1
|
Strateva TV, Hristova P, Stoeva TJ, Hitkova H, Peykov S. First Detection and Genomic Characterization of Linezolid-Resistant Enterococcus faecalis Clinical Isolates in Bulgaria. Microorganisms 2025; 13:195. [PMID: 39858963 PMCID: PMC11767806 DOI: 10.3390/microorganisms13010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Linezolid is an oxazolidinone antibiotic and is considered a last-resort treatment option for serious infections caused by problematic Gram-positive pathogens, including vancomycin-resistant enterococci. The present study aimed to explore the linezolid resistance mechanisms and genomic characteristics of two vancomycin-susceptible Enterococcus faecalis isolates from Bulgaria. The strains designated Efs2503-bg (inpatient from Pleven) and Efs966-bg (outpatient from Varna) were recovered from wounds in 2018 and 2023, respectively. Antimicrobial susceptibility testing, whole-genome sequencing, multilocus sequence typing, and phylogenomic analysis based on 332 linezolid-resistant E. faecalis genomes were performed. Efs2503-bg was high-level resistant to linezolid (MIC > 256 mg/L) and displayed the G2576T mutation affecting three of the four 23S rDNA loci. Efs966-bg (MIC = 8 mg/L) carried a plasmid-located optrA determinant surrounded by fexA and ermA. No mutations in the genes encoding for ribosomal proteins L3, L4, and L22 were detected. The isolates belonged to the sequence types ST6 (Efs2503-bg) and ST1102 (Efs966-bg). Phylogenomic analysis revealed that Efs2503-bg and Efs966-bg are genetically distinct, with a difference of 12,051 single-nucleotide polymorphisms. To our knowledge, this is the first report of linezolid-resistant enterococci in Bulgaria. Although the global incidence of linezolid-resistant enterococci is still low, their emergence is alarming and poses a growing clinical threat to public health.
Collapse
Affiliation(s)
- Tanya V. Strateva
- Department of Medical Microbiology “Corr. Mem. Prof. Ivan Mitov, MD, DMSc”, Faculty of Medicine, Medical University of Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria
| | - Preslava Hristova
- Department of Microbiology and Virology, Faculty of Pharmacy, Medical University of Pleven, 1 St. Kliment Ohridski Str., 5800 Pleven, Bulgaria; (P.H.); (H.H.)
| | - Temenuga J. Stoeva
- Department of Microbiology and Virology, Faculty of Medicine, Medical University of Varna, 55 Marin Drinov Str., 9002 Varna, Bulgaria;
| | - Hristina Hitkova
- Department of Microbiology and Virology, Faculty of Pharmacy, Medical University of Pleven, 1 St. Kliment Ohridski Str., 5800 Pleven, Bulgaria; (P.H.); (H.H.)
| | - Slavil Peykov
- Department of Medical Microbiology “Corr. Mem. Prof. Ivan Mitov, MD, DMSc”, Faculty of Medicine, Medical University of Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria
- Department of Genetics, Faculty of Biology, University of Sofia ‘St. Kliment Ohridski’, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
- BioInfoTech Laboratory, Sofia Tech Park, 111 Tsarigradsko Shose Blvd., 1784 Sofia, Bulgaria
| |
Collapse
|
2
|
Yang W, Chen T, Zhou Q, Xu J. Resistance to linezolid in Staphylococcus aureus by mutation, modification, and acquisition of genes. J Antibiot (Tokyo) 2025; 78:4-13. [PMID: 39420155 DOI: 10.1038/s41429-024-00778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Linezolid binds to the 50S subunit of the bacterial ribosome, inhibiting bacterial protein synthesis by preventing the formation of the initiation complex. Oxazolidinone antimicrobial drugs represent the last line of defense in treating Staphylococcus aureus infections; thus, resistance to linezolid in S. aureus warrants high priority. This article examines the major mechanisms of resistance to linezolid in S. aureus, which include: mutations in the domain V of 23S rRNA (primarily G2576); chromosomal mutations in the rplC, rplD, and rplV genes (encoding the ribosomal uL3, uL4, and uL22 proteins, respectively); the exogenous acquisition of the methylase encoded by the chloramphenicol-florfenicol resistance (cfr) gene; the endogenous methylation or demethylation of 23S rRNA; the acquisition of optrA and poxtA resistance genes; and the existence of the LmrS multidrug efflux pump. In conclusion, these mechanisms mediate resistance through mutations or modifications to the bacterial target, thereby reducing the affinity of linezolid for the peptidyl transferase center (PTC) binding site or by preventing the binding of linezolid to the PTC through a ribosomal protective effect. The existence of additional, unexplained resistance mechanisms requires further investigation and verification.
Collapse
Affiliation(s)
- Wenjing Yang
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Taoran Chen
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Qi Zhou
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Jiancheng Xu
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China.
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Zhang Z, Wei M, Jia B, Yuan Y. Recent Advances in Antimicrobial Resistance: Insights from Escherichia coli as a Model Organism. Microorganisms 2024; 13:51. [PMID: 39858819 PMCID: PMC11767524 DOI: 10.3390/microorganisms13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
Antimicrobial resistance (AMR) represents a critical global health threat, and a thorough understanding of resistance mechanisms in Escherichia coli is needed to guide effective treatment interventions. This review explores recent advances for investigating AMR in E. coli, including machine learning for resistance pattern analysis, laboratory evolution to generate resistant mutants, mutant library construction, and genome sequencing for in-depth characterization. Key resistance mechanisms are discussed, including drug inactivation, target modification, altered transport, and metabolic adaptation. Additionally, we highlight strategies to mitigate the spread of AMR, such as dynamic resistance monitoring, innovative therapies like phage therapy and CRISPR-Cas technology, and tighter regulation of antibiotic use in animal production systems. This review provides actionable insights into E. coli resistance mechanisms and identifies promising directions for future antibiotic development and AMR management.
Collapse
Affiliation(s)
| | | | - Bin Jia
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.); (M.W.); (Y.Y.)
| | | |
Collapse
|
4
|
Shen W, Hu Y, Liu D, Wang Y, Schwarz S, Zhang R, Cai J. Prevalence and genetic characterization of linezolid resistance gene reservoirs in hospital sewage from Zhejiang Province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177162. [PMID: 39461535 DOI: 10.1016/j.scitotenv.2024.177162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/11/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Hospital sewage represented important hotspots for the aggregation and dissemination of clinically relevant pathogens and antimicrobial resistance genes. To investigate the prevalence and molecular epidemiology of linezolid resistance genes in hospital sewage, both influent and effluent samples from 11 hospitals in Zhejiang Province, China, were collected and analyzed for linezolid resistance gene carriers. Thirty colonies of putative isolates that grew on the selective media with 10 mg/L florfenicol were randomly picked per sample. A total of 420 Gram-positive isolates, including 330 from 11 influent samples and 90 from three effluent samples, were obtained. Each isolate carried at least one of the linezolid resistance genes, including optrA, poxtA, cfr, and cfr(D), and the optrA gene was highly dominant (388/420). Enterococci displayed predominance among the linezolid resistance gene carriers in the hospital sewage, exhibiting a resistance rate to linezolid of 77.8 %. The wild-type OptrA and OptrA variants KLDP, RDK, and KLDK, all associated with high linezolid MICs, were most frequently detected. Phylogenetic analysis revealed the multispecies and polyclonal distribution of linezolid-resistant bacteria in hospital sewage, while Enterococcus faecalis sequence types (STs) 16 and 179 demonstrated the widest dissemination across different hospitals. Despite generally high genetic diversity, phylogenetic analysis showed that 87 isolates, assigned to ten STs from both sewage and other sources, were genetically related. Moreover, the genetic environment of linezolid resistance genes in isolates from sewage was similar to that from animals, humans, or the environment, with "Tn554-fexA-optrA" as the most common structure. These findings revealed the potential risk of the transmission of linezolid resistance genes through hospital sewage to other environments.
Collapse
Affiliation(s)
- Weiyi Shen
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Hu
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Dejun Liu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yang Wang
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Stefan Schwarz
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Institute of Microbiology and Epizootics, Center for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany; Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Rong Zhang
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Jiachang Cai
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Wang Z, Fu Y, Zheng YL, Jiang N, Jiang H, Wu C, Lv Z, Krüger-Haker H, Feßler AT, Schwarz S, Wang Y. Fate of florfenicol and linezolid resistance genes and their bacterial hosts during two waste treatment models in swine feedlots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173645. [PMID: 38821272 DOI: 10.1016/j.scitotenv.2024.173645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/28/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Florfenicol resistance genes (FRGs) are widely present in livestock farms. The aim of this study was to evaluate the removal efficiencies of FRGs as well as the relationships between FRGs, mobile genetic elements (MGEs) and bacterial communities during the natural drying (ND) and anaerobic digestion (AD) processes of manure treatment in swine farms by combining bacterial isolation, quantitative PCR and metagenomic approaches. Solid manure showed a higher abundance of FRGs than fresh manure and was the main contamination source of fexA and fexB in ND farms, whilst biogas slurry displayed a lower abundance of FRGs than the wastewater in AD farms. Moreover, fresh manure and wastewater showed a high abundance of optrA, and wastewater was the main contamination source of cfr in both ND and AD farms. Both optrA/fexA-positive enterococci and cfr/fexA-positive staphylococci were mainly isolated along the farms' treatment processes. The cfr-positive staphylococci were highly prevalent in wastewater (57.14 % - 100 %) and may be associated with nasal-derived cfr-positive porcine staphylococci. An increased abundance of Enterococcus, Jeotgalibaca and Vagococcus in the bacterial community structures may account for the high optrA abundance in wastewater and Jeotgalibaca may be another potential host of optrA. Furthermore, the abundance of FRG-related MGEs increased by 22.63 % after the ND process and decreased by 66.96 % in AD farms. A significant correlation was observed between cfr and ISEnfa4, whereas no significance was found between optrA and IS1216E, although IS1216E is the predominant insertion sequence involved in the transfer of optrA. In conclusion, manure and wastewater represented independent pollution sources of FRGs in swine farms. Associated MGEs might play a key role in the transfer and persistence of FRGs. The AD process was more efficient in the removal of FRGs than the ND method, nevertheless a longer storage of slurry may be required for a complete removal.
Collapse
Affiliation(s)
- Zheng Wang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, China.
| | - Yulin Fu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China; Central Laboratory Department, Shenzhen Centre for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yong-Liang Zheng
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, China
| | - Nansong Jiang
- Research Center for Poultry Diseases of Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Haiyang Jiang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Congming Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ziquan Lv
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Henrike Krüger-Haker
- Institute of Microbiology and Epizootics, Center for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany; Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Andrea T Feßler
- Institute of Microbiology and Epizootics, Center for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany; Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Stefan Schwarz
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China; Institute of Microbiology and Epizootics, Center for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany; Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
Zaidi SEZ, Zaheer R, Zovoilis A, McAllister TA. Enterococci as a One Health indicator of antimicrobial resistance. Can J Microbiol 2024; 70:303-335. [PMID: 38696839 DOI: 10.1139/cjm-2024-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/04/2024]
Abstract
The rapid increase of antimicrobial-resistant bacteria in humans and livestock is concerning. Antimicrobials are essential for the treatment of disease in modern day medicine, and their misuse in humans and food animals has contributed to an increase in the prevalence of antimicrobial-resistant bacteria. Globally, antimicrobial resistance is recognized as a One Health problem affecting humans, animals, and environment. Enterococcal species are Gram-positive bacteria that are widely distributed in nature. Their occurrence, prevalence, and persistence across the One Health continuum make them an ideal candidate to study antimicrobial resistance from a One Health perspective. The objective of this review was to summarize the role of enterococci as an indicator of antimicrobial resistance across One Health sectors. We also briefly address the prevalence of enterococci in human, animal, and environmental settings. In addition, a 16S RNA gene-based phylogenetic tree was constructed to visualize the evolutionary relationship among enterococcal species and whether they segregate based on host environment. We also review the genomic basis of antimicrobial resistance in enterococcal species across the One Health continuum.
Collapse
Affiliation(s)
- Sani-E-Zehra Zaidi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- University of Manitoba, Department of Biochemistry and Medical Genetics, 745 Bannatyne Ave, Winnipeg
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Athanasios Zovoilis
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- University of Manitoba, Department of Biochemistry and Medical Genetics, 745 Bannatyne Ave, Winnipeg
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
7
|
Aleksandrova EV, Wu KJY, Tresco BIC, Syroegin EA, Killeavy EE, Balasanyants SM, Svetlov MS, Gregory ST, Atkinson GC, Myers AG, Polikanov YS. Structural basis of Cfr-mediated antimicrobial resistance and mechanisms to evade it. Nat Chem Biol 2024; 20:867-876. [PMID: 38238495 PMCID: PMC11325235 DOI: 10.1038/s41589-023-01525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
The bacterial ribosome is an essential drug target as many clinically important antibiotics bind and inhibit its functional centers. The catalytic peptidyl transferase center (PTC) is targeted by the broadest array of inhibitors belonging to several chemical classes. One of the most abundant and clinically prevalent resistance mechanisms to PTC-acting drugs in Gram-positive bacteria is C8-methylation of the universally conserved A2503 nucleobase by Cfr methylase in 23S ribosomal RNA. Despite its clinical importance, a sufficient understanding of the molecular mechanisms underlying Cfr-mediated resistance is currently lacking. Here, we report a set of high-resolution structures of the Cfr-modified 70S ribosome containing aminoacyl- and peptidyl-transfer RNAs. These structures reveal an allosteric rearrangement of nucleotide A2062 upon Cfr-mediated methylation of A2503 that likely contributes to the reduced potency of some PTC inhibitors. Additionally, we provide the structural bases behind two distinct mechanisms of engaging the Cfr-methylated ribosome by the antibiotics iboxamycin and tylosin.
Collapse
Affiliation(s)
- Elena V Aleksandrova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Kelvin J Y Wu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Ben I C Tresco
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Egor A Syroegin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Erin E Killeavy
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Samson M Balasanyants
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Maxim S Svetlov
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven T Gregory
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Gemma C Atkinson
- Department of Experimental Medicine, Lund University, Lund, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Andrew G Myers
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA.
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
8
|
Mullally CA, Fahriani M, Mowlaboccus S, Coombs GW. Non- faecium non- faecalis enterococci: a review of clinical manifestations, virulence factors, and antimicrobial resistance. Clin Microbiol Rev 2024; 37:e0012123. [PMID: 38466110 PMCID: PMC11237509 DOI: 10.1128/cmr.00121-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/12/2024] Open
Abstract
SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes.
Collapse
Affiliation(s)
- Christopher A Mullally
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marhami Fahriani
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
9
|
Yang Y, Xie S, He F, Xu Y, Wang Z, Ihsan A, Wang X. Recent development and fighting strategies for lincosamide antibiotic resistance. Clin Microbiol Rev 2024; 37:e0016123. [PMID: 38634634 PMCID: PMC11237733 DOI: 10.1128/cmr.00161-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 04/19/2024] Open
Abstract
SUMMARYLincosamides constitute an important class of antibiotics used against a wide range of pathogens, including methicillin-resistant Staphylococcus aureus. However, due to the misuse of lincosamide and co-selection pressure, the resistance to lincosamide has become a serious concern. It is urgently needed to carefully understand the phenomenon and mechanism of lincosamide resistance to effectively prevent and control lincosamide resistance. To date, six mobile lincosamide resistance classes, including lnu, cfr, erm, vga, lsa, and sal, have been identified. These lincosamide resistance genes are frequently found on mobile genetic elements (MGEs), such as plasmids, transposons, integrative and conjugative elements, genomic islands, and prophages. Additionally, MGEs harbor the genes that confer resistance not only to antimicrobial agents of other classes but also to metals and biocides. The ultimate purpose of discovering and summarizing bacterial resistance is to prevent, control, and combat resistance effectively. This review highlights four promising strategies, including chemical modification of antibiotics, the development of antimicrobial peptides, the initiation of bacterial self-destruct program, and antimicrobial stewardship, to fight against resistance and safeguard global health.
Collapse
Affiliation(s)
- Yingying Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shiyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fangjing He
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yindi Xu
- Institute of Animal Husbandry Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Zhifang Wang
- Institute of Animal Husbandry Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal campus, Islamabad, Pakistan
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
10
|
Rani V, Aye NK, Saksena R, Dabi KC, Mannan MAU, Gaind R. Risk factors and outcome associated with the acquisition of MDR linezolid-resistant Enterococcus faecium: a report from tertiary care centre. Eur J Clin Microbiol Infect Dis 2024; 43:767-775. [PMID: 38372832 DOI: 10.1007/s10096-024-04784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
OBJECTIVE The aim of the study was to determine the resistance profile of linezolid-resistant Enterococcus faecium (LREfm) and to investigate risk factors and outcomes associated with LREfm infections. MATERIAL AND METHODS A prospective case-control study was undertaken (2019 to 2022) and included 202 patients with LREfm infections (cases) and 200 controls with LSEfm infections. Clinical data was prospectively collected and analysed for risk factors and outcomes. Antimicrobial susceptibility was performed, and resistance profile was studied using WHOnet. RESULTS Risk factors associated with LREfm infection were site of infection UTI (OR 5.87, 95% CI 2.59-13.29, p ≤ 0.001), prior use of carbapenem (OR 2.85 95% CI 1.62-5.02, p ≤ 0.001) and linezolid (OR 10.13, 95% CI 4.13-24.82, p ≤ 0.001), use of central line (OR 5.54, 95% CI 2.35-13.09, p ≤ 0.001), urinary catheter (OR 0.29, 95% CI 0.12-0.70, p ≤ 0.001) and ventilation (OR 14.87, 95% CI 7.86-28.11, p ≤ 0.007). The hospital stay 8-14 days (< 0.001) prior to infection and the mortality rate (p = 0.003) were also significantly high among patients with LREfm infections. Linezolid and vancomycin resistance coexisted; further, MDR, XDR and PDR phenotypes were significantly higher among LREfm. CONCLUSION This study provided insight into epidemiology of MDR LREfm in a setting where linezolid use is high. The main drivers of infections with LREfm are multiple, including use of carbapenems and linezolid. Invasive procedures and increased hospital stay facilitate spread through breach in infection control practises. As therapeutic options are limited, ongoing surveillance of LREfm and VRE is critical to guide appropriate use of linezolid and infection control policies.
Collapse
Affiliation(s)
- Vandana Rani
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, 110029, India
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144422, India
| | - N Kitoi Aye
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, 110029, India
| | - Rushika Saksena
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, 110029, India
| | - Kailash Chandra Dabi
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, 110029, India
| | - Mohammad Amin-Ul Mannan
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144422, India.
- Division of Infectious Disease, The Lundquist Institute, UCLA Harbor Medical Center, Los Angeles, CA, 90502, USA.
| | - Rajni Gaind
- Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, 110029, India.
| |
Collapse
|
11
|
Kardos G, Laczkó L, Kaszab E, Timmer B, Szarka K, Prépost E, Bányai K. Phylogeny of Transferable Oxazolidinone Resistance Genes and Homologs. Antibiotics (Basel) 2024; 13:311. [PMID: 38666987 PMCID: PMC11047308 DOI: 10.3390/antibiotics13040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024] Open
Abstract
Oxazolidinone resistance, especially transmissible resistance, is a major public health concern, and the origin of this resistance mechanism is not yet resolved. This study aims to delve into the phylogenetic origin of the transmissible oxazolidinone resistance mechanisms conferring cross-resistance to other drugs of human and veterinary importance. The amino acid sequences of the five cfr ribosomal methylases and optrA and poxtA were used as queries in searches against 219,549 bacterial proteomes in the NCBI RefSeq database. Hits with >40% amino acid identity and >80% query coverage were aligned, and phylogenetic trees were reconstructed. All five cfr genes yielded highly similar trees, with rlmN housekeeping ribosomal methylases located basal to the sister groups of S-adenosyl-methionine-dependent methyltransferases from various Deltaproteobacteria and Actinomycetia, including antibiotic-producing Streptomyces species, and the monophyletic group of cfr genes. The basal branches of the latter contained paenibacilli and other soil bacteria; they then could be split into the clades [cfr(C):cfr(E)] and [[cfr:cfr(B)]:cfr(D)], always with different Bacillaceae in their stems. Lachnospiraceae were encountered in the basal branches of both optrA and poxtA trees. The ultimate origin of the cfr genes is the rlmN housekeeping ribosomal methylases, which evolved into a suicide-avoiding methylase in antibiotic producers; a soil organism (Lachnospiraceae, Paenibacilli) probably acted as a transfer organism into pathogenic bacteria. In the case of optrA, the porcine pathogenic Streptococcus suis was present in all branches, while the proteins closest to poxtA originated from Clostridia.
Collapse
Affiliation(s)
- Gábor Kardos
- Institute of Metagenomics, University of Debrecen, H-4032 Debrecen, Hungary; (B.T.); (K.S.)
- One Health Institute, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary; (L.L.); (E.K.)
| | - Levente Laczkó
- One Health Institute, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary; (L.L.); (E.K.)
- HUN-REN-DE Conservation Biology Research Group, H-4032 Debrecen, Hungary
| | - Eszter Kaszab
- One Health Institute, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary; (L.L.); (E.K.)
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, H-1078 Budapest, Hungary
| | - Bálint Timmer
- Institute of Metagenomics, University of Debrecen, H-4032 Debrecen, Hungary; (B.T.); (K.S.)
- Department of Medical Microbiology and Immunology, University of Pécs, H-7624 Pécs, Hungary
| | - Krisztina Szarka
- Institute of Metagenomics, University of Debrecen, H-4032 Debrecen, Hungary; (B.T.); (K.S.)
- One Health Institute, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary; (L.L.); (E.K.)
| | - Eszter Prépost
- Department of Health Industry, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Krisztián Bányai
- Pathogen Discovery Group, HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, H-1143 Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, H-1078 Budapest, Hungary
| |
Collapse
|
12
|
Alawi M, Smyth C, Drissner D, Zimmerer A, Leupold D, Müller D, Do TT, Velasco-Torrijos T, Walsh F. Private and well drinking water are reservoirs for antimicrobial resistant bacteria. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:7. [PMID: 39843970 PMCID: PMC11721118 DOI: 10.1038/s44259-024-00024-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/01/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2025]
Abstract
Water quality testing does not recognise antimicrobial resistance (AMR) and is often limited to indicators of faecal contamination Escherichia coli and Enterococcus species. In Europe, data on AMR in drinking water is scarce. In Ireland, as in many countries, household drinking water is supplied via mains or via private wells or water schemes. Using citizen science, we identified Irish private drinking water supplies as reservoirs of antimicrobial resistant bacteria (ARB). Gram-negative (n = 464) and Gram-positive (n = 72) bacteria were isolated. We identified instances of potentially opportunistic ARB such as Enterobacter cloacae, Acinetobacter baumannii and Enterococcus species. We report reservoirs of multidrug resistance in Enterococcus casseliflavus, E. cloacae, E. coli, Stenotrophomonas maltophilia, and Serratia rubidaea. We also identified linezolid-resistant Enterococcus in Irish drinking water. Linezolid is a last-resort antibiotic used to treat vancomycin-resistant Enterococcus sp. Additionally, we identified mobile AMR in three water samples, two of which were carried on IncF group, one on IncQ and five on Col-like plasmids. Our work suggests that private drinking water is a potential sink and source of AMR pathogens. This highlights a value of drinking water surveillance in a One Health framework as the surveillance would provide information regarding the movement and persistence of ARB and ARGs that are able to survive in drinking water and subsequently have the opportunity to be mobilised through humans; linking the environment to the human and potentially threatening human health.
Collapse
Affiliation(s)
- Marwa Alawi
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland.
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland.
| | - Cian Smyth
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - David Drissner
- Department of Life Sciences, Albstadt-Sigmaringen University, 72488, Sigmaringen, Germany
| | - Anna Zimmerer
- Department of Life Sciences, Albstadt-Sigmaringen University, 72488, Sigmaringen, Germany
| | - Denise Leupold
- Department of Life Sciences, Albstadt-Sigmaringen University, 72488, Sigmaringen, Germany
| | - Daria Müller
- Department of Life Sciences, Albstadt-Sigmaringen University, 72488, Sigmaringen, Germany
| | - Thi Thuy Do
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
- Department of Agriculture, Food and the Marine, Celbridge, Kildare, Ireland
| | - Trinidad Velasco-Torrijos
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland
- Department of Chemistry, Maynooth University, Maynooth, County Kildare, Ireland
| | - Fiona Walsh
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland
| |
Collapse
|
13
|
Cuny C, Layer-Nicolaou F, Werner G, Witte W. A look at staphylococci from the one health perspective. Int J Med Microbiol 2024; 314:151604. [PMID: 38367509 DOI: 10.1016/j.ijmm.2024.151604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/19/2024] Open
Abstract
Staphylococcus aureus and other staphylococcal species are resident and transient multihost colonizers as well as conditional pathogens. Especially S. aureus represents an excellent model bacterium for the "One Health" concept because of its dynamics at the human-animal interface and versatility with respect to host adaptation. The development of antimicrobial resistance plays another integral part. This overview will focus on studies at the human-animal interface with respect to livestock farming and to companion animals, as well as on staphylococci in wildlife. In this context transmissions of staphylococci and of antimicrobial resistance genes between animals and humans are of particular significance.
Collapse
Affiliation(s)
- Christiane Cuny
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany.
| | - Franziska Layer-Nicolaou
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany
| | - Guido Werner
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany
| | | |
Collapse
|
14
|
Liu P, Zeng B, Wu X, Zheng F, Zhang Y, Liao X. Risk exploration and prediction model construction for linezolid-resistant Enterococcus faecalis based on big data in a province in southern China. Eur J Clin Microbiol Infect Dis 2024; 43:259-268. [PMID: 38032514 PMCID: PMC10821975 DOI: 10.1007/s10096-023-04717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/18/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Enterococcus faecalis is a common cause of healthcare-associated infections. Its resistance to linezolid, the antibiotic of last resort for vancomycin-resistant enterococci, has become a growing threat in healthcare settings. METHODS We analyzed the data of E. faecalis isolates from 26 medical institutions between 2018 and 2020 and performed univariate and multivariate logistic regression analyses to determine the independent predictors for linezolid-resistant E. faecalis (LREFs). Then, we used the artificial neural network (ANN) and logistic regression (LR) to build a prediction model for linezolid resistance and performed a performance evaluation and comparison. RESULTS Of 12,089 E. faecalis strains, 755 (6.25%) were resistant to linezolid. Among vancomycin-resistant E. faecalis, the linezolid-resistant rate was 24.44%, higher than that of vancomycin-susceptible E. faecalis (p < 0.0001). Univariate and multivariate regression analyses showed that gender, age, specimen type, length of stay before culture, season, region, GDP (gross domestic product), number of beds, and hospital level were predictors of linezolid resistance. Both the ANN and LR models constructed in the study performed well in predicting linezolid resistance in E. faecalis, with AUCs of 0.754 and 0.741 in the validation set, respectively. However, synthetic minority oversampling technique (SMOTE) did not improve the prediction ability of the models. CONCLUSION E. faecalis linezolid-resistant rates varied by specimen site, geographic region, GDP level, facility level, and the number of beds. At the same time, community-acquired E. faecalis with linezolid resistance should be monitored closely. We can use the prediction model to guide clinical medication and take timely prevention and control measures.
Collapse
Affiliation(s)
- Peijun Liu
- Administration Department of Nosocomial Infection, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
| | - Bangwei Zeng
- Administration Department of Nosocomial Infection, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China.
| | - Xiaoyan Wu
- Administration Department of Nosocomial Infection, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
| | - Feng Zheng
- Information Department, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
| | - Yangmei Zhang
- Administration Department of Nosocomial Infection, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
| | - Xiaohua Liao
- Administration Department of Nosocomial Infection, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
| |
Collapse
|
15
|
Xin R, Li K, Ding Y, Zhang K, Qin M, Jia X, Fan P, Li R, Zhang K, Yang F. Tracking the extracellular and intracellular antibiotic resistance genes across whole year in wastewater of intensive dairy farm. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115773. [PMID: 38039853 DOI: 10.1016/j.ecoenv.2023.115773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/21/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Monitoring the annual variation of antibiotic resistance genes (ARGs) in livestock wastewater is important for determining the high-risk period of transfer and spread of animal-derived antibiotic resistance into the environment. However, the knowledge regarding the variation patterns of ARGs, especially intracellular ARGs (iARGs) and extracellular ARGs (eARGs), over time in livestock wastewater is still unclear. Herein, we conducted a year-round study to trace the profiles of ARGs at a Chinese-intensive dairy farm, focusing on the shifts observed in different months. The results showed significant differences in the composition and variation between iARGs and eARGs. Tetracycline, sulfonamide, and macrolide resistance genes were the major types of iARGs, while cfr was the major type of eARG. The environmental adaptations of the host bacteria determine whether ARGs appear as intracellular or extracellular forms. The total abundance of ARGs was higher from April to September, which can be attributed to the favorable climatic conditions for bacterial colonization and increased antibiotic administration during this period. Integron was found to be highly correlated with most iARGs, potentially playing a role in the presence of these genes within cells and their similar transmission patterns in wastewater. The intracellular and extracellular bacterial communities were significantly different, primarily because of variations in bacterial adaptability to the high salt and anaerobic environment. The intracellular co-occurrence network indicated that some dominant genera in wastewater, such as Turicibacter, Clostridium IV, Cloacibacillus, Subdivision5_genera_incertae_sedis, Saccharibacteria_genera_incertae_sedis and Halomonas, were potential hosts for many ARGs. To the best of our knowledge, this study demonstrates, for the first time, the annual variation of ARGs at critical points in the reuse of dairy farm wastewater. It also offers valuable insights into the prevention and control of ARGs derived from animals.
Collapse
Affiliation(s)
- Rui Xin
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Kuangjia Li
- Development Research Center, Ministry of Water Resources of People's Republic of China, Beijing 100032, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Mengyuan Qin
- Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Xian Jia
- Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Penglin Fan
- Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Ruojing Li
- Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Kai Zhang
- Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
16
|
Schaenzer AJ, Rodriguez Hernandez A, Tsai K, Hobson C, Fujimori DG, Wright GD. Angucyclinones rescue PhLOPS A antibiotic activity by inhibiting Cfr-dependent antibiotic resistance. mBio 2023; 14:e0179123. [PMID: 38014974 PMCID: PMC10746278 DOI: 10.1128/mbio.01791-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2023] [Accepted: 10/16/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Cfr is an antibiotic resistance enzyme that inhibits five clinically important antibiotic classes, is genetically mobile, and has a minimal fitness cost, making Cfr a serious threat to antibiotic efficacy. The significance of our work is in discovering molecules that inhibit Cfr-dependent methylation of the ribosome, thus protecting the efficacy of the PhLOPSA antibiotics. These molecules are the first reported inhibitors of Cfr-mediated ribosome methylation and, as such, will guide the further discovery of chemical scaffolds against Cfr-mediated antibiotic resistance. Our work acts as a foundation for further development of molecules that safeguard the PhLOPSA antibiotics from Cfr.
Collapse
Affiliation(s)
- Adam J. Schaenzer
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Annia Rodriguez Hernandez
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Kaitlyn Tsai
- Chemistry and Chemical Biology Graduate Program, University of California San Francisco, San Francisco, California, USA
| | - Christian Hobson
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, California, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Gerard D. Wright
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
17
|
Minerdi D, Loqui D, Sabbatini P. Monooxygenases and Antibiotic Resistance: A Focus on Carbapenems. BIOLOGY 2023; 12:1316. [PMID: 37887026 PMCID: PMC10604202 DOI: 10.3390/biology12101316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023]
Abstract
Carbapenems are a group of broad-spectrum beta-lactam antibiotics that in many cases are the last effective defense against infections caused by multidrug-resistant bacteria, such as some strains of Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Resistance to carbapenems has emerged and is beginning to spread, becoming an ongoing public-health problem of global dimensions, causing serious outbreaks, and dramatically limiting treatment options. This paper reviews the role of flavin monooxygenases in antibiotic resistance, with a specific focus on carbapenem resistance and the recently discovered mechanism mediated by Baeyer-Villiger monooxygenases. Flavin monooxygenases are enzymes involved in the metabolism and detoxification of compounds, including antibiotics. Understanding their role in antibiotic resistance is crucial. Carbapenems are powerful antibiotics used to treat severe infections caused by multidrug-resistant bacteria. However, the rise of carbapenem-resistant strains poses a significant challenge. This paper explores the mechanisms by which flavin monooxygenases confer resistance to carbapenems, examining molecular pathways and genetic factors. Additionally, this paper highlights the discovery of Baeyer-Villiger monooxygenases' involvement in antibiotic resistance. These enzymes catalyze the insertion of oxygen atoms into specific chemical bonds. Recent studies have revealed their unexpected role in promoting carbapenem resistance. Through a comprehensive analysis of the literature, this paper contributes to the understanding of the interplay between flavin monooxygenases, carbapenem resistance, and Baeyer-Villiger monooxygenases. By exploring these mechanisms, it aims to inform the development of strategies to combat antibiotic resistance, a critical global health concern.
Collapse
Affiliation(s)
- Daniela Minerdi
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy;
| | - Davide Loqui
- Emergency Department, Città della Salute e della Scienza of Turin, 10100 Turin, TO, Italy;
| | - Paolo Sabbatini
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy;
| |
Collapse
|
18
|
Dechêne-Tempier M, Jouy E, Bayon-Auboyer MH, Bougeard S, Chauvin C, Libante V, Payot S, Marois-Créhan C. Antimicrobial resistance profiles of Streptococcus suis isolated from pigs, wild boars, and humans in France between 1994 and 2020. J Clin Microbiol 2023; 61:e0016423. [PMID: 37655935 PMCID: PMC10512786 DOI: 10.1128/jcm.00164-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2023] [Accepted: 07/02/2023] [Indexed: 09/02/2023] Open
Abstract
Streptococcus suis, an emerging zoonotic pathogen, causes invasive infections and substantial economic losses in the pig industry worldwide. Antimicrobial resistance against 22 antibiotics was studied for 200 S. suis strains collected in different geographical regions of France. Most of the strains (86%) showed resistance to at least one antibiotic with a low rate of resistance to fluoroquinolones, penicillins, pleuromutilin, and diaminopyrimidine-sulfonamides, and a higher rate to macrolides-lincosamides and tetracycline. Multi-resistance patterns were observed in 138 strains; three of them being resistant to six antibiotic families. Statistical analyses highlighted a decrease in the resistance to trimethoprim-sulfamethoxazole, in our collection, between the two periods studied-before 2010 and after 2015-as well as an impact of the geographical origin with a higher rate of resistance to macrolides-lincosamides and penicillin in Brittany than in the other French regions. Furthermore, macrolides-lincosamides and tetracycline resistance patterns were more likely to be found in pig isolates than in human and wild boar isolates. A difference in resistance was also observed between serotypes. Most of the penicillin-resistant strains belong to serotypes 1, 5, 9, 11, 12, 15, 27, and 29. Finally, penicillin and pleuromutilin resistances were mostly found in "non-clinical" isolates. The empirical treatment of human and porcine infections due to S. suis in France can therefore still be carried out with beta-lactams. However, this study emphasizes the need to monitor antimicrobial resistance in this zoonotic pathogen.
Collapse
Affiliation(s)
- Manon Dechêne-Tempier
- ANSES, Mycoplasmology, Bacteriology and Antimicrobial Resistance Unit, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
- Université de Lorraine, INRAE, DynAMic, Nancy, France
| | - Eric Jouy
- ANSES, Mycoplasmology, Bacteriology and Antimicrobial Resistance Unit, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | | | - Stéphanie Bougeard
- ANSES, Epidemiology, Health and Welfare Unit, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Claire Chauvin
- ANSES, Epidemiology, Health and Welfare Unit, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | | | - Sophie Payot
- Université de Lorraine, INRAE, DynAMic, Nancy, France
| | - Corinne Marois-Créhan
- ANSES, Mycoplasmology, Bacteriology and Antimicrobial Resistance Unit, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| |
Collapse
|
19
|
Park JH, Lee GY, Lim JH, Kim GB, Park KT, Yang SJ. Species Profiles and Antimicrobial Resistance of Non- aureus Staphylococci Isolated from Healthy Broilers, Farm Environments, and Farm Workers. Food Sci Anim Resour 2023; 43:792-804. [PMID: 37701746 PMCID: PMC10493561 DOI: 10.5851/kosfa.2023.e36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 09/14/2023] Open
Abstract
Non-aureus staphylococci (NAS), particularly antimicrobial-resistant NAS, have a substantial impact on human and animal health. In the current study, we investigated (1) the species profiles of NAS isolates collected from healthy broilers, farm environments, and farm workers in Korea, (2) the occurrence of antimicrobial-resistant NAS isolates, especially methicillin resistance, and (3) the genetic factors involved in the methicillin and fluoroquinolone resistance. In total, 216 NAS isolates of 16 different species were collected from healthy broilers (n=178), broiler farm environments (n=18), and farm workers (n=20) of 20 different broiler farms. The two most dominant broiler-associated NAS species were Staphylococcus agnetis (23.6%) and Staphylococcus xylosus (22.9%). Six NAS isolates were mecA-positive carrying staphylococcal cassette chromosome mec (SCCmec) II (n=1), SCCmec IV (n=1), SCCmec V (n=2), or non-typeable SCCmec element (n=2). While two mecA-positive Staphylococcus epidermidis isolates from farm workers had SCCmec II and IV, a mecA-positive S. epidermidis isolate from broiler and a Staphylococcus haemolyticus isolate farm environment carried SCCmec V. The occurrence of multidrug resistance was observed in 48.1% (104/216 isolates) of NAS isolates with high resistance rates to β-lactams (>40%) and fusidic acid (59.7%). Fluoroquinolone resistance was confirmed in 59 NAS isolates (27.3%), and diverse mutations in the quinolone resistance determining regions of gyrA, gyrB, parC, and parE were identified. These findings suggest that NAS in broiler farms may have a potential role in the acquisition, amplification, and transmission of antimicrobial resistance.
Collapse
Affiliation(s)
- Ji Heon Park
- Department of Veterinary Microbiology,
College of Veterinary Medicine and Research Institute for Veterinary
Science, Seoul National University, Seoul 08826, Korea
| | - Gi Yong Lee
- Department of Veterinary Microbiology,
College of Veterinary Medicine and Research Institute for Veterinary
Science, Seoul National University, Seoul 08826, Korea
| | - Ji Hyun Lim
- Department of Veterinary Microbiology,
College of Veterinary Medicine and Research Institute for Veterinary
Science, Seoul National University, Seoul 08826, Korea
| | - Geun-Bae Kim
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Kun Taek Park
- Department of Biotechnology, Inje
University, Gimhae 50834, Korea
| | - Soo-Jin Yang
- Department of Veterinary Microbiology,
College of Veterinary Medicine and Research Institute for Veterinary
Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
20
|
Rodríguez-Lucas C, Ladero V. Enterococcal Phages: Food and Health Applications. Antibiotics (Basel) 2023; 12:antibiotics12050842. [PMID: 37237745 DOI: 10.3390/antibiotics12050842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Enterococcus is a diverse genus of Gram-positive bacteria belonging to the lactic acid bacteria (LAB) group. It is found in many environments, including the human gut and fermented foods. This microbial genus is at a crossroad between its beneficial effects and the concerns regarding its safety. It plays an important role in the production of fermented foods, and some strains have even been proposed as probiotics. However, they have been identified as responsible for the accumulation of toxic compounds-biogenic amines-in foods, and over the last 20 years, they have emerged as important hospital-acquired pathogens through the acquisition of antimicrobial resistance (AMR). In food, there is a need for targeted measures to prevent their growth without disturbing other LAB members that participate in the fermentation process. Furthermore, the increase in AMR has resulted in the need for the development of new therapeutic options to treat AMR enterococcal infections. Bacteriophages have re-emerged in recent years as a precision tool for the control of bacterial populations, including the treatment of AMR microorganism infections, being a promising weapon as new antimicrobials. In this review, we focus on the problems caused by Enterococcus faecium and Enterococcus faecalis in food and health and on the recent advances in the discovery and applications of enterococcus-infecting bacteriophages against these bacteria, with special attention paid to applications against AMR enterococci.
Collapse
Affiliation(s)
- Carlos Rodríguez-Lucas
- Microbiology Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Translational Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Victor Ladero
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA CSIC, 33300 Villaviciosa, Spain
- Molecular Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
21
|
Iurescia M, Diaconu EL, Alba P, Feltrin F, Buccella C, Onorati R, Giacomi A, Caprioli A, Franco A, Battisti A, Carfora V. Genomics Insight into cfr-Mediated Linezolid-Resistant LA-MRSA in Italian Pig Holdings. Antibiotics (Basel) 2023; 12:antibiotics12030530. [PMID: 36978397 PMCID: PMC10044604 DOI: 10.3390/antibiotics12030530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
The cfr genes encode for a 23S rRNA methyltransferase, conferring a multiresistance phenotype to phenicol, lincosamide, oxazolidinone, pleuromutilin, and streptogramin A antibiotics. These genes have been described in staphylococci, including methicillin-resistant Staphylococcus aureus (MRSA). In this study, we retrospectively performed an in-depth genomic characterisation of three cfr-positive, multidrug-resistant (MDR) livestock-associated (LA) MRSA clonal complexes (CCs) 1 and 398 detected in different Italian pig holdings (2008–2011) during population studies on Italian livestock (2008–2014). We used a combined Illumina and Oxford Nanopore Technologies (ONT) whole genome sequencing (WGS) approach on two isolates (the 2008 CC1 and the 2010 CC398 isolates, but not the 2011 CC1 isolate). Interestingly, the three isolates presented different cfr variants, with only one displaying a linezolid-resistant phenotype. In isolate 2008 CC1, the cfr gene was identified within a Tn558 composite transposon-like structure flanked by IS elements located on a novel 44,826 bp plasmid. This represents the first report of CC1 LA-MRSA harbouring the cfr gene in its functional variant. Differently, cfr was chromosomally located in isolate 2010 CC398. Our findings have significant public health implications, confirm the need for the continuous genomic surveillance of cfr-positive zoonotic LA-MRSA, and backdate cfr presence in LA-MRSA from Italian pigs to at least 2008.
Collapse
|
22
|
Abstract
The multidrug resistance gene cfr mediates resistance to multiple antimicrobial agents, including linezolid. Plasmids are the preferred vector for the dissemination of cfr. However, the presence and transmission of cfr-carrying plasmids among staphylococci from humans and animals have rarely been studied. Here, we investigated the presence of the cfr gene in 2,250 staphylococci of human clinical origin collected in Zhejiang, China, in 1998 to 2021 and in 3,329 porcine staphylococci preserved in our laboratories. The cfr gene was detected in 38 human isolates; its presence in Staphylococcus haemolyticus and Staphylococcus cohnii in 2003 was earlier than that identified in 2005, and Staphylococcus capitis (n = 30) was the predominant species. The cfr-carrying fragment in 38 isolates exhibited >99% nucleotide sequence similarity to plasmid pLRSA417 (39,504 bp), which was identified in 2015 and originated from a human clinical methicillin-resistant Staphylococcus aureus isolate from Zhejiang, China. The cfr-carrying plasmids in 18 MinION-sequenced staphylococci ranged in size from 32,697 bp to 43,457 bp. Fifteen plasmids were identical to pLRSA417, except for the inversion of an 8.4-kb segment comprising IS256-aacA/aphD-ISEnfa4_1-cfr-ISEnfa4_2, while the remaining 3 plasmids exhibited slightly different structures. Among the 114 cfr-positive staphylococci from pigs, pLRSA417-like plasmids were detected in 3 isolates. Intraspecies and interspecies conjugation occurred in human-derived pLRSA417-like plasmids. The presence of pLRSA417-like plasmids in staphylococci from multiple geographic regions and different hosts implied the possible transmission of the respective isolates between humans and animals. IMPORTANCE The therapeutic efficacy of the oxazolidinone antimicrobial linezolid is reduced by the emergence and dissemination of the multidrug resistance gene cfr. The cfr-carrying plasmid pLRSA417 was first identified in a clinical methicillin-resistant Staphylococcus aureus isolate, but its presence in staphylococci of human and animal origin has not been reported previously. This study showed that conjugative plasmids similar to pLRSA417 were detected mainly in Staphylococcus capitis and existed in different staphylococci in 2003 to 2021 in various clinical departments in the same hospital. pLRSA417-like plasmids were also present in staphylococci of food animal sources from different geographic regions, which suggested possible transmission among humans and animals.
Collapse
|
23
|
Li G, Walker MJ, De Oliveira DMP. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022; 11:microorganisms11010024. [PMID: 36677316 PMCID: PMC9866002 DOI: 10.3390/microorganisms11010024] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are both common commensals and major opportunistic human pathogens. In recent decades, these bacteria have acquired broad resistance to several major classes of antibiotics, including commonly employed glycopeptides. Exemplified by resistance to vancomycin, glycopeptide resistance is mediated through intrinsic gene mutations, and/or transferrable van resistance gene cassette-carrying mobile genetic elements. Here, this review will discuss the epidemiology of vancomycin-resistant Enterococcus and S. aureus in healthcare, community, and agricultural settings, explore vancomycin resistance in the context of van and non-van mediated resistance development and provide insights into alternative therapeutic approaches aimed at treating drug-resistant Enterococcus and S. aureus infections.
Collapse
|
24
|
Ma WQ, Han YY, Zhou L, Peng WQ, Mao LY, Yang X, Wang Q, Zhang TJ, Wang HN, Lei CW. Contamination of Proteus mirabilis harbouring various clinically important antimicrobial resistance genes in retail meat and aquatic products from food markets in China. Front Microbiol 2022; 13:1086800. [PMID: 36590410 PMCID: PMC9802577 DOI: 10.3389/fmicb.2022.1086800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Proteus mirabilis is an opportunistic pathogen frequently associated with nosocomial infection and food poisoning cases. Contamination of P. mirabilis in retail meat products may be important transmission routes for human infection with P. mirabilis. In this study a total of 89 P. mirabilis strains were isolated from 347 samples in 14 food markets in China and subjected to whole-genome sequencing. Phylogenetic analysis showed that all 89 strains were divided into 81 different clones (SNPs >5), indicating high genetic diversity of P. mirabilis in food markets. Antimicrobial susceptibility testing showed that 81 (91.01%) strains displayed multidrug resistance profiles. Seventy-three different resistance genes (or variants) were found, including various clinically important antimicrobial resistance genes aac(6')-Ib-cr (77.53%), bla CTX-M (39.33%), fosA3 (30.34%), as well as multiresistance gene cfr (4.50%), tigecycline resistance gene cluster tmexCD3-toprJ1 (4.50%) and carbapenemase gene bla NDM-1 (1.12%). Diverse genetic elements including Tn7 transposon, plasmid, SXT/R391 integrative conjugative element were associated with the horizontal transfer of cfr. tmexCD3-toprJ1 and bla NDM-1 were located on ICEPmiChnJZ26 and Salmonella genomic island 1, respectively. Our study emphasized high contamination of P. mirabilis harbouring various clinically important antimicrobial resistance genes in retail meat and aquatic products, which might be an important issue in terms of food safety and human health.
Collapse
|
25
|
Chen H, Deng H, Cheng L, Jiang N, Fu G, Shi S, Wan C, Fu Q, Liu R, Huang X, Huang Y. Complete nucleotide sequence of cfr-harbouring multidrug-resistant plasmid, pFJ6683, from avian Pasteurella multocida. J Antimicrob Chemother 2022; 77:3517-3519. [PMID: 36227699 DOI: 10.1093/jac/dkac331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2022] [Accepted: 09/05/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hongmei Chen
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Republic of China
| | - Hui Deng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicineand Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, Republic of China
| | - Longfei Cheng
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Republic of China
| | - Nansong Jiang
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Republic of China
| | - Guanghua Fu
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Republic of China
| | - Shaohua Shi
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Republic of China
| | - Chunhe Wan
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Republic of China
| | - Qiuling Fu
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Republic of China
| | - Rongchang Liu
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Republic of China
| | - Xiaohong Huang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicineand Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, Republic of China
| | - Yu Huang
- Fujian Provincial Key Laboratory for Avian Diseases Control and Prevention, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, Republic of China
| |
Collapse
|
26
|
Yang X, Zhang T, Lei CW, Wang Q, Huang Z, Chen X, Wang HN. Florfenicol and oxazolidone resistance status in livestock farms revealed by short- and long-read metagenomic sequencing. Front Microbiol 2022; 13:1018901. [PMID: 36338088 PMCID: PMC9632178 DOI: 10.3389/fmicb.2022.1018901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Antibiotic resistance genes (ARGs) as a novel type of environmental pollutant pose a health risk to humans. Oxazolidinones are one of the most important antibiotics for the treatment of Gram-positive bacterial infections in humans. Although oxazolidinones are not utilized in the livestock industry, florfenicol is commonly used on farms to treat bacterial infections, which may contribute to the spread of the cfr, optrA, and poxtA genes on farms. Using metagenomics sequencing, we looked into the antibiotic resistome context of florfenicol and oxazolidinone in 10 large-scale commercial farms in China. We identified 490 different resistance genes and 1,515 bacterial genera in the fecal samples obtained from 10 farms. Florfenicol-resistant Kurthia, Escherichia, and Proteus were widely present in these samples. The situation of florfenicol and oxazolidone resistance in pig farms is even more severe. The total number of genes and the abundance of drug resistance genes were higher in pigs than in chickens, including optrA and poxtA. All the samples we collected had a high abundance of fexA and floR. Through nanopore metagenomic analysis of the genetic environment, we found that plasmids, integrative and conjugative element (ICE), and transposons (Tn7-like and Tn558) may play an important role in the spread of floR, cfr, and optrA. Our findings suggest that florfenicol and oxazolidinone resistance genes have diverse genetic environments and are at risk of co-transmission with, for example, tetracycline and aminoglycoside resistance genes. The spread of florfenicol- and oxazolidinone-resistant bacteria on animal farms should be continuously monitored.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong-Ning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Huang Z, Bai Y, Wang Q, Yang X, Zhang T, Chen X, Wang H. Persistence of transferable oxazolidinone resistance genes in enterococcal isolates from a swine farm in China. Front Microbiol 2022; 13:1010513. [PMID: 36299730 PMCID: PMC9589348 DOI: 10.3389/fmicb.2022.1010513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
The appearance of transferable oxazolidinone resistance genes poses a major challenge to public health and environmental safety. These genes not only lead pathogenic bacteria to become resistant to linezolid but also reduce sensitivity to florfenicol, which is widely used in the veterinary field. To verify the dissemination of oxazolidinone resistance genes in enterococcal isolates from pigs at different production stages in a swine farm in China, we collected 355 enterococcal isolates that were resistant to florfenicol from 600 (150 per stage) fresh fecal swabs collected from a swine farm. Through initial PCR screening and whole-genome sequencing, 175 isolates harboring different oxazolidinone resistance genes were identified. All isolates carried the optrA gene. A total of 161 (92%, 161/175) isolates carried only the optrA gene. Three (1.71%, 3/175) isolates carried both the optrA and poxtA genes, and 11 (3.1%, 11/175) isolates contained the optrA gene and poxtA2 and cfr(D) variants. A total of 175 isolates that harbored oxazolidinone resistance genes included 161 E. faecalis, 6 E. faecium, and 8 E. hirae. By sequencing the whole genomes, we found that the 161 isolates of E. faecalis belonged to 28 different STs, including 8 new STs, and the 6 isolates of E. faecium belonged to four different STs, including one new ST. The phylogenetic tree based on SNPs of the core genome showed that both clonal spread and horizontal transfer mediated the diffusion of oxazolidone resistance genes in enterococcal isolates at specific stages in pig farms. Moreover, enterococcal isolates carrying oxazolidone resistance genes could spread from breeding pigs to fattening pigs, while transferable oxazolidone resistance genes in enterococcal isolates could persist on a pig farm throughout all production stages. Representative enterococcal isolates with different oxazolidinone resistance genes were further studied through Nanopore sequencing. We identified a novel plasmid, pM4-80 L4 (15,008 bp), carrying the poxtA2 and cfr(D) genes in enterococcal isolates at different stages. We also found three different plasmids harboring the poxtA gene with high genetic variation, and all poxtA genes were flanked by two copies of IS1216E elements. In addition, four genetically distinct plasmids carrying the optrA gene were identified, and Tn554 was found to mediate chromosome-localized optrA gene transfer. Our study highlighted that transferable oxazolidinone resistance genes in enterococcal isolates could persist throughout all production stages on a pig farm, and the prevalence and dissemination of oxazolidinone resistance genes in enterococcal isolates from animal farms should be continually monitored.
Collapse
Affiliation(s)
- Zheren Huang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yilin Bai
- College of Veterinary Medicine, Northwest A&F University, Yanglin, China
| | - Qin Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xue Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tiejun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xuan Chen
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
- *Correspondence: Hongning Wang,
| |
Collapse
|
28
|
Tang B, Ni J, Lin J, Sun Y, Lin H, Wu Y, Yang H, Yue M. Genomic characterization of multidrug-resistance gene cfr in Escherichia coli recovered from food animals in Eastern China. Front Microbiol 2022; 13:999778. [PMID: 36160268 PMCID: PMC9493366 DOI: 10.3389/fmicb.2022.999778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
The plasmid-borne cfr gene, mediating multiple drug resistance (MDR), has been observed in many Gram-positive bacteria. The prevalence of cfr and its co-occurrence with additional antimicrobial resistance (AMR) determinants in Escherichia coli is an ongoing issue. Additionally, the prevalence and transfer mechanism of the cfr gene remain partially investigated. Here, eight cfr-positive E. coli strains were screened using PCR from an extensive collection of E. coli (n = 2,165) strains isolated from pigs and chickens in 2021 in China, with a prevalence rate of 0.37%. All of them were MDR and resistant to florfenicol and tetracycline. These strains can transfer the cfr gene to E. coli J53 by conjugation (1.05 × 10−1 – 1.01 × 10−6). Moreover, the IncX4 plasmid p727A3-62 K-cfr (62,717 bp) harboring cfr in strain EC727A3 was confirmed using Oxford Nanopore Technology. The unknown type plasmid p737A1-27K-cfr (27,742 bp) harboring cfr in strain EC737A1 was also identified. Notably, it was verified by PCR that three of the eight E. coli strains were able to form the cfr-IS26 circular intermediate. It was 2,365 bp in length in strains EC727A3 and ECJHZ21-173, and 2,022 bp in length in EC737A1. Collectively, this study demonstrated that IS26 plays a vital role in transmitting the MDR gene cfr in E. coli via conjugation and provided updated knowledge regarding cfr in E. coli in Eastern China.
Collapse
Affiliation(s)
- Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Academy of Agricultural Sciences, Hangzhou, China
| | - Juan Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Academy of Agricultural Sciences, Hangzhou, China
- School of Food and Pharmacy, Ningbo University, Ningbo, China
| | - Jiahui Lin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yangying Sun
- School of Food and Pharmacy, Ningbo University, Ningbo, China
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Academy of Agricultural Sciences, Hangzhou, China
| | - Yuehong Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Hua Yang,
| | - Min Yue
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Min Yue,
| |
Collapse
|
29
|
Sun W, Liu H, Liu J, Jiang Q, Pan Y, Yang Y, Zhu X, Ge J. Detection of optrA and poxtA genes in linezolid resistant Enterococcus isolates from fur animals in China. Lett Appl Microbiol 2022; 75:1590-1595. [PMID: 36056605 DOI: 10.1111/lam.13826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/12/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022]
Abstract
The emergence of linezolid-resistant (LR) enterococci found in food of animal origin arouses attention, but little is known about LR enterococci in fur animals. A total of 342 E. faecalis and 265 E. faecium strains isolated from fur animals in China from 2015 to 2017 were investigated to determine if linezolid-resistant (LR) enterococci (≥16 μg ml-1 ) are present. Overall, two E. faecalis and twelve E. faecium among these isolates were resistant to linezolid. In addition, all LR isolates were classified as multidrug-resistant (MDR) isolates. We further explore the resistance genes of the LR enterococci, four E. faecalis and two E. faecium isolates contained optrA gene. Two of them co-harbored optrA and poxtA genes. We detected virulence genes in LR enterococci were the following: asa1, cylA, esp, gelE and hyl, among which the highest carrying rate gene was asa1. Besides, all of the LR enterococci we tested had the biofilm-forming ability. It is worth noting that we detected a novel ST type ST2010 from E. faecium 82-2. These data show LR enterococci exist in fur animals and have unique characteristics.
Collapse
Affiliation(s)
- Weijiao Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hanghang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jingjing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qingqin Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xinyi Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.,Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin, 150030, China
| |
Collapse
|
30
|
Brenciani A, Morroni G, Schwarz S, Giovanetti E. Oxazolidinones: mechanisms of resistance and mobile genetic elements involved. J Antimicrob Chemother 2022; 77:2596-2621. [PMID: 35989417 DOI: 10.1093/jac/dkac263] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
The oxazolidinones (linezolid and tedizolid) are last-resort antimicrobial agents used for the treatment of severe infections in humans caused by MDR Gram-positive bacteria. They bind to the peptidyl transferase centre of the bacterial ribosome inhibiting protein synthesis. Even if the majority of Gram-positive bacteria remain susceptible to oxazolidinones, resistant isolates have been reported worldwide. Apart from mutations, affecting mostly the 23S rDNA genes and selected ribosomal proteins, acquisition of resistance genes (cfr and cfr-like, optrA and poxtA), often associated with mobile genetic elements [such as non-conjugative and conjugative plasmids, transposons, integrative and conjugative elements (ICEs), prophages and translocatable units], plays a critical role in oxazolidinone resistance. In this review, we briefly summarize the current knowledge on oxazolidinone resistance mechanisms and provide an overview on the diversity of the mobile genetic elements carrying oxazolidinone resistance genes in Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Gianluca Morroni
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
31
|
Complete Genome Sequence of Staphylococcus arlettae AHKW2e, Isolated from a Dog’s Paws in Hong Kong. Microbiol Resour Announc 2022; 11:e0035022. [PMID: 35758690 PMCID: PMC9302096 DOI: 10.1128/mra.00350-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus arlettae is commonly found on the skin of animals. Here, we describe the complete genome sequence of S. arlettae AHKW2e (2,649,260 bp; GC content, 33.6%), isolated from a dog’s paws in Hong Kong, established through hybrid assembly and representing the second complete genome sequence of this species.
Collapse
|
32
|
Pajares-Chamorro N, Hammer ND, Chatzistavrou X. Materials for restoring lost Activity: Old drugs for new bugs. Adv Drug Deliv Rev 2022; 186:114302. [PMID: 35461913 DOI: 10.1016/j.addr.2022.114302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2021] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 11/01/2022]
Abstract
The escalation of bacterial resistance to conventional medical antibiotics is a serious concern worldwide. Improvements to current therapies are urgently needed to address this problem. The synergistic combination of antibiotics with other agents is a strategic solution to combat multi-drug-resistant bacteria. Although these combinations decrease the required high dosages and therefore, reduce the toxicity of both agents without compromising the bactericidal effect, they cannot stop the development of further resistance. Recent studies have shown certain elements restore the ability of antibiotics to destroy bacteria that have acquired resistance to them. Due to these synergistic activities, organic and inorganic molecules have been investigated with the goal of restoring antibiotics in new approaches that mitigate the risk of expanding resistance. Herein, we summarize recent studies that restore antibiotics once thought to be ineffective, but have returned to our armamentarium through innovative, combinatorial efforts. A special focus is placed on the mechanisms that allow the synergistic combinations to combat bacteria. The promising data that demonstrated restoration of antimicrobials, supports the notion to find more combinations that can combat antibiotic-resistant bacteria.
Collapse
|
33
|
Li X, Xie L, Huang H, Li Z, Li G, Liu P, Xiao D, Zhang X, Xiong W, Zeng Z. Prevalence of Livestock-Associated MRSA ST398 in a Swine Slaughterhouse in Guangzhou, China. Front Microbiol 2022; 13:914764. [PMID: 35814703 PMCID: PMC9260045 DOI: 10.3389/fmicb.2022.914764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2022] [Accepted: 05/17/2022] [Indexed: 01/01/2023] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) is an important zoonotic microorganism that is increasingly causing public health concern worldwide. The objective of this study was to determine the transmission and occurrence of MRSA in a slaughterhouse environment and evaluate its antimicrobial resistance and genetic characterization. In this study, we conducted a comprehensive epidemiological survey of S. aureus by spa typing and whole-genome sequencing (WGS) of samples obtained from the pork production chain, the environment, and community residents. To clarify the evolutionary relationships of MRSA sequence type (ST) 398 in this study and global isolates, 197 published whole-genome sequences data of MRSA ST398 strains were downloaded from the GenBank database and included in the phylogenetic analysis. A total of 585 porcine samples (snout and carcass swabs), 78 human nasal samples, and 136 environmental samples were collected. The MRSA isolates were detected at higher frequencies in samples from swine (15.0%) than carcasses (10.0%), slaughterhouse workers (8.0%), community residents (0%), and environment samples (5.9%). The spa typing results showed that t571 accounted for a higher proportion than other spa types. Closely related isolates from the samples of swine, slaughterhouse workers, carcasses, carrier vehicle, and surrounding fishpond water indicate that MRSA ST398 strains may spread among swine, humans, and the environment. MRSA ST398-t571 isolates were genetically different from global strains, except for two Korean isolates, which showed genetic closeness with it. In addition, a MRSA ST398 isolate recovered from an infected patient in Europe differed by only 31 SNPs from the airborne dust-associated strain isolated in this study, thereby suggesting potential transmission among different countries. Antimicrobial susceptibility testing results demonstrated that 99.0% (96/97) of MRSA and 95.1% (231/243) of methicillin-sensitive S. aureus (MSSA) showed multidrug-resistant (MDR) phenotypes. According to WGS analysis, the poxtA-carrying segment (IS431mec-optrA-IS1216-fexB-IS431mec) was reported in MRSA ST398 isolates for the first time. The coexistence of cfr and optrA in a plasmid was first detected in MRSA ST398. The potential transmission of MRSA among humans, animals, and the environment is a cause for concern. The emergence and transmission of LA-MRSA ST398 with high levels of resistance profiles highlight the urgent need for LA-MRSA surveillance.
Collapse
Affiliation(s)
- Xiaoshen Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Longfei Xie
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Honghao Huang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhi Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Guihua Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Peng Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Danyu Xiao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xucai Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- *Correspondence: Wenguang Xiong,
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Zhenling Zeng,
| |
Collapse
|
34
|
Boodaghi Malidareh E, Ahanjan M, Asgharzadeh Marghmalek S, Goli HR. Dissemination of Quinupristin-Dalfopristin and Linezolid resistance genes among hospital environmental and healthy volunteer fecal isolates of Enterococcus faecalis and Enterococcus faecium. Mol Biol Rep 2022; 49:7929-7937. [PMID: 35716285 DOI: 10.1007/s11033-022-07627-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Streptogramins and linezolid are important in the treatment of infections caused by vancomycin-resistant enterococci. PURPOSE Then, we aimed to evaluate the resistance rates against these drugs and the prevalence of genes involved in hospital environmental and fecal normal-flora isolates of Enterococcus faecalis and Enterococcus faecium. METHODS AND RESULTS The strains were isolated from the stool samples and hospital environments by culturing on M-Enterococcus (ME) agar, and identified by phenotypic and genotypic microbiological tests. The disk agar diffusion method was used to identify the antimicrobial susceptibility pattern of the isolates. The genomic DNA extraction was done by the alkaline lysis method, and the PCR test was used to detect the resistance genes. A total of 145 enterococci isolates were taken, from which 84 (57.9%) isolates were detected as E. faecalis and 61 (42.06%) isolates were E. faecium. Moreover, 70 (83.33), 4 (4.76%), 1 (1.19%), and 40 (47.61%) isolates of E. faecalis and 20 (32.78%), 1 (1.63%), 4 (6.55%), and 26 (42.62%) E. faecium isolates were resistant against quinupristin-dalfopristin, linezolid, vancomycin, and erythromycin, respectively. Also, 112 (77.24%), 50 (34.48%), 39 (26.89%), 27 (18.62%), 19 (13.1%), 4 (2.75%), and 1 (0.68%) isolates were contained LsaA, vatD, vgbB, vatE, cfr, lsaE and optrA genes, respectively. None of the isolates carried the vgbA gene. CONCLUSIONS High-level streptogramin resistance rate and high prevalence of resistance genes in enterococci isolated from the stool of healthy persons and the hospital environment indicates the importance of possible transmission of resistance genes from these isolates to clinical ones.
Collapse
Affiliation(s)
- Elham Boodaghi Malidareh
- Antimicrobial Resistance Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ahanjan
- Antimicrobial Resistance Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saba Asgharzadeh Marghmalek
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Reza Goli
- Antimicrobial Resistance Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
35
|
Mechanisms of Action of Carbapenem Resistance. Antibiotics (Basel) 2022; 11:antibiotics11030421. [PMID: 35326884 PMCID: PMC8944602 DOI: 10.3390/antibiotics11030421] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Carbapenem antibiotics are the most effective antimicrobials for the treatment of infections caused by the most resistant bacteria. They belong to the category of β-lactams that include the penicillins, cephalosporins, monobactams and carbapenems. This class of antimicrobials has a broader spectrum of activity than most other beta-lactams antibiotics and are the most effective against Gram-positive and Gram-negative bacteria. All β-lactams antibiotics have a similar molecular structure: the carbapenems together with the β-lactams. This combination gives an extraordinary stability to the molecule against the enzymes inactivating the β-lactams. They are safe to use and therefore widespread use in many countries has given rise to carbapenem resistance which is a major global public health problem. The carbapenem resistance in some species is intrinsic and consists of the capacity to resist the action of antibiotics with several mechanisms: for the absence of a specific target, or an intrinsic difference in the composition of cytoplasmatic membrane or the inability to cross the outer membrane. In addition to intrinsic resistance, bacteria can develop resistance to antibiotics with several mechanisms that can be gathered in three main groups. The first group includes antibiotics with poor penetration into the outer membrane of bacterium or antibiotic efflux. The second includes bacteria that modify the target of the antibiotics through genetic mutations or post-translational modification of the target. The third includes bacteria that act with enzyme-catalyzed modification and this is due to the production of beta-lactamases, that are able to inactivate carbapenems and so called carbapenemases. In this review, we focus on the mode of action of carbapenem and the mechanisms of carbapenem resistance.
Collapse
|
36
|
Liu M, Zhang W, Hu Y, Chen P, Wang Z, Li R. Emergence of the cfr Gene in Vibrio diabolicus of Seafood Origin. Antimicrob Agents Chemother 2022; 66:e0181921. [PMID: 34780265 PMCID: PMC8765225 DOI: 10.1128/aac.01819-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022] Open
Abstract
The emergence and transmission of multidrug resistance (MDR) gene cfr have incurred great public health concerns worldwide. Recently, Gram-negative pathogens were found to carry cfr by various mobile elements. Here, we investigated a cfr-positive Vibrio diabolicus isolate by phenotyping and genomic analysis and found cfr in a translocatable structure (IS26-hp-cfr-IS26) among the MDR region in pNV27-cfr-208K, an emerging MDR plasmid in Vibrio species. This study highlights the necessity of surveillance of cfr in bacteria of diverse origins.
Collapse
Affiliation(s)
- Ming Liu
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, P. R. China
| | - Wenhui Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
| | - Yifan Hu
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, P. R. China
| | - Pengyu Chen
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, P. R. China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, P. R. China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, P. R. China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
37
|
Tsai K, Stojković V, Noda-Garcia L, Young ID, Myasnikov AG, Kleinman J, Palla A, Floor SN, Frost A, Fraser JS, Tawfik DS, Fujimori DG. Directed evolution of the rRNA methylating enzyme Cfr reveals molecular basis of antibiotic resistance. eLife 2022; 11:e70017. [PMID: 35015630 PMCID: PMC8752094 DOI: 10.7554/elife.70017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/04/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Alteration of antibiotic binding sites through modification of ribosomal RNA (rRNA) is a common form of resistance to ribosome-targeting antibiotics. The rRNA-modifying enzyme Cfr methylates an adenosine nucleotide within the peptidyl transferase center, resulting in the C-8 methylation of A2503 (m8A2503). Acquisition of cfr results in resistance to eight classes of ribosome-targeting antibiotics. Despite the prevalence of this resistance mechanism, it is poorly understood whether and how bacteria modulate Cfr methylation to adapt to antibiotic pressure. Moreover, direct evidence for how m8A2503 alters antibiotic binding sites within the ribosome is lacking. In this study, we performed directed evolution of Cfr under antibiotic selection to generate Cfr variants that confer increased resistance by enhancing methylation of A2503 in cells. Increased rRNA methylation is achieved by improved expression and stability of Cfr through transcriptional and post-transcriptional mechanisms, which may be exploited by pathogens under antibiotic stress as suggested by natural isolates. Using a variant that achieves near-stoichiometric methylation of rRNA, we determined a 2.2 Å cryo-electron microscopy structure of the Cfr-modified ribosome. Our structure reveals the molecular basis for broad resistance to antibiotics and will inform the design of new antibiotics that overcome resistance mediated by Cfr.
Collapse
Affiliation(s)
- Kaitlyn Tsai
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Vanja Stojković
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Lianet Noda-Garcia
- Department of Biomolecular Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Iris D Young
- Department of Bioengineering and Therapeutic Sciences, University of California San FranciscoSan FranciscoUnited States
| | - Alexander G Myasnikov
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
| | - Jordan Kleinman
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Ali Palla
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
| | - Stephen N Floor
- Helen Diller Family Comprehensive Cancer Center, University of California San FranciscoSan FranciscoUnited States
- Department of Cell and Tissue Biology, University of California San FranciscoSan FranciscoUnited States
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California San FranciscoSan FranciscoUnited States
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California San FranciscoSan FranciscoUnited States
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Danica Galonić Fujimori
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California San FranciscoSan FranciscoUnited States
- Department of Pharmaceutical Chemistry, University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
38
|
|
39
|
Zhang F, Wu S, Lei T, Wu Q, Zhang J, Huang J, Dai J, Chen M, Ding Y, Wang J, Wei X, Zhang Y. Presence and characterization of methicillin-resistant Staphylococcus aureus co-carrying the multidrug resistance genes cfr and lsa(E) in retail food in China. Int J Food Microbiol 2021; 363:109512. [PMID: 34971878 DOI: 10.1016/j.ijfoodmicro.2021.109512] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2020] [Revised: 12/10/2021] [Accepted: 12/19/2021] [Indexed: 10/19/2022]
Abstract
Staphylococcus aureus is an important food-related pathogen associated with bacterial poisoning that is difficult to treat due to its multidrug resistance. The cfr and lsa(E) genes both cause multiple drug resistance and have been identified in numerous Staphylococcus species, respectively. In this study, we found that a methicillin-resistant S. aureus (MRSA) strain, 2868B2, which was isolated from a sample of frozen dumplings in Hangzhou in 2015, co-carried these two different multidrug resistance genes. Further analysis showed that this strain was resistant to more than 18 antibiotics and expressed high-level resistance to florfenicol, chloramphenicol, clindamycin, tiamulin, erythromycin, ampicillin, cefepime, ceftazidime, kanamycin, streptomycin, tetracycline, trimethoprim-sulfamethoxazole and linezolid (MIC = 8 μg/mL). Whole genome sequencing was performed to characterize the genetic environment of these resistance genes and other genomic features. The cfr gene was located on the single plasmid p2868B2 (39,159 bp), which demonstrated considerable similarity to many plasmids previously identified in humans and animals. p2868B2 contained the insertion sequence (IS) element IS21-558, which allowed the insertion of cfr into Tn558 and played an important role in the mobility of cfr. Additionally, a novel multidrug resistance region (36.9 kb) harbouring lsa(E) along with nine additional antibiotic resistance genes (ARGs) (aadD, aadE, aacA-aphD, spc, lnu(B), lsa(E), tetL, ermC and blaZ) was identified. The multidrug resistance region harboured four copies of IS257 that were active and can mediate the formation of four circular structures containing ARGs and ISs. In addition, genes encoding various virulence factors and affecting multiple cell adhesion properties were identified in the genome of MRSA 2868B2. This study confirmed that the cfr and lsa(E) genes coexist in one MRSA strain and the presence of plasmid and IS257 in the multi-ARG cluster can promote both ARG transfer and dissemination. Furthermore, the presence of so many ARGs and virulence genes in food-related pathogens may seriously compromise the effectiveness of clinical therapy and threaten public health, its occurrence should pay public attention and the traceability of these genes in food-related samples needs further surveillance.
Collapse
Affiliation(s)
- Feng Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tao Lei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jingsha Dai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Department of Food Science & Technology, Jinan University, Guangzhou 510632, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
40
|
Mobilization of tet(X4) by IS 1 family elements in porcine Escherichia coli isolates. Antimicrob Agents Chemother 2021; 66:e0159721. [PMID: 34723627 DOI: 10.1128/aac.01597-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
The dissemination mechanism of the high-level tigecycline resistance gene tet(X4) in porcine Escherichia coli was investigated. tet(X4) and other antimicrobial resistance genes were located on the plasmids p1919D3-1 and p1919D62-1 and flanked by two or three copies of IS1 family elements, which can form one to three translocatable units (TUs). Using a reduced transposition model, IS1A was experimentally demonstrated to mediate the transposition of tet(X4) from a suicide plasmid into the E. coli chromosome.
Collapse
|
41
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 5: Lincosamides: lincomycin. EFSA J 2021; 19:e06856. [PMID: 34729085 PMCID: PMC8546522 DOI: 10.2903/j.efsa.2021.6856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
The specific concentrations of lincomycin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels of lincomycin in feed that showed to have an effect on growth promotion/increased yield were reported. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for lincomycin.
Collapse
|
42
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 8: Pleuromutilins: tiamulin and valnemulin. EFSA J 2021; 19:e06860. [PMID: 34729088 PMCID: PMC8546795 DOI: 10.2903/j.efsa.2021.6860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
The specific concentrations of tiamulin and valnemulin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tiamulin, while for valnemulin no suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these two antimicrobials.
Collapse
|
43
|
Rumpf C, Lange J, Schwartbeck B, Kahl BC. Staphylococcus aureus and Cystic Fibrosis-A Close Relationship. What Can We Learn from Sequencing Studies? Pathogens 2021; 10:1177. [PMID: 34578208 PMCID: PMC8466686 DOI: 10.3390/pathogens10091177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023] Open
Abstract
Staphylococcus aureus is next to Pseudomonas aeruginosa the most isolated pathogen from the airways of cystic fibrosis (CF) patients, who are often infected by a dominant S. aureus clone for extended periods. To be able to persist, the pathogen has to adapt to the hostile niche of the airways to counteract host defence, antibiotic therapy and the competition with coinfecting pathogens. S. aureus is equipped with many virulence factors including adhesins, toxins that are localized on the chromosome, on plasmids or are phage-related. S. aureus is especially versatile and adaptation and evolution of the pathogen occurs by the acquisition of new genes by horizontal gene transfer (HGT), changes in nucleotides (single nucleotide variations, SNVs) that can cause a selective advantage for the bacteria and become fixed in subpopulations. Methicillin-resistant S. aureus are a special threat to CF patients due to the more severe lung disease occurring in infected patients. Today, with decreasing costs for sequencing, more and more studies using S. aureus isolates cultured from CF patients are being published, which use whole genome sequencing (WGS), multilocus sequence typing (MLST) or spa-sequence typing (spa-typing) to follow the population dynamics of S. aureus, elucidate the underlying mechanisms of phenotypic variants, newly acquired resistance or adaptation to the host response in this particular niche. In the first part of this review, an introduction to the genetic make-up and the pathogenesis of S. aureus with respect to CF is provided. The second part presents an overview of recent studies and their findings using genotypic methods such as single or multilocus sequencing and whole genome sequencing, which identify factors contributing to the adaptation of S. aureus and its evolution in the airways of individuals with CF.
Collapse
Affiliation(s)
| | | | | | - Barbara C. Kahl
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (C.R.); (J.L.); (B.S.)
| |
Collapse
|
44
|
Lei CW, Chen X, Liu SY, Li TY, Chen Y, Wang HN. Clonal spread and horizontal transfer mediate dissemination of phenicol-oxazolidinone-tetracycline resistance gene poxtA in enterococci isolates from a swine farm in China. Vet Microbiol 2021; 262:109219. [PMID: 34500344 DOI: 10.1016/j.vetmic.2021.109219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2021] [Accepted: 08/29/2021] [Indexed: 11/16/2022]
Abstract
The emergence of the phenicol-oxazolidinone-tetracycline resistance gene poxtA becomes a significant challenge for public health, since it confers a decreased susceptibility not only to the last resort drug linezolid, but also to florfenicol and doxycycline widely used in veterinary medicine. To determine the dissemination mechanism of poxtA in enterococci isolates from different healthy pigs in the swine farm, a total of 178 florfenicol-resistant enterococci isolates were collected from 400 fresh faecal swabs in a swine farm in China. The poxtA gene was detected in 11 (6.18 %) enterococci isolates, including 8 E. faecium, 2 E. hirae and 1 E. casseliflavus isolates. Whole genome sequencing indicated that the eight poxtA-harbouring E. faecium strains belonged to four different sequence types, including ST156 and three new STs, ST1818, ST1819 and ST1820. Five out of the 11 poxtA-positive enterococci isolates also harboured optrA gene. Moreover, E. casseliflavus strain DY31 co-harboured poxtA, optrA and cfr. Seven different poxtA-harbouring plasmids were obtained through Nanopore combined with Illumina sequencing. The poxtA-harbouring plasmids exhibited high genetic variation, six out of which belonged to rep2 plasmid of Inc18 family. The poxtA gene was flanked by IS1216E in the left and/or right ends.The optrA and cfr genes were located on different plasmids, respectively, but those genes could be co-transferred with poxtA gene into the recipient E. faecalis strain by electrotransformation. Our study highlights that both clonal spread and horizontal transfer mediated by Inc18 plasmid and IS1216E promote the dissemination of poxtA in enterococci isolates from different healthy pigs in the swine farm.
Collapse
Affiliation(s)
- Chang-Wei Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Xuan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Si-Yi Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Tian-Yi Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Yanpeng Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong-Ning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China.
| |
Collapse
|
45
|
Dechêne-Tempier M, Marois-Créhan C, Libante V, Jouy E, Leblond-Bourget N, Payot S. Update on the Mechanisms of Antibiotic Resistance and the Mobile Resistome in the Emerging Zoonotic Pathogen Streptococcus suis. Microorganisms 2021; 9:microorganisms9081765. [PMID: 34442843 PMCID: PMC8401462 DOI: 10.3390/microorganisms9081765] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022] Open
Abstract
Streptococcus suis is a zoonotic pathogen causing important economic losses in swine production. The most commonly used antibiotics in swine industry are tetracyclines, beta-lactams, and macrolides. Resistance to these antibiotics has already been observed worldwide (reaching high rates for macrolides and tetracyclines) as well as resistance to aminoglycosides, fluoroquinolones, amphenicols, and glycopeptides. Most of the resistance mechanisms are encoded by antibiotic resistance genes, and a large part are carried by mobile genetic elements (MGEs) that can be transferred through horizontal gene transfer. This review provides an update of the resistance genes, their combination in multidrug isolates, and their localization on MGEs in S. suis. It also includes an overview of the contribution of biofilm to antimicrobial resistance in this bacterial species. The identification of resistance genes and study of their localization in S. suis as well as the environmental factors that can modulate their dissemination appear essential in order to decipher the role of this bacterium as a reservoir of antibiotic genes for other species.
Collapse
Affiliation(s)
- Manon Dechêne-Tempier
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, F-22440 Ploufragan, France; (M.D.-T.); (C.M.-C.); (E.J.)
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France; (V.L.); (N.L.-B.)
| | - Corinne Marois-Créhan
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, F-22440 Ploufragan, France; (M.D.-T.); (C.M.-C.); (E.J.)
| | - Virginie Libante
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France; (V.L.); (N.L.-B.)
| | - Eric Jouy
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, F-22440 Ploufragan, France; (M.D.-T.); (C.M.-C.); (E.J.)
| | | | - Sophie Payot
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France; (V.L.); (N.L.-B.)
- Correspondence:
| |
Collapse
|
46
|
Zheng Y, Fan L, zhao L, Dong Y, Jiao Y, Xue X, Yang F, Yuan X, Wang L, Zhao S. Development and validation of a method for quantification of residual florfenicol in various tissues of broiler chicken by UPLC-MS/MS. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
|
47
|
Detection of a chromosomal truncated cfr gene in a linezolid-susceptible LA-MRSA ST398 isolate of porcine origin, Italy. J Glob Antimicrob Resist 2021; 26:199-201. [PMID: 34214697 DOI: 10.1016/j.jgar.2021.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/08/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 11/20/2022] Open
|
48
|
Schwarz S, Zhang W, Du XD, Krüger H, Feßler AT, Ma S, Zhu Y, Wu C, Shen J, Wang Y. Mobile Oxazolidinone Resistance Genes in Gram-Positive and Gram-Negative Bacteria. Clin Microbiol Rev 2021; 34:e0018820. [PMID: 34076490 PMCID: PMC8262807 DOI: 10.1128/cmr.00188-20] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022] Open
Abstract
Seven mobile oxazolidinone resistance genes, including cfr, cfr(B), cfr(C), cfr(D), cfr(E), optrA, and poxtA, have been identified to date. The cfr genes code for 23S rRNA methylases, which confer a multiresistance phenotype that includes resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A compounds. The optrA and poxtA genes code for ABC-F proteins that protect the bacterial ribosomes from the inhibitory effects of oxazolidinones. The optrA gene confers resistance to oxazolidinones and phenicols, while the poxtA gene confers elevated MICs or resistance to oxazolidinones, phenicols, and tetracycline. These oxazolidinone resistance genes are most frequently found on plasmids, but they are also located on transposons, integrative and conjugative elements (ICEs), genomic islands, and prophages. In these mobile genetic elements (MGEs), insertion sequences (IS) most often flanked the cfr, optrA, and poxtA genes and were able to generate translocatable units (TUs) that comprise the oxazolidinone resistance genes and occasionally also other genes. MGEs and TUs play an important role in the dissemination of oxazolidinone resistance genes across strain, species, and genus boundaries. Most frequently, these MGEs also harbor genes that mediate resistance not only to antimicrobial agents of other classes, but also to metals and biocides. Direct selection pressure by the use of antimicrobial agents to which the oxazolidinone resistance genes confer resistance, but also indirect selection pressure by the use of antimicrobial agents, metals, or biocides (the respective resistance genes against which are colocated on cfr-, optrA-, or poxtA-carrying MGEs) may play a role in the coselection and persistence of oxazolidinone resistance genes.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Henrike Krüger
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Shizhen Ma
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yao Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Congming Wu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
49
|
Chen L, Hu JX, Liu C, Liu J, Ma ZB, Tang ZY, Li YF, Zeng ZL. Identification of the Multiresistance Gene poxtA in Oxazolidinone-Susceptible Staphylococcus haemolyticus and Staphylococcus saprophyticus of Pig and Feed Origins. Pathogens 2021; 10:pathogens10050601. [PMID: 34069037 PMCID: PMC8156375 DOI: 10.3390/pathogens10050601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/06/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 11/27/2022] Open
Abstract
Previous studies on the prevalence and transmission mechanism of oxazolidinone resistance gene poxtA in CoNS are lacking, which this study addresses. By screening 763 CoNS isolates from different sources of several livestock farms in Guangdong, China, 2018–2020, we identified that the poxtA was present in seven CoNS isolates of pig and feed origins. Species identification and multilocus sequence typing (MLST) confirmed that seven poxtA-positive CoNS isolates were composed of five ST64-Staphylococcus haemolyticus and two Staphylococcus saprophyticus isolates. All poxtA-positive Staphylococcus haemolyticus isolates shared similar pulsed-field gel electrophoresis (PFGE) patterns. Transformation assays demonstrated all poxtA-positive isolates were able to transfer poxtA gene to Staphylococcus aureus RN4220. S1-PFGE and whole-genome sequencing (WGS) revealed the presence of poxtA-carrying plasmids in size around 54.7 kb. The plasmid pY80 was 55,758 bp in size and harbored the heavy metal resistance gene czcD and antimicrobial resistance genes, poxtA, aadD, fexB and tet(L). The regions (IS1216E-poxtA-IS1216E) in plasmid pY80 were identified in Staphylococcus spp. and Enterococcus spp. with different genetic and source backgrounds. In conclusion, this was the first report about the poxtA gene in Staphylococcus haemolyticus and Staphylococcus saprophyticus, and IS1216 may play an important role in the dissemination of poxtA among different Gram-positive bacteria.
Collapse
Affiliation(s)
- Lin Chen
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (L.C.); (J.-X.H.); (C.L.); (J.L.); (Z.-B.M.); (Z.-Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Public Monitoring Center of Agro-Product of Guangdong Academy of Sciences, Guangzhou 510640, China
| | - Jian-Xin Hu
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (L.C.); (J.-X.H.); (C.L.); (J.L.); (Z.-B.M.); (Z.-Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Chang Liu
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (L.C.); (J.-X.H.); (C.L.); (J.L.); (Z.-B.M.); (Z.-Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jiao Liu
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (L.C.); (J.-X.H.); (C.L.); (J.L.); (Z.-B.M.); (Z.-Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Bao Ma
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (L.C.); (J.-X.H.); (C.L.); (J.L.); (Z.-B.M.); (Z.-Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Yun Tang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (L.C.); (J.-X.H.); (C.L.); (J.L.); (Z.-B.M.); (Z.-Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Fei Li
- Public Monitoring Center of Agro-Product of Guangdong Academy of Sciences, Guangzhou 510640, China
- Correspondence: (Y.-F.L.); (Z.-L.Z.); Tel./Fax: +86-20-85284896 (Z.-L.Z.)
| | - Zhen-Ling Zeng
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; (L.C.); (J.-X.H.); (C.L.); (J.L.); (Z.-B.M.); (Z.-Y.T.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Y.-F.L.); (Z.-L.Z.); Tel./Fax: +86-20-85284896 (Z.-L.Z.)
| |
Collapse
|
50
|
Huber S, Knoll MA, Berktold M, Würzner R, Brindlmayer A, Weber V, Posch AE, Mrazek K, Lepuschitz S, Ante M, Beisken S, Orth-Höller D, Weinberger J. Genomic and Phenotypic Analysis of Linezolid-Resistant Staphylococcus epidermidis in a Tertiary Hospital in Innsbruck, Austria. Microorganisms 2021; 9:1023. [PMID: 34068744 PMCID: PMC8150687 DOI: 10.3390/microorganisms9051023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022] Open
Abstract
Whole genome sequencing is a useful tool to monitor the spread of resistance mechanisms in bacteria. In this retrospective study, we investigated genetic resistance mechanisms, sequence types (ST) and respective phenotypes of linezolid-resistant Staphylococcus epidermidis (LRSE, n = 129) recovered from a cohort of patients receiving or not receiving linezolid within a tertiary hospital in Innsbruck, Austria. Hereby, the point mutation G2603U in the 23S rRNA (n = 91) was the major resistance mechanism followed by the presence of plasmid-derived cfr (n = 30). The majority of LRSE isolates were ST2 strains, followed by ST5. LRSE isolates expressed a high resistance level to linezolid with a minimal inhibitory concentration of ≥256 mg/L (n = 83) in most isolates, particularly in strains carrying the cfr gene (p < 0.001). Linezolid usage was the most prominent (but not the only) trigger for the development of linezolid resistance. However, administration of linezolid was not associated with a specific resistance mechanism. Restriction of linezolid usage and the monitoring of plasmid-derived cfr in LRSE are potential key steps to reduce linezolid resistance and its transmission to more pathogenic Gram-positive bacteria.
Collapse
Affiliation(s)
- Silke Huber
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (M.A.K.); (M.B.); (R.W.)
| | - Miriam A. Knoll
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (M.A.K.); (M.B.); (R.W.)
| | - Michael Berktold
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (M.A.K.); (M.B.); (R.W.)
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (M.A.K.); (M.B.); (R.W.)
| | - Anita Brindlmayer
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (A.B.); (V.W.)
| | - Viktoria Weber
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (A.B.); (V.W.)
| | - Andreas E. Posch
- Ares Genetics GmbH, 1030 Vienna, Austria; (A.E.P.); (K.M.); (S.L.); (M.A.); (S.B.); (J.W.)
| | - Katharina Mrazek
- Ares Genetics GmbH, 1030 Vienna, Austria; (A.E.P.); (K.M.); (S.L.); (M.A.); (S.B.); (J.W.)
| | - Sarah Lepuschitz
- Ares Genetics GmbH, 1030 Vienna, Austria; (A.E.P.); (K.M.); (S.L.); (M.A.); (S.B.); (J.W.)
| | - Michael Ante
- Ares Genetics GmbH, 1030 Vienna, Austria; (A.E.P.); (K.M.); (S.L.); (M.A.); (S.B.); (J.W.)
| | - Stephan Beisken
- Ares Genetics GmbH, 1030 Vienna, Austria; (A.E.P.); (K.M.); (S.L.); (M.A.); (S.B.); (J.W.)
| | | | - Johannes Weinberger
- Ares Genetics GmbH, 1030 Vienna, Austria; (A.E.P.); (K.M.); (S.L.); (M.A.); (S.B.); (J.W.)
| |
Collapse
|