1
|
Utkina M, Shcherbakova A, Deviatiiarov R, Ryabova A, Loguinova M, Trofimov V, Kuznetsova A, Petropavlovskiy M, Salimkhanov R, Maksimov D, Albert E, Golubeva A, Asaad W, Urusova L, Bondarenko E, Lapshina A, Shutova A, Beltsevich D, Gusev O, Dzeranova L, Melnichenko G, Minniakhmetov I, Dedov I, Mokrysheva N, Popov S. Comparative evaluation of ACetic - MEthanol high salt dissociation approach for single-cell transcriptomics of frozen human tissues. Front Cell Dev Biol 2025; 12:1469955. [PMID: 39839668 PMCID: PMC11748064 DOI: 10.3389/fcell.2024.1469955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/20/2024] [Indexed: 01/23/2025] Open
Abstract
Current dissociation methods for solid tissues in scRNA-seq studies do not guarantee intact single-cell isolation, especially for sensitive and complex human endocrine tissues. Most studies rely on enzymatic dissociation of fresh samples or nuclei isolation from frozen samples. Dissociating whole intact cells from fresh-frozen samples, commonly collected by biobanks, remains a challenge. Here, we utilized the acetic-methanol dissociation approach (ACME) to capture transcriptional profiles of individual cells from fresh-frozen tissue samples. This method combines acetic acid-based dissociation and methanol-based fixation. In our study, we optimized this approach for human endocrine tissue samples for the first time. We incorporated a high-salt washing buffer instead of the standard PBS to stabilize RNA and prevent RNases reactivation during rehydration. We have designated this optimized protocol as ACME HS (ACetic acid-MEthanol High Salt). This technique aims to preserve cell morphology and RNA integrity, minimizing transcriptome changes and providing a more accurate representation of mature mRNA. We compared the ability of enzymatic, ACME HS, and nuclei isolation methods to preserve major cell types, gene expression, and standard quality parameters across 41 tissue samples. Our results demonstrated that ACME HS effectively dissociates and fixes cells, preserving cell morphology and high RNA integrity. This makes ACME HS a valuable alternative for scRNA-seq protocols involving challenging tissues where obtaining a live cell suspension is difficult or disruptive.
Collapse
Affiliation(s)
- Marina Utkina
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | | | - Ruslan Deviatiiarov
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
- Graduate School of Medicine, Juntendo University, Bunkyo-ku, Japan
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
| | - Alina Ryabova
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Marina Loguinova
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Valentin Trofimov
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Anna Kuznetsova
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | | | - Rustam Salimkhanov
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Denis Maksimov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Eugene Albert
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Alexandra Golubeva
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Walaa Asaad
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Lilia Urusova
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Ekaterina Bondarenko
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Anastasia Lapshina
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Alexandra Shutova
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Dmitry Beltsevich
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Oleg Gusev
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
- Graduate School of Medicine, Juntendo University, Bunkyo-ku, Japan
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Larisa Dzeranova
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Galina Melnichenko
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Ildar Minniakhmetov
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Ivan Dedov
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Natalya Mokrysheva
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| | - Sergey Popov
- Endocrinology Research Centre, Institute of Personalized Medicine, Moscow, Russia
| |
Collapse
|
2
|
Yu L, Zou J, Hussain A, Jia R, Fan Y, Liu J, Nie X, Zhang X, Jin S. Systemic evaluation of various CRISPR/Cas13 orthologs for knockdown of targeted transcripts in plants. Genome Biol 2024; 25:307. [PMID: 39639368 PMCID: PMC11619151 DOI: 10.1186/s13059-024-03448-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND CRISPR/Cas13 system, recognized for its compact size and specificity in targeting RNA, is currently employed for RNA degradation. However, the potential of various CRISPR/Cas13 subtypes, particularly concerning the knockdown of endogenous transcripts, remains to be comprehensively characterized in plants. RESULTS Here we present a full spectrum of editing profiles for seven Cas13 orthologs from five distinct subtypes: VI-A (LwaCas13a), VI-B (PbuCas13b), VI-D (RfxCas13d), VI-X (Cas13x.1 and Cas13x.2), and VI-Y (Cas13y.1 and Cas13y.2). A systematic evaluation of the knockdown effects on two endogenous transcripts (GhCLA and GhPGF in cotton) as well as an RNA virus (TMV in tobacco) reveals that RfxCas13d, Cas13x.1, and Cas13x.2 exhibit enhanced stability with editing efficiencies ranging from 58 to 80%, closely followed by Cas13y.1 and Cas13y.2. Notably, both Cas13x.1 and Cas13y.1 can simultaneously degrade two endogenous transcripts through a tRNA-crRNA cassette approach, achieving editing efficiencies of up to 50%. Furthermore, different Cas13 orthologs enable varying degrees of endogenous transcript knockdown with minimal off-target effects, generating germplasms that exhibit a diverse spectrum of mutant phenotypes. Transgenic tobacco plants show significant reductions in damage, along with mild oxidative stress and minimal accumulation of viral particles after TMV infection. CONCLUSIONS In conclusion, our study presents an efficient and reliable platform for transcriptome editing that holds promise for plant functional research and future crop improvement.
Collapse
Affiliation(s)
- Lu Yu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiawei Zou
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Amjad Hussain
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruoyu Jia
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yibo Fan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinhang Liu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Shi P, Wu X. Programmable RNA targeting with CRISPR-Cas13. RNA Biol 2024; 21:1-9. [PMID: 38764173 PMCID: PMC11110701 DOI: 10.1080/15476286.2024.2351657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
The RNA-targeting CRISPR-Cas13 system has enabled precise engineering of endogenous RNAs, significantly advancing our understanding of RNA regulation and the development of RNA-based diagnostic and therapeutic applications. This review aims to provide a summary of Cas13-based RNA targeting tools and applications, discuss limitations and challenges of existing tools and suggest potential directions for further development of the RNA targeting system.
Collapse
Affiliation(s)
- Peiguo Shi
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Xuebing Wu
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Bakre A, Kariithi HM, Suarez DL. Alternative probe hybridization buffers for target RNA depletion and viral sequence recovery in NGS for poultry samples. J Virol Methods 2023; 321:114793. [PMID: 37604238 DOI: 10.1016/j.jviromet.2023.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Non-targeted next generation sequencing (NGS) is widely applied to identify the diversity of pathogens in field samples. However, abundance of host RNA (especially rRNA) and other environmental nucleic acids can reduce the abundance of pathogen specific reads of interest, reduce depth of coverage and increase surveillance costs. We presently deplete chicken- and selected bacterial-specific rRNAs in poultry field RNA samples with complementary DNA probes in a commercially available probe hybridization buffer followed by digestion of the RNA:DNA hybrids with RNase H. Because the current buffer is an expensive special order reagent of proprietary composition, we tested in-house and other commercially available buffers and identified a viable alternative that yields equivalent host rRNA depletion and viral-specific reads in poultry samples as the current special order reagent but at a reduced cost.
Collapse
Affiliation(s)
- Abhijeet Bakre
- Exotic and Emerging Avian Viral Diseases Research Unit, SEPRL, USDA-ARS, Athens, GA, USA.
| | - Henry M Kariithi
- Exotic and Emerging Avian Viral Diseases Research Unit, SEPRL, USDA-ARS, Athens, GA, USA; Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811-00200, Kaptagat Rd, Loresho, Nairobi, Kenya.
| | - David L Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, SEPRL, USDA-ARS, Athens, GA, USA.
| |
Collapse
|
5
|
A Method for Isolation Bacteriophage Particles-Free Genomic DNA, Exemplified by TP-84, Infecting Thermophilic Geobacillus. Microorganisms 2022; 10:microorganisms10091782. [PMID: 36144384 PMCID: PMC9502220 DOI: 10.3390/microorganisms10091782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
DNA purification methods are indispensable tools of molecular biology, used for many decades. Nevertheless, for certain specialized applications, the currently employed techniques are not sufficiently effective. While examining a number of the existing methods to purify the genomic DNA of the thermophilic bacteriophage TP-84, which infects Geobacillus stearothermophilus (G. stearothermophilus), we have found out that the obtained DNA is contaminated with trace amounts of infectious TP-84 particles. This was detrimental for the bacteriophage genetic manipulation purposes, as finding the recombinant TP-84 clones was essentially impossible due to the appearance of a high background of native bacteriophage plaques. Thus, we have developed a method, which enables the fast and efficient isolation of a bacteriophage genomic DNA from concentrated phage preparations, obtained using CsCl gradient ultracentrifugation, without the need to remove concentrated CsCl solutions. The method employs silica columns and mini-scale isolation of microgram amounts of high quality DNA. It is universal—the silica mini-columns from various manufacturers can be used to conduct the procedure. The purified DNA, free from infectious bacteriophage particles, is ready for further manipulations. This is particularly important for such thermophilic bacteriophages that may partially survive standard isolation procedures and contaminate the final DNA product.
Collapse
|
6
|
Kandabashi M, Yano H, Hara H, Ogawa S, Kamoda K, Ishibashi S, Himeda K, Baba M, Takita T, Yasukawa K. Analysis of ribonucleotide content in the genomic DNA of ribonuclease H2 A subunit (RH2A)-knockout NIH3T3 cells after transient expression of wild-type RH2A or RH2A variants with an Aicardi-Goutières syndrome-causing mutation. J Biochem 2022; 172:225-231. [DOI: 10.1093/jb/mvac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
Summary
Ribonuclease (RNase) H2 is involved in the removal of ribonucleotides embedded in genomic DNA. Eukaryotic RNase H2 is a heterotrimer consisting of the catalytic A subunit (RH2A) and the accessory B and C subunits. This study aimed to compare the cellular activities of wild-type ribonuclease (RNase) H2 and its variants with a mutation causing neuroinflammatory autoimmune disease, Aicardi-Goutières syndrome (AGS). We first analyzed cellular RNase H2 activity and ribonucleotide content in the genomic DNA of RH2A-knockout (KO) mouse fibroblast NIH3T3 cells after transfection with a transient expression plasmid encoding mouse wild-type RH2A. From four hours after transfection, the RNase H2 activity increased, and the amount of ribonucleotides decreased, as compared with the corresponding non-transfected RH2A-KO cells. This demonstrated the rapidness of ribonucleotide turnover in mammalian genomic DNA and the importance of continuous expression of RNase H2 to maintain the ribonucleotide amount low. Next, we expressed mouse RH2A variants with a mutation corresponding to a human AGS-causing mutation in RH2A-KO NIH3T3 cells. Neither increase in RNase H2 activity nor decrease in ribonucleotide amount were observed for G37S; however, both conditions were observed for N213I and R293H. This corresponded with our previous results on the activity of recombinant human RNase H2 variants.
Collapse
Affiliation(s)
- Mako Kandabashi
- Graduate School of Agriculture Division of Food Science and Biotechnology, , Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Haruna Yano
- Graduate School of Agriculture Division of Food Science and Biotechnology, , Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Haruka Hara
- Graduate School of Agriculture Division of Food Science and Biotechnology, , Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Saori Ogawa
- Graduate School of Agriculture Division of Food Science and Biotechnology, , Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kana Kamoda
- Graduate School of Agriculture Division of Food Science and Biotechnology, , Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shu Ishibashi
- Graduate School of Agriculture Division of Food Science and Biotechnology, , Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kohei Himeda
- Graduate School of Agriculture Division of Food Science and Biotechnology, , Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Misato Baba
- Graduate School of Agriculture Division of Food Science and Biotechnology, , Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Teisuke Takita
- Graduate School of Agriculture Division of Food Science and Biotechnology, , Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kiyoshi Yasukawa
- Graduate School of Agriculture Division of Food Science and Biotechnology, , Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Muterko A. Selective precipitation of RNA with linear polyacrylamide. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2021; 41:61-76. [PMID: 34809521 DOI: 10.1080/15257770.2021.2007397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Selective precipitation of RNA is often used in molecular biology as one of the methods for separation of nucleic acids to obtain samples enriched with DNA or RNA molecules alone or for purification of RNA samples. In the present study a simple and fast approach for selective precipitation of RNA with linear polyacrylamide is proposed for the first time. The method is based on the different predispositions of the DNA and RNA molecules to bind with the polyacrylamide. In this process, the linear polyacrylamide is used as the flocculant, collecting RNA particles to form aggregate, which then precipitated at low alcohol concentration. During and after precipitation the temperature is adjusted to maintain high solubility of DNA and other contaminates at given pH, salt and alcohol concentrations on the one hand, and globular state of polyacrylamide, preventing solubility of the RNA-LPA aggregate, on the other hand. The precipitated RNA can be used directly for RT-qPCR assay. The principal advantage of the present approach is the fast and quantitative precipitation of most RNA species from very dilute solutions. This makes it possible to obtain both almost DNA-free RNA and RNA-free DNA samples in one process.Supplemental data for this article is available online at https://doi.org/10.1080/15257770.2021.2007397 .
Collapse
Affiliation(s)
- Alexandr Muterko
- Institute of Cytology and Genetics, Novosibirsk, Russian Federation
| |
Collapse
|
8
|
Narukawa Y, Kandabashi M, Li T, Baba M, Hara H, Kojima K, Iida K, Hiyama T, Yokoe S, Yamazaki T, Takita T, Yasukawa K. Improvement of Moloney murine leukemia virus reverse transcriptase thermostability by introducing a disulfide bridge in the ribonuclease H region. Protein Eng Des Sel 2021; 34:6213763. [PMID: 33825883 DOI: 10.1093/protein/gzab006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/02/2021] [Accepted: 02/18/2021] [Indexed: 11/14/2022] Open
Abstract
Moloney murine leukemia virus (MMLV) reverse transcriptase (RT) is widely used in research and clinical diagnosis. Improvement of MMLV RT thermostability has been an important topic of research for increasing the efficiency of cDNA synthesis. In this study, we attempted to increase MMLV RT thermostability by introducing a disulfide bridge in its RNase H region using site-directed mutagenesis. Five variants were designed, focusing on the distance between the two residues to be mutated into cysteine. The variants were expressed in Escherichia coli and purified. A551C/T662C was determined to be the most thermostable variant.
Collapse
Affiliation(s)
- Yutaro Narukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Mako Kandabashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tongyang Li
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Misato Baba
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Haruka Hara
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kei Iida
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takayoshi Hiyama
- Tsuruga Institute of Biotechnology, Toyobo Co., Ltd. 10-24 Toyo-cho, Tsuruga 914-8550, Japan
| | - Sho Yokoe
- Tsuruga Institute of Biotechnology, Toyobo Co., Ltd. 10-24 Toyo-cho, Tsuruga 914-8550, Japan
| | - Tomomi Yamazaki
- Tsuruga Institute of Biotechnology, Toyobo Co., Ltd. 10-24 Toyo-cho, Tsuruga 914-8550, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
9
|
Baba M, Kojima K, Nishimura T, Sugiura T, Takita T, Uehara R, Crouch RJ, Yasukawa K. Val143 of human ribonuclease H2 is not critical for, but plays a role in determining catalytic activity and substrate specificity. PLoS One 2020; 15:e0228774. [PMID: 32069311 PMCID: PMC7028304 DOI: 10.1371/journal.pone.0228774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/22/2020] [Indexed: 11/18/2022] Open
Abstract
Ribonuclease H2 (RNase H2) exhibits both single ribonucleotide excision activity (activity A) and RNA strand degrading activity (activity B). Val143 of human RNase H2 is located at the active site and is conserved in eukaryotic RNase H2. In this study, we explored the role of Val143 in catalytic activity and substrate specificity. Nineteen single variants at amino acid position 143 were expressed in E. coli, and all variants except for V143C and V143M were purified from the cells. When the activity of the wild-type human RNase H2 (WT) was set as 100%, the relative activities A and B of the 17 variants were in the range of 0.05–130 and 0.02–42%, respectively. When the ratio of the relative activity A to the relative activity B of WT was set as 1, the ratios of the 17 variants were in the range of 0.2–5.7. This indicates that valine is optimal for balancing the two activities. The ratios for V143Y and V143W were relatively high (5.6 and 5.5, respectively), suggesting that the bulky residues like tyrosine and tryptophan at position 143 caused steric hindrance with the 2’-OH of the sugar moiety of the ribonucleotide at the 5’ side of the scissile phosphodiester bond. The ratio for V143Q was relatively low (0.2). These results suggested that Val143 is not critical for, but plays a role in determining catalytic activity and substrate specificity.
Collapse
Affiliation(s)
- Misato Baba
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takuto Nishimura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takuya Sugiura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryo Uehara
- Section on Formation of RNA, Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Noji-higashi, Shiga, Japan
| | - Robert J. Crouch
- Section on Formation of RNA, Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
10
|
Nishimura T, Baba M, Ogawa S, Kojima K, Takita T, Crouch RJ, Yasukawa K. Characterization of six recombinant human RNase H2 bearing Aicardi-Goutiéres syndrome causing mutations. J Biochem 2019; 166:537-545. [PMID: 31529068 DOI: 10.1093/jb/mvz073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/02/2019] [Indexed: 01/18/2023] Open
Abstract
Mammalian RNase H2 is a heterotrimeric enzyme consisting of one catalytic subunit (A) and two accessory subunits (B and C). RNase H2 is involved in the removal of a single ribonucleotide embedded in genomic DNA and removal of RNA of RNA/DNA hybrids. In humans, mutation of the RNase H2 gene causes a severe neuroinflammatory disorder Aicardi-Goutières syndrome (AGS). Here, we examined the activity and stability of six recombinant human RNase H2 variants bearing one AGS-causing mutation, A-G37S (Gly37 in the A subunit is replaced with Ser), A-N212I, A-R291H, B-A177T, B-V185G, or C-R69W. The activity of A-G37S was 0.3-1% of that of the wild-type RNase H2 (WT), while those of other five variants were 51-120%. In circular dichroism measurement, the melting temperatures of variants were 50-53°C, lower than that of WT (56°C). These results suggested that A-G37S had decreased activity and stability than WT, while other five variants had decreased stability but retained activity. In gel filtration chromatography of the purified enzyme preparation, WT migrated as a heterotrimer, while A-R291H eluted in two separate peaks containing either the heterotrimer or only the A subunit, suggesting that some AGS-causing mutations affect the heterotrimer-forming stability of RNase H2.
Collapse
Affiliation(s)
- Takuto Nishimura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyoku, Kyoto 606-8502, Japan
| | - Misato Baba
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyoku, Kyoto 606-8502, Japan
| | - Saori Ogawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyoku, Kyoto 606-8502, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyoku, Kyoto 606-8502, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyoku, Kyoto 606-8502, Japan
| | - Robert J Crouch
- Section on Formation of RNA, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyoku, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Tsukiashi M, Baba M, Kojima K, Himeda K, Takita T, Yasukawa K. Construction and characterization of ribonuclease H2 knockout NIH3T3 cells. J Biochem 2019; 165:249-256. [PMID: 30481312 DOI: 10.1093/jb/mvy101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
Ribonuclease H (RNase H) specifically hydrolyzes the 5'-phosphodiester bonds of the RNA of RNA/DNA hybrid. Both types 1 and 2 RNases H act on the RNA strand of the hybrid, while only type 2 acts on the single ribonucleotide embedded in DNA duplex. In this study, to explore the role of mammalian type 2 RNase H (RNase H2) in cells, we constructed the RNase H2 knockout NIH3T3 cells (KO cells) by CRISPR/Cas9 system. KO cells hydrolyzed RNA strands in RNA/DNA hybrid, but not single ribonucleotides in DNA duplex, while wild-type NIH3T3 cells (WT cells) hydrolyzed both. Genomic DNA in the KO cells was more heavily hydrolyzed than in the WT cells by the alkaline or RNase H2 treatment, suggesting that the KO cells contained more ribonucleotides in genomic DNA than the WT cells. The growth rate of the KO cells was 60% of that of the WT cells. Expression of interferon-stimulated genes (ISGs) in the KO cells was not markedly elevated compared with the WT cells. These results suggest that in NIH3T3 cells, RNase H2 is crucial for suppressing the accumulation of ribonucleotides in genomic DNA but not for the expression of ISGs.
Collapse
Affiliation(s)
- Motoki Tsukiashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Misato Baba
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kohei Himeda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
12
|
Kojima K, Baba M, Tsukiashi M, Nishimura T, Yasukawa K. RNA/DNA structures recognized by RNase H2. Brief Funct Genomics 2018; 18:169-173. [DOI: 10.1093/bfgp/ely024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Ribonuclease H (RNase H) [EC 3.1.26.4] is an enzyme that specifically degrades RNA from RNA/DNA hybrids. Since its discovery in 1969, the enzyme has been extensively studied for its catalytic mechanism and physiological role. RNase H has been classified into two major families, Type 1 and Type 2. Type 1 enzymes are designated RNase HI in prokaryotes and RNase H1 in eukaryotes, while Type 2 enzymes are designated RNase HII in prokaryotes and RNase H2 in eukaryotes. Type 2 enzymes are able to cleave the 5′-phosphodiester bond of one ribonucleotide embedded in a DNA double strand. Recent studies have shown that RNase H2 is involved in excision of a single ribonucleotide embedded in genomic DNA and removal of an R-loop formed in cells. It is also involved in double-strand break of DNA and its repair. In this review, we aim to outline the structures recognized by RNase H2.
Collapse
Affiliation(s)
- Kenji Kojima
- Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Misato Baba
- Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|