1
|
Qin Y, Gong A, Liu X, Li N, Ji T, Li J, Yang F. Testing a Simulation Model for the Response of Tomato Fruit Quality Formation to Temperature and Light in Solar Greenhouses. PLANTS (BASEL, SWITZERLAND) 2024; 13:1662. [PMID: 38931093 PMCID: PMC11207517 DOI: 10.3390/plants13121662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Temperature and light are the key factors affecting the formation of tomato fruit quality in greenhouse cultivation. However, there are few simulation models that examine the relationship between tomato fruit quality formation and temperature and light. In this study, a model was established that investigated the relationships between soluble sugar (SSC), organic acid content (OAC), and SSC/OAC and the cumulative product of thermal effectiveness and photosynthetically active radiation (TEP) during the fruit-ripening period in a solar greenhouse. The root mean square error (RMSE) values were calculated to compare the consistency between the simulated and measured values, and the RMSE values for SSC, OAC, and SSC/OAC were 0.09%, 0.14%, and 0.358, respectively. The combined weights of quality indicators were obtained using the analytic hierarchy process (AHP) and entropy weighting method, ranking as SSC > OAC > SSC/OAC > CI > lycopene > Vc > fruit firmness. The comprehensive fruit quality evaluation value was obtained using the TOPSIS method (Technique for Order Preference by Similarity to an Ideal Solution) and a simulation model between comprehensive tomato fruit quality and TEP was explored. This study could accurately simulate and quantify the accumulation of tomato fruit quality during fruit ripening in response to environmental conditions in a solar greenhouse.
Collapse
Affiliation(s)
- Yongdong Qin
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Ao Gong
- College of Information Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Xigang Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Nan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Tuo Ji
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crop (Huang-Huai Region), Ministry of Agriculture and Rural Affairs, Tai’an 271018, China
| | - Jing Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crop (Huang-Huai Region), Ministry of Agriculture and Rural Affairs, Tai’an 271018, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai’an 271018, China
| | - Fengjuan Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crop (Huang-Huai Region), Ministry of Agriculture and Rural Affairs, Tai’an 271018, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai’an 271018, China
| |
Collapse
|
2
|
Rodríguez Del Río Á, Monteagudo A, Contreras-Moreira B, Kiss T, Mayer M, Karsai I, Igartua E, Casas AM. Diversity of gene expression responses to light quality in barley. Sci Rep 2023; 13:17143. [PMID: 37816785 PMCID: PMC10564772 DOI: 10.1038/s41598-023-44263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Light quality influence on barley development is poorly understood. We exposed three barley genotypes with either sensitive or insensitive response to two light sources producing different light spectra, fluorescent bulbs, and metal halide lamps, keeping constant light intensity, duration, and temperature. Through RNA-seq, we identified the main genes and pathways involved in the genotypic responses. A first analysis identified genotypic differences in gene expression of development-related genes, including photoreceptors and flowering time genes. Genes from the vernalization pathway of light quality-sensitive genotypes were affected by fluorescent light. In particular, vernalization-related repressors reacted differently: HvVRN2 did not experience relevant changes, whereas HvOS2 expression increased under fluorescent light. To identify the genes primarily related to light quality responses, and avoid the confounding effect of plant developmental stage, genes influenced by development were masked in a second analysis. Quantitative expression levels of PPD-H1, which influenced HvVRN1 and HvFT1, explained genotypic differences in development. Upstream mechanisms (light signaling and circadian clock) were also altered, but no specific genes linking photoreceptors and the photoperiod pathway were identified. The variety of light-quality sensitivities reveals the presence of possible mechanisms of adaptation of winter and facultative barley to latitudinal variation in light quality, which deserves further research.
Collapse
Affiliation(s)
- Álvaro Rodríguez Del Río
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
- Centro de Biotecnología y Genómica de Plantas, UPM/INIA-CSIC, Madrid, Spain
| | - Arantxa Monteagudo
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
| | - Bruno Contreras-Moreira
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| | - Tibor Kiss
- Centre for Agriculture Research ELKH (ATK), Martonvásár, Hungary
- Center for Research and Development, Food and Wine Center of Excellence, Eszterházy Károly Catholic University, Eger, Hungary
| | - Marianna Mayer
- Centre for Agriculture Research ELKH (ATK), Martonvásár, Hungary
| | - Ildikó Karsai
- Centre for Agriculture Research ELKH (ATK), Martonvásár, Hungary
| | - Ernesto Igartua
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain.
| | - Ana M Casas
- Department of Genetics and Plant Breeding, Aula Dei Experimental Station, CSIC, Avda Montañana 1005, 50059, Zaragoza, Spain
| |
Collapse
|
3
|
Gorpenchenko TY, Veremeichik GN, Shkryl YN, Yugay YA, Grigorchuk VP, Bulgakov DV, Rusapetova TV, Vereshchagina YV, Mironova AA, Subbotin EP, Kulchin YN, Bulgakov VP. Suppression of the HOS1 Gene Affects the Level of ROS Depending on Light and Cold. Life (Basel) 2023; 13:life13020524. [PMID: 36836880 PMCID: PMC9960889 DOI: 10.3390/life13020524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The E3 ubiquitin-protein ligase HOS1 is an important integrator of temperature information and developmental processes. HOS1 is a negative regulator of plant cold tolerance, and silencing HOS1 leads to increased cold tolerance. In the present work, we studied ROS levels in hos1Cas9Arabidopsis thaliana plants, in which the HOS1 gene was silenced by disruption of the open reading frame via CRISPR/Cas9 technology. Confocal imaging of intracellular reactive oxygen species (ROS) showed that the hos1 mutation moderately increased levels of ROS under both low and high light (HL) conditions, but wild-type (WT) and hos1Cas9 plants exhibited similar ROS levels in the dark. Visualization of single cells did not reveal differences in the intracellular distribution of ROS between WT and hos1Cas9 plants. The hos1Cas9 plants contained a high basal level of ascorbic acid, maintained a normal balance between reduced and oxidized glutathione (GSH and GSSG), and generated a strong antioxidant defense response against paraquat under HL conditions. Under cold exposure, the hos1 mutation decreased the ROS level and substantially increased the expression of the ascorbate peroxidase genes Apx1 and Apx2. When plants were pre-exposed to cold and further exposed to HL, the expression of the NADPH oxidase genes RbohD and RbohF was increased in the hos1Cas9 plants but not in WT plants. hos1-mediated changes in the level of ROS are cold-dependent and cold-independent, which implies different levels of regulation. Our data indicate that HOS1 is required to maintain ROS homeostasis not only under cold conditions, but also under conditions of both low and high light intensity. It is likely that HOS1 prevents the overinduction of defense mechanisms to balance growth.
Collapse
Affiliation(s)
- Tatiana Y. Gorpenchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia
| | - Galina N. Veremeichik
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia
- Correspondence: (G.N.V.); (V.P.B.); Tel.: +7-423-2310193 (V.P.B.)
| | - Yurii N. Shkryl
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia
| | - Yulia A. Yugay
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia
| | - Valeria P. Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia
| | - Dmitry V. Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia
| | - Tatiana V. Rusapetova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia
| | - Yulia V. Vereshchagina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia
| | - Anastasiya A. Mironova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia
| | - Evgeniyy P. Subbotin
- Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, 5 Radio Str., 690041 Vladivostok, Russia
| | - Yuriy N. Kulchin
- Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, 5 Radio Str., 690041 Vladivostok, Russia
| | - Victor P. Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia
- Correspondence: (G.N.V.); (V.P.B.); Tel.: +7-423-2310193 (V.P.B.)
| |
Collapse
|
4
|
Ahres M, Pálmai T, Kovács T, Kovács L, Lacek J, Vankova R, Galiba G, Borbély P. The Effect of White Light Spectrum Modifications by Excess of Blue Light on the Frost Tolerance, Lipid- and Hormone Composition of Barley in the Early Pre-Hardening Phase. PLANTS (BASEL, SWITZERLAND) 2022; 12:40. [PMID: 36616169 PMCID: PMC9823678 DOI: 10.3390/plants12010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
It is well established that cold acclimation processes are highly influenced, apart from cold ambient temperatures, by light-dependent environmental factors. In this study we investigated whether an extra blue (B) light supplementation would be able to further improve the well-documented freezing tolerance enhancing effect of far-red (FR) enriched white (W) light. The impact of B and FR light supplementation to white light (WFRB) on hormone levels and lipid contents were determined in winter barley at moderate (15 °C) and low (5 °C) temperatures. Low R:FR ratio effectively induced frost tolerance in barley plantlets, but additional B light further enhanced frost hardiness at both temperatures. Supplementation of WFR (white light enriched with FR light) with B had a strong positive effect on abscisic acid accumulation while the suppression of salicylic acid and jasmonic acid levels were observed at low temperature which resembles the shade avoidance syndrome. We also observed clear lipidomic differences between the individual light and temperature treatments. WFRB light changed the total lipid content negatively, but monogalactosyldiacylglycerol (MGDG) content was increased, nonetheless. Our results prove that WFRB light can greatly influence phytohormone dynamics and lipid contents, which eventually leads to more efficient pre-hardening to avoid frost damage.
Collapse
Affiliation(s)
- Mohamed Ahres
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
| | - Tamás Pálmai
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
| | - Terézia Kovács
- Biological Research Centre, Institute of Plant Biology, H-6701 Szeged, Hungary
| | - László Kovács
- Biological Research Centre, Institute of Plant Biology, H-6701 Szeged, Hungary
| | - Jozef Lacek
- Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Radomira Vankova
- Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague, Czech Republic
| | - Gábor Galiba
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
- Department of Agronomy, GEORGIKON Campus, Hungarian University of Agricultural and Life Sciences, 8360 Keszthely, Hungary
| | - Péter Borbély
- Centre for Agricultural Research, Agricultural Institute, Eötvös Loránd Research Network, H-2462 Martonvásár, Hungary
| |
Collapse
|
5
|
Seiml-Buchinger V, Reifschneider E, Bittner A, Baier M. Ascorbate peroxidase postcold regulation of chloroplast NADPH dehydrogenase activity controls cold memory. PLANT PHYSIOLOGY 2022; 190:1997-2016. [PMID: 35946757 PMCID: PMC9614503 DOI: 10.1093/plphys/kiac355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Exposure of Arabidopsis (Arabidopsis thaliana) to 4°C imprints a cold memory that modulates gene expression in response to a second (triggering) stress stimulus applied several days later. Comparison of plastid transcriptomes of cold-primed and control plants directly before they were exposed to the triggering stimulus showed downregulation of several subunits of chloroplast NADPH dehydrogenase (NDH) and regulatory subunits of ATP synthase. NDH is, like proton gradient 5 (PGR5)-PGR5-like1 (PGRL1), a thylakoid-embedded, ferredoxin-dependent plastoquinone reductase that protects photosystem I and stabilizes ATP synthesis by cyclic electron transport (CET). Like PGRL1A and PGRL1B transcript levels, ndhA and ndhD transcript levels decreased during the 24-h long priming cold treatment. PGRL1 transcript levels were quickly reset in the postcold phase, but expression of ndhA remained low. The transcript abundances of other ndh genes decreased within the next days. Comparison of thylakoid-bound ascorbate peroxidase (tAPX)-free and transiently tAPX-overexpressing or tAPX-downregulating Arabidopsis lines demonstrated that ndh expression is suppressed by postcold induction of tAPX. Four days after cold priming, when tAPX protein accumulation was maximal, NDH activity was almost fully lost. Lack of the NdhH-folding chaperonin Crr27 (Cpn60β4), but not lack of the NDH activity modulating subunits NdhM, NdhO, or photosynthetic NDH subcomplex B2 (PnsB2), strengthened priming regulation of zinc finger of A. thaliana 10, which is a nuclear-localized target gene of the tAPX-dependent cold-priming pathway. We conclude that cold-priming modifies chloroplast-to-nucleus stress signaling by tAPX-mediated suppression of NDH-dependent CET and that plastid-encoded NdhH, which controls subcomplex A assembly, is of special importance for memory stabilization.
Collapse
Affiliation(s)
- Victoria Seiml-Buchinger
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Berlin 14195,Germany
| | - Elena Reifschneider
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Berlin 14195,Germany
| | - Andras Bittner
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Berlin 14195,Germany
| | - Margarete Baier
- Plant Physiology, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Berlin 14195,Germany
| |
Collapse
|
6
|
Han Z, Li F, Qiao W, Nong B, Cheng Y, Zhang L, Huang J, Wang Y, Lou D, Ge J, Xing M, Fan W, Nie Y, Guo W, Wang S, Liu Z, Li D, Zheng X, Yang Q. Identification of candidate genes and clarification of the maintenance of the green pericarp of weedy rice grains. FRONTIERS IN PLANT SCIENCE 2022; 13:930062. [PMID: 35937328 PMCID: PMC9354532 DOI: 10.3389/fpls.2022.930062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The weedy rice (Oryza sativa f. spontanea) pericarp has diverse colors (e.g., purple, red, light-red, and white). However, research on pericarp colors has focused on red and purple, but not green. Unlike many other common weedy rice resources, LM8 has a green pericarp at maturity. In this study, the coloration of the LM8 pericarp was evaluated at the cellular and genetic levels. First, an examination of their ultrastructure indicated that LM8 chloroplasts were normal regarding plastid development and they contained many plastoglobules from the early immature stage to maturity. Analyses of transcriptome profiles and differentially expressed genes revealed that most chlorophyll (Chl) degradation-related genes in LM8 were expressed at lower levels than Chl a/b cycle-related genes in mature pericarps, suggesting that the green LM8 pericarp was associated with inhibited Chl degradation in intact chloroplasts. Second, the F2 generation derived from a cross between LM8 (green pericarp) and SLG (white pericarp) had a pericarp color segregation ratio of 9:3:4 (green:brown:white). The bulked segregant analysis of the F2 populations resulted in the identification of 12 known genes in the chromosome 3 and 4 hotspot regions as candidate genes related to Chl metabolism in the rice pericarp. The RNA-seq and sqRT-PCR assays indicated that the expression of the Chl a/b cycle-related structural gene DVR (encoding divinyl reductase) was sharply up-regulated. Moreover, genes encoding magnesium-chelatase subunit D and the light-harvesting Chl a/b-binding protein were transcriptionally active in the fully ripened dry pericarp. Regarding the ethylene signal transduction pathway, the CTR (encoding an ethylene-responsive protein kinase) and ERF (encoding an ethylene-responsive factor) genes expression profiles were determined. The findings of this study highlight the regulatory roles of Chl biosynthesis- and degradation-related genes influencing Chl accumulation during the maturation of the LM8 pericarp.
Collapse
Affiliation(s)
- Zhenyun Han
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weihua Qiao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Baoxuan Nong
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yunlian Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lifang Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingfen Huang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanyan Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Danjing Lou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinyue Ge
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng Xing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiya Fan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yamin Nie
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlong Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shizhuang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziran Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
- International Rice Research Institute, Metro Manila, Philippines
| | - Qingwen Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
7
|
Lee HG, Jeong YY, Lee H, Seo PJ. Arabidopsis HISTONE DEACETYLASE 9 Stimulates Hypocotyl Cell Elongation by Repressing GIGANTEA Expression Under Short Day Photoperiod. FRONTIERS IN PLANT SCIENCE 2022; 13:950378. [PMID: 35923878 PMCID: PMC9341324 DOI: 10.3389/fpls.2022.950378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Developmental plasticity contributes to plant adaptation and fitness in a given condition. Hypocotyl elongation is under the tight control of complex genetic networks encompassing light, circadian, and photoperiod signaling. In this study, we demonstrate that HISTONE DEACETYLASE 9 (HDA9) mediates day length-dependent hypocotyl cell elongation. HDA9 binds to the GIGANTEA (GI) locus involved in photoperiodic hypocotyl elongation. The short day (SD)-accumulated HDA9 protein promotes histone H3 deacetylation at the GI locus during the dark period, promoting hypocotyl elongation. Consistently, HDA9-deficient mutants display reduced hypocotyl length, along with an increase in GI gene expression, only under SD conditions. Taken together, our study reveals the genetic basis of day length-dependent cell elongation in plants.
Collapse
Affiliation(s)
- Hong Gil Lee
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Yeong Yeop Jeong
- Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Hongwoo Lee
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
8
|
Balogh E, Kalapos B, Ahres M, Boldizsár Á, Gierczik K, Gulyás Z, Gyugos M, Szalai G, Novák A, Kocsy G. Far-Red Light Coordinates the Diurnal Changes in the Transcripts Related to Nitrate Reduction, Glutathione Metabolism and Antioxidant Enzymes in Barley. Int J Mol Sci 2022; 23:ijms23137479. [PMID: 35806480 PMCID: PMC9267158 DOI: 10.3390/ijms23137479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Spectral quality, intensity and period of light modify many regulatory and stress signaling pathways in plants. Both nitrate and sulfate assimilations must be synchronized with photosynthesis, which ensures energy and reductants for these pathways. However, photosynthesis is also a source of reactive oxygen species, whose levels are controlled by glutathione and other antioxidants. In this study, we investigated the effect of supplemental far-red (735 nm) and blue (450 nm) lights on the diurnal expression of the genes related to photoreceptors, the circadian clock, nitrate reduction, glutathione metabolism and various antioxidants in barley. The maximum expression of the investigated four photoreceptor and three clock-associated genes during the light period was followed by the peaking of the transcripts of the three redox-responsive transcription factors during the dark phase, while most of the nitrate and sulfate reduction, glutathione metabolism and antioxidant-enzyme-related genes exhibited high expression during light exposure in plants grown in light/dark cycles for two days. These oscillations changed or disappeared in constant white light during the subsequent two days. Supplemental far-red light induced the activation of most of the studied genes, while supplemental blue light did not affect or inhibited them during light/dark cycles. However, in constant light, several genes exhibited greater expression in blue light than in white and far-red lights. Based on a correlation analysis of the gene expression data, we propose a major role of far-red light in the coordinated transcriptional adjustment of nitrate reduction, glutathione metabolism and antioxidant enzymes to changes of the light spectrum.
Collapse
|
9
|
Light Intensity- and Spectrum-Dependent Redox Regulation of Plant Metabolism. Antioxidants (Basel) 2022; 11:antiox11071311. [PMID: 35883801 PMCID: PMC9312225 DOI: 10.3390/antiox11071311] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Both light intensity and spectrum (280–800 nm) affect photosynthesis and, consequently, the formation of reactive oxygen species (ROS) during photosynthetic electron transport. ROS, together with antioxidants, determine the redox environment in tissues and cells, which in turn has a major role in the adjustment of metabolism to changes in environmental conditions. This process is very important since there are great spatial (latitude, altitude) and temporal (daily, seasonal) changes in light conditions which are accompanied by fluctuations in temperature, water supply, and biotic stresses. The blue and red spectral regimens are decisive in the regulation of metabolism because of the absorption maximums of chlorophylls and the sensitivity of photoreceptors. Based on recent publications, photoreceptor-controlled transcription factors such as ELONGATED HYPOCOTYL5 (HY5) and changes in the cellular redox environment may have a major role in the coordinated fine-tuning of metabolic processes during changes in light conditions. This review gives an overview of the current knowledge of the light-associated redox control of basic metabolic pathways (carbon, nitrogen, amino acid, sulphur, lipid, and nucleic acid metabolism), secondary metabolism (terpenoids, flavonoids, and alkaloids), and related molecular mechanisms. Light condition-related reprogramming of metabolism is the basis for proper growth and development of plants; therefore, its better understanding can contribute to more efficient crop production in the future.
Collapse
|
10
|
Chen D, Lyu M, Kou X, Li J, Yang Z, Gao L, Li Y, Fan LM, Shi H, Zhong S. Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B. Mol Cell 2022; 82:3015-3029.e6. [PMID: 35728588 DOI: 10.1016/j.molcel.2022.05.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/02/2022] [Accepted: 05/23/2022] [Indexed: 01/03/2023]
Abstract
Light and temperature in plants are perceived by a common receptor, phytochrome B (phyB). How phyB distinguishes these signals remains elusive. Here, we report that phyB spontaneously undergoes phase separation to assemble liquid-like droplets. This capacity is driven by its C terminus through self-association, whereas the intrinsically disordered N-terminal extension (NTE) functions as a biophysical modulator of phase separation. Light exposure triggers a conformational change to subsequently alter phyB condensate assembly, while temperature sensation is directly mediated by the NTE to modulate the phase behavior of phyB droplets. Multiple signaling components are selectively incorporated into phyB droplets to form concentrated microreactors, allowing switch-like control of phyB signaling activity through phase transitions. Therefore, light and temperature cues are separately read out by phyB via allosteric changes and spontaneous phase separation, respectively. We provide a conceptual framework showing how the distinct but highly correlated physical signals are interpreted and sorted by one receptor.
Collapse
Affiliation(s)
- Di Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Mohan Lyu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoxia Kou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhixuan Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Lulu Gao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yue Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Liu-Min Fan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shi
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China.
| |
Collapse
|
11
|
Ding D, Li J, Xie J, Li N, Bakpa EP, Han K, Yang Y, Wang C. Exogenous Zeaxanthin Alleviates Low Temperature Combined with Low Light Induced Photosynthesis Inhibition and Oxidative Stress in Pepper (Capsicum annuum L.) Plants. Curr Issues Mol Biol 2022; 44:2453-2471. [PMID: 35735609 PMCID: PMC9221838 DOI: 10.3390/cimb44060168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Low temperature combined with low light (LL) affects crop production, especially the yield and quality of peppers, in northwest China during the winter and spring seasons. Zeaxanthin (Z) is a known lipid protectant and active oxygen scavenger. However, whether exogenous Z can mitigate LL-induced inhibition of photosynthesis and oxidative stress in peppers remains unclear. In this study, we investigated the effects of exogenous Z on photosynthesis and the antioxidant machinery of pepper seedlings subject to LL stress. The results showed that the growth and photosynthesis of pepper seedlings were significantly inhibited by LL stress. In addition, the antioxidant machinery was disturbed by the uneven production and elimination of reactive oxygen species (ROS), which resulted in damage to the pepper. For example, membrane lipid peroxidation increased ROS content, and so on. However, exogenous application of Z before LL stress significantly increased the plant height, stem diameter, net photosynthetic rate (Pn), and stomata, which were obviously closed at LL. The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), mono de-hydroascorbate reductase (MDHAR), de-hydroascorbate reductase (DHAR), ascorbate peroxidase (APX), and ascorbate oxidase (AAO) improved significantly due to the increased expression of CaSOD, CaCAT, CaAPX, CaMDHAR, and CaDHAR. The ascorbic (AsA) and glutathione (GSH) contents and ascorbic/dehydroascorbate (AsA/DHA) and glutathione/oxidized glutathione (GSH/GSSG) ratios also increased significantly, resulting in the effective removal of hydrogen peroxide (H2O2) and superoxide anions (O2•−) caused by LL stress. Thus, pre-treatment with Z significantly reduced ROS accumulation in pepper seedlings under LL stress by enhancing the activity of antioxidant enzymes and accumulation of components of the ascorbate–glutathione (AsA–GSH) cycle and upregulated key genes in the AsA–GSH cycle.
Collapse
|
12
|
Souza ASND, Schmidt HDO, Pagno C, Rodrigues E, Silva MASD, Flôres SH, Rios ADO. Influence of cultivar and season on carotenoids and phenolic compounds from red lettuce influence of cultivar and season on lettuce. Food Res Int 2022; 155:111110. [PMID: 35400402 DOI: 10.1016/j.foodres.2022.111110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/11/2022]
Abstract
This paper presents complete HPLC profiles and MS spectrometric data of bioactive compounds from four cultivars of red lettuce produced in winter and summer and their antioxidant capacity. The experiment was carried out in a greenhouse, where red curly lettuce was cultivated: Mila, Maira, Carmin and Scarlet. The cultivar and season have not influenced the qualitative profile of carotenoids (CAR) and phenolic compounds (PC) of red lettuce. Instead, the season influenced the concentration of these components in all cultivars. The levels of phenolic compounds were significantly higher in winter, while the levels of carotenoids were higher in summer. Ten anthocyanins were identified (cyanidins and delphinidins). The main carotenoid found was the all-trans-β-carotene (45-48%), followed by lutein (13-20%) and zeaxanthin (11-15%). Major phenolic compounds include 5-caffeoylquinic acid, rutin and amentoflavone. Red lettuce cultivars have their main bioactive compounds described and compared within the variety and within the growing season. Different season and different lettuce cultivars may differ in the content of their bioactive compounds and in their antioxidant capacity.
Collapse
Affiliation(s)
- Alex Sandra Nascimento de Souza
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Avenue Bento Gonçalves, 9500, Prédio 43.212, Campus do Vale, Porto Alegre, RS CEP 91501-970, Brazil
| | - Helena de Oliveira Schmidt
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Avenue Bento Gonçalves, 9500, Prédio 43.212, Campus do Vale, Porto Alegre, RS CEP 91501-970, Brazil
| | - Carlos Pagno
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Avenue Bento Gonçalves, 9500, Prédio 43.212, Campus do Vale, Porto Alegre, RS CEP 91501-970, Brazil
| | - Eliseu Rodrigues
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Avenue Bento Gonçalves, 9500, Prédio 43.212, Campus do Vale, Porto Alegre, RS CEP 91501-970, Brazil
| | - Magnolia Aparecida Silva da Silva
- Department of Horticulture and Forestry, Agronomy University of the Federal University of Rio Grande do Sul (UFRGS), Avenue Bento Gonçalves, 7712, Porto Alegre, RS CEP 9154-000, Brazil
| | - Simone Hickmann Flôres
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Avenue Bento Gonçalves, 9500, Prédio 43.212, Campus do Vale, Porto Alegre, RS CEP 91501-970, Brazil
| | - Alessandro de Oliveira Rios
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Avenue Bento Gonçalves, 9500, Prédio 43.212, Campus do Vale, Porto Alegre, RS CEP 91501-970, Brazil.
| |
Collapse
|
13
|
Bouché F, Woods DP, Linden J, Li W, Mayer KS, Amasino RM, Périlleux C. EARLY FLOWERING 3 and Photoperiod Sensing in Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2022; 12:769194. [PMID: 35069625 PMCID: PMC8770904 DOI: 10.3389/fpls.2021.769194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 05/26/2023]
Abstract
The proper timing of flowering, which is key to maximize reproductive success and yield, relies in many plant species on the coordination between environmental cues and endogenous developmental programs. The perception of changes in day length is one of the most reliable cues of seasonal change, and this involves the interplay between the sensing of light signals and the circadian clock. Here, we describe a Brachypodium distachyon mutant allele of the evening complex protein EARLY FLOWERING 3 (ELF3). We show that the elf3 mutant flowers more rapidly than wild type plants in short days as well as under longer photoperiods but, in very long (20 h) days, flowering is equally rapid in elf3 and wild type. Furthermore, flowering in the elf3 mutant is still sensitive to vernalization, but not to ambient temperature changes. Molecular analyses revealed that the expression of a short-day marker gene is suppressed in elf3 grown in short days, and the expression patterns of clock genes and flowering time regulators are altered. We also explored the mechanisms of photoperiodic perception in temperate grasses by exposing B. distachyon plants grown under a 12 h photoperiod to a daily night break consisting of a mixture of red and far-red light. We showed that 2 h breaks are sufficient to accelerate flowering in B. distachyon under non-inductive photoperiods and that this acceleration of flowering is mediated by red light. Finally, we discuss advances and perspectives for research on the perception of photoperiod in temperate grasses.
Collapse
Affiliation(s)
- Frédéric Bouché
- Laboratory of Plant Physiology, InBioS-PhytoSYSTEMS, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Daniel P. Woods
- Plant Sciences Department, University of California, Davis, Davis, CA, United States
- Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Julie Linden
- Laboratory of Plant Physiology, InBioS-PhytoSYSTEMS, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Weiya Li
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
| | - Kevin S. Mayer
- Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
| | - Richard M. Amasino
- Laboratory of Genetics, University of Wisconsin, Madison, WI, United States
- Department of Biochemistry, University of Wisconsin, Madison, WI, United States
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI, United States
| | - Claire Périlleux
- Laboratory of Plant Physiology, InBioS-PhytoSYSTEMS, Department of Life Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
14
|
Kumar S, Kaur S, Seem K, Kumar S, Mohapatra T. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective. Front Cell Dev Biol 2021; 9:774719. [PMID: 34957106 PMCID: PMC8692796 DOI: 10.3389/fcell.2021.774719] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/23/2021] [Indexed: 01/17/2023] Open
Abstract
The genome of a eukaryotic organism is comprised of a supra-molecular complex of chromatin fibers and intricately folded three-dimensional (3D) structures. Chromosomal interactions and topological changes in response to the developmental and/or environmental stimuli affect gene expression. Chromatin architecture plays important roles in DNA replication, gene expression, and genome integrity. Higher-order chromatin organizations like chromosome territories (CTs), A/B compartments, topologically associating domains (TADs), and chromatin loops vary among cells, tissues, and species depending on the developmental stage and/or environmental conditions (4D genomics). Every chromosome occupies a separate territory in the interphase nucleus and forms the top layer of hierarchical structure (CTs) in most of the eukaryotes. While the A and B compartments are associated with active (euchromatic) and inactive (heterochromatic) chromatin, respectively, having well-defined genomic/epigenomic features, TADs are the structural units of chromatin. Chromatin architecture like TADs as well as the local interactions between promoter and regulatory elements correlates with the chromatin activity, which alters during environmental stresses due to relocalization of the architectural proteins. Moreover, chromatin looping brings the gene and regulatory elements in close proximity for interactions. The intricate relationship between nucleotide sequence and chromatin architecture requires a more comprehensive understanding to unravel the genome organization and genetic plasticity. During the last decade, advances in chromatin conformation capture techniques for unravelling 3D genome organizations have improved our understanding of genome biology. However, the recent advances, such as Hi-C and ChIA-PET, have substantially increased the resolution, throughput as well our interest in analysing genome organizations. The present review provides an overview of the historical and contemporary perspectives of chromosome conformation capture technologies, their applications in functional genomics, and the constraints in predicting 3D genome organization. We also discuss the future perspectives of understanding high-order chromatin organizations in deciphering transcriptional regulation of gene expression under environmental stress (4D genomics). These might help design the climate-smart crop to meet the ever-growing demands of food, feed, and fodder.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | |
Collapse
|
15
|
Zioutopoulou A, Patitaki E, Xu T, Kaiserli E. The Epigenetic Mechanisms Underlying Thermomorphogenesis and Heat Stress Responses in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112439. [PMID: 34834802 PMCID: PMC8624032 DOI: 10.3390/plants10112439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 05/28/2023]
Abstract
Integration of temperature cues is crucial for plant survival and adaptation. Global warming is a prevalent issue, especially in modern agriculture, since the global rise in average temperature is expected to impact crop productivity worldwide. Hence, better understanding of the mechanisms by which plants respond to warmer temperatures is very important. This review focuses on the epigenetic mechanisms implicated in plant responses to high temperature and distinguishes the different epigenetic events that occur at warmer average temperatures, leading to thermomorphogenic responses, or subjected to extreme warm temperatures, leading to heat stress.
Collapse
|
16
|
Norrström N, Niklasson M, Leidenberger S. Winter weight loss of different subspecies of honey bee Apis mellifera colonies (Linnaeus, 1758) in southwestern Sweden. PLoS One 2021; 16:e0258398. [PMID: 34648553 PMCID: PMC8516218 DOI: 10.1371/journal.pone.0258398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022] Open
Abstract
Honey bees are currently facing mounting pressures that have resulted in population declines in many parts of the world. In northern climates winter is a bottleneck for honey bees and a thorough understanding of the colonies’ ability to withstand the winter is needed in order to protect the bees from further decline. In this study the influence of weather variables on colony weight loss was studied over one winter (2019–2020) in two apiaries (32 colonies in total) in southwestern Sweden with weather stations recording wind and temperature at 5-min intervals. Three subspecies of honey bees and one hybrid were studied: the native Apis mellifera mellifera, the Italian A. m. ligustica, the Carniolan A. m. carnica and the hybrid Buckfast. Additionally, we recorded Varroa mite infestation. To analyze factors involved in resource consumption, three modelling approaches using weather and weight data were developed: the first links daily consumption rates with environmental variables, the second modelled the cumulative weight change over time, and the third estimated weight change over time taking light intensity and temperature into account. Weight losses were in general low (0.039 ± 0.013kg/day and colony) and comparable to southern locations, likely due to an exceptionally warm winter (average temperature 3.5°C). Weight losses differed only marginally between subspecies with indications that A. m. mellifera was having a more conservative resource consumption, but more studies are needed to confirm this. We did not find any effect of Varroa mite numbers on weight loss. Increased light intensity and temperature both triggered the resource consumption in honey bees. The temperature effect on resource consumption is in accordance with the metabolic theory of ecology. The consequences of these findings on honey bee survival under predicted climate changes, is still an open question that needs further analysis.
Collapse
Affiliation(s)
- Niclas Norrström
- School of Bioscience, Department of Biology and Bioinformatics, University of Skövde, Skövde, Sweden
| | - Mats Niklasson
- Stiftelsen Nordens Ark, Åby säteri, Hunnebostrand, Sweden
| | - Sonja Leidenberger
- School of Bioscience, Department of Biology and Bioinformatics, University of Skövde, Skövde, Sweden
- * E-mail:
| |
Collapse
|
17
|
Deslauriers SD. High-resolution imaging as a tool for identifying quantitative trait loci that regulate photomorphogenesis in Arabidopsis thaliana. AOB PLANTS 2021; 13:plab063. [PMID: 34729159 PMCID: PMC8557632 DOI: 10.1093/aobpla/plab063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
A primary component of seedling establishment is the photomorphogenic response as seedlings emerge from the soil. This process is characterized by a reduced growth rate in the hypocotyl, increased root growth, opening of the apical hook and expansion of the cotyledons as photosynthetic organs. While fundamental to plant success, the photomorphogenic response can be highly variable. Additionally, studies of Arabidopsis thaliana are made difficult by subtle differences in growth rate between individuals. High-resolution imaging and computational processing have emerged as useful tools for quantification of such phenotypes. This study sought to: (i) develop an imaging methodology which could capture changes in growth rate as seedlings transition from darkness to blue light in real time, and (ii) apply this methodology to single-quantitative trait locus (QTL) analysis using the Cvi × Ler recombinant inbred line (RIL) mapping population. Significant differences in the photomorphogenic response were observed between the parent lines and analysis of 158 RILs revealed a wide range of growth rate phenotypes. Quantitative trait locus analysis detected significant loci associated with dark growth rate on chromosome 5 and significant loci associated with light growth rate on chromosome 2. Candidate genes associated with these loci, such as the previously characterized ER locus, highlight the application of this approach for QTL analysis. Genetic analysis of Landsberg lines without the erecta mutation also supports a role for ER in modulating the photomorphogenic response, consistent with previous QTL analyses of this population. Strengths and limitations of this methodology are presented, as well as means of improvement.
Collapse
Affiliation(s)
- Stephen D Deslauriers
- Division of Science and Math, University of Minnesota, Morris, Morris, MN 56267, USA
| |
Collapse
|
18
|
Flannery SE, Pastorelli F, Wood WHJ, Hunter CN, Dickman MJ, Jackson PJ, Johnson MP. Comparative proteomics of thylakoids from Arabidopsis grown in laboratory and field conditions. PLANT DIRECT 2021; 5:e355. [PMID: 34712896 PMCID: PMC8528093 DOI: 10.1002/pld3.355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Compared to controlled laboratory conditions, plant growth in the field is rarely optimal since it is frequently challenged by large fluctuations in light and temperature which lower the efficiency of photosynthesis and lead to photo-oxidative stress. Plants grown under natural conditions therefore place an increased onus on the regulatory mechanisms that protect and repair the delicate photosynthetic machinery. Yet, the exact changes in thylakoid proteome composition which allow plants to acclimate to the natural environment remain largely unexplored. Here, we use quantitative label-free proteomics to demonstrate that field-grown Arabidopsis plants incorporate aspects of both the low and high light acclimation strategies previously observed in laboratory-grown plants. Field plants showed increases in the relative abundance of ATP synthase, cytochrome b 6 f, ferredoxin-NADP+ reductases (FNR1 and FNR2) and their membrane tethers TIC62 and TROL, thylakoid architecture proteins CURT1A, CURT1B, RIQ1, and RIQ2, the minor monomeric antenna complex CP29.3, rapidly-relaxing non-photochemical quenching (qE)-related proteins PSBS and VDE, the photosystem II (PSII) repair machinery and the cyclic electron transfer complexes NDH, PGRL1B, and PGR5, in addition to decreases in the amounts of LHCII trimers composed of LHCB1.1, LHCB1.2, LHCB1.4, and LHCB2 proteins and CP29.2, all features typical of a laboratory high light acclimation response. Conversely, field plants also showed increases in the abundance of light harvesting proteins LHCB1.3 and CP29.1, zeaxanthin epoxidase (ZEP) and the slowly-relaxing non-photochemical quenching (qI)-related protein LCNP, changes previously associated with a laboratory low light acclimation response. Field plants also showed distinct changes to the proteome including the appearance of stress-related proteins ELIP1 and ELIP2 and changes to proteins that are largely invariant under laboratory conditions such as state transition related proteins STN7 and TAP38. We discuss the significance of these alterations in the thylakoid proteome considering the unique set of challenges faced by plants growing under natural conditions.
Collapse
Affiliation(s)
- Sarah E. Flannery
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUK
| | - Federica Pastorelli
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUK
| | - William H. J. Wood
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUK
| | - C. Neil Hunter
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUK
| | - Mark J. Dickman
- Department of Chemical and Biological EngineeringUniversity of SheffieldSheffieldUK
| | - Philip J. Jackson
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUK
- Department of Chemical and Biological EngineeringUniversity of SheffieldSheffieldUK
| | - Matthew P. Johnson
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUK
| |
Collapse
|
19
|
Janda T, Prerostová S, Vanková R, Darkó É. Crosstalk between Light- and Temperature-Mediated Processes under Cold and Heat Stress Conditions in Plants. Int J Mol Sci 2021; 22:ijms22168602. [PMID: 34445308 PMCID: PMC8395339 DOI: 10.3390/ijms22168602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
Extreme temperatures are among the most important stressors limiting plant growth and development. Results indicate that light substantially influences the acclimation processes to both low and high temperatures, and it may affect the level of stress injury. The interaction between light and temperature in the regulation of stress acclimation mechanisms is complex, and both light intensity and spectral composition play an important role. Higher light intensities may lead to overexcitation of the photosynthetic electron transport chain; while different wavelengths may act through different photoreceptors. These may induce various stress signalling processes, leading to regulation of stomatal movement, antioxidant and osmoregulation capacities, hormonal actions, and other stress-related pathways. In recent years, we have significantly expanded our knowledge in both light and temperature sensing and signalling. The present review provides a synthesis of results for understanding how light influences the acclimation of plants to extreme low or high temperatures, including the sensing mechanisms and molecular crosstalk processes.
Collapse
Affiliation(s)
- Tibor Janda
- Centre for Agricultural Research, Department of Plant Physiology and Metabolomics, Agricultural Institute, ELKH, H-2462 Martonvásár, Hungary;
- Correspondence:
| | - Sylva Prerostová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague, Czech Republic; (S.P.); (R.V.)
| | - Radomíra Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague, Czech Republic; (S.P.); (R.V.)
| | - Éva Darkó
- Centre for Agricultural Research, Department of Plant Physiology and Metabolomics, Agricultural Institute, ELKH, H-2462 Martonvásár, Hungary;
| |
Collapse
|
20
|
Pooam M, Dixon N, Hilvert M, Misko P, Waters K, Jourdan N, Drahy S, Mills S, Engle D, Link J, Ahmad M. Effect of temperature on the Arabidopsis cryptochrome photocycle. PHYSIOLOGIA PLANTARUM 2021; 172:1653-1661. [PMID: 33583025 DOI: 10.1111/ppl.13365] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 12/17/2020] [Accepted: 02/05/2021] [Indexed: 05/20/2023]
Abstract
Cryptochromes are blue light-absorbing photoreceptors found in plants and animals with many important signalling functions. These include control of plant growth, development, and the entrainment of the circadian clock. Plant cryptochromes have recently been implicated in adaptations to temperature variation, including temperature compensation of the circadian clock. However, the effect of temperature directly on the photochemical properties of the cryptochrome photoreceptor remains unknown. Here we show that the response to light of purified Arabidopsis Cry1 and Cry2 proteins was significantly altered by temperature. Spectral analysis at 15°C showed a pronounced decrease in flavin reoxidation rates from the biologically active, light-induced (FADH°) signalling state of cryptochrome to the inactive (FADox) resting redox state as compared to ambient (25°C) temperature. This result indicates that at low temperatures, the concentration of the biologically active FADH° redox form of Cry is increased, leading to the counterintuitive prediction that there should be an increased biological activity of Cry at lower temperatures. This was confirmed using Cry1 cryptochrome C-terminal phosphorylation as a direct biological assay for Cry activation in vivo. We conclude that enhanced cryptochrome function in vivo at low temperature is consistent with modulation by temperature of the cryptochrome photocycle.
Collapse
Affiliation(s)
- Marootpong Pooam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Nykiera Dixon
- Sorbonne Universités - UPMC Paris 6 - CNRS, UMR8256 - IBPS, Photobiology Research Group, Paris, France
- Institut de Biologie Paris-Seine, Xavier University, Cincinnati, Ohio, USA
| | - Michael Hilvert
- Sorbonne Universités - UPMC Paris 6 - CNRS, UMR8256 - IBPS, Photobiology Research Group, Paris, France
- Institut de Biologie Paris-Seine, Xavier University, Cincinnati, Ohio, USA
| | - Peter Misko
- Sorbonne Universités - UPMC Paris 6 - CNRS, UMR8256 - IBPS, Photobiology Research Group, Paris, France
- Institut de Biologie Paris-Seine, Xavier University, Cincinnati, Ohio, USA
| | - Kristy Waters
- Sorbonne Universités - UPMC Paris 6 - CNRS, UMR8256 - IBPS, Photobiology Research Group, Paris, France
- Institut de Biologie Paris-Seine, Xavier University, Cincinnati, Ohio, USA
| | - Nathalie Jourdan
- Sorbonne Universités - UPMC Paris 6 - CNRS, UMR8256 - IBPS, Photobiology Research Group, Paris, France
| | - Soria Drahy
- Sorbonne Universités - UPMC Paris 6 - CNRS, UMR8256 - IBPS, Photobiology Research Group, Paris, France
| | - Stephen Mills
- Institut de Biologie Paris-Seine, Xavier University, Cincinnati, Ohio, USA
| | - Dorothy Engle
- Institut de Biologie Paris-Seine, Xavier University, Cincinnati, Ohio, USA
| | - Justin Link
- Institut de Biologie Paris-Seine, Xavier University, Cincinnati, Ohio, USA
| | - Margaret Ahmad
- Sorbonne Universités - UPMC Paris 6 - CNRS, UMR8256 - IBPS, Photobiology Research Group, Paris, France
- Institut de Biologie Paris-Seine, Xavier University, Cincinnati, Ohio, USA
| |
Collapse
|
21
|
Cammarisano L, Donnison IS, Robson PRH. Producing Enhanced Yield and Nutritional Pigmentation in Lollo Rosso Through Manipulating the Irradiance, Duration, and Periodicity of LEDs in the Visible Region of Light. FRONTIERS IN PLANT SCIENCE 2020; 11:598082. [PMID: 33391308 PMCID: PMC7775386 DOI: 10.3389/fpls.2020.598082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/23/2020] [Indexed: 06/01/2023]
Abstract
Pigmented food are an important part of the human diet, and anthocyanins have demonstrable protection against tumor production in mouse models and beneficial effects on human liver chemistry. As such, producing pigmented crops is important for a nutritionally diverse diet. Lollo rosso lettuce is a fast-growing pigmented plant, is rich in phenolic compounds, and represents a suitable system to test optimization strategies for yield and anthocyanin production. High-energy UV wavebands are often used to stimulate increased pigmentation; however, we hypothesized that optimizing visible wavebands would deliver both yield and quality improvements. Growing Lollo rosso under irradiances between 5 and 180 W m-2 using visible waveband LEDs produced 0.4 g fresh weight per W m-2 in the linear portion of the curve between 5 and 40 W m-2 and achieved an approximate asymptote of 20 g fresh weight at around 100-120 W m-2 for yield. Anthocyanin content increased linearly with irradiance. We attempted to optimize the visible wavebands by supplementing half the asymptotic energy for 15 days with supplemental red (R) or blue (B) wavebands in the peaks of photosynthetic activity (430-460 and 630-660 nm). R and B affected rosette morphology with no significant impact on yield, but B significantly increased anthocyanin content by 94% compared to R. We therefore focused on further optimizing B by shortening the daily duration of supplemental B. The minimum B treatment that lacked significant pigment induction was 1 h. We hypothesized that short durations would be more active at different times in the diurnal cycle. Supplemental B was applied for 2 h at four different times. A night-break with B produced the highest yield and anthocyanin content. Our research demonstrates new ways to efficiently use readily available LEDs within the PAR wavebands to increase both yield and crop quality in controlled environment agriculture.
Collapse
Affiliation(s)
- Laura Cammarisano
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- Next-Generation Horticultural Systems, Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
| | - Iain S. Donnison
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Paul R. H. Robson
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
22
|
Kovács T, Ahres M, Pálmai T, Kovács L, Uemura M, Crosatti C, Galiba G. Decreased R:FR Ratio in Incident White Light Affects the Composition of Barley Leaf Lipidome and Freezing Tolerance in a Temperature-Dependent Manner. Int J Mol Sci 2020; 21:ijms21207557. [PMID: 33066276 PMCID: PMC7593930 DOI: 10.3390/ijms21207557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
In cereals, C-repeat binding factor genes have been defined as key components of the light quality-dependent regulation of frost tolerance by integrating phytochrome-mediated light and temperature signals. This study elucidates the differences in the lipid composition of barley leaves illuminated with white light or white light supplemented with far-red light at 5 or 15 °C. According to LC-MS analysis, far-red light supplementation increased the amount of monogalactosyldiacylglycerol species 36:6, 36:5, and 36:4 after 1 day at 5 °C, and 10 days at 15 °C resulted in a perturbed content of 38:6 species. Changes were observed in the levels of phosphatidylethanolamine, and phosphatidylserine under white light supplemented with far-red light illumination at 15 °C, whereas robust changes were observed in the amount of several phosphatidylserine species at 5 °C. At 15 °C, the amount of some phosphatidylglycerol species increased as a result of white light supplemented with far-red light illumination after 1 day. The ceramide (42:2)-3 content increased regardless of the temperature. The double-bond index of phosphatidylglycerol, phosphatidylserine, phosphatidylcholine ceramide together with total double-bond index changed when the plant was grown at 15 °C as a function of white light supplemented with far-red light. white light supplemented with far-red light increased the monogalactosyldiacylglycerol/diacylglycerol ratio as well. The gene expression changes are well correlated with the alterations in the lipidome.
Collapse
Affiliation(s)
- Terézia Kovács
- Biological Research Centre, Institute of Plant Biology, H-6701 Szeged, Hungary;
- Department of Plant Biology, University of Szeged, 6720 Szeged, Hungary
- Correspondence:
| | - Mohamed Ahres
- Centre for Agricultural Research, Agricultural Institute, 2462 Martonvásár, Hungary; (M.A.); (T.P.); (G.G.)
- Festetics Doctoral School, Georgikon Campus, Szent István University, H-2100 Gödöllő, Hungary
| | - Tamás Pálmai
- Centre for Agricultural Research, Agricultural Institute, 2462 Martonvásár, Hungary; (M.A.); (T.P.); (G.G.)
| | - László Kovács
- Biological Research Centre, Institute of Plant Biology, H-6701 Szeged, Hungary;
| | - Matsuo Uemura
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan;
| | - Cristina Crosatti
- CREA Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, 29017 San Protaso, Italy;
| | - Gabor Galiba
- Centre for Agricultural Research, Agricultural Institute, 2462 Martonvásár, Hungary; (M.A.); (T.P.); (G.G.)
- Festetics Doctoral School, Georgikon Campus, Szent István University, H-2100 Gödöllő, Hungary
| |
Collapse
|
23
|
MacKinnon KJM, Cole BJ, Yu C, Coomey JH, Hartwick NT, Remigereau MS, Duffy T, Michael TP, Kay SA, Hazen SP. Changes in ambient temperature are the prevailing cue in determining Brachypodium distachyon diurnal gene regulation. THE NEW PHYTOLOGIST 2020; 227:1709-1724. [PMID: 32112414 DOI: 10.1111/nph.16507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Plants are continuously exposed to diurnal fluctuations in light and temperature, and spontaneous changes in their physical or biotic environment. The circadian clock coordinates regulation of gene expression with a 24 h period, enabling the anticipation of these events. We used RNA sequencing to characterize the Brachypodium distachyon transcriptome under light and temperature cycles, as well as under constant conditions. Approximately 3% of the transcriptome was regulated by the circadian clock, a smaller proportion than reported in most other species. For most transcripts that were rhythmic under all conditions, including many known clock genes, the period of gene expression lengthened from 24 to 27 h in the absence of external cues. To functionally characterize the cyclic transcriptome in B. distachyon, we used Gene Ontology enrichment analysis, and found several terms significantly associated with peak expression at particular times of the day. Furthermore, we identified sequence motifs enriched in the promoters of similarly phased genes, some potentially associated with transcription factors. When considering the overlap in rhythmic gene expression and specific pathway behavior, thermocycles was the prevailing cue that controlled diurnal gene regulation. Taken together, our characterization of the rhythmic B. distachyon transcriptome represents a foundational resource with implications in other grass species.
Collapse
Affiliation(s)
- Kirk J-M MacKinnon
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
| | - Benjamin J Cole
- DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Chang Yu
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA
| | - Joshua H Coomey
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
| | | | - Marie-Stanislas Remigereau
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Tomás Duffy
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | | | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Samuel P Hazen
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
24
|
Perrella G, Zioutopoulou A, Headland LR, Kaiserli E. The impact of light and temperature on chromatin organization and plant adaptation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5247-5255. [PMID: 32215554 DOI: 10.1093/jxb/eraa154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/24/2020] [Indexed: 05/23/2023]
Abstract
Light and temperature shape the developmental trajectory and morphology of plants. Changes in chromatin organization and nuclear architecture can modulate gene expression and lead to short- and long-term plant adaptation to the environment. Here, we review recent reports investigating how changes in chromatin composition, structure, and topology modulate gene expression in response to fluctuating light and temperature conditions resulting in developmental and physiological responses. Furthermore, the potential application of novel revolutionary techniques, such Hi-C, RNA fluorescence in situ hybridization (FISH) and padlock-FISH, to study the impact of environmental stimuli such as light and temperature on nuclear compartmentalization in plants is discussed.
Collapse
Affiliation(s)
- Giorgio Perrella
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- ENEA-Trisaia Research Centre 75026, Rotondella (Matera), Italy
| | - Anna Zioutopoulou
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Lauren R Headland
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
25
|
Prinzenberg AE, Campos‐Dominguez L, Kruijer W, Harbinson J, Aarts MGM. Natural variation of photosynthetic efficiency in Arabidopsis thaliana accessions under low temperature conditions. PLANT, CELL & ENVIRONMENT 2020; 43:2000-2013. [PMID: 32495939 PMCID: PMC7497054 DOI: 10.1111/pce.13811] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 03/29/2020] [Accepted: 05/18/2020] [Indexed: 05/18/2023]
Abstract
Low, but non-freezing, temperatures have negative effects on plant growth and development. Despite some molecular signalling pathways being known, the mechanisms causing different responses among genotypes are still poorly understood. Photosynthesis is one of the processes that are affected by low temperatures. Using an automated phenotyping platform for chlorophyll fluorescence imaging the steady state quantum yield of photosystem II (PSII) electron transport (ΦPSII ) was measured and used to quantify the effect of moderately low temperature on a population of Arabidopsis thaliana natural accessions. Observations were made over the course of several weeks in standard and low temperature conditions and a strong decrease in ΦPSII upon the cold treatment was found. A genome wide association study identified several quantitative trait loci (QTLs) that are associated with changes in ΦPSII in low temperature. One candidate for a cold specific QTL was validated with a mutant analysis to be one of the genes that is likely involved in the PSII response to the cold treatment. The gene encodes the PSII associated protein PSB27 which has already been implicated in the adaptation to fluctuating light.
Collapse
Affiliation(s)
- Aina E. Prinzenberg
- Horticulture and Product PhysiologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
- Plant BreedingWageningen University and ResearchPO Box 386Wageningen6700 AJThe Netherlands
| | - Lucia Campos‐Dominguez
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
- Royal Botanic Garden Edinburgh20A Inverleith RowEdinburghEH3 5LRUnited Kingdom
| | - Willem Kruijer
- BiometrisWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
| | - Jeremy Harbinson
- Horticulture and Product PhysiologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
- Laboratory of BiophysicsWageningen University and ResearchWageningenThe Netherlands
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
| |
Collapse
|
26
|
Martín G, Veciana N, Boix M, Rovira A, Henriques R, Monte E. The photoperiodic response of hypocotyl elongation involves regulation of CDF1 and CDF5 activity. PHYSIOLOGIA PLANTARUM 2020; 169:480-490. [PMID: 32379360 DOI: 10.1111/ppl.13119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/23/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Hypocotyl elongation relies on directional cell expansion, a process under light and circadian clock control. Under short photoperiods (SD), hypocotyl elongation in Arabidopsis thaliana follows a rhythmic pattern, a process in which circadian morning-to-midnight waves of the transcriptional repressors PSEUDO-RESPONSE REGULATORS (PRRs) jointly gate PHYTOCHROME-INTERACTING FACTOR (PIF) activity to dawn. Previously, we described CYCLING DOF FACTOR 5 (CDF5) as a target of this antagonistic PRR/PIF dynamic interplay. Under SD, PIFs induce CDF5 accumulation specifically at dawn, when it promotes the expression of positive cell elongation regulators such as YUCCA8 to induce growth. In contrast to SD, hypocotyl elongation under long days (LD) is largely reduced. Here, we examine whether CDF5 is an actor in this photoperiod specific regulation. We report that transcription of CDF5 is robustly induced in SD compared to LD, in accordance with PIFs accumulating to higher levels in SD, and in contrast to other members of the CDF family, whose expression is mainly clock regulated and have similar waveforms in SD and LD. Notably, when CDF5 was constitutively expressed under LD, CDF5 protein accumulated to levels comparable to SD but was inactive in promoting cell elongation. Similar results were observed for CDF1. Our findings indicate that both CDFs can promote cell elongation specifically in shorter photoperiods, however, their activity in LD is inhibited at the post-translational level. These data not only expand our understanding of the biological role of CDF transcription factors, but also identify a previously unrecognized regulatory layer in the photoperiodic response of hypocotyl elongation.
Collapse
Affiliation(s)
- Guiomar Martín
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
- Instituto Gulbenkian de Ciência (IGC), Oeiras, 2780-156, Portugal
| | - Nil Veciana
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
| | - Marc Boix
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
| | - Arnau Rovira
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
| | - Rossana Henriques
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, T23 TK30, Ireland
- Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland
| | - Elena Monte
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain
| |
Collapse
|
27
|
Lu X, Zhou Y, Fan F, Peng J, Zhang J. Coordination of light, circadian clock with temperature: The potential mechanisms regulating chilling tolerance in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:737-760. [PMID: 31243851 DOI: 10.1111/jipb.12852] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Rice (Oryza sativa L.) is a major staple food crop for over half of the world's population. As a crop species originated from the subtropics, rice production is hampered by chilling stress. The genetic mechanisms of rice responses to chilling stress have attracted much attention, focusing on chilling-related gene mining and functional analyses. Plants have evolved sophisticated regulatory systems to respond to chilling stress in coordination with light signaling pathway and internal circadian clock. However, in rice, information about light-signaling pathways and circadian clock regulation and their roles in chilling tolerance remains elusive. Further investigation into the regulatory network of chilling tolerance in rice is needed, as knowledge of the interaction between temperature, light, and circadian clock dynamics is limited. Here, based on phenotypic analysis of transgenic and mutant rice lines, we delineate the relevant genes with important regulatory roles in chilling tolerance. In addition, we discuss the potential coordination mechanism among temperature, light, and circadian clock in regulating chilling response and tolerance of rice, and provide perspectives for the ongoing chilling signaling network research in rice.
Collapse
Affiliation(s)
- Xuedan Lu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, School of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Zhou
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, School of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Fan Fan
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, School of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - JunHua Peng
- Huazhi Rice Bio-tech Company Ltd., Changsha, 410128, China
| | - Jian Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, School of Agriculture, Hunan Agricultural University, Changsha, 410128, China
- Huazhi Rice Bio-tech Company Ltd., Changsha, 410128, China
| |
Collapse
|
28
|
Lian X, Tan B, Yan L, Jiang C, Cheng J, Zheng X, Wang W, Chen T, Ye X, Li J, Feng J. Transcript profiling provides insights into molecular processes during shoot elongation in temperature-sensitive peach (Prunus persica). Sci Rep 2020; 10:7801. [PMID: 32385278 PMCID: PMC7210264 DOI: 10.1038/s41598-020-63952-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/08/2020] [Indexed: 11/23/2022] Open
Abstract
Plant growth caused by ambient temperature is thought to be regulated by a complex transcriptional network. A temperature-sensitive peach (Prunus persica) was used to explore the mechanisms behind shoot internode elongation at elevated temperatures. There was a significantly positive correlation between the length of the terminal internode (TIL) and the maximum temperature three days prior to the measuring day. Four critical growth stages (initial period and initial elongation period at lower temperature, rapid growth period and stable growth period at higher temperature) were selected for comparative RNA-seq analysis. About 6.64G clean bases were obtained for each library, and 88.27% of the data were mapped to the reference genome. Differentially expressed gene (DEG) analysis among the three pairwise comparisons resulted in the detection of several genes related to the shoot elongation in temperature-sensitive peach. HSFAs were up-regulated in response to the elevated temperature, while the up-regulated expression of HSPs might influence hormone signaling pathways. Most of DEGs involved in auxin, abscisic acid and jasmonic acid were up-regulated, while some involved in cytokinin and brassinosteroid were down-regulated. Genes related to ethylene, salicylic acid and circadian rhythm were also differentially expressed. Genes related to aquaporins, expansins, pectinesterases and endoglucanase were up-regulated, which would promote cell elongation. These results lay a foundation for further dissection of the regulatory mechanisms underlying shoot elongation at elevated temperatures.
Collapse
Affiliation(s)
- Xiaodong Lian
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, 450002, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, 450002, China
| | - Liu Yan
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, 450002, China
| | - Chao Jiang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, 450002, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, 450002, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, 450002, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, 450002, China
| | - Tanxing Chen
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, 450002, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, 450002, China
| | - Jidong Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, 450002, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China. .,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, 450002, China.
| |
Collapse
|
29
|
Liu X, Xue C, Kong L, Li R, Xu Z, Hua J. Interactive Effects of Light Quality and Temperature on Arabidopsis Growth and Immunity. PLANT & CELL PHYSIOLOGY 2020; 61:933-941. [PMID: 32091601 DOI: 10.1093/pcp/pcaa020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/17/2020] [Indexed: 05/20/2023]
Abstract
We report here the interactive effects of three light qualities (white, red and blue) and three growth temperatures (16�C, 22�C and 28�C) on rosette growth, hypocotyl elongation and disease resistance in Arabidopsis thaliana. While an increase in temperature promotes hypocotyl elongation irrespective of light quality, the effects of temperature on rosette growth and disease resistance are dependent on light quality. Maximum rosette growth rate under white, red and blue light are observed at 28�C, 16�C and 22�C, respectively. The highest disease resistance is observed at 16�C under all three light conditions, but the highest susceptibility is observed at 28�C for white light and 22�C for red and blue light. Interestingly, rosette growth is inhibited by phytochrome B (PHYB) under blue light at 28�C and by cryptochromes (CRYs) under red light at 16�C. In addition, disease resistance is inhibited by PHYB under blue light and promoted by CRYs under red light. Therefore, this study reveals a complex interaction between light and temperature in modulating rosette growth and disease resistance as well as the contribution of PHYB and CRY to disease resistance.
Collapse
Affiliation(s)
- Xiaoying Liu
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, NY 14853, USA
| | - Chunmei Xue
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, NY 14853, USA
| | - Le Kong
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruining Li
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhigang Xu
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Hua
- School of Integrated Plant Science, Plant Biology Section, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
30
|
Wang F, Chen X, Dong S, Jiang X, Wang L, Yu J, Zhou Y. Crosstalk of PIF4 and DELLA modulates CBF transcript and hormone homeostasis in cold response in tomato. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1041-1055. [PMID: 31584235 PMCID: PMC7061876 DOI: 10.1111/pbi.13272] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/16/2019] [Accepted: 09/29/2019] [Indexed: 05/02/2023]
Abstract
The ability to interpret daily and seasonal fluctuations, latitudinal and vegetation canopy variations in light and temperature signals is essential for plant survival. However, the precise molecular mechanisms transducing the signals from light and temperature perception to maintain plant growth and adaptation remain elusive. We show that far-red light induces PHYTOCHROME-INTERACTING TRANSCRIPTION 4 (SlPIF4) accumulation under low-temperature conditions via phytochrome A in Solanum lycopersicum (tomato). Reverse genetic approaches revealed that knocking out SlPIF4 increases cold susceptibility, while overexpressing SlPIF4 enhances cold tolerance in tomato plants. SlPIF4 not only directly binds to the promoters of the C-REPEAT BINDING FACTOR (SlCBF) genes and activates their expression but also regulates plant hormone biosynthesis and signals, including abscisic acid, jasmonate and gibberellin (GA), in response to low temperature. Moreover, SlPIF4 directly activates the SlDELLA gene (GA-INSENSITIVE 4, SlGAI4) under cold stress, and SlGAI4 positively regulates cold tolerance. Additionally, SlGAI4 represses accumulation of the SlPIF4 protein, thus forming multiple coherent feed-forward loops. Our results reveal that plants integrate light and temperature signals to better adapt to cold stress through shared hormone pathways and transcriptional regulators, which may provide a comprehensive understanding of plant growth and survival in a changing environment.
Collapse
Affiliation(s)
- Feng Wang
- Department of HorticultureZhejiang UniversityHangzhouChina
- Present address:
College of HorticultureShenyang Agricultural UniversityShenyangChina
| | - Xiaoxiao Chen
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Sangjie Dong
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Xiaochun Jiang
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Lingyu Wang
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Jingquan Yu
- Department of HorticultureZhejiang UniversityHangzhouChina
- Key Laboratory of Plant GrowthDevelopment and Quality ImprovementAgricultural Ministry of ChinaHangzhouChina
| | - Yanhong Zhou
- Department of HorticultureZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhouChina
| |
Collapse
|
31
|
Ahres M, Gierczik K, Boldizsár Á, Vítámvás P, Galiba G. Temperature and Light-Quality-Dependent Regulation of Freezing Tolerance in Barley. PLANTS 2020; 9:plants9010083. [PMID: 31936533 PMCID: PMC7020399 DOI: 10.3390/plants9010083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 01/10/2023]
Abstract
It is established that, besides the cold, incident light also has a crucial role in the cold acclimation process. To elucidate the interaction between these two external hardening factors, barley plantlets were grown under different light conditions with low, normal, and high light intensities at 5 and 15 °C. The expression of the HvCBF14 gene and two well-characterized members of the C-repeat binding factor (CBF)-regulon HvCOR14b and HvDHN5 were studied. In general, the expression level of the studied genes was several fold higher at 5 °C than that at 15 °C independently of the applied light intensity or the spectra. The complementary far-red (FR) illumination induced the expression of HvCBF14 and also its target gene HvCOR14b at both temperatures. However, this supplementation did not affect significantly the expression of HvDHN5. To test the physiological effects of these changes in environmental conditions, freezing tests were also performed. In all the cases, we found that the reduced R:FR ratio increased the frost tolerance of barley at every incident light intensity. These results show that the combined effects of cold, light intensity, and the modification of the R:FR light ratio can greatly influence the gene expression pattern of the plants, which can result in increased plant frost tolerance.
Collapse
Affiliation(s)
- Mohamed Ahres
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, 8360 Keszthely, Hungary;
- Agricultural Institute, Centre for Agricultural Research, 2462 Martonvásár, Hungary; (K.G.); (Á.B.)
| | - Krisztián Gierczik
- Agricultural Institute, Centre for Agricultural Research, 2462 Martonvásár, Hungary; (K.G.); (Á.B.)
| | - Ákos Boldizsár
- Agricultural Institute, Centre for Agricultural Research, 2462 Martonvásár, Hungary; (K.G.); (Á.B.)
| | - Pavel Vítámvás
- Department of Genetics and Plant Breeding, Crop Research Institute, 161 06 Prague 6, Czech Republic;
| | - Gábor Galiba
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, 8360 Keszthely, Hungary;
- Agricultural Institute, Centre for Agricultural Research, 2462 Martonvásár, Hungary; (K.G.); (Á.B.)
- Correspondence: ; Tel.:+36-22-460-523
| |
Collapse
|
32
|
Xue T, Zhang H, Zhang Y, Wei S, Chao Q, Zhu Y, Teng J, Zhang A, Sheng W, Duan Y, Xue J. Full-length transcriptome analysis of shade-induced promotion of tuber production in Pinellia ternata. BMC PLANT BIOLOGY 2019; 19:565. [PMID: 31852442 PMCID: PMC6921527 DOI: 10.1186/s12870-019-2197-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Pinellia ternata is native to China and has been used as a traditional herb due to its antiemetic, antitussive, analgesic, and anxiolytic effects. When exposed to strong light intensity and high temperature during the reproductive growth process, P. ternata withers in a phenomenon known as "sprout tumble", which largely limits tuber production. Shade was previously found to delay sprout tumble formation (STF); however, no information exists regarding this process at the molecular level. Hence, we determined the genes involved in tuber development and STF in P. ternata. RESULTS Compared to that with natural sun-light (control), shade significantly induced chlorophyll accumulation, increased chlorophyll fluorescence parameters including initial fluorescence, maximal fluorescence, and qP, and dramatically repressed chlorophyll a:b and NPQ. Catalase (CAT) activity was largely induced by shade, and tuber products were largely increased in this environment. Transcriptome profiles of P. ternata grown in natural sun-light and shaded environments were analyzed by a combination of next generation sequencing (NGS) and third generation single-molecule real-time (SMRT) sequencing. Corrections of SMRT long reads based on NGS short reads yielded 136,163 non-redundant transcripts, with an average N50 length of 2578 bp. In total, 6738 deferentially-expressed genes (DEGs) were obtained from the comparisons, specifically D5S vs D5CK, D20S vs D20CK, D20S vs D5S, and D20CK vs D5CK, of which, 6384 DEGs (94.8%) were generated from the D20S vs D20CK comparison. Gene annotation and functional analyses revealed that these genes were related to auxin signal transduction, polysaccharide and sugar metabolism, phenylpropanoid biosynthesis, and photosynthesis. Moreover, the expression of genes enriched in photosynthesis appeared to be significantly altered by shade. The expression patterns of 16 candidate genes were consistent with changes in their transcript abundance as identified by RNA-Seq, and these might contribute to STF and tuber production. CONCLUSION The full-length transcripts identified in this study have provided a more accurate depiction of P. ternata gene transcription. Further, we identified potential genes involved in STF and tuber growth. Such data could serve as a genetic resource and a foundation for further research on this important traditional herb.
Collapse
Affiliation(s)
- Tao Xue
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Han Zhang
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Yuanyuan Zhang
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Shuqin Wei
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Qiujie Chao
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Yanfang Zhu
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Jingtong Teng
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Aimin Zhang
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Wei Sheng
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Yongbo Duan
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Jianping Xue
- Key Laboratory of Resource Plant Biology of Anhui Province, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| |
Collapse
|
33
|
Choudhury RR, Rogivue A, Gugerli F, Parisod C. Impact of polymorphic transposable elements on linkage disequilibrium along chromosomes. Mol Ecol 2019; 28:1550-1562. [DOI: 10.1111/mec.15014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/26/2018] [Indexed: 01/03/2023]
Affiliation(s)
| | - Aude Rogivue
- WSL Swiss Federal Research Institute Birmensdorf Switzerland
| | - Felix Gugerli
- WSL Swiss Federal Research Institute Birmensdorf Switzerland
| | | |
Collapse
|
34
|
Gil KE, Park CM. Thermal adaptation and plasticity of the plant circadian clock. THE NEW PHYTOLOGIST 2019; 221:1215-1229. [PMID: 30289568 DOI: 10.1111/nph.15518] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/11/2018] [Indexed: 05/20/2023]
Abstract
Contents Summary 1215 I. Introduction 1215 II. Molecular organization of the plant circadian clock 1216 III. Temperature compensation 1219 IV. Temperature regulation of circadian behaviors 1220 V. Thermal adaptation of the clock: evolutionary considerations 1223 VI. Light and temperature information for the clock function - synergic or individual? 1224 VII. Concluding remarks and future prospects 1225 Acknowledgements 1225 References 1225 SUMMARY: Plant growth and development is widely affected by diverse temperature conditions. Although studies have been focused mainly on the effects of stressful temperature extremes in recent decades, nonstressful ambient temperatures also influence an array of plant growth and morphogenic aspects, a process termed thermomorphogenesis. Notably, accumulating evidence indicates that both stressful and nonstressful temperatures modulate the functional process of the circadian clock, a molecular timer of biological rhythms in higher eukaryotes and photosynthetic prokaryotes. The circadian clock can sustain robust and precise timing over a range of physiological temperatures. Genes and molecular mechanisms governing the temperature compensation process have been explored in different plant species. In addition, a ZEITLUPE/HSP90-mediated protein quality control mechanism helps plants maintain the thermal stability of the clock under heat stress. The thermal adaptation capability and plasticity of the clock are of particular interest in view of the growing concern about global climate changes. Considering these circumstances in the field, we believe that it is timely to provide a provoking discussion on the current knowledge of temperature regulation of the clock function. The review also will discuss stimulating ideas on this topic along with ecosystem management and future agricultural innovation.
Collapse
Affiliation(s)
- Kyung-Eun Gil
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
35
|
Hastilestari BR, Lorenz J, Reid S, Hofmann J, Pscheidt D, Sonnewald U, Sonnewald S. Deciphering source and sink responses of potato plants (Solanum tuberosum L.) to elevated temperatures. PLANT, CELL & ENVIRONMENT 2018; 41:2600-2616. [PMID: 29869794 DOI: 10.1111/pce.13366] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 05/07/2023]
Abstract
Potato is an important staple food with increasing popularity worldwide. Elevated temperatures significantly impair tuber yield and quality. Breeding heat-tolerant cultivars is therefore an urgent need to ensure sustainable potato production in the future. An integrated approach combining physiology, biochemistry, and molecular biology was undertaken to contribute to a better understanding of heat effects on source- (leaves) and sink-organs (tubers) in a heat-susceptible cultivar. An experimental set-up was designed allowing tissue-specific heat application. Elevated day and night (29°C/27°C) temperatures impaired photosynthesis and assimilate production. Biomass allocation shifted away from tubers towards leaves indicating reduced sink strength of developing tubers. Reduced sink strength of tubers was paralleled by decreased sucrose synthase activity and expression under elevated temperatures. Heat-mediated inhibition of tuber growth coincided with a decreased expression of the phloem-mobile tuberization signal SP6A in leaves. SP6A expression and photosynthesis were also affected, when only the belowground space was heated, and leaves were kept under control conditions. By contrast, the negative effects on tuber metabolism were attenuated, when only the shoot was subjected to elevated temperatures. This, together with transcriptional changes discussed, indicated a bidirectional communication between leaves and tubers to adjust the source capacity and/or sink strength to environmental conditions.
Collapse
Affiliation(s)
- Bernadetta Rina Hastilestari
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Julia Lorenz
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Stephen Reid
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg Hofmann
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - David Pscheidt
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Uwe Sonnewald
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Sophia Sonnewald
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
36
|
Oh Y, Fragoso V, Guzzonato F, Kim SG, Park CM, Baldwin IT. Root-expressed phytochromes B1 and B2, but not PhyA and Cry2, regulate shoot growth in nature. PLANT, CELL & ENVIRONMENT 2018; 41:2577-2588. [PMID: 29766532 DOI: 10.1111/pce.13341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/22/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Although photoreceptors are expressed throughout all plant organs, most studies have focused on their function in aerial parts with laboratory-grown plants. Photoreceptor function in naturally dark-grown roots of plants in their native habitats is lacking. We characterized patterns of photoreceptor expression in field- and glasshouse-grown Nicotiana attenuata plants, silenced the expression of PhyB1/B2/A/Cry2 whose root transcripts levels were greater/equal to those of shoots, and by micrografting combined empty vector transformed shoots onto photoreceptor-silenced roots, creating chimeric plants with "blind" roots but "sighted" shoots. Micrografting procedure was robust in both field and glasshouse, as demonstrated by transcript accumulation patterns, and a spatially-explicit lignin visual reporter chimeric line. Field- and glasshouse-grown plants with PhyB1B2, but not PhyA or Cry2, -blind roots, were delayed in stalk elongation compared with control plants, robustly for two field seasons. Wild-type plants with roots directly exposed to FR phenocopied the growth of irPhyB1B2-blind root grafts. Additionally, root-expressed PhyB1B2 was required to activate the positive photomorphogenic regulator, HY5, in response to aboveground light. We conclude that roots of plants growing deep into the soil in nature sense aboveground light, and possibly soil temperature, via PhyB1B2 to control key traits, such as stalk elongation.
Collapse
Affiliation(s)
- Youngjoo Oh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Variluska Fragoso
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Francesco Guzzonato
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| |
Collapse
|
37
|
Annunziata MG, Apelt F, Carillo P, Krause U, Feil R, Koehl K, Lunn JE, Stitt M. Response of Arabidopsis primary metabolism and circadian clock to low night temperature in a natural light environment. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4881-4895. [PMID: 30053131 PMCID: PMC6137998 DOI: 10.1093/jxb/ery276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/09/2018] [Indexed: 05/18/2023]
Abstract
Plants are exposed to varying irradiance and temperature within a day and from day to day. We previously investigated metabolism in a temperature-controlled greenhouse at the spring equinox on both a cloudy and a sunny day [daily light integral (DLI) of 7 mol m-2 d-1 and 12 mol m-2 d-1]. Diel metabolite profiles were largely captured in sinusoidal simulations at similar DLIs in controlled-environment chambers, except that amino acids were lower in natural light regimes. We now extend the DLI12 study by investigating metabolism in a natural light regime with variable temperature including cool nights. Starch was not completely turned over, anthocyanins and proline accumulated, and protein content rose. Instead of decreasing, amino acid content rose. Connectivity in central metabolism, which decreased in variable light, was not further weakened by variable temperature. We propose that diel metabolism operates better when light and temperature are co-varying. We also compared transcript abundance of 10 circadian clock genes in this temperature-variable regime with the temperature-controlled natural and sinusoidal light regimes. Despite temperature compensation, peak timing and abundance for dawn- and day-phased genes and GIGANTEA were slightly modified in the variable temperature treatment. This may delay dawn clock activity until the temperature rises enough to support rapid metabolism and photosynthesis.
Collapse
Affiliation(s)
| | - Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Petronia Carillo
- University of Campania ‘Luigi Vanvitelli’, Via Vivaldi, Caserta, Italy
| | - Ursula Krause
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Karin Koehl
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| |
Collapse
|
38
|
Nimmo HG. Entrainment of Arabidopsis roots to the light:dark cycle by light piping. PLANT, CELL & ENVIRONMENT 2018; 41:1742-1748. [PMID: 29314066 DOI: 10.1111/pce.13137] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Correct operation of the plant circadian clock is crucial for optimal growth and development. Recent evidence has shown that the plant clock is tissue specific and potentially hierarchical, implying that there are signalling mechanisms that can synchronise the clock in different tissues. Here, I have addressed the mechanism that allows the shoot and root clocks to be synchronised in light:dark cycles but not in continuous light. Luciferase imaging data from 2 different Arabidopsis accessions with 2 different markers show that the period of the root clock is much less sensitive to blue light than to red light. Decapitated roots were imaged either in darkness or with the top section of root tissue exposed to light. Exposure to red light reduced the period of the root tissue maintained in darkness, whereas exposure to blue light did not. The data indicate that light can be piped through root tissue to affect the circadian period of tissue in darkness. I propose that the synchronisation of shoots and roots in light:dark cycles is achieved by light piping from shoots to roots.
Collapse
Affiliation(s)
- Hugh G Nimmo
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
39
|
Kreslavski VD, Los DA, Schmitt FJ, Zharmukhamedov SK, Kuznetsov VV, Allakhverdiev SI. The impact of the phytochromes on photosynthetic processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:400-408. [DOI: 10.1016/j.bbabio.2018.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/04/2018] [Accepted: 03/09/2018] [Indexed: 10/17/2022]
|
40
|
Casal JJ, Qüesta JI. Light and temperature cues: multitasking receptors and transcriptional integrators. THE NEW PHYTOLOGIST 2018; 217:1029-1034. [PMID: 29139132 DOI: 10.1111/nph.14890] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/05/2017] [Indexed: 05/21/2023]
Abstract
Contents Summary 1029 I. Introduction 1029 II. Convergence at the receptor 1030 III. Convergence at transcriptional hubs 1031 IV. Convergence involving clock components 1033 V. Conclusions 1033 Acknowledgements 1033 References 1033 SUMMARY: The combined information provided by light and temperature cues helps to optimise plant body architecture and physiology. Plants possess elaborate systems to sense and respond to these stimuli. Simultaneous perception of light and temperature by dual receptors such as phytochrome B and phototropin leads to immediate signalling convergence. Conversely, cue asynchronies initiate separate pathways and the information of the earliest cue is stored, awaiting the arrival of the later cue to control transcription. Storage mechanisms can involve changes in the activity of selected clock components or epigenetic modifications, depending on the time delay between cues (hours, days or several months). We propose a conceptual framework in which the mechanisms of integration relate to the timing of cue sensing.
Collapse
Affiliation(s)
- Jorge J Casal
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, Av. San Martín 4453, Buenos Aires, 1417, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, 1405, Argentina
| | - Julia I Qüesta
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
41
|
Mroue S, Simeunovic A, Robert HS. Auxin production as an integrator of environmental cues for developmental growth regulation. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:201-212. [PMID: 28992278 DOI: 10.1093/jxb/erx259] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Being sessile organisms, plants have evolved mechanisms allowing them to control their growth and development in response to environmental changes. This occurs by means of complex interacting signalling networks that integrate diverse environmental cues into co-ordinated and highly regulated responses. Auxin is an essential phytohormone that functions as a signalling molecule, driving both growth and developmental processes. It is involved in numerous biological processes ranging from control of cell expansion and cell division to tissue specification, embryogenesis, and organ development. All these processes require the formation of auxin gradients established and maintained through the combined processes of biosynthesis, metabolism, and inter- and intracellular directional transport. Environmental conditions can profoundly affect the plant developmental programme, and the co-ordinated shoot and root growth ought to be fine-tuned to environmental challenges such as temperature, light, and nutrient and water content. The key role of auxin as an integrator of environmental signals has become clear in recent years, and emerging evidence implicates auxin biosynthesis as an essential component of the overall mechanisms of plants tolerance to stress. In this review, we provide an account of auxin's role as an integrator of environmental signals and, in particular, we highlight the effect of these signals on the control of auxin production.
Collapse
Affiliation(s)
- Souad Mroue
- CEITEC MU-Central European Institute of Technology, Masaryk University, Mendel Centre for Genomics and Proteomics of Plants Systems, Brno, Czech Republic
| | - Andrea Simeunovic
- CEITEC MU-Central European Institute of Technology, Masaryk University, Mendel Centre for Genomics and Proteomics of Plants Systems, Brno, Czech Republic
| | - Hélène S Robert
- CEITEC MU-Central European Institute of Technology, Masaryk University, Mendel Centre for Genomics and Proteomics of Plants Systems, Brno, Czech Republic
| |
Collapse
|
42
|
|
43
|
Sheerin DJ, Hiltbrunner A. Molecular mechanisms and ecological function of far-red light signalling. PLANT, CELL & ENVIRONMENT 2017; 40:2509-2529. [PMID: 28102581 DOI: 10.1111/pce.12915] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 05/18/2023]
Abstract
Land plants possess the ability to sense and respond to far-red light (700-760 nm), which serves as an important environmental cue. Due to the nature of far-red light, it is not absorbed by chlorophyll and thus is enriched in canopy shade and will also penetrate deeper into soil than other visible wavelengths. Far-red light responses include regulation of seed germination, suppression of hypocotyl growth, induction of flowering and accumulation of anthocyanins, which depend on one member of the phytochrome photoreceptor family, phytochrome A (phyA). Here, we review the current understanding of the underlying molecular mechanisms of how plants sense far-red light through phyA and the physiological responses to this light quality. Light-activated phytochromes act on two primary pathways within the nucleus; suppression of the E3 ubiquitin ligase complex CUL4/DDB1COP1/SPA and inactivation of the PHYTOCHROME INTERACTING FACTOR (PIF) family of bHLH transcription factors. These pathways integrate with other signal transduction pathways, including phytohormones, for tissue and developmental stage specific responses. Unlike other phytochromes that mediate red-light responses, phyA is transported from the cytoplasm to the nucleus in far-red light by the shuttle proteins FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-LIKE (FHL). However, additional mechanisms must exist that shift the action of phyA to far-red light; current hypotheses are discussed.
Collapse
Affiliation(s)
- David J Sheerin
- Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Andreas Hiltbrunner
- Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
44
|
Viczián A, Klose C, Ádám É, Nagy F. New insights of red light-induced development. PLANT, CELL & ENVIRONMENT 2017; 40:2457-2468. [PMID: 27943362 DOI: 10.1111/pce.12880] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 05/14/2023]
Abstract
The red/far-red light absorbing photoreceptors phytochromes regulate development and growth and thus play an essential role in optimizing adaptation of the sessile plants to the ever-changing environment. Our understanding of how absorption of a red/far-red photon by phytochromes initiates/modifies diverse physiological responses has been steadily improving. Research performed in the last 5 years has been especially productive and led to significant conceptual changes about the mode of action of these photoreceptors. In this review, we focus on the phytochrome B photoreceptor, the major phytochrome species active in light-grown plants. We discuss how its light-independent inactivation (termed dark/thermal reversion), post-translational modification, including ubiquitination, phosphorylation and sumoylation, as well as heterodimerization with other phytochrome species modify red light-controlled physiological responses. Finally, we discuss how photobiological properties of phytochrome B enable this photoreceptor to function also as a thermosensor.
Collapse
Affiliation(s)
- András Viczián
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Cornelia Klose
- Institute of Biology2/Botany, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Éva Ádám
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| |
Collapse
|
45
|
Biological activity and dimerization state of modified phytochrome A proteins. PLoS One 2017; 12:e0186468. [PMID: 29049346 PMCID: PMC5648194 DOI: 10.1371/journal.pone.0186468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/02/2017] [Indexed: 11/29/2022] Open
Abstract
To assess potential physical interactions of type I phyA with the type II phyB-phyE phytochromes in vivo, transgenes expressing fusion gene forms of phyA were introduced into the Arabidopsis phyA mutant background. When a single c-Myc (myc) epitope is added to either the N- or C-terminus of phyA, the constructs completely complement phyA mutant phenotypes. However, addition of larger tags, such as six consecutive myc epitopes or the yellow fluorescent protein sequence, result in fusion proteins that show reduced activity. All the tagged phyA proteins migrate as dimers on native gels and co-immunoprecipitation reveals no binding interaction of phyA to any of the type II phys in the dark or under continuous far-red light. Dimers of the phyA 1–615 amino acid N-terminal photosensory domain (NphyA), generated in vivo with a yeast GAL4 dimerization domain and attached to a constitutive nuclear localization sequence, are expressed at a low level and, although they cause a cop phenotype in darkness and mediate a very low fluence response to pulses of FR, have no activity under continuous FR. It is concluded that type I phyA in its Pr form is present in plants predominantly or exclusively as a homodimer and does not stably interact with type II phys in a dimer-to-dimer manner. In addition, its activity in mediating response to continuous FR is sensitive to modification of its N- or C-terminus.
Collapse
|
46
|
Gierczik K, Novák A, Ahres M, Székely A, Soltész A, Boldizsár Á, Gulyás Z, Kalapos B, Monostori I, Kozma-Bognár L, Galiba G, Vágújfalvi A. Circadian and Light Regulated Expression of CBFs and their Upstream Signalling Genes in Barley. Int J Mol Sci 2017; 18:E1828. [PMID: 28829375 PMCID: PMC5578212 DOI: 10.3390/ijms18081828] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/10/2017] [Accepted: 08/19/2017] [Indexed: 12/26/2022] Open
Abstract
CBF (C-repeat binding factor) transcription factors show high expression levels in response to cold; moreover, they play a key regulatory role in cold acclimation processes. Recently, however, more and more information has led to the conclusion that, apart from cold, light-including its spectra-also has a crucial role in regulating CBF expression. Earlier, studies established that the expression patterns of some of these regulatory genes follow circadian rhythms. To understand more of this complex acclimation process, we studied the expression patterns of the signal transducing pathways, including signal perception, the circadian clock and phospholipid signalling pathways, upstream of the CBF gene regulatory hub. To exclude the confounding effect of cold, experiments were carried out at 22 °C. Our results show that the expression of genes implicated in the phospholipid signalling pathway follow a circadian rhythm. We demonstrated that, from among the tested CBF genes expressed in Hordeumvulgare (Hv) under our conditions, only the members of the HvCBF4-phylogenetic subgroup showed a circadian pattern. We found that the HvCBF4-subgroup genes were expressed late in the afternoon or early in the night. We also determined the expression changes under supplemental far-red illumination and established that the transcript accumulation had appeared four hours earlier and more intensely in several cases. Based on our results, we propose a model to illustrate the effect of the circadian clock and the quality of the light on the elements of signalling pathways upstream of the HvCBFs, thus integrating the complex regulation of the early cellular responses, which finally lead to an elevated abiotic stress tolerance.
Collapse
Affiliation(s)
- Krisztián Gierczik
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462 Martonvásár, Hungary.
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, 8360 Keszthely, Hungary.
| | - Aliz Novák
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462 Martonvásár, Hungary.
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, 8360 Keszthely, Hungary.
| | - Mohamed Ahres
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462 Martonvásár, Hungary.
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, 8360 Keszthely, Hungary.
| | - András Székely
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462 Martonvásár, Hungary.
| | - Alexandra Soltész
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462 Martonvásár, Hungary.
| | - Ákos Boldizsár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462 Martonvásár, Hungary.
| | - Zsolt Gulyás
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462 Martonvásár, Hungary.
| | - Balázs Kalapos
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462 Martonvásár, Hungary.
| | - István Monostori
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462 Martonvásár, Hungary.
| | - László Kozma-Bognár
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary.
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, 6726 Szeged, Hungary.
| | - Gábor Galiba
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462 Martonvásár, Hungary.
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, 8360 Keszthely, Hungary.
| | - Attila Vágújfalvi
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 2462 Martonvásár, Hungary.
| |
Collapse
|
47
|
Smith RW, Helwig B, Westphal AH, Pel E, Borst JW, Fleck C. Interactions Between phyB and PIF Proteins Alter Thermal Reversion Reactions in vitro. Photochem Photobiol 2017; 93:1525-1531. [PMID: 28503745 DOI: 10.1111/php.12793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/02/2017] [Indexed: 10/19/2022]
Abstract
The dynamic behavior of the plant red/far-red light photoreceptor phytochrome B (phyB) has been elucidated in natural and synthetic systems. Red light switches phyB from the inactive Pr state to the active Pfr state, a process that is reversed by far-red light. Alongside light signals, phyB activity is constrained by thermal reversion (that is prominent in the dark) and protein-protein interactions between phyB, other phytochrome molecules, and, among others, PHYTOCHROME INTERACTING FACTORs (PIFs). Requirements for phyB-PIF association have been well studied and are central to light-regulated synthetic tools. However, it is unknown whether PIF interactions influence transitions of phyB between different conformers. Here, we show that the in vitro thermal reversion of phyB involves multiple reactions. Thermal reversion of phyB in vitro is inhibited by PIF6, and this effect is observed at all temperatures tested. We analyzed our experimental data using a mathematical model containing multiple Pfr conformers, in accordance with previous findings. Remarkably, each Pfr conformer is differentially regulated by PIF6 and temperature. As a result, we speculate that in vivo phytochrome signaling networks may require similar levels of complexity to fine-tune responses to the external environment.
Collapse
Affiliation(s)
- Robert W Smith
- Laboratory of Systems & Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands.,LifeGlimmer GmbH, Berlin, Germany
| | - Britta Helwig
- Laboratory of Systems & Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Eran Pel
- Laboratory of Systems & Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jan Willem Borst
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Christian Fleck
- Laboratory of Systems & Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
48
|
Novák A, Boldizsár Á, Gierczik K, Vágújfalvi A, Ádám É, Kozma-Bognár L, Galiba G. Light and Temperature Signalling at the Level of CBF14 Gene Expression in Wheat and Barley. PLANT MOLECULAR BIOLOGY REPORTER 2017; 35:399-408. [PMID: 28751800 PMCID: PMC5504222 DOI: 10.1007/s11105-017-1035-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The wheat and barley CBF14 genes have been newly defined as key components of the light quality-dependent regulation of the freezing tolerance by the integration of phytochrome-mediated light and temperature signals. To further investigate the wavelength dependence of light-induced CBF14 expression in cereals, we carried out a detailed study using monochromatic light treatments at an inductive and a non-inductive temperature. Transcript levels of CBF14 gene in winter wheat Cheyenne, winter einkorn G3116 and winter barley Nure genotypes were monitored. We demonstrated that (1) CBF14 is most effectively induced by blue light and (2) provide evidence that this induction does not arise from light-controlled CRY gene expression. (3) We demonstrate that temperature shifts induce CBF14 transcription independent of the light conditions and that (4) the effect of temperature and light treatments are additive. Based on these data, it can be assumed that temperature and light signals are relayed to the level of CBF14 expression via separate signalling routes.
Collapse
Affiliation(s)
- Aliz Novák
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
| | - Ákos Boldizsár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Krisztián Gierczik
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
| | - Attila Vágújfalvi
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Éva Ádám
- Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Kozma-Bognár
- Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Galiba
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
| |
Collapse
|
49
|
Legris M, Nieto C, Sellaro R, Prat S, Casal JJ. Perception and signalling of light and temperature cues in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:683-697. [PMID: 28008680 DOI: 10.1111/tpj.13467] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/17/2016] [Accepted: 12/20/2016] [Indexed: 05/18/2023]
Abstract
Light and temperature patterns are often correlated under natural plant growth conditions. In this review, we analyse the perception and signalling mechanisms shared by both these environmental cues and discuss the functional implications of their convergence to control plant growth. The first point of integration is the phytochrome B (phyB) receptor, which senses light and temperature. Downstream of phyB, the signalling core comprises two branches, one involving PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and the other CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and ELONGATED HYPOCOTYL 5 (HY5). The dynamics of accumulation and/or localization of each of these core signalling components depend on light and temperature conditions. These pathways are connected through COP1, which enhances the activity of PIF4. The circadian clock modulates this circuit, since EARLY FLOWERING 3 (ELF3), an essential component of the evening complex (EC), represses expression of the PIF4 gene and PIF4 transcriptional activity. Phytochromes are probably not the only entry point of temperature into this network, but other sensors remain to be established. The sharing of mechanisms of action for two distinct environmental cues is to some extent unexpected, as it renders these responses mutually dependent. There are nonetheless many ecological contexts in which such a mutual influence could be beneficial.
Collapse
Affiliation(s)
- Martina Legris
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, 1405, Buenos Aires, Argentina
| | - Cristina Nieto
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - Romina Sellaro
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | - Salomé Prat
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - Jorge J Casal
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, 1405, Buenos Aires, Argentina
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| |
Collapse
|
50
|
Optimal Regulation of the Balance between Productivity and Overwintering of Perennial Grasses in a Warmer Climate. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7010019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|