribozymes enhance chemical reaction rates using many of the same catalytic strategies as protein enzymes. In the hepatitis delta virus (HDV) ribozyme, site-specific self-cleavage of the viral RNA phosphodiester backbone requires both divalent cations and a cytidine nucleotide. General acid-base catalysis, substrate destabilization and global and local conformational changes have all been proposed to contribute to the ribozyme catalytic mechanism. Here we report ten crystal structures of the HDV ribozyme in its pre-cleaved state, showing that cytidine is positioned to activate the 2'-OH nucleophile in the precursor structure. This observation supports its proposed role as a general base in the reaction mechanism. Comparison of crystal structures of the ribozyme in the pre- and post-cleavage states reveals a significant conformational change in the RNA after cleavage and that a catalytically critical divalent metal ion from the active site is ejected. The HDV ribozyme has remarkable chemical similarity to protein ribonucleases and to zymogens for which conformational dynamics are integral to biological activity. This finding implies that RNA structural rearrangements control the reactivity of ribozymes and ribonucleoprotein enzymes.
Collapse
Affiliation(s)
- Ailong Ke
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94705, USA
| | | | | | | | | |
Collapse
|
15
|
Jeong S, Sefcikova J, Tinsley RA, Rueda D, Walter NG. Trans-acting hepatitis delta virus ribozyme: catalytic core and global structure are dependent on the 5' substrate sequence. Biochemistry 2003; 42:7727-40. [PMID: 12820882 DOI: 10.1021/bi034627g] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hepatitis delta virus (HDV), an infectious human pathogen affecting millions of people worldwide, leads to intensified disease symptoms, including progression to liver cirrhosis upon coinfection with its helper virus, HBV. Both the circular RNA genome of HDV and its complementary antigenome contain a common cis-cleaving catalytic RNA motif, the HDV ribozyme, which plays a crucial role in viral replication. Previously, the crystal structure of the product form of the cis-acting genomic HDV ribozyme has been determined, and the precursor form has been suggested to be structurally similar. In contrast, solution studies by fluorescence resonance energy transfer (FRET) on a trans-cleaving form of the ribozyme have shown significant global conformational changes upon catalysis, while 2-aminopurine (AP) fluorescence assays have detected concomitant local conformational changes in the catalytic core. Here, we augment these studies by using terbium(III) to probe the structure of the trans-acting HDV ribozyme at nucleotide resolution. We observe significant structural differences between the precursor and product forms, especially in the P1.1 helix and the trefoil turn in the single-stranded region connecting P4 and P2 (termed J4/2) of the catalytic core. We show, using terbium(III) footprinting and sensitized luminescence spectroscopy as well as steady-state, time-resolved, and gel-mobility FRET assays on a systematic set of substrates, that the substrate sequence immediately 5' to the cleavage site significantly modulates these local as well as resultant global structural differences. Our results suggest a structural basis for the previously observed impact of the 5' substrate sequence on catalytic activity.
Collapse
Affiliation(s)
- Sohee Jeong
- Department of Chemistry, The University of Michigan, 930 North University, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | |
Collapse
|
16
|
Deschênes P, Ouellet J, Perreault J, Perreault JP. Formation of the P1.1 pseudoknot is critical for both the cleavage activity and substrate specificity of an antigenomic trans-acting hepatitis delta ribozyme. Nucleic Acids Res 2003; 31:2087-96. [PMID: 12682359 PMCID: PMC153735 DOI: 10.1093/nar/gkg307] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hepatitis delta virus RNAs possess self-cleavage activities that produce 2',3'-cyclic phosphate and 5'-hydroxyl termini (i.e. cis-acting delta ribozyme). Trans-acting delta ribozymes have been engineered by removing a junction from the cis version, thereby producing one molecule possessing the substrate sequence and the other the catalytic domain. According to the pseudoknot model, the secondary structure of the delta ribozyme includes a pseudoknot (i.e. P1.1 stem) formed by two base pairs from residues of the L3 loop and J1/4 junction. A collection of 48 P1.1 stem mutants was synthesized in order to provide an original characterization of both the importance and the structure of this pseudoknot in a trans-acting version of the ribozyme. Several structural differences were noted compared to the results reported for cis-acting ribozymes. For example, a combination of two stable Watson-Crick base pairs composing the essential P1.1 stem was demonstrated to be crucial for a significant level of activity, while the cis version required only one base pair. In addition, we present the first physical evidences revealing that the composition of the P1.1 stem affects the substrate specificity for ribozyme cleavage. Depending on the residues forming the J1/4 junction, non-productive ribozyme-substrate complexes can be observed. This phenomenon is proposed to be important for further development of a gene-inactivation system based on delta ribozyme.
Collapse
Affiliation(s)
- Patrick Deschênes
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | |
Collapse
|
17
|
Bevilacqua PC, Brown TS, Nakano SI, Yajima R. Catalytic roles for proton transfer and protonation in ribozymes. Biopolymers 2003; 73:90-109. [PMID: 14691943 DOI: 10.1002/bip.10519] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Utilization of proton transfer in catalysis, which is well known in the mechanisms of protein enzymes, has been described only relatively recently for RNA enzymes. In this article, we present a current understanding of proton transfer by nucleic acids. Rate enhancement and specificity conferred by general acid-base catalysis are discussed. We also present possibilities for electrostatic catalysis from general acids and bases as well as cationic base pairs. The microenvironments of a large RNA provide the possibility of histidine-like pK(a)s for proton transfer, as well as lysine- and arginine-like pK(a)s for electrostatic catalysis. Discussion on proton transfer focuses on the hepatitis delta virus (HDV) and hairpin ribozymes, with select examples drawn from the protein literature. Discussion on electrostatic catalysis also draws on these two ribozymes, and a postulate for electrostatic catalysis by a cationic base pair in the mechanism of peptidyl transfer in the ribosome is presented. We also provide a perspective on possibilities for phosphoryl transfer mechanisms involving phosphorane intermediates and unusual tautomeric forms of the bases. Lastly, a distinction is made between ground state and "transition state" pK(a)s. We favor a model in which changes in pH lead to changes in the distribution of reactive and nonreactive ionizations of the ribozyme molecules in the ground state, and therefore suggest that "pK(a) changes in the transition state" do not provide an acceptable explanation for observed pH-rate profiles.
Collapse
Affiliation(s)
- Philip C Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
18
|
Abstract
The hepatitis delta virus (HDV) ribozymes are self-cleaving RNA sequences critical to the replication of a small RNA genome. A recently determined crystal structure together with biochemical and biophysical studies provides new insight into the possible catalytic mechanism of these ribozymes. The HDV ribozymes are examples of naturally occurring small ribozymes that catalyze cleavage of the RNA backbone with a rate enhancement of 10(6)- to 10(7)-fold over the uncatalyzed rate. To achieve this level of rate enhancement, the HDV ribozymes have been proposed to employ several catalytic strategies that include the use of metal ions, intrinsic binding energy, and a novel example of general acid-base catalysis with a cytosine side chain acting as a proton donor or acceptor.
Collapse
Affiliation(s)
- I-hung Shih
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
19
|
Bergeron LJ, Perreault JP. Development and comparison of procedures for the selection of delta ribozyme cleavage sites within the hepatitis B virus. Nucleic Acids Res 2002; 30:4682-91. [PMID: 12409459 PMCID: PMC135815 DOI: 10.1093/nar/gkf598] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2002] [Revised: 09/09/2002] [Accepted: 09/09/2002] [Indexed: 01/01/2023] Open
Abstract
Delta ribozyme possesses several unique features related to the fact that it is the only catalytic RNA known to be naturally active in human cells. This makes it attractive as a therapeutic tool for the inactivation of clinically relevant RNAs. However, several hurdles must be overcome prior to the development of useful gene-inactivation systems based on delta ribozyme. We have developed three procedures for the selection of potential delta ribozyme target sites within the hepatitis B virus (HBV) pregenome: (i) the use of bioinformatic tools coupled to biochemical assays; (ii) RNase H hydrolysis with a pool of oligonucleotides; and (iii) cleavage assays with a pool of ribozymes. The results obtained with delta ribozyme show that these procedures are governed by several rules, some of which are different from those both for other catalytic RNAs and antisense oligonucleotides. Together, these procedures identified 12 sites in the HBV pregenome that can be cleaved by delta ribozymes, although with different efficiencies. Clearly, both target site accessibility and the ability to form an active ribozyme-substrate complex constitute interdependent factors that can best be addressed using a combinatorial library of either oligonucleotides or ribozymes.
Collapse
Affiliation(s)
- Lucien Junior Bergeron
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | |
Collapse
|
20
|
Harris DA, Rueda D, Walter NG. Local conformational changes in the catalytic core of the trans-acting hepatitis delta virus ribozyme accompany catalysis. Biochemistry 2002; 41:12051-61. [PMID: 12356305 DOI: 10.1021/bi026101m] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hepatitis delta virus (HDV) is a human pathogen and satellite RNA of the hepatitis B virus. It utilizes a self-cleaving catalytic RNA motif to process multimeric intermediates in the double-rolling circle replication of its genome. Previous kinetic analyses have suggested that a particular cytosine residue (C(75)) with a pK(a) close to neutrality acts as a general acid or base in cleavage chemistry. The crystal structure of the product form of a cis-acting HDV ribozyme shows this residue positioned close to the 5'-OH leaving group of the reaction by a trefoil turn in the RNA backbone. By modifying G(76) of the trefoil turn of a synthetic trans-cleaving HDV ribozyme to the fluorescent 2-aminopurine (AP), we can directly monitor local conformational changes in the catalytic core. In the ribozyme-substrate complex (precursor), AP fluorescence is strongly quenched, suggesting that AP(76) is stacked with other bases and that the trefoil turn is not formed. In contrast, formation of the product complex upon substrate cleavage or direct product binding results in a significant increase in fluorescence, consistent with AP(76) becoming unstacked and solvent-exposed as evidenced in the trefoil turn. Using AP fluorescence and fluorescence resonance energy transfer (FRET) in concert, we demonstrate that this local conformational change in the trefoil turn is kinetically coincidental with a previously observed global structural change of the ribozyme. Our data show that, at least in the trans-acting HDV ribozyme, C(75) becomes positioned for reaction chemistry only along the trajectory from precursor to product.
Collapse
Affiliation(s)
- Dinari A Harris
- Department of Chemistry, The University of Michigan, 930 North University, Ann Arbor, MI 48109-1055, USA
| | | | | |
Collapse
|
21
|
Walter NG, Harris DA, Pereira MJ, Rueda D. In the fluorescent spotlight: global and local conformational changes of small catalytic RNAs. Biopolymers 2002; 61:224-42. [PMID: 11987183 DOI: 10.1002/bip.10144] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
RNA is a ubiquitous biopolymer that performs a multitude of essential cellular functions involving the maintenance, transfer, and processing of genetic information. RNA is unique in that it can carry both genetic information and catalytic function. Its secondary structure domains, which fold stably and independently, assemble hierarchically into modular tertiary structures. Studies of these folding events are key to understanding how catalytic RNAs (ribozymes) are able to position reaction components for site-specific chemistry. We have made use of fluorescence techniques to monitor the rates and free energies of folding of the small hairpin and hepatitis delta virus (HDV) ribozymes, found in satellite RNAs of plant and the human hepatitis B viruses, respectively. In particular, fluorescence resonance energy transfer (FRET) has been employed to monitor global conformational changes, and 2-aminopurine fluorescence quenching to probe for local structural rearrangements. In this review we illuminate what we have learned about the reaction pathways of the hairpin and HDV ribozymes, and how our results have complemented other biochemical and biophysical investigations. The structural transitions observed in these two small catalytic RNAs are likely to be found in many other biological RNAs, and the described fluorescence techniques promise to be broadly applicable.
Collapse
Affiliation(s)
- N G Walter
- Department of Chemistry, The University of Michigan, 930 N. University, Ann Arbor 48109-1055, USA.
| | | | | | | |
Collapse
|
22
|
Tanaka Y, Tagaya M, Hori T, Sakamoto T, Kurihara Y, Katahira M, Uesugi S. Cleavage reaction of HDV ribozymes in the presence of Mg2+ is accompanied by a conformational change. Genes Cells 2002; 7:567-79. [PMID: 12059960 DOI: 10.1046/j.1365-2443.2002.00541.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Hepatitis delta virus (HDV) ribozymes cleave RNA in the presence of divalent metal ions. We have previously elucidated the solution conformation of a minimized trans-acting HDV ribozyme and obtained evidence by NMR study that an Mg2+ ion binds to a site close to the cleavage site. RESULTS We examined two ribozyme systems: a pre-cleavage complex with a non-cleavable substrate analogue (mS8) and a post-cleavage complex with a 3' cleavage product (P7). Upon titration with MgCl2, the complex with P7 showed a profound spectral change, while that with mS8 showed broadening of the signals. Analysis of the NOESY spectra of the P7 complex at high Mg2+ concentration revealed that a G:U pair is formed within the L3 loop, and the P1 and P4 stems are stabilized with respect to those of the pre-cleavage complex. CONCLUSION The present analysis indicates that the cleavage reaction of the HDV ribozyme produces a big conformational change. Furthermore, presence of the 5'-terminal cytidine residue prevents this conformational change and its absence stabilizes the product-ribozyme complex in the presence of Mg2+. The structure of the Mg2+-bound P7 complex is similar to the crystal structure found for a product-ribozyme complex but is different from the pre-cleavage structure.
Collapse
Affiliation(s)
- Yoichiro Tanaka
- Department of Environment and Natural Sciences, Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Pereira MJB, Harris DA, Rueda D, Walter NG. Reaction pathway of the trans-acting hepatitis delta virus ribozyme: a conformational change accompanies catalysis. Biochemistry 2002; 41:730-40. [PMID: 11790094 DOI: 10.1021/bi011963t] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hepatitis delta virus (HDV), an infectious human pathogen and satellite of hepatitis B virus, leads to intensified disease symptoms, including progression to liver cirrhosis. Both the circular RNA genome of HDV and its complementary antigenome contain the same cis-cleaving catalytic RNA motif that plays a crucial role in virus replication. Previously, the high-resolution crystal structure of the product form of a cis-acting genomic HDV ribozyme has been determined, while a trans-acting version of the ribozyme was used to dissect the cleavage reaction pathway. Using fluorescence resonance energy transfer (FRET) on a synthetic trans-cleaving form of the ribozyme, we are able to directly observe substrate binding (at a rate constant k(on) of 7.8 x 10(6) M(-1) min(-1) at pH 7.5, 11 mM MgCl(2), and 25 degrees C) and dissociation (at 0.34 min(-1)). Steady-state and time-resolved FRET experiments in solution and in nondenaturing gels reveal that the substrate (precursor) complex is slightly more compact (by approximately 3 A) than the free ribozyme, yet becomes significantly extended (by approximately 15 A) upon cleavage and product complex formation. We also find that trans cleavage is characterized by a high transition-state entropy (-26 eu). We propose that the significant global conformational change that we observe between the precursor and product structures occurs on the reaction trajectory into a constrained product complex-like transition state. Our observations may present the structural basis of the recently described utilization of intrinsic substrate binding energy to the overall catalytic rate enhancement by the trans-acting HDV ribozyme.
Collapse
Affiliation(s)
- Miguel J B Pereira
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | |
Collapse
|