1
|
Russomanno P, Zizza P, Cerofolini L, D'Aria F, Iachettini S, Di Vito S, Biroccio A, Amato J, Fragai M, Pagano B. Expanding the Functions of KHSRP Protein: Insights into DNA G-Quadruplex Binding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410086. [PMID: 39763191 PMCID: PMC11848572 DOI: 10.1002/advs.202410086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/03/2024] [Indexed: 02/25/2025]
Abstract
KHSRP (KH-type splicing regulatory protein) is a multifunctional nucleic acid-binding protein that regulates various cellular processes, with critical roles in controlling gene expression. G-quadruplexes (G4s) are noncanonical nucleic acid structures involved in essential cellular activities, including gene expression, and are recognized as potential therapeutic targets in cancer. The biological functions of G4s are mediated by proteins making their formation highly dynamic within cells. Therefore, the recognition of G4s by specific proteins is crucial for modulating physiological and pathological pathways. Given the growing interest in DNA G4s, a deeper understanding of the proteins that interact with them and their molecular recognition is imperative. This study demonstrates that KHSRP binds to these DNA structures. Biophysical analyses provide insights into the thermodynamics, kinetics, and structural aspects of these interactions, showing that G4 structural variability significantly influences KHSRP binding, in which the KH3 protein domain plays a key role. Validation of these interactions in cancer cells further highlights their biological relevance. Notably, the G4 ligand pyridostatin affects KHSRP/G4 interactions both in vitro and in cells, suggesting that small molecules can modulate this molecular recognition. These findings underscore KHSRP's potential role in regulating cellular mechanisms through binding to G4-forming DNA, positioning it as a possible therapeutic target in cancer.
Collapse
Affiliation(s)
- Pasquale Russomanno
- Department of PharmacyUniversity of Naples Federico IINaples80131Italy
- CERM‐CIRMMP and Department of Chemistry “Ugo Schiff”University of FlorenceSesto Fiorentino (FI)50019Italy
| | - Pasquale Zizza
- Translational Oncology Research UnitIRCCS‐Regina Elena National Cancer InstituteRome00144Italy
| | - Linda Cerofolini
- CERM‐CIRMMP and Department of Chemistry “Ugo Schiff”University of FlorenceSesto Fiorentino (FI)50019Italy
| | - Federica D'Aria
- Department of PharmacyUniversity of Naples Federico IINaples80131Italy
| | - Sara Iachettini
- Translational Oncology Research UnitIRCCS‐Regina Elena National Cancer InstituteRome00144Italy
| | - Serena Di Vito
- Translational Oncology Research UnitIRCCS‐Regina Elena National Cancer InstituteRome00144Italy
| | - Annamaria Biroccio
- Translational Oncology Research UnitIRCCS‐Regina Elena National Cancer InstituteRome00144Italy
| | - Jussara Amato
- Department of PharmacyUniversity of Naples Federico IINaples80131Italy
| | - Marco Fragai
- CERM‐CIRMMP and Department of Chemistry “Ugo Schiff”University of FlorenceSesto Fiorentino (FI)50019Italy
| | - Bruno Pagano
- Department of PharmacyUniversity of Naples Federico IINaples80131Italy
| |
Collapse
|
2
|
Jing H, Liu Y, Peng Z, Duan E, Liu J, Lv Y, Sun Y, Dong W, Li X, Wang J, Cao S, Wang H, Zhang Y, Li H. The UP1 domain is essential for the facilitation effect of HnRNP A1 on PRRSV-2 replication. Virology 2025; 603:110378. [PMID: 39731905 DOI: 10.1016/j.virol.2024.110378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/28/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection causes reproductive failure and respiratory distress and is a serious threat to the swine industry, given its continuous and rapid emergence. The knowledge of viral-host interaction could facilitate anti-PRRSV drug development. HnRNP A1 is an abundantly expressed protein which associates with RNA metabolic processes and plays multifarious roles during the reproduction cycle of multiple viruses. However, the function of porcine HnRNP A1 in PRRSV-2 replication is still unknown. Herein, HnRNP A1 was identified as a nucleocapsid (N)-binding protein for PRRSV-2. Overexpression of porcine HnRNP A1 promoted the expression of viral RNA, and viral proteins, corresponding to enhanced virus titers. While deletion of the UP1 domain abolished the HnRNP A1-mediated enhancement of PRRSV-2 replication. In addition, HnRNP A1-silencing confirmed its pro-viral effect on PRRSV-2 infectivity in porcine alveolar macrophages (PAMs). RNA pull-down and RNA immunoprecipitation verification confirmed that the UP1 domain is important for the recognition of the guanine-rich sequence (GRS) in PRRSV-2 negative RNA. Eventually, supplementation with TMPyP4, a G4 ligand, efficiently provokes the release of HnRNP A1 from GRS, thereby limiting PRRSV-2 replication. Together, these findings help to inform the mechanism by which HnRNP A1 accelerates PRRSV-2 replication, and facilitate antiviral drug design.
Collapse
Affiliation(s)
- Huiyuan Jing
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.
| | - Ying Liu
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Zhifeng Peng
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Erzhen Duan
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jie Liu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Yujin Lv
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Yanting Sun
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Wang Dong
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Xianghui Li
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Jinhe Wang
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Sufang Cao
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Haihua Wang
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Yan Zhang
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Huawei Li
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Vedekhina T, Svetlova J, Pavlova I, Barinov N, Alieva S, Malakhova E, Rubtsov P, Shtork A, Klinov D, Varizhuk A. Cross-Effects in Folding and Phase Transitions of hnRNP A1 and C9Orf72 RNA G4 In Vitro. Molecules 2024; 29:4369. [PMID: 39339364 PMCID: PMC11434081 DOI: 10.3390/molecules29184369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Abnormal intracellular phase transitions in mutant hnRNP A1 may underlie the development of several neurodegenerative diseases. The risk of these diseases increases upon C9Orf72 repeat expansion and the accumulation of the corresponding G-quadruplex (G4)-forming RNA, but the link between this RNA and the disruption of hnRNP A1 homeostasis has not been fully explored so far. Our aim was to clarify the mutual effects of hnRNP A1 and C9Orf72 G4 in vitro. Using various optical methods and atomic force microscopy, we investigated the influence of the G4 on the formation of cross-beta fibrils by the mutant prion-like domain (PLD) of hnRNP A1 and on the co-separation of the non-mutant protein with a typical SR-rich fragment of a splicing factor (SRSF), which normally drives the assembly of nuclear speckles. The G4 was shown to act in a holdase-like manner, i.e., to restrict the fibrillation of the hnRNP A1 PLD, presumably through interactions with the PLD-flanking RGG motif. These interactions resulted in partial unwinding of the G4, suggesting a helicase-like activity of hnRNP A1 RGG. At the same time, the G4 was shown to disrupt hnRNP A1 co-separation with SRSF, suggesting its possible contribution to pathology through interference with splicing regulation.
Collapse
Affiliation(s)
- Tatiana Vedekhina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, Vernadsky Avenue, 86, 119454 Moscow, Russia
| | - Julia Svetlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Iuliia Pavlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Nikolay Barinov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Sabina Alieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Elizaveta Malakhova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Pavel Rubtsov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenov University), Trubetskaya Str., 8-2, 119991 Moscow, Russia
| | - Alina Shtork
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Dmitry Klinov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Anna Varizhuk
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| |
Collapse
|
4
|
Zhu Y, Li X, Zhang Q, Yang X, Sun X, Pan Y, Yuan X, Ma Y, Xu B, Yang Z. Aptamer AS411 interacts with the KRAS promoter/hnRNP A1 complex and shows increased potency against drug-resistant lung cancer. RSC Med Chem 2024; 15:1515-1526. [PMID: 38784467 PMCID: PMC11110790 DOI: 10.1039/d3md00752a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/15/2024] [Accepted: 02/22/2024] [Indexed: 05/25/2024] Open
Abstract
G-quadruplex (G4) aptamers that can competitively binding protein with oncogene promoter G4 hold promise for cancer treatment. In this study, a neutral cytidinyl lipid, DNCA, was shown to transfect and deliver G4 aptamers (AS1411, TBA) into tumour cells, including multidrug-resistant tumour cells, and their nuclear localizations were clearly detected. Both AS1411/DNCA and TBA/DNCA showed excellent antitumour efficacies in the drug-resistant non-small cell lung cancer cell line A549/TXL at a low concentration (100 nM). Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) was identified as a new target of AS1411 and TBA. The binding affinities were measured, and the Kd values of AS1411/hnRNP A1 and TBA/hnRNP A1 were 17.5 nM and 21.1 nM, respectively. Then the expression of KRAS mRNA in A549/TXL cells was found to be higher than that in A549 cells, and KRAS mRNA was reduced by approximately 40% after administration of AS1411 or TBA in A549/TXL cells. Further, it was confirmed for the first time that AS1411 targeted not only hnRNP A1 but also the KRAS promoter/hnRNP A1 complexes. And although TBA cannot target the KRAS promoter/hnRNP A1 complexes, the biolayer interferometry (BLI) experiment showed that TBA and AS1411 have similar effects on several key proteins in tumour cells, especially hnRNP A1. Molecular docking and molecular dynamics simulation showed that AS1411 and the KRAS promoter bound to the same domain of hnRNP A1 protein, while TBA bound to another domain.
Collapse
Affiliation(s)
- Yuejie Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China +86 10 82802503 +86 10 82802503
| | - Xiang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China +86 10 82802503 +86 10 82802503
| | - Qi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China +86 10 82802503 +86 10 82802503
| | - Xiantao Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China +86 10 82802503 +86 10 82802503
- School of Pharmacy, Chengdu Medical College 783 Xindu Avenue, Xindu District Chengdu 610500 China
| | - Xudong Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China +86 10 82802503 +86 10 82802503
| | - Yi Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China +86 10 82802503 +86 10 82802503
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China +86 10 82802503 +86 10 82802503
| | - Yuan Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China +86 10 82802503 +86 10 82802503
| | - Bo Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China +86 10 82802503 +86 10 82802503
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 China +86 10 82802503 +86 10 82802503
| |
Collapse
|
5
|
Linscott ML, Yildiz Y, Flury S, Newby ML, Pak TR. Age and 17β-Estradiol (E 2) Facilitate Nuclear Export and Argonaute Loading of microRNAs in the Female Brain. Noncoding RNA 2023; 9:74. [PMID: 38133208 PMCID: PMC10745551 DOI: 10.3390/ncrna9060074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
Aging in women is accompanied by a dramatic change in circulating sex steroid hormones. Specifically, the primary circulating estrogen, 17β-estradiol (E2), is nearly undetectable in post-menopausal women. This decline is associated with a variety of cognitive and mood disorders, yet hormone replacement therapy is only effective within a narrow window of time surrounding the menopausal transition. Our previous work identified microRNAs as a potential molecular substrate underlying the change in E2 efficacy associated with menopause in advanced age. Specifically, we showed that E2 regulated a small subset of mature miRNAs in the aging female brain. In this study, we hypothesized that E2 regulates the stability of mature miRNAs by altering their subcellular localization and their association with argonaute proteins. We also tested the hypothesis that the RNA binding protein, hnRNP A1, was an important regulator of mature miR-9-5p expression in neuronal cells. Our results demonstrated that E2 treatment affected miRNA subcellular localization and its association with argonaute proteins differently, depending on the length of time following E2 deprivation (i.e., ovariectomy). We also provide strong evidence that hnRNP A1 regulates the transcription of pri-miR-9 and likely plays a posttranscriptional role in mature miR-9-5p turnover. Taken together, these data have important implications for considering the optimal timing for hormone replacement therapy, which might be less dependent on age and more related to how long treatment is delayed following menopause.
Collapse
Affiliation(s)
| | | | | | | | - Toni R. Pak
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (M.L.L.); (Y.Y.); (S.F.); (M.L.N.)
| |
Collapse
|
6
|
Romano F, Di Porzio A, Iaccarino N, Riccardi G, Di Lorenzo R, Laneri S, Pagano B, Amato J, Randazzo A. G-quadruplexes in cancer-related gene promoters: from identification to therapeutic targeting. Expert Opin Ther Pat 2023; 33:745-773. [PMID: 37855085 DOI: 10.1080/13543776.2023.2271168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Guanine-rich DNA sequences can fold into four-stranded noncanonical secondary structures called G-quadruplexes (G4s) which are widely distributed in functional regions of the human genome, such as telomeres and gene promoter regions. Compelling evidence suggests their involvement in key genome functions such as gene expression and genome stability. Notably, the abundance of G4-forming sequences near transcription start sites suggests their potential involvement in regulating oncogenes. AREAS COVERED This review provides an overview of current knowledge on G4s in human oncogene promoters. The most representative G4-binding ligands have also been documented. The objective of this work is to present a comprehensive overview of the most promising targets for the development of novel and highly specific anticancer drugs capable of selectively impacting the expression of individual or a limited number of genes. EXPERT OPINION Modulation of G4 formation by specific ligands has been proposed as a powerful new tool to treat cancer through the control of oncogene expression. Actually, most of G4-binding small molecules seem to simultaneously target a range of gene promoter G4s, potentially influencing several critical driver genes in cancer, thus producing significant therapeutic benefits.
Collapse
Affiliation(s)
- Francesca Romano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
7
|
Fang P, Xie C, Pan T, Cheng T, Chen W, Xia S, Ding T, Fang J, Zhou Y, Fang L, Wei D, Xiao S. Unfolding of an RNA G-quadruplex motif in the negative strand genome of porcine reproductive and respiratory syndrome virus by host and viral helicases to promote viral replication. Nucleic Acids Res 2023; 51:10752-10767. [PMID: 37739415 PMCID: PMC10602871 DOI: 10.1093/nar/gkad759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023] Open
Abstract
G-quadruplex (G4) is a unique secondary structure formed by guanine-rich nucleic acid sequences. Growing studies reported that the genomes of some viruses harbor G4 structures associated with viral replication, opening up a new field to dissect viral infection. Porcine reproductive and respiratory syndrome virus (PRRSV), a representative member of Arteriviridae, is an economically significant pathogen that has devastated the swine industry worldwide for over 30 years. In this study, we identified a highly conserved G-rich sequence with parallel-type G4 structure (named PRRSV-G4) in the negative strand genome RNA of PRRSV. Pyridostatin (PDS), a well-known G4-binding ligand, stabilized the PRRSV-G4 structure and inhibited viral replication. By screening the proteins interacting with PRRSV-G4 in PRRSV-infected cells and single-molecule magnetic tweezers analysis, we found that two helicases, host DDX18 and viral nsp10, interact with and efficiently unwound the PRRSV-G4 structure, thereby facilitating viral replication. Using a PRRSV reverse genetics system, we confirmed that recombinant PRRSV with a G4-disruptive mutation exhibited resistance to PDS treatment, thereby displaying higher replication than wild-type PRRSV. Collectively, these results demonstrate that the PRRSV-G4 structure plays a crucial regulatory role in viral replication, and targeting this structure represents a promising strategy for antiviral therapies.
Collapse
Affiliation(s)
- Puxian Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Congbao Xie
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, and Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Ting Pan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ting Cheng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wei Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Sijin Xia
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Tong Ding
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Junkang Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, and Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yanrong Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Dengguo Wei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, and Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
8
|
Chen Y, Wu Y, Li J, Chen K, Wang W, Ye Z, Feng K, Yang Y, Xu Y, Kang J, Guo X. Cooperative regulation of Zhx1 and hnRNPA1 drives the cardiac progenitor-specific transcriptional activation during cardiomyocyte differentiation. Cell Death Discov 2023; 9:244. [PMID: 37452012 PMCID: PMC10349095 DOI: 10.1038/s41420-023-01548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
The zinc finger proteins (ZNFs) mediated transcriptional regulation is critical for cell fate transition. However, it is still unclear how the ZNFs realize their specific regulatory roles in the stage-specific determination of cardiomyocyte differentiation. Here, we reported that the zinc fingers and homeoboxes 1 (Zhx1) protein, transiently expressed during the cell fate transition from mesoderm to cardiac progenitors, was indispensable for the proper cardiomyocyte differentiation of mouse and human embryonic stem cells. Moreover, Zhx1 majorly promoted the specification of cardiac progenitors via interacting with hnRNPA1 and co-activated the transcription of a wide range of genes. In-depth mechanistic studies showed that Zhx1 was bound with hnRNPA1 by the amino acid residues (Thr111-His120) of the second Znf domain, thus participating in the formation of cardiac progenitors. Together, our study highlights the unrevealed interaction of Zhx1/hnRNPA1 for activating gene transcription during cardiac progenitor specification and also provides new evidence for the specificity of cell fate determination in cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Yang Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jianguo Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Kai Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Wuchan Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zihui Ye
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ke Feng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yiwei Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yanxin Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Institute for Advanced Study, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
9
|
Vijay Kumar MJ, Morales R, Tsvetkov AS. G-quadruplexes and associated proteins in aging and Alzheimer's disease. FRONTIERS IN AGING 2023; 4:1164057. [PMID: 37323535 PMCID: PMC10267416 DOI: 10.3389/fragi.2023.1164057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Aging is a prominent risk factor for many neurodegenerative disorders, such as Alzheimer's disease (AD). Alzheimer's disease is characterized by progressive cognitive decline, memory loss, and neuropsychiatric and behavioral symptoms, accounting for most of the reported dementia cases. This disease is now becoming a major challenge and burden on modern society, especially with the aging population. Over the last few decades, a significant understanding of the pathophysiology of AD has been gained by studying amyloid deposition, hyperphosphorylated tau, synaptic dysfunction, oxidative stress, calcium dysregulation, and neuroinflammation. This review focuses on the role of non-canonical secondary structures of DNA/RNA G-quadruplexes (G4s, G4-DNA, and G4-RNA), G4-binding proteins (G4BPs), and helicases, and their roles in aging and AD. Being critically important for cellular function, G4s are involved in the regulation of DNA and RNA processes, such as replication, transcription, translation, RNA localization, and degradation. Recent studies have also highlighted G4-DNA's roles in inducing DNA double-strand breaks that cause genomic instability and G4-RNA's participation in regulating stress granule formation. This review emphasizes the significance of G4s in aging processes and how their homeostatic imbalance may contribute to the pathophysiology of AD.
Collapse
Affiliation(s)
- M. J. Vijay Kumar
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
| | - Rodrigo Morales
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Andrey S. Tsvetkov
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- UTHealth Consortium on Aging, The University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|
10
|
Pavlova I, Iudin M, Surdina A, Severov V, Varizhuk A. G-Quadruplexes in Nuclear Biomolecular Condensates. Genes (Basel) 2023; 14:genes14051076. [PMID: 37239436 DOI: 10.3390/genes14051076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
G-quadruplexes (G4s) have long been implicated in the regulation of chromatin packaging and gene expression. These processes require or are accelerated by the separation of related proteins into liquid condensates on DNA/RNA matrices. While cytoplasmic G4s are acknowledged scaffolds of potentially pathogenic condensates, the possible contribution of G4s to phase transitions in the nucleus has only recently come to light. In this review, we summarize the growing evidence for the G4-dependent assembly of biomolecular condensates at telomeres and transcription initiation sites, as well as nucleoli, speckles, and paraspeckles. The limitations of the underlying assays and the remaining open questions are outlined. We also discuss the molecular basis for the apparent permissive role of G4s in the in vitro condensate assembly based on the interactome data. To highlight the prospects and risks of G4-targeting therapies with respect to the phase transitions, we also touch upon the reported effects of G4-stabilizing small molecules on nuclear biomolecular condensates.
Collapse
Affiliation(s)
- Iuliia Pavlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Mikhail Iudin
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Anastasiya Surdina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
| | - Vjacheslav Severov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
| | - Anna Varizhuk
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
11
|
Feng J, Zhou J, Lin Y, Huang W. hnRNP A1 in RNA metabolism regulation and as a potential therapeutic target. Front Pharmacol 2022; 13:986409. [PMID: 36339596 PMCID: PMC9634572 DOI: 10.3389/fphar.2022.986409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Abnormal RNA metabolism, regulated by various RNA binding proteins, can have functional consequences for multiple diseases. Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is an important RNA binding protein, that regulates various RNA metabolic processes, including transcription, alternative splicing of pre-mRNA, translation, miRNA processing and mRNA stability. As a potent splicing factor, hnRNP A1 can regulate multiple splicing events, including itself, collaborating with other cooperative or antagonistical splicing factors by binding to splicing sites and regulatory elements in exons or introns. hnRNP A1 can modulate gene transcription by directly interacting with promoters or indirectly impacting Pol II activities. Moreover, by interacting with the internal ribosome entry site (IRES) or 3′-UTR of mRNAs, hnRNP A1 can affect mRNA translation. hnRNP A1 can alter the stability of mRNAs by binding to specific locations of 3′-UTR, miRNAs biogenesis and Nonsense-mediated mRNA decay (NMD) pathway. In this review, we conclude the selective sites where hnRNP A1 binds to RNA and DNA, and the co-regulatory factors that interact with hnRNP A1. Given the dysregulation of hnRNP A1 in diverse diseases, especially in cancers and neurodegeneration diseases, targeting hnRNP A1 for therapeutic treatment is extremely promising. Therefore, this review also provides the small-molecule drugs, biomedicines and novel strategies targeting hnRNP A1 for therapeutic purposes.
Collapse
|
12
|
Xu Q, Yang M, Chang Y, Peng S, Wang D, Zhou X, Shao Y. Switching G-quadruplex to parallel duplex by molecular rotor clustering. Nucleic Acids Res 2022; 50:10249-10263. [PMID: 36130267 PMCID: PMC9561263 DOI: 10.1093/nar/gkac811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/31/2022] [Accepted: 09/10/2022] [Indexed: 11/12/2022] Open
Abstract
Switching of G-quadruplex (G4) structures between variant types of folding has been proved to be a versatile tool for regulation of genomic expression and development of nucleic acid-based constructs. Various specific ligands have been developed to target G4s in K+ solution with therapeutic prospects. Although G4 structures have been reported to be converted by sequence modification or a unimolecular ligand binding event in K+-deficient conditions, switching G4s towards non-G4 folding continues to be a great challenge due to the stability of G4 in physiological K+ conditions. Herein, we first observed the G4 switching towards parallel-stranded duplex (psDNA) by multimolecular ligand binding (namely ligand clustering) to overcome the switching barrier in K+. Purine-rich sequences (e.g. those from the KRAS promoter region) can be converted from G4 structures to dimeric psDNAs using molecular rotors (e.g. thioflavin T and thiazole orange) as initiators. The formed psDNAs provided multiple binding sites for molecular rotor clustering to favor subsequent structures with stability higher than the corresponding G4 folding. Our finding provides a clue to designing ligands with the competency of molecular rotor clustering to implement an efficient G4 switching.
Collapse
Affiliation(s)
- Qiuda Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Mujing Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yun Chang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shuzhen Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
13
|
Indoloquinoline-Mediated Targeted Downregulation of KRAS through Selective Stabilization of the Mid-Promoter G-Quadruplex Structure. Genes (Basel) 2022; 13:genes13081440. [PMID: 36011352 PMCID: PMC9408018 DOI: 10.3390/genes13081440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
KRAS is a well-validated anti-cancer therapeutic target, whose transcriptional downregulation has been demonstrated to be lethal to tumor cells with aberrant KRAS signaling. G-quadruplexes (G4s) are non-canonical nucleic acid structures that mediate central dogmatic events, such as DNA repair, telomere elongation, transcription and splicing events. G4s are attractive drug targets, as they are more globular than B-DNA, enabling more selective gene interactions. Moreover, their genomic prevalence is increased in oncogenic promoters, their formation is increased in human cancers, and they can be modulated with small molecules or targeted nucleic acids. The putative formation of multiple G4s has been described in the literature, but compounds with selectivity among these structures have not yet been able to distinguish between the biological contribution of the predominant structures. Using cell free screening techniques, synthesis of novel indoloquinoline compounds and cellular models of KRAS-dependent cancer cells, we describe compounds that choose between KRAS promoter G4near and G4mid, correlate compound cytotoxic activity with KRAS regulation, and highlight G4mid as the lead molecular non-canonical structure for further targeting efforts.
Collapse
|
14
|
Vo T, Brownmiller T, Hall K, Jones TL, Choudhari S, Grammatikakis I, Ludwig K, Caplen N. HNRNPH1 destabilizes the G-quadruplex structures formed by G-rich RNA sequences that regulate the alternative splicing of an oncogenic fusion transcript. Nucleic Acids Res 2022; 50:6474-6496. [PMID: 35639772 PMCID: PMC9226515 DOI: 10.1093/nar/gkac409] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/07/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the presence of physiological monovalent cations, thousands of RNA G-rich sequences can form parallel G-quadruplexes (G4s) unless RNA-binding proteins inhibit, destabilize, or resolve the formation of such secondary RNA structures. Here, we have used a disease-relevant model system to investigate the biophysical properties of the RNA-binding protein HNRNPH1's interaction with G-rich sequences. We demonstrate the importance of two EWSR1-exon 8 G-rich regions in mediating the exclusion of this exon from the oncogenic EWS-FLI1 transcripts expressed in a subset of Ewing sarcomas, using complementary analysis of tumor data, long-read sequencing, and minigene studies. We determined that HNRNPH1 binds the EWSR1-exon 8 G-rich sequences with low nM affinities irrespective of whether in a non-G4 or G4 state but exhibits different kinetics depending on RNA structure. Specifically, HNRNPH1 associates and dissociates from G4-folded RNA faster than the identical sequences in a non-G4 state. Importantly, we demonstrate using gel shift and spectroscopic assays that HNRNPH1, particularly the qRRM1-qRRM2 domains, destabilizes the G4s formed by the EWSR1-exon 8 G-rich sequences in a non-catalytic fashion. Our results indicate that HNRNPH1's binding of G-rich sequences favors the accumulation of RNA in a non-G4 state and that this contributes to its regulation of RNA processing.
Collapse
Affiliation(s)
- Tam Vo
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine Hall
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamara L Jones
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sulbha Choudhari
- CCR-SF Bioinformatics Group, Biomedical Informatics and Data Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ioannis Grammatikakis
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Katelyn R Ludwig
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Pramanik S, Chen Y, Song H, Khutsishvili I, Marky LA, Ray S, Natarajan A, Singh P, Bhakat K. The human AP-endonuclease 1 (APE1) is a DNA G-quadruplex structure binding protein and regulates KRAS expression in pancreatic ductal adenocarcinoma cells. Nucleic Acids Res 2022; 50:3394-3412. [PMID: 35286386 PMCID: PMC8990529 DOI: 10.1093/nar/gkac172] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 11/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the most aggressive types of cancer, is characterized by aberrant activity of oncogenic KRAS. A nuclease-hypersensitive GC-rich region in KRAS promoter can fold into a four-stranded DNA secondary structure called G-quadruplex (G4), known to regulate KRAS expression. However, the factors that regulate stable G4 formation in the genome and KRAS expression in PDAC are largely unknown. Here, we show that APE1 (apurinic/apyrimidinic endonuclease 1), a multifunctional DNA repair enzyme, is a G4-binding protein, and loss of APE1 abrogates the formation of stable G4 structures in cells. Recombinant APE1 binds to KRAS promoter G4 structure with high affinity and promotes G4 folding in vitro. Knockdown of APE1 reduces MAZ transcription factor loading onto the KRAS promoter, thus reducing KRAS expression in PDAC cells. Moreover, downregulation of APE1 sensitizes PDAC cells to chemotherapeutic drugs in vitro and in vivo. We also demonstrate that PDAC patients' tissue samples have elevated levels of both APE1 and G4 DNA. Our findings unravel a critical role of APE1 in regulating stable G4 formation and KRAS expression in PDAC and highlight G4 structures as genomic features with potential application as a novel prognostic marker and therapeutic target in PDAC.
Collapse
Affiliation(s)
- Suravi Pramanik
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yingling Chen
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Heyu Song
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Irine Khutsishvili
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Luis A Marky
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sutapa Ray
- Hematology/Oncology Division, Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kishor K Bhakat
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
16
|
Ferino A, Marquevielle J, Choudhary H, Cinque G, Robert C, Bourdoncle A, Picco R, Mergny JL, Salgado GF, Xodo LE. hnRNPA1/UP1 Unfolds KRAS G-Quadruplexes and Feeds a Regulatory Axis Controlling Gene Expression. ACS OMEGA 2021; 6:34092-34106. [PMID: 34926957 PMCID: PMC8675163 DOI: 10.1021/acsomega.1c05538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/12/2021] [Indexed: 05/20/2023]
Abstract
Recent studies have proven that the genetic landscape of pancreatic cancer is dominated by the KRAS oncogene. Its transcription is controlled by a G-rich motif (called 32R) located immediately upstream of the TSS. 32R may fold into a G-quadruplex (G4) in equilibrium between two G4 conformers: G9T (T M = 61.2 °C) and G25T (T M = 54.7 °C). We found that both G4s bind to hnRNPA1 and its proteolytic fragment UP1, promoting several contacts with the RRM protein domains. 1D NMR analysis of DNA imino protons shows that, upon binding to UP1, G25T is readily unfolded at both 5' and 3' tetrads, while G9T is only partially unfolded. The impact of hnRNPA1 on KRAS expression was determined by comparing Panc-1 cells with two Panc-1 knockout cell lines in which hnRNPA1 was deleted by the CRISPR/Cas9 technology. The results showed that the expression of KRAS is inhibited in the knockout cell lines, indicating that hnRNPA1 is essential for the transcription of KRAS. In addition, the knockout cell lines, compared to normal Panc-1 cells, show a dramatic decrease in cell growth and capacity of colony formation. Pull-down and Western blot experiments indicate that conformer G25T is a better platform than conformer G9T for the assembly of the transcription preinitiation complex with PARP1, Ku70, MAZ, and hnRNPA1. Together, our data prove that hnRNPA1, being a key transcription factor for the activation of KRAS, can be a new therapeutic target for the rational design of anticancer strategies.
Collapse
Affiliation(s)
- Annalisa Ferino
- Department
of Medicine, Laboratory of Biochemistry, P.le Kolbe 4; Udine 33100, Italy
| | - Julien Marquevielle
- ARNA
Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, 2 rue Robert Escarpit, Pessac 33607, France
| | - Himanshi Choudhary
- Department
of Medicine, Laboratory of Biochemistry, P.le Kolbe 4; Udine 33100, Italy
| | - Giorgio Cinque
- Department
of Medicine, Laboratory of Biochemistry, P.le Kolbe 4; Udine 33100, Italy
| | - Coralie Robert
- ARNA
Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, 2 rue Robert Escarpit, Pessac 33607, France
| | - Anne Bourdoncle
- ARNA
Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, 2 rue Robert Escarpit, Pessac 33607, France
| | - Raffaella Picco
- Department
of Medicine, Laboratory of Biochemistry, P.le Kolbe 4; Udine 33100, Italy
| | - Jean-Louis Mergny
- ARNA
Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, 2 rue Robert Escarpit, Pessac 33607, France
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Route de Saclay, Palaiseau Cedex 91128, France
| | - Gilmar F. Salgado
- ARNA
Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, 2 rue Robert Escarpit, Pessac 33607, France
| | - Luigi E. Xodo
- Department
of Medicine, Laboratory of Biochemistry, P.le Kolbe 4; Udine 33100, Italy
- luigi.xodo@uniud.it
| |
Collapse
|
17
|
Liu Y, Zhu X, Wang K, Zhang B, Qiu S. The Cellular Functions and Molecular Mechanisms of G-Quadruplex Unwinding Helicases in Humans. Front Mol Biosci 2021; 8:783889. [PMID: 34912850 PMCID: PMC8667583 DOI: 10.3389/fmolb.2021.783889] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/02/2021] [Indexed: 01/19/2023] Open
Abstract
G-quadruplexes (G4s) are stable non-canonical secondary structures formed by G-rich DNA or RNA sequences. They play various regulatory roles in many biological processes. It is commonly agreed that G4 unwinding helicases play key roles in G4 metabolism and function, and these processes are closely related to physiological and pathological processes. In recent years, more and more functional and mechanistic details of G4 helicases have been discovered; therefore, it is necessary to carefully sort out the current research efforts. Here, we provide a systematic summary of G4 unwinding helicases from the perspective of functions and molecular mechanisms. First, we provide a general introduction about helicases and G4s. Next, we comprehensively summarize G4 unfolding helicases in humans and their proposed cellular functions. Then, we review their study methods and molecular mechanisms. Finally, we share our perspective on further prospects. We believe this review will provide opportunities for researchers to reach the frontiers in the functions and molecular mechanisms of human G4 unwinding helicases.
Collapse
Affiliation(s)
- Yang Liu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Xinting Zhu
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Kejia Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Bo Zhang
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Shuyi Qiu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
18
|
Cheng Y, Zhang Y, You H. Characterization of G-Quadruplexes Folding/Unfolding Dynamics and Interactions with Proteins from Single-Molecule Force Spectroscopy. Biomolecules 2021; 11:1579. [PMID: 34827577 PMCID: PMC8615981 DOI: 10.3390/biom11111579] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
G-quadruplexes (G4s) are stable secondary nucleic acid structures that play crucial roles in many fundamental biological processes. The folding/unfolding dynamics of G4 structures are associated with the replication and transcription regulation functions of G4s. However, many DNA G4 sequences can adopt a variety of topologies and have complex folding/unfolding dynamics. Determining the dynamics of G4s and their regulation by proteins remains challenging due to the coexistence of multiple structures in a heterogeneous sample. Here, in this mini-review, we introduce the application of single-molecule force-spectroscopy methods, such as magnetic tweezers, optical tweezers, and atomic force microscopy, to characterize the polymorphism and folding/unfolding dynamics of G4s. We also briefly introduce recent studies using single-molecule force spectroscopy to study the molecular mechanisms of G4-interacting proteins.
Collapse
Affiliation(s)
| | | | - Huijuan You
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.Z.)
| |
Collapse
|
19
|
MeCP2 duplication causes hyperandrogenism by upregulating LHCGR and downregulating RORα. Cell Death Dis 2021; 12:999. [PMID: 34697294 PMCID: PMC8545957 DOI: 10.1038/s41419-021-04277-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022]
Abstract
Duplication of MECP2 (methyl-CpG-binding protein 2) gene causes a serious neurological and developmental disorder called MECP2 duplication syndrome (MDS), which is usually found in males. A previous clinical study reported that MDS patient has precocious puberty with hyperandrogenism, suggesting increased MeCP2 may cause male hyperandrogenism. Here we use an MDS mouse model and confirm that MECP2 duplication significantly upregulates androgen levels. We show for the first time that MeCP2 is highly expressed in the Leydig cells of testis, where androgen is synthesized. Mechanistically, MECP2 duplication increases androgen synthesis and decreases androgen to estrogen conversion through either the upregulation of luteinizing hormone receptor (LHCGR) in testis, as a result of MeCP2 binds to G-quadruplex structure of Lhcgr promoter and recruits the transcription activator CREB1 or the downregulation of the expression of aromatase in testis by binding the CpG island of Rorα, an upstream regulator of aromatase. Taken together, we demonstrate that MeCP2 plays an important role in androgen synthesis, supporting a novel non-CNS function of MeCP2 in the process of sex hormone synthesis.
Collapse
|
20
|
Interactions of HMGB Proteins with the Genome and the Impact on Disease. Biomolecules 2021; 11:biom11101451. [PMID: 34680084 PMCID: PMC8533419 DOI: 10.3390/biom11101451] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023] Open
Abstract
High Mobility Group Box (HMGB) proteins are small architectural DNA binding proteins that regulate multiple genomic processes such as DNA damage repair, nucleosome sliding, telomere homeostasis, and transcription. In doing so they control both normal cellular functions and impact a myriad of disease states, including cancers and autoimmune diseases. HMGB proteins bind to DNA and nucleosomes to modulate the local chromatin environment, which facilitates the binding of regulatory protein factors to the genome and modulates higher order chromosomal organization. Numerous studies over the years have characterized the structure and function of interactions between HMGB proteins and DNA, both biochemically and inside cells, providing valuable mechanistic insight as well as evidence these interactions influence pathological processes. This review highlights recent studies supporting the roles of HMGB1 and HMGB2 in global organization of the genome, as well as roles in transcriptional regulation and telomere maintenance via interactions with G-quadruplex structures. Moreover, emerging models for how HMGB proteins function as RNA binding proteins are presented. Nuclear HMGB proteins have broad regulatory potential to impact numerous aspects of cellular metabolism in normal and disease states.
Collapse
|
21
|
Thibault PA, Ganesan A, Kalyaanamoorthy S, Clarke JPWE, Salapa HE, Levin MC. hnRNP A/B Proteins: An Encyclopedic Assessment of Their Roles in Homeostasis and Disease. BIOLOGY 2021; 10:biology10080712. [PMID: 34439945 PMCID: PMC8389229 DOI: 10.3390/biology10080712] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
The hnRNP A/B family of proteins is canonically central to cellular RNA metabolism, but due to their highly conserved nature, the functional differences between hnRNP A1, A2/B1, A0, and A3 are often overlooked. In this review, we explore and identify the shared and disparate homeostatic and disease-related functions of the hnRNP A/B family proteins, highlighting areas where the proteins have not been clearly differentiated. Herein, we provide a comprehensive assembly of the literature on these proteins. We find that there are critical gaps in our grasp of A/B proteins' alternative splice isoforms, structures, regulation, and tissue and cell-type-specific functions, and propose that future mechanistic research integrating multiple A/B proteins will significantly improve our understanding of how this essential protein family contributes to cell homeostasis and disease.
Collapse
Affiliation(s)
- Patricia A. Thibault
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - Aravindhan Ganesan
- ArGan’s Lab, School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Subha Kalyaanamoorthy
- Department of Chemistry, Faculty of Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Joseph-Patrick W. E. Clarke
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Hannah E. Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
| | - Michael C. Levin
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; (P.A.T.); (J.-P.W.E.C.); (H.E.S.)
- Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Correspondence:
| |
Collapse
|
22
|
Wang Z, Wu X. Abnormal function of telomere protein TRF2 induces cell mutation and the effects of environmental tumor‑promoting factors (Review). Oncol Rep 2021; 46:184. [PMID: 34278498 PMCID: PMC8273685 DOI: 10.3892/or.2021.8135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/14/2021] [Indexed: 01/30/2023] Open
Abstract
Recent studies have found that somatic gene mutations and environmental tumor-promoting factors are both indispensable for tumor formation. Telomeric repeat-binding factor (TRF)2 is the core component of the telomere shelterin complex, which plays an important role in chromosome stability and the maintenance of normal cell physiological states. In recent years, TRF2 and its role in tumor formation have gradually become a research hot topic, which has promoted in-depth discussions into tumorigenesis and treatment strategies, and has achieved promising results. Some cells bypass elimination, due to either aging, apoptosis via mutations or abnormal prolongation of the mitotic cycle, and enter the telomere crisis period, where large-scale DNA reorganization occurs repeatedly, which manifests as the precancerous cell cycle. Finally, at the end of the crisis cycle, the mutation activates either the expression level of telomerase or activates the alternative lengthening of telomere mechanism to extend the local telomeres. Under the protection of TRF2, chromosomes are gradually stabilized, immortal cells are formed and the stagewise mutation-driven transformation of normal cells to cancer cells is completed. In addition, TRF2 also shares the characteristics of environmental tumor-promoting factors. It acts on multiple signal transduction pathway-related proteins associated with cell proliferation, and affects peripheral angiogenesis, inhibits the immune recognition and killing ability of the microenvironment, and maintains the stemness characteristics of tumor cells. TRF2 levels are abnormally elevated by a variety of tumor control proteins, which are more conducive to the protection of telomeres and the survival of tumor cells. In brief, the various regulatory mechanisms which tumor cells rely on to survive are organically integrated around TRF2, forming a regulatory network, which is conducive to the optimization of the survival direction of heterogeneous tumor cells, and promotes their survival and adaptability. In terms of clinical application, TRF2 is expected to become a new type of cancer prognostic marker and a new tumor treatment target. Inhibition of TRF2 overexpression could effectively cut off the core network regulating tumor cell survival, reduce drug resistance, or bypass the mutation under the pressure of tumor treatment selection, which may represent a promising therapeutic strategy for the complete eradication of tumors in the clinical setting. Based on recent research, the aim of the present review was to systematically elaborate on the basic structure and functional characteristics of TRF2 and its role in tumor formation, and to analyze the findings indicating that TRF2 deficiency or overexpression could cause severe damage to telomere function and telomere shortening, and induce DNA damage response and chromosomal instability.
Collapse
Affiliation(s)
- Zhengyi Wang
- Good Clinical Practice Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610071, P.R. China
| | - Xiaoying Wu
- Ministry of Education and Training, Chengdu Second People's Hospital, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
23
|
Zhang X, Spiegel J, Martínez Cuesta S, Adhikari S, Balasubramanian S. Chemical profiling of DNA G-quadruplex-interacting proteins in live cells. Nat Chem 2021; 13:626-633. [PMID: 34183817 PMCID: PMC8245323 DOI: 10.1038/s41557-021-00736-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022]
Abstract
DNA-protein interactions regulate critical biological processes. Identifying proteins that bind to specific, functional genomic loci is essential to understand the underlying regulatory mechanisms on a molecular level. Here we describe a co-binding-mediated protein profiling (CMPP) strategy to investigate the interactome of DNA G-quadruplexes (G4s) in native chromatin. CMPP involves cell-permeable, functionalized G4-ligand probes that bind endogenous G4s and subsequently crosslink to co-binding G4-interacting proteins in situ. We first showed the robustness of CMPP by proximity labelling of a G4 binding protein in vitro. Employing this approach in live cells, we then identified hundreds of putative G4-interacting proteins from various functional classes. Next, we confirmed a high G4-binding affinity and selectivity for several newly discovered G4 interactors in vitro, and we validated direct G4 interactions for a functionally important candidate in cellular chromatin using an independent approach. Our studies provide a chemical strategy to map protein interactions of specific nucleic acid features in living cells.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jochen Spiegel
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Sergio Martínez Cuesta
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Data Sciences and Quantitative Biology, Discovery Sciences, AstraZeneca, Cambridge, UK
| | | | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK.
- School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
24
|
Sanchez-Martin V, Soriano M, Garcia-Salcedo JA. Quadruplex Ligands in Cancer Therapy. Cancers (Basel) 2021; 13:3156. [PMID: 34202648 PMCID: PMC8267697 DOI: 10.3390/cancers13133156] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acids can adopt alternative secondary conformations including four-stranded structures known as quadruplexes. To date, quadruplexes have been demonstrated to exist both in human chromatin DNA and RNA. In particular, quadruplexes are found in guanine-rich sequences constituting G-quadruplexes, and in cytosine-rich sequences forming i-Motifs as a counterpart. Quadruplexes are associated with key biological processes ranging from transcription and translation of several oncogenes and tumor suppressors to telomeres maintenance and genome instability. In this context, quadruplexes have prompted investigations on their possible role in cancer biology and the evaluation of small-molecule ligands as potential therapeutic agents. This review aims to provide an updated close-up view of the literature on quadruplex ligands in cancer therapy, by grouping together ligands for DNA and RNA G-quadruplexes and DNA i-Motifs.
Collapse
Affiliation(s)
- Victoria Sanchez-Martin
- Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain;
- Microbiology Unit, Biosanitary Research Institute IBS, University Hospital Virgen de las Nieves, 18014 Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, 18016 Granada, Spain
| | - Miguel Soriano
- Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain;
- Centre for Intensive Mediterranean Agrosystems and Agri-Food Biotechnology (CIAMBITAL), University of Almeria, 04001 Almeria, Spain
| | - Jose Antonio Garcia-Salcedo
- Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain;
- Microbiology Unit, Biosanitary Research Institute IBS, University Hospital Virgen de las Nieves, 18014 Granada, Spain
| |
Collapse
|
25
|
Frasson I, Soldà P, Nadai M, Lago S, Richter SN. Parallel G-quadruplexes recruit the HSV-1 transcription factor ICP4 to promote viral transcription in herpes virus-infected human cells. Commun Biol 2021; 4:510. [PMID: 33931711 PMCID: PMC8087788 DOI: 10.1038/s42003-021-02035-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/26/2021] [Indexed: 02/03/2023] Open
Abstract
G-quadruplexes (G4s) are four-stranded nucleic acid structures abundant at gene promoters. They can adopt several distinctive conformations. G4s have been shown to form in the herpes simplex virus-1 (HSV-1) genome during its viral cycle. Here by cross-linking/pull-down assay we identified ICP4, the major HSV-1 transcription factor, as the protein that most efficiently interacts with viral G4s during infection. ICP4 specific and direct binding and unfolding of parallel G4s, including those present in HSV-1 immediate early gene promoters, induced transcription in vitro and in infected cells. This mechanism was also exploited by ICP4 to promote its own transcription. Proximity ligation assay allowed visualization of G4-protein interaction at the single selected G4 in cells. G4 ligands inhibited ICP4 binding to G4s. Our results indicate the existence of a well-defined G4-viral protein network that regulates the productive HSV-1 cycle. They also point to G4s as elements that recruit transcription factors to activate transcription in cells.
Collapse
Affiliation(s)
- Ilaria Frasson
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Paola Soldà
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Sara Lago
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
26
|
Cui Y, Li Z, Cao J, Lane J, Birkin E, Dong X, Zhang L, Jiang WG. The G4 Resolvase DHX36 Possesses a Prognosis Significance and Exerts Tumour Suppressing Function Through Multiple Causal Regulations in Non-Small Cell Lung Cancer. Front Oncol 2021; 11:655757. [PMID: 33987090 PMCID: PMC8111079 DOI: 10.3389/fonc.2021.655757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is one of the most prevalent cancers in both men and women worldwide. The nucleic acid G4 structures have been implicated in the transcriptional programmes of cancer-related genes in some cancers such as lung cancer. However, the role of the dominant G4 resolvase DHX36 in the progression of lung cancer remains unknown. In this study, by bioinformatic analysis of public datasets (TCGA and GEO), we find DHX36 is an independent prognosis indicator in non-small-cell lung carcinoma (NSCLC) with subtype dependence. The stable lentiviral knockdown of the DHX36 results in accelerated migration and aggregation of the S-phase subpopulation in lung cancer cells. The reduction of DHX36 level de-sensitises the proliferation response of lung cancer cells to chemotherapeutic drugs such as paclitaxel with cell dependence. The knockdown of this helicase leads to promoted tumour growth, demonstrated by a 3D fluorescence spheroid lung cancer model, and the stimulation of cell colony formation as shown by single-cell cultivation. High throughput proteomic array indicates that DHX36 functions in lung cancer cells through regulating multiple signalling pathways including activation of protein activity, protein autophosphorylation, Fc-receptor signalling pathway, response to peptide hormone and stress-activated protein kinase signalling cascade. A causal transcriptomic analysis suggests that DHX36 is significantly associated with mRNA surveillance, RNA degradation, DNA replication and Myc targets. Therefore, we unveil that DHX36 presents clinical significance and plays a role in tumour suppression in lung cancer, and propose a potentially new concept for an anti-cancer therapy based on helicase-specific targeting.
Collapse
Affiliation(s)
- Yuxin Cui
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Zhilei Li
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Junxia Cao
- Biotherapy Center, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Jane Lane
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Emily Birkin
- Cardiff & Vale University Health Board, University Hospital of Wales, Cardiff, United Kingdom
| | - Xuefei Dong
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lijian Zhang
- Department of Thoracic Surgery, Peking University Cancer Hospital, Beijing, China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
27
|
Clarke JP, Thibault PA, Salapa HE, Levin MC. A Comprehensive Analysis of the Role of hnRNP A1 Function and Dysfunction in the Pathogenesis of Neurodegenerative Disease. Front Mol Biosci 2021; 8:659610. [PMID: 33912591 PMCID: PMC8072284 DOI: 10.3389/fmolb.2021.659610] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a member of the hnRNP family of conserved proteins that is involved in RNA transcription, pre-mRNA splicing, mRNA transport, protein translation, microRNA processing, telomere maintenance and the regulation of transcription factor activity. HnRNP A1 is ubiquitously, yet differentially, expressed in many cell types, and due to post-translational modifications, can vary in its molecular function. While a plethora of knowledge is known about the function and dysfunction of hnRNP A1 in diseases other than neurodegenerative disease (e.g., cancer), numerous studies in amyotrophic lateral sclerosis, frontotemporal lobar degeneration, multiple sclerosis, spinal muscular atrophy, Alzheimer’s disease, and Huntington’s disease have found that the dysregulation of hnRNP A1 may contribute to disease pathogenesis. How hnRNP A1 mechanistically contributes to these diseases, and whether mutations and/or altered post-translational modifications contribute to pathogenesis, however, is currently under investigation. The aim of this comprehensive review is to first describe the background of hnRNP A1, including its structure, biological functions in RNA metabolism and the post-translational modifications known to modify its function. With this knowledge, the review then describes the influence of hnRNP A1 in neurodegenerative disease, and how its dysfunction may contribute the pathogenesis.
Collapse
Affiliation(s)
- Joseph P Clarke
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada
| | - Patricia A Thibault
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hannah E Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael C Levin
- Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
28
|
Kosiol N, Juranek S, Brossart P, Heine A, Paeschke K. G-quadruplexes: a promising target for cancer therapy. Mol Cancer 2021; 20:40. [PMID: 33632214 PMCID: PMC7905668 DOI: 10.1186/s12943-021-01328-4] [Citation(s) in RCA: 270] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
DNA and RNA can fold into a variety of alternative conformations. In recent years, a particular nucleic acid structure was discussed to play a role in malignant transformation and cancer development. This structure is called a G-quadruplex (G4). G4 structure formation can drive genome instability by creating mutations, deletions and stimulating recombination events. The importance of G4 structures in the characterization of malignant cells was currently demonstrated in breast cancer samples. In this analysis a correlation between G4 structure formation and an increased intratumor heterogeneity was identified. This suggests that G4 structures might allow breast cancer stratification and supports the identification of new personalized treatment options. Because of the stability of G4 structures and their presence within most human oncogenic promoters and at telomeres, G4 structures are currently tested as a therapeutic target to downregulate transcription or to block telomere elongation in cancer cells. To date, different chemical molecules (G4 ligands) have been developed that aim to target G4 structures. In this review we discuss and compare G4 function and relevance for therapeutic approaches and their impact on cancer development for three cancer entities, which differ significantly in their amount and type of mutations: pancreatic cancer, leukemia and malignant melanoma. G4 structures might present a promising new strategy to individually target tumor cells and could support personalized treatment approaches in the future.
Collapse
Affiliation(s)
- Nils Kosiol
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Stefan Juranek
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Peter Brossart
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Annkristin Heine
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
29
|
YY1 interacts with guanine quadruplexes to regulate DNA looping and gene expression. Nat Chem Biol 2021; 17:161-168. [PMID: 33199912 PMCID: PMC7854983 DOI: 10.1038/s41589-020-00695-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/30/2020] [Accepted: 10/14/2020] [Indexed: 01/28/2023]
Abstract
The DNA guanine quadruplexes (G4) play important roles in multiple cellular processes, including DNA replication, transcription and maintenance of genome stability. Here, we showed that Yin and Yang 1 (YY1) can bind directly to G4 structures. ChIP-seq results revealed that YY1-binding sites overlap extensively with G4 structure loci in chromatin. We also observed that the dimerization of YY1 and its binding with G4 structures contribute to YY1-mediated long-range DNA looping. Displacement of YY1 from G4 structure sites disrupts substantially the YY1-mediated DNA looping. Moreover, treatment with G4-stabilizing ligands modulates the expression of not only those genes with G4 structures in their promoters, but also those associated with distal G4 structures that are brought to close proximity via YY1-mediated DNA looping. Together, we identified YY1 as a DNA G4-binding protein, and revealed that YY1-mediated long-range DNA looping requires its dimerization and occurs, in part, through its recognition of G4 structure.
Collapse
|
30
|
Ferino A, Xodo LE. Effect of DNA Glycosylases OGG1 and Neil1 on Oxidized G-Rich Motif in the KRAS Promoter. Int J Mol Sci 2021; 22:1137. [PMID: 33498912 PMCID: PMC7865940 DOI: 10.3390/ijms22031137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/28/2022] Open
Abstract
The promoter of the Kirsten ras (KRAS) proto-oncogene contains, upstream of the transcription start site, a quadruplex-forming motif called 32R with regulatory functions. As guanine under oxidative stress can be oxidized to 8-oxoguanine (8OG), we investigated the capacity of glycosylases 8-oxoguanine glycosylase (OGG1) and endonuclease VIII-like 1 (Neil1) to excise 8OG from 32R, either in duplex or G-quadruplex (G4) conformation. We found that OGG1 efficiently excised 8OG from oxidized 32R in duplex but not in G4 conformation. By contrast, glycosylase Neil1 showed more activity on the G4 than the duplex conformation. We also found that the excising activity of Neil1 on folded 32R depended on G4 topology. Our data suggest that Neil1, besides being involved in base excision repair pathway (BER), could play a role on KRAS transcription.
Collapse
Affiliation(s)
| | - Luigi E. Xodo
- Laboratory of Biochemistry, Department of Medicine, P.le Kolbe 4, 33100 Udine, Italy;
| |
Collapse
|
31
|
Sengupta A, Roy SS, Chowdhury S. Non-duplex G-Quadruplex DNA Structure: A Developing Story from Predicted Sequences to DNA Structure-Dependent Epigenetics and Beyond. Acc Chem Res 2021; 54:46-56. [PMID: 33347280 DOI: 10.1021/acs.accounts.0c00431] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The story of the non-duplex DNA form known as the G-quadruplex (G4) has traversed a winding path. From initial skepticism followed by debate to a surge in interest, the G4 story intertwines many threads. Starting with computational predictions of a gene regulatory role, which now include epigenetic functions, our group was involved in many of these advances along with many other laboratories. Following a brief background, set in the latter half of the last century when the concept of the G4 as a structure took ground, here we account the developments. This is through a lens that though focused on our groups' research presents work from many other groups that played significant roles. Together these provide a broad perspective to the G4 story. Initially we were intrigued on seeing potential G4 (pG4)-forming sequences, then known to be found primarily at the telomeres and immunoglobin switch regions, occurring throughout the genome and being particularly prevalent in promoters of bacteria. We further observed that pG4s were not only prevalent but also conserved through evolution in promoters of human, chimpanzee, mouse and rat genomes. This was between 2005 and 2007. Encouraged by these partly and partly in response to the view held by many that genome-wide presence of G4s were genomic "accidents", the focus shifted to seeking experimental evidence.In the next year, 2008, two independent findings showed promise. First, on treating human cancer cells with G4-binding ligands, we observed widespread change in gene expression. Second, our search for the missing G4-specific transcription factor, without which, importantly, G4s in promoters posed only half the story, yielded results. We determined how NM23-H2 (also known as NME2 or NDPK-B) interacts with G4s and how interaction of NM23-H2 with a G4 in the promoter of the oncogene c-myc was important for regulation of c-myc transcription. NM23-H2, and subsequently many other similar factors discovered by multiple groups, is possibly giving shape to what might be the "G4-transcriptome". Later, a close look at NM23-H2-G4 interaction in regulation of the human reverse transcriptase gene (hTERT) revealed the role of G4s in local epigenetic modifications. Meanwhile work from others showed how G4s impact histone modifications following replication. Together these show the intrinsic role of DNA sequence, through formation of DNA structure, in epigenetics.More recent work, however, was waiting to reveal aspects that tend to bring forth a completely new understanding of G4s. We observed that the telomere-repeat-binding-factor-2 (TRF2), known canonically to be telomere-associated, binds extensively outside telomeres throughout the genome. Moreover, a large fraction of the non-telomeric TRF2 sites comprise G4s. Second, the extent of non-telomeric TRF2 binding at promoters was dependent on telomere length. Thereby TRF2-induced epigenetic gene regulation was telomere-dependent. Together these implicate underlying connections that show signs of addressing an intriguing unanswered question that takes us back to the beginning: Why are G4s prevalent in two distinct regions, the telomeres and gene promoters?
Collapse
Affiliation(s)
- Antara Sengupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shuvra Shekhar Roy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shantanu Chowdhury
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
32
|
D’Aria F, Pagano B, Petraccone L, Giancola C. KRAS Promoter G-Quadruplexes from Sequences of Different Length: A Physicochemical Study. Int J Mol Sci 2021; 22:ijms22010448. [PMID: 33466280 PMCID: PMC7795837 DOI: 10.3390/ijms22010448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022] Open
Abstract
DNA G-quadruplexes (G4s) form in relevant genomic regions and intervene in several biological processes, including the modulation of oncogenes expression, and are potential anticancer drug targets. The human KRAS proto-oncogene promoter region contains guanine-rich sequences able to fold into G4 structures. Here, by using circular dichroism and differential scanning calorimetry as complementary physicochemical methodologies, we compared the thermodynamic stability of the G4s formed by a shorter and a longer version of the KRAS promoter sequence, namely 5′-AGGGCGGTGTGGGAATAGGGAA-3′ (KRAS 22RT) and 5′-AGGGCGGTGTGGGAAGAGGGAAGAGGGGGAGG-3′ (KRAS 32R). Our results show that the unfolding mechanism of KRAS 32R is more complex than that of KRAS 22RT. The different thermodynamic stability is discussed based on the recently determined NMR structures. The binding properties of TMPyP4 and BRACO-19, two well-known G4-targeting anticancer compounds, to the KRAS G4s were also investigated. The present physicochemical study aims to help in choosing the best G4 target for potential anticancer drugs.
Collapse
Affiliation(s)
- Federica D’Aria
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (F.D.); (B.P.)
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (F.D.); (B.P.)
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples, Italy;
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (F.D.); (B.P.)
- Correspondence:
| |
Collapse
|
33
|
Role of Poly [ADP-ribose] Polymerase 1 in Activating the Kirsten ras ( KRAS) Gene in Response to Oxidative Stress. Int J Mol Sci 2020; 21:ijms21176237. [PMID: 32872305 PMCID: PMC7504130 DOI: 10.3390/ijms21176237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022] Open
Abstract
In pancreatic Panc-1 cancer cells, an increase of oxidative stress enhances the level of 7,8-dihydro-8-oxoguanine (8OG) more in the KRAS promoter region containing G4 motifs than in non-G4 motif G-rich genomic regions. We found that H2O2 stimulates the recruitment to the KRAS promoter of poly [ADP-ribose] polymerase 1 (PARP-1), which efficiently binds to local G4 structures. Upon binding to G4 DNA, PARP-1 undergoes auto PARylation and thus becomes negatively charged. In our view this should favor the recruitment to the KRAS promoter of MAZ and hnRNP A1, as these two nuclear factors, because of their isoelectric points >7, are cationic in nature under physiological conditions. This is indeed supported by pulldown assays which showed that PARP-1, MAZ, and hnRNP A1 form a multiprotein complex with an oligonucleotide mimicking the KRAS G4 structure. Our data suggest that an increase of oxidative stress in Panc-1 cells activates a ROS-G4-PARP-1 axis that stimulates the transcription of KRAS. This mechanism is confirmed by the finding that when PARP-1 is silenced by siRNA or auto PARylation is inhibited by Veliparib, the expression of KRAS is downregulated. When Panc-1 cells are treated with H2O2 instead, a strong up-regulation of KRAS transcription is observed.
Collapse
|
34
|
Ghosh M, Singh M. Structure specific recognition of telomeric repeats containing RNA by the RGG-box of hnRNPA1. Nucleic Acids Res 2020; 48:4492-4506. [PMID: 32128583 PMCID: PMC7192615 DOI: 10.1093/nar/gkaa134] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
The telomere repeats containing RNA (TERRA) is transcribed from the C-rich strand of telomere DNA and comprises of UUAGGG nucleotides repeats in humans. The TERRA RNA repeats can exist in single stranded, RNA-DNA hybrid and G-quadruplex forms in the cell. Interaction of TERRA RNA with hnRNPA1 has been proposed to play critical roles in maintenance of telomere DNA. hnRNPA1 contains an N-terminal UP1 domain followed by an RGG-box containing C-terminal region. RGG-motifs are emerging as key protein motifs that recognize the higher order nucleic acid structures as well as are known to promote liquid-liquid phase separation of proteins. In this study, we have shown that the RGG-box of hnRNPA1 specifically recognizes the TERRA RNA G-quadruplexes that have loops in their topology, whereas it does not interact with the single-stranded RNA. Our results show that the N-terminal UP1 domain in the presence of the RGG-box destabilizes the loop containing TERRA RNA G-quadruplex efficiently compared to the RNA G-quadruplex that lacks loops, suggesting that unfolding of G-quadruplex structures by UP1 is structure dependent. Furthermore, we have compared the telomere DNA and TERRA RNA G-quadruplex binding by the RGG-box of hnRNPA1 and discussed its implications in telomere DNA maintenance.
Collapse
Affiliation(s)
- Meenakshi Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, 560012, India
| | - Mahavir Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, 560012, India.,NMR Research Centre, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
35
|
Lee S, Kim J, Han S, Park CJ. Recognition and Unfolding of c-MYC and Telomeric G-Quadruplex DNAs by the RecQ C-Terminal Domain of Human Bloom Syndrome Helicase. ACS OMEGA 2020; 5:14513-14522. [PMID: 32596589 PMCID: PMC7315595 DOI: 10.1021/acsomega.0c01176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/02/2020] [Indexed: 05/16/2023]
Abstract
G-quadruplex (G4) is a noncanonical DNA secondary structure formed by Hoogsteen base pairing. It is recognized by various DNA helicases involved in DNA metabolism processes such as replication and transcription. Human Bloom syndrome protein (BLM), one of five human RecQ helicases, is a G4 helicase. While several studies revealed the mechanism of G4 binding and unfolding by the conserved RecQ C-terminal (RQC) domain of BLM, how RQC recognizes different G4 topologies is still unclear. Here, we investigated the interaction of Myc-22(14/23T) G4 from the c-Myc promoter and hTelo G4 from the telomeric sequence with RQC. Myc-22(14/23T) and hTelo form parallel and (3+1) hybrid topologies, respectively. Our circular dichroism (CD) spectroscopy data indicate that RQC can partially unfold the parallel G4, even with a short 3' overhang, while it can only partially unfold the (3+1) hybrid G4 with a 3' overhang of 6 nucleotides or longer. We found that the intrinsic thermal stability of G4 does not determine RQC-induced G4 unfolding by comparing T m of G4s. We also showed that both parallel and (3+1) hybrid G4s bind to the β-wing region of RQC. Thermodynamic analysis using isothermal titration calorimetry (ITC) showed that all interactions were endothermic and entropically driven. We suggest that RQC partially unfolds the parallel G4 more efficiently than the (3+1) hybrid G4 and binds to various G4 structures using its β-wing region. By this information, our research provides new insights into the influence of G4 structure on DNA metabolic processes involving BLM.
Collapse
|
36
|
Masuzawa T, Oyoshi T. Roles of the RGG Domain and RNA Recognition Motif of Nucleolin in G-Quadruplex Stabilization. ACS OMEGA 2020; 5:5202-5208. [PMID: 32201808 PMCID: PMC7081427 DOI: 10.1021/acsomega.9b04221] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/20/2020] [Indexed: 05/14/2023]
Abstract
G-quadruplexes have important biologic functions that are regulated by G-quadruplex-binding proteins. In particular, G-quadruplex structures are folded or unfolded by their binding proteins and affect transcription and other biologic functions. Here, we investigated the effect of the RNA recognition motif (RRM) and arginine-glycine-glycine repeat (RGG) domain of nucleolin on G-quadruplex formation. Our findings indicate that Phe in the RGG domain of nucleolin is responsible for G-quadruplex binding and folding. Moreover, the RRM of nucleolin potentially binds to a guanine-rich single strand and folds the G-quadruplex with a 5'-terminal and 3'-terminal single strand containing guanine. Our findings contribute to our understanding of how the RRM and RGG domains contribute to G-quadruplex folding and unfolding.
Collapse
Affiliation(s)
- Tatsuki Masuzawa
- Department of Chemistry,
Graduate School of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Takanori Oyoshi
- Department of Chemistry,
Graduate School of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
37
|
Oyoshi T, Masuzawa T. Modulation of histone modifications and G-quadruplex structures by G-quadruplex-binding proteins. Biochem Biophys Res Commun 2020; 531:39-44. [PMID: 32178871 DOI: 10.1016/j.bbrc.2020.02.178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 10/24/2022]
Abstract
The functions of local conformations of non-B form DNA and RNA, such as the G-quadruplex, are thought to be regulated by their specific binding proteins. They regulate the formation of G-quadruplexes in cells and affect the biological functions of G-quadruplexes. Recent studies reported that G-quadruplexes regulate epigenetics through these G-quadruplex binding proteins. We discuss regulation of histone modifications through G-quadruplex RNA and its binding proteins which modulate the G-quadruplex conformations. G-quadruplex RNA is involved in telomere maintenance and transcription via histone modification. Furthermore, G-quadruplex binding proteins regulate formation and biological functions of G-quadruplexes through regulating their folding or unfolding. In this review, we will focus on the G-quadruplex binding proteins containing RRM and RGG domains.
Collapse
Affiliation(s)
- Takanori Oyoshi
- Department of Chemistry, Graduate School of Science, Shizuoka University, 836 Ohya Suruga, Shizuoka, 422-8529, Japan.
| | - Tatsuki Masuzawa
- Department of Chemistry, Graduate School of Science, Shizuoka University, 836 Ohya Suruga, Shizuoka, 422-8529, Japan
| |
Collapse
|
38
|
Abstract
Guanine-rich DNA sequences can fold into four-stranded, noncanonical secondary structures called G-quadruplexes (G4s). G4s were initially considered a structural curiosity, but recent evidence suggests their involvement in key genome functions such as transcription, replication, genome stability, and epigenetic regulation, together with numerous connections to cancer biology. Collectively, these advances have stimulated research probing G4 mechanisms and consequent opportunities for therapeutic intervention. Here, we provide a perspective on the structure and function of G4s with an emphasis on key molecules and methodological advances that enable the study of G4 structures in human cells. We also critically examine recent mechanistic insights into G4 biology and protein interaction partners and highlight opportunities for drug discovery.
Collapse
Affiliation(s)
- Jochen Spiegel
- Cancer Research UK, Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Santosh Adhikari
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Shankar Balasubramanian
- Cancer Research UK, Cambridge Institute, Li Ka Shing Centre, Cambridge CB2 0RE, UK
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK
| |
Collapse
|
39
|
Yan T, Zhao B, Wu Q, Wang W, Shi J, Li D, Stovall DB, Sui G. Characterization of G-quadruplex formation in the ARID1A promoter. Int J Biol Macromol 2020; 147:750-761. [PMID: 31982538 DOI: 10.1016/j.ijbiomac.2020.01.210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/22/2022]
Abstract
As a member of the SWI/SNF family, ARID1A plays an essential role in modulating chromatin structure and gene expression. The tumor suppressive function of ARID1A has been well-defined and its downregulation in cancers is attributed to genomic deletion, DNA methylation and microRNA-mediated inhibition. In this study, we demonstrated that the negative strand of a C-rich region in the upstream vicinity of the human ARID1A transcription start site could form G-quadruplexes. Synthesized oligonucleotides based on the sequence of this region exhibited molar ellipticity at specific wavelengths characteristic of G-quadruplex structures in circular dichroism analyses. The formation of G-quadruplexes by these oligonucleotides were also proved by native polyacrylamide gel electrophoresis, DNA synthesis block assays, immunofluorescent staining and dimethyl sulfate footprinting studies. In reporter assays, mutations of the G-quadruplex forming sequence reduced ARID1A promoter-mediated transcription. Transfection of the oligonucleotide with the full length of G-quadruplex motif region, but not its partial sequences or the mutants, could both promote endogenous ARID1A expression and reduce cell proliferation.
Collapse
Affiliation(s)
- Ting Yan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Bo Zhao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Qiong Wu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Wenmeng Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jinming Shi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Dangdang Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Daniel B Stovall
- College of Arts and Sciences, Winthrop University, Rock Hill, SC 29733, United States
| | - Guangchao Sui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
40
|
Chen JY, Lim DH, Fu XD. Mechanistic Dissection of RNA-Binding Proteins in Regulated Gene Expression at Chromatin Levels. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:55-66. [PMID: 31900328 PMCID: PMC7332398 DOI: 10.1101/sqb.2019.84.039222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Eukaryotic genomes are known to prevalently transcribe diverse classes of RNAs, virtually all of which, including nascent RNAs from protein-coding genes, are now recognized to have regulatory functions in gene expression, suggesting that RNAs are both the products and the regulators of gene expression. Their functions must enlist specific RNA-binding proteins (RBPs) to execute their regulatory activities, and recent evidence suggests that nearly all biochemically defined chromatin regions in the human genome, whether defined for gene activation or silencing, have the involvement of specific RBPs. Interestingly, the boundary between RNA- and DNA-binding proteins is also melting, as many DNA-binding proteins traditionally studied in the context of transcription are able to bind RNAs, some of which may simultaneously bind both DNA and RNA to facilitate network interactions in three-dimensional (3D) genome. In this review, we focus on RBPs that function at chromatin levels, with particular emphasis on their mechanisms of action in regulated gene expression, which is intended to facilitate future functional and mechanistic dissection of chromatin-associated RBPs.
Collapse
Affiliation(s)
- Jia-Yu Chen
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Do-Hwan Lim
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
41
|
David AP, Pipier A, Pascutti F, Binolfi A, Weiner AMJ, Challier E, Heckel S, Calsou P, Gomez D, Calcaterra NB, Armas P. CNBP controls transcription by unfolding DNA G-quadruplex structures. Nucleic Acids Res 2019; 47:7901-7913. [PMID: 31219592 PMCID: PMC6735679 DOI: 10.1093/nar/gkz527] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/19/2019] [Accepted: 06/17/2019] [Indexed: 01/17/2023] Open
Abstract
Guanine-rich DNA strands can fold into non-canonical four-stranded secondary structures named G-quadruplexes (G4). Experimental evidences suggest that G4-DNA surrounding transcription start sites act as cis-regulatory elements by either stimulating or inhibiting gene transcription. Therefore, proteins able to target and regulate specific G4 formation/unfolding are crucial for G4-mediated transcriptional control. Here we present data revealing that CNBP acts in vitro as a G4-unfolding protein over a tetramolecular G4 formed by the TG4T oligonucleotide, as well as over the G4 folded in the promoters of several oncogenes. CNBP depletion in cellulo led to a reduction in the transcription of endogenous KRAS, suggesting a regulatory role of CNBP in relieving the transcriptional abrogation due to G4 formation. CNBP activity was also assayed over the evolutionary conserved G4 enhancing the transcription of NOGGIN (NOG) developmental gene. CNBP unfolded in vitro NOG G4 and experiments performed in cellulo and in vivo in developing zebrafish showed a repressive role of CNBP on the transcription of this gene by G4 unwinding. Our results shed light on the mechanisms underlying CNBP way of action, as well as reinforce the notion about the existence and function of G4s in whole living organisms.
Collapse
Affiliation(s)
- Aldana P David
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Angélique Pipier
- Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS-Université de Toulouse, Equipe Labellisée Ligue Nationale contre le Cancer 2018, 31077, Toulouse, France
| | - Federico Pascutti
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Andrés Binolfi
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Andrea M J Weiner
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Emilse Challier
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Sofía Heckel
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS-Université de Toulouse, Equipe Labellisée Ligue Nationale contre le Cancer 2018, 31077, Toulouse, France
| | - Dennis Gomez
- Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS-Université de Toulouse, Equipe Labellisée Ligue Nationale contre le Cancer 2018, 31077, Toulouse, France
| | - Nora B Calcaterra
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| | - Pablo Armas
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, S2000EZP, Rosario, Argentina
| |
Collapse
|
42
|
Niu K, Xiang L, Jin Y, Peng Y, Wu F, Tang W, Zhang X, Deng H, Xiang H, Li S, Wang J, Song Q, Feng Q. Identification of LARK as a novel and conserved G-quadruplex binding protein in invertebrates and vertebrates. Nucleic Acids Res 2019; 47:7306-7320. [PMID: 31165881 PMCID: PMC6698653 DOI: 10.1093/nar/gkz484] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 12/30/2022] Open
Abstract
Double-stranded DNAs are usually present in the form of linear B-form double-helix with the base pairs of adenine (A) and thymine (T) or cytosine (C) and guanine (G), but G-rich DNA can form four-stranded G-quadruplex (G4) structures, which plays important roles in transcription, replication, translation and protection of telomeres. In this study, a RNA recognition motif (RRM)-containing protein, BmLARK, was identified and demonstrated to bind G4 structures in the promoters of a transcription factor BmPOUM2 and other three unidentified genes of Bombyx mori, as well as three well-defined G4 structures in the human genes. Homologous LARKs from Bombyx mori, Drosophila melanogaster, Mus musculus and Homo sapiens bound G4 structures in BmPOUM2 and other genes in B. mori and H. sapiens. Upon binding, LARK facilitated the formation and stability of the G4 structure, enhancing the transcription of target genes. The G4 structure was visualized in vivo in cells and testis from invertebrate B. mori and vertebrate Chinese hamster ovary (CHO) cells. The results of this study strongly suggest that LARK is a novel and conserved G4-binding protein and that the G4 structure may have developed into an elaborate epigenetic mechanism of gene transcription regulation during evolution.
Collapse
Affiliation(s)
- Kangkang Niu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lijun Xiang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ying Jin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yuling Peng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Feng Wu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wenhuan Tang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaojuan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Huimin Deng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hui Xiang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
43
|
Mukherjee AK, Sharma S, Bagri S, Kutum R, Kumar P, Hussain A, Singh P, Saha D, Kar A, Dash D, Chowdhury S. Telomere repeat-binding factor 2 binds extensively to extra-telomeric G-quadruplexes and regulates the epigenetic status of several gene promoters. J Biol Chem 2019; 294:17709-17722. [PMID: 31575660 PMCID: PMC6879327 DOI: 10.1074/jbc.ra119.008687] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/18/2019] [Indexed: 12/22/2022] Open
Abstract
The role of the telomere repeat-binding factor 2 (TRF2) in telomere maintenance is well-established. However, recent findings suggest that TRF2 also functions outside telomeres, but relatively little is known about this function. Herein, using genome-wide ChIP-Seq assays of TRF2-bound chromatin from HT1080 fibrosarcoma cells, we identified thousands of TRF2-binding sites within the extra-telomeric genome. In light of this observation, we asked how TRF2 occupancy is organized within the genome. Interestingly, we found that extra-telomeric TRF2 sites throughout the genome are enriched in potential G-quadruplex-forming DNA sequences. Furthermore, we validated TRF2 occupancy at several promoter G-quadruplex motifs, which did adopt quadruplex forms in solution. TRF2 binding altered expression and the epigenetic state of several target promoters, indicated by histone modifications resulting in transcriptional repression of eight of nine genes investigated here. Furthermore, TRF2 occupancy and target gene expression were also sensitive to the well-known intracellular G-quadruplex-binding ligand 360A. Together, these results reveal an extensive genome-wide association of TRF2 outside telomeres and that it regulates gene expression in a G-quadruplex-dependent fashion.
Collapse
Affiliation(s)
- Ananda Kishore Mukherjee
- Integrative and Functional Biology Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| | - Shalu Sharma
- Integrative and Functional Biology Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| | - Sulochana Bagri
- Integrative and Functional Biology Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| | - Rintu Kutum
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.,G.N.R. Knowledge Centre for Genome Informatics, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.,CSIR Ayurgenomics Unit-TRISUTRA, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| | - Pankaj Kumar
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.,G.N.R. Knowledge Centre for Genome Informatics, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| | - Asgar Hussain
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.,G.N.R. Knowledge Centre for Genome Informatics, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| | - Prateek Singh
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.,G.N.R. Knowledge Centre for Genome Informatics, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| | - Dhurjhoti Saha
- Integrative and Functional Biology Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| | - Anirban Kar
- Integrative and Functional Biology Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| | - Debasis Dash
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.,G.N.R. Knowledge Centre for Genome Informatics, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.,CSIR Ayurgenomics Unit-TRISUTRA, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India .,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.,G.N.R. Knowledge Centre for Genome Informatics, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| |
Collapse
|
44
|
Cogoi S, Ferino A, Miglietta G, Pedersen EB, Xodo LE. The regulatory G4 motif of the Kirsten ras (KRAS) gene is sensitive to guanine oxidation: implications on transcription. Nucleic Acids Res 2019; 46:661-676. [PMID: 29165690 PMCID: PMC5778462 DOI: 10.1093/nar/gkx1142] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/31/2017] [Indexed: 01/10/2023] Open
Abstract
KRAS is one of the most mutated genes in human cancer. It is controlled by a G4 motif located upstream of the transcription start site. In this paper, we demonstrate that 8-oxoguanine (8-oxoG), being more abundant in G4 than in non-G4 regions, is a new player in the regulation of this oncogene. We designed oligonucleotides mimicking the KRAS G4-motif and found that 8-oxoG impacts folding and stability of the G-quadruplex. Dimethylsulphate-footprinting showed that the G-run carrying 8-oxoG is excluded from the G-tetrads and replaced by a redundant G-run in the KRAS G4-motif. Chromatin immunoprecipitation revealed that the base-excision repair protein OGG1 is recruited to the KRAS promoter when the level of 8-oxoG in the G4 region is raised by H2O2. Polyacrylamide gel electrophoresis evidenced that OGG1 removes 8-oxoG from the G4-motif in duplex, but when folded it binds to the G-quadruplex in a non-productive way. We also found that 8-oxoG enhances the recruitment to the KRAS promoter of MAZ and hnRNP A1, two nuclear factors essential for transcription. All this suggests that 8-oxoG in the promoter G4 region could have an epigenetic potential for the control of gene expression.
Collapse
Affiliation(s)
- Susanna Cogoi
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Annalisa Ferino
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | | | - Erik B Pedersen
- Nucleic Acid Center, Institute of Physics and Chemistry, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Luigi E Xodo
- Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
45
|
HnRNPA1 interacts with G-quadruplex in the TRA2B promoter and stimulates its transcription in human colon cancer cells. Sci Rep 2019; 9:10276. [PMID: 31311954 PMCID: PMC6635519 DOI: 10.1038/s41598-019-46659-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
The human TRA2B gene consists of 10 exons and 9 introns and produces 5 splice isoforms (TRA2β1 to TRA2β5). TRA2B exon 2 encodes multiple premature termination codons. TRA2β1 lacks exon 2 and is translated into a functional transformer 2β (Tra2β) protein, whereas TRA2β4 contains 10 exons and works as a functional RNA. Overexpressed Tra2β and ectopic expression of TRA2β4 may be oncogenic. We found that heterogeneous nuclear ribonucleoprotein (hnRNP)A1 and hnRNPU interacted with TRA2β4 exon 2. Minigene assays revealed that hnRNPA1 facilitated inclusion of exon 2, whereas hnRNPU promoted its skipping. However, knockdown of hnRNPA1 or hnRNPU reduced both TRA2β1 and TRA2β4 levels, and overexpression of these hnRNPs increased levels of both isoforms, suggesting that hnRNPA1 and hnRNPU mainly regulate the transcription of TRA2B. In fact, hnRNPA1 and hnRNPU positively regulated the promoter activity of TRA2B. Circular dichroism analyses, electrophoretic mobility shift assays and chromatin immunoprecipitation assays demonstrated the presence of G-quadruplex (G4) formation in the promoter of TRA2B. Formation of G4 suppressed TRA2B transcription, whereas hnRNPA1, but not hnRNPU, interacted with the G4 to facilitate transcription. Our results suggest that hnRNPA1 may modulate TRA2B transcription through its regulation of G4 formation in its promoter in colon cancer cells.
Collapse
|
46
|
Levengood JD, Tolbert BS. Idiosyncrasies of hnRNP A1-RNA recognition: Can binding mode influence function. Semin Cell Dev Biol 2019; 86:150-161. [PMID: 29625167 PMCID: PMC6177329 DOI: 10.1016/j.semcdb.2018.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022]
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family of RNA binding proteins that function in most stages of RNA metabolism. The prototypical member, hnRNP A1, is composed of three major domains; tandem N-terminal RNA Recognition Motifs (RRMs) and a C-terminal mostly intrinsically disordered region. HnRNP A1 is broadly implicated in basic cellular RNA processing events such as splicing, stability, nuclear export and translation. Due to its ubiquity and abundance, hnRNP A1 is also frequently usurped to control viral gene expression. Deregulation of the RNA metabolism functions of hnRNP A1 in neuronal cells contributes to several neurodegenerative disorders. Because of these roles in human pathologies, the study of hnRNP A1 provides opportunities for the development of novel therapeutics, with disruption of its RNA binding capabilities being the most promising target. The functional diversity of hnRNP A1 is reflected in the complex nature by which it interacts with various RNA targets. Indeed, hnRNP A1 binds both structured and unstructured RNAs with binding affinities that span several magnitudes. Available structures of hnRNP A1-RNA complexes also suggest a degree of plasticity in molecular recognition. Given the reinvigoration in hnRNP A1, the goal of this review is to use the available structural biochemical developments as a framework to interpret its wide-range of RNA functions.
Collapse
Affiliation(s)
- Jeffrey D Levengood
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, United States
| | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
47
|
Non-duplex G-Quadruplex Structures Emerge as Mediators of Epigenetic Modifications. Trends Genet 2018; 35:129-144. [PMID: 30527765 DOI: 10.1016/j.tig.2018.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/10/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022]
Abstract
The role of non-duplex DNA, the guanine-quadruplex structure in particular, is becoming widely appreciated. Increasing evidence in the last decade implicates quadruplexes in important processes such as transcription and replication. Interestingly, more recent work suggests roles for quadruplexes, in association with quadruplex-interacting proteins, in epigenetics through both DNA and histone modifications. Here, we review the effect of the quadruplex structure on post-replication epigenetic memory and quadruplex-induced promoter DNA/histone modifications. Furthermore, we highlight the epigenetic state of the telomerase promoter where quadruplexes could play a key regulatory role. Finally, we discuss the possibility that DNA structures such as quadruplexes, within a largely duplex DNA background, could act as molecular anchors for locally induced epigenetic modifications.
Collapse
|
48
|
Fakouri NB, Hou Y, Demarest TG, Christiansen LS, Okur MN, Mohanty JG, Croteau DL, Bohr VA. Toward understanding genomic instability, mitochondrial dysfunction and aging. FEBS J 2018; 286:1058-1073. [PMID: 30238623 DOI: 10.1111/febs.14663] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/14/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
The biology of aging is an area of intense research, and many questions remain about how and why cell and organismal functions decline over time. In mammalian cells, genomic instability and mitochondrial dysfunction are thought to be among the primary drivers of cellular aging. This review focuses on the interrelationship between genomic instability and mitochondrial dysfunction in mammalian cells and its relevance to age-related functional decline at the molecular and cellular level. The importance of oxidative stress and key DNA damage response pathways in cellular aging is discussed, with a special focus on poly (ADP-ribose) polymerase 1, whose persistent activation depletes cellular energy reserves, leading to mitochondrial dysfunction, loss of energy homeostasis, and altered cellular metabolism. Elucidation of the relationship between genomic instability, mitochondrial dysfunction, and the signaling pathways that connect these pathways/processes are keys to the future of research on human aging. An important component of mitochondrial health preservation is mitophagy, and this and other areas that are particularly ripe for future investigation will be discussed.
Collapse
Affiliation(s)
- Nima B Fakouri
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yujun Hou
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Tyler G Demarest
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Louise S Christiansen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Mustafa N Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Joy G Mohanty
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
49
|
Identification and characterization of G-quadruplex formation within the EP0 promoter of pseudorabies virus. Sci Rep 2018; 8:14029. [PMID: 30232344 PMCID: PMC6145870 DOI: 10.1038/s41598-018-32222-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
EP0 is an important early gene that modulates the life cycle of pseudorabies virus (PRV). A guanine-rich sequence overlapping with three Sp1 binding sites is located upstream of the transcription start site (TSS) in the EP0 promoter. Using native polyacrylamide gel electrophoresis (PAGE) and circular dichroism (CD), we verified that the G-rich region in the EP0 promoter forms an intramolecular parallel G-quadruplex (G4) in the presence of K+ ions. Further dimethyl sulphate (DMS) footprinting and Taq polymerase stop assays indicates the potential polymorphic folding of G4. In addition, a small chemical ligand, pyridostatin (PDS), promotes and stabilizes the formation of G4. Interestingly, based on the results of electrophoretic mobility shift assays (EMSA), the Sp1 protein bound to G4-bearing DNA with more affinity than DNA lacking the G4 structure. According to the luciferase reporter assay, G4 negatively regulates the EP0 promoter activity. These results demonstrate that Sp1 and G4 cooperate to regulate EP0 promoter activity.
Collapse
|
50
|
Huang MC, Chu IT, Wang ZF, Lin S, Chang TC, Chen CT. A G-Quadruplex Structure in the Promoter Region of CLIC4 Functions as a Regulatory Element for Gene Expression. Int J Mol Sci 2018; 19:ijms19092678. [PMID: 30201851 PMCID: PMC6165315 DOI: 10.3390/ijms19092678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/25/2022] Open
Abstract
The differential transcriptional expression of CLIC4 between tumor cells and the surrounding stroma during cancer progression has been suggested to have a tumor-promoting effect. However, little is known about the transcriptional regulation of CLIC4. To better understand how this gene is regulated, the promoter region of CLIC4 was analyzed. We found that a high GC content near the transcriptional start site (TSS) might form an alternative G-quadruplex (G4) structure. Nuclear magnetic resonance spectroscopy (NMR) confirmed their formation in vitro. The reporter assay showed that one of the G4 structures exerted a regulatory role in gene transcription. When the G4-forming sequence was mutated to disrupt the G4 structure, the transcription activity dropped. To examine whether this G4 structure actually has an influence on gene transcription in the chromosome, we utilized the CRISPR/Cas9 system to edit the G4-forming sequence within the CLIC4 promoter in the cell genome. The pop-in/pop-out strategy was adopted to isolate the precisely-edited A375 cell clone. In CRISPR-modified A375 cell clones whose G4 was disrupted, there was a decrease in the endogenous CLIC4 messenger RNA (mRNA) expression level. In conclusion, we found that the G4 structure in the CLIC4 promoter might play an important role in regulating the level of transcription.
Collapse
Affiliation(s)
- Mu-Ching Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - I-Te Chu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Zi-Fu Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Steven Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Ta-Chau Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Chin-Tin Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|