1
|
De March M. Crystal structure of the 3'→5' exonuclease from Methanocaldococcus jannaschii. Biochem Biophys Res Commun 2024; 712-713:149893. [PMID: 38657529 DOI: 10.1016/j.bbrc.2024.149893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
RecJ exonucleases are members of the DHH phosphodiesterase family ancestors of eukaryotic Cdc45, the key component of the CMG (Cdc45-MCM-GINS) complex at the replication fork. They are involved in DNA replication and repair, RNA maturation and Okazaki fragment degradation. Bacterial RecJs resect 5'-end ssDNA. Conversely, archaeal RecJs are more versatile being able to hydrolyse in both directions and acting on ssDNA as well as on RNA. In Methanocaldococcus jannaschii two RecJs were previously characterized: RecJ1 is a 5'→3' DNA exonuclease, MjaRecJ2 works only on 3'-end DNA/RNA with a preference for RNA. Here, I present the crystal structure of MjaRecJ2, solved at a resolution of 2.8 Å, compare it with the other RecJ structures, in particular the 5'→3' TkoGAN and the bidirectional PfuRecJ, and discuss its characteristics in light of the more recent knowledge on RecJs. This work adds new structural data that might improve the knowledge of these class of proteins.
Collapse
Affiliation(s)
- Matteo De March
- Structural Biology Laboratory, Elettra Sincrotrone Trieste S.c.p.A., 34149, Trieste, Italy; Department of Environmental and Biological Sciences, University of Nova Gorica, SI-5000, Nova Gorica, Slovenia.
| |
Collapse
|
2
|
Wang WW, Yi GS, Zhou H, Zhao YX, Wang QS, He JH, Yu F, Xiao X, Liu XP. The structure of the archaeal nuclease RecJ2 implicates its catalytic mechanism and inability to interact with GINS. J Biol Chem 2024; 300:107379. [PMID: 38762184 PMCID: PMC11193018 DOI: 10.1016/j.jbc.2024.107379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024] Open
Abstract
Bacterial RecJ exhibits 5'→3' exonuclease activity that is specific to ssDNA; however, archaeal RecJs show 5' or 3' exonuclease activity. The hyperthermophilic archaea Methanocaldococcus jannaschii encodes the 5'-exonuclease MjRecJ1 and the 3'-exonuclease MjRecJ2. In addition to nuclease activity, archaeal RecJ interacts with GINS, a structural subcomplex of the replicative DNA helicase complex. However, MjRecJ1 and MjRecJ2 do not interact with MjGINS. Here, we report the structural basis for the inability of the MjRecJ2 homologous dimer to interact with MjGINS and its efficient 3' hydrolysis polarity for short dinucleotides. Based on the crystal structure of MjRecJ2, we propose that the interaction surface of the MjRecJ2 dimer overlaps the potential interaction surface for MjGINS and blocks the formation of the MjRecJ2-GINS complex. Exposing the interaction surface of the MjRecJ2 dimer restores its interaction with MjGINS. The cocrystal structures of MjRecJ2 with substrate dideoxynucleotides or product dCMP/CMP show that MjRecJ2 has a short substrate binding patch, which is perpendicular to the longer patch of bacterial RecJ. Our results provide new insights into the function and diversification of archaeal RecJ/Cdc45 proteins.
Collapse
Affiliation(s)
- Wei-Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Gang-Shun Yi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Xuan Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Sanya, China
| | - Qi-Sheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Hua He
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China; The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Sanya, China; Joint International Research Laboratory of Metabolic & Developmental Sciences (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Xi-Peng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Sanya, China; Joint International Research Laboratory of Metabolic & Developmental Sciences (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Gu X. A Simple Evolutionary Model of Genetic Robustness After Gene Duplication. J Mol Evol 2022; 90:352-361. [PMID: 35913597 DOI: 10.1007/s00239-022-10065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/23/2022] [Indexed: 10/16/2022]
Abstract
When a dispensable gene is duplicated (referred to the ancestral dispensability denoted by O+), genetic buffering and duplicate compensation together maintain the duplicate redundancy, whereas duplicate compensation is the only mechanism when an essential gene is duplicated (referred to the ancestral essentiality denoted by O-). To investigate these evolutionary scenarios of genetic robustness, I formulated a simple mixture model for analyzing duplicate pairs with one of the following states: double dispensable (DD), semi-dispensable (one dispensable one essential, DE), or double essential (EE). This model was applied to the yeast duplicate pairs from a whole-genome duplication (WGD) occurred about 100 million years ago (mya), and the mouse duplicate pairs from a WGD occurred about more than 500 mya. Both case studies revealed that the proportion of essentiality for those duplicates with ancestral essentiality [PE(O-)] was much higher than that for those with ancestral dispensability [PE(O+)]. While it was negligible in the yeast duplicate pairs, PE(O+) (about 20%) was shown statistically significant in the mouse duplicate pairs. These findings, together, support the hypothesis that both sub-functionalization and neo-functionalization may play some roles after gene duplication, though the former may be much faster than the later.
Collapse
Affiliation(s)
- Xun Gu
- The Laurence H. Baker Center in Bioinformatics on Biological Statistics, Department of Genetics, Development and Cell Biology, Program of Ecological and Evolutionary Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
4
|
Sefer E. A comparison of topologically associating domain callers over mammals at high resolution. BMC Bioinformatics 2022; 23:127. [PMID: 35413815 PMCID: PMC9006547 DOI: 10.1186/s12859-022-04674-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Topologically associating domains (TADs) are locally highly-interacting genome regions, which also play a critical role in regulating gene expression in the cell. TADs have been first identified while investigating the 3D genome structure over High-throughput Chromosome Conformation Capture (Hi-C) interaction dataset. Substantial degree of efforts have been devoted to develop techniques for inferring TADs from Hi-C interaction dataset. Many TAD-calling methods have been developed which differ in their criteria and assumptions in TAD inference. Correspondingly, TADs inferred via these callers vary in terms of both similarities and biological features they are enriched in. RESULT We have carried out a systematic comparison of 27 TAD-calling methods over mammals. We use Micro-C, a recent high-resolution variant of Hi-C, to compare TADs at a very high resolution, and classify the methods into 3 categories: feature-based methods, Clustering methods, Graph-partitioning methods. We have evaluated TAD boundaries, gaps between adjacent TADs, and quality of TADs across various criteria. We also found particularly CTCF and Cohesin proteins to be effective in formation of TADs with corner dots. We have also assessed the callers performance on simulated datasets since a gold standard for TADs is missing. TAD sizes and numbers change remarkably between TAD callers and dataset resolutions, indicating that TADs are hierarchically-organized domains, instead of disjoint regions. A core subset of feature-based TAD callers regularly perform the best while inferring reproducible domains, which are also enriched for TAD related biological properties. CONCLUSION We have analyzed the fundamental principles of TAD-calling methods, and identified the existing situation in TAD inference across high resolution Micro-C interaction datasets over mammals. We come up with a systematic, comprehensive, and concise framework to evaluate the TAD-calling methods performance across Micro-C datasets. Our research will be useful in selecting appropriate methods for TAD inference and evaluation based on available data, experimental design, and biological question of interest. We also introduce our analysis as a benchmarking tool with publicly available source code.
Collapse
Affiliation(s)
- Emre Sefer
- Department of Computer Science, Ozyegin University, Istanbul, Turkey.
| |
Collapse
|
5
|
Zhang L, Lin T, Yin Y, Chen M. Biochemical and functional characterization of a thermostable RecJ exonuclease from Thermococcus gammatolerans. Int J Biol Macromol 2022; 204:617-626. [PMID: 35150781 DOI: 10.1016/j.ijbiomac.2022.02.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 01/18/2023]
Abstract
RecJ is ubiquitous in bacteria and Archaea, and play an important role in DNA replication and repair. Currently, our understanding on biochemical function of archaeal RecJ is incomplete due to the limited reports. The genome of the hyperthermophilic and radioresistant euryarchaeon Thermococcus gammatolerans encodes one putative RecJ protein (Tga-RecJ). Herein, we report biochemical characteristics and catalytic mechanism of Tga-RecJ. Tga-RecJ can degrade ssDNA in the 5'-3' direction at high temperature as observed in Thermococcus kodakarensis RecJ and Pyrococcus furiosus RecJ, the two closest homologs of the enzyme. In contrasted to P. furiosus RecJ, Tga-RecJ lacks 3'-5' ssRNA exonuclease activity. Furthermore, maximum activity of Tga-RecJ is observed at 50 °C ~ 70 °C and pH 7.0-9.0 with Mn2+, and the enzyme is the most thermostable among the reported RecJ proteins. Additionally, the rates for hydrolyzing ssDNA by Tga-RecJ were estimated by kinetic analyses at 50 °C ~ 70 °C, thus revealing its activation energy (10.5 ± 0.6 kcal/mol), which is the first report on energy barrier for ssDNA degradation by RecJ. Mutational studies showed that the mutations of residues D36, D83, D105, H106, H107 and D166 in Tga-RecJ to alanine almost completely abolish its activity, thereby suggesting that these residues are essential for catalysis.
Collapse
Affiliation(s)
- Likui Zhang
- Guangling College, Yangzhou University, China; College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China.
| | - Tan Lin
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Youcheng Yin
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Min Chen
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China.
| |
Collapse
|
6
|
Donati E, Vidossich P, De Vivo M. Molecular Mechanism of Phosphate Steering for DNA Binding, Cleavage Localization, and Substrate Release in Nucleases. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elisa Donati
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Pietro Vidossich
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
7
|
Oki K, Nagata M, Yamagami T, Numata T, Ishino S, Oyama T, Ishino Y. Family D DNA polymerase interacts with GINS to promote CMG-helicase in the archaeal replisome. Nucleic Acids Res 2021; 50:3601-3615. [PMID: 34568951 PMCID: PMC9023282 DOI: 10.1093/nar/gkab799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/29/2021] [Accepted: 09/06/2021] [Indexed: 11/12/2022] Open
Abstract
Genomic DNA replication requires replisome assembly. We show here the molecular mechanism by which CMG (GAN-MCM-GINS)-like helicase cooperates with the family D DNA polymerase (PolD) in Thermococcus kodakarensis. The archaeal GINS contains two Gins51 subunits, the C-terminal domain of which (Gins51C) interacts with GAN. We discovered that Gins51C also interacts with the N-terminal domain of PolD's DP1 subunit (DP1N) to connect two PolDs in GINS. The two replicases in the replisome should be responsible for leading- and lagging-strand synthesis, respectively. Crystal structure analysis of the DP1N-Gins51C-GAN ternary complex was provided to understand the structural basis of the connection between the helicase and DNA polymerase. Site-directed mutagenesis analysis supported the interaction mode obtained from the crystal structure. Furthermore, the assembly of helicase and replicase identified in this study is also conserved in Eukarya. PolD enhances the parental strand unwinding via stimulation of ATPase activity of the CMG-complex. This is the first evidence of the functional connection between replicase and helicase in Archaea. These results suggest that the direct interaction of PolD with CMG-helicase is critical for synchronizing strand unwinding and nascent strand synthesis and possibly provide a functional machinery for the effective progression of the replication fork.
Collapse
Affiliation(s)
- Keisuke Oki
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Mariko Nagata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Takeshi Yamagami
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Tomoyuki Numata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Takuji Oyama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Transcriptomic Analysis of Peripheral Monocytes upon Fingolimod Treatment in Relapsing Remitting Multiple Sclerosis Patients. Mol Neurobiol 2021; 58:4816-4827. [PMID: 34181235 DOI: 10.1007/s12035-021-02465-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/20/2021] [Indexed: 12/14/2022]
Abstract
Fingolimod (FTY), a second-line oral drug approved for relapsing remitting Multiple Sclerosis (RRMS) acts in preventing lymphocyte migration outside lymph nodes; moreover, several lines of evidence suggest that it also inhibits myeloid cell activation. In this study, we investigated the transcriptional changes induced by FTY in monocytes in order to better elucidate its mechanism of action. CD14+ monocytes were collected from 24 RRMS patients sampled at baseline and after 6 months of treatment and RNA profiles were obtained through next-generation sequencing. We conducted pathway and sub-paths analysis, followed by centrality analysis of cell-specific interactomes on differentially expressed genes (DEGs). We investigated also the predictive role of baseline monocyte transcription profile in influencing the response to FTY therapy. We observed a marked down-regulation effect (60 down-regulated vs. 0 up-regulated genes). Most of the down-regulated DEGs resulted related with monocyte activation and migration like IL7R, CCR7 and the Wnt signaling mediators LEF1 and TCF7. The involvement of Wnt signaling was also confirmed by subpaths analyses. Furthermore, pathway and network analyses showed an involvement of processes related to immune function and cell migration. Baseline transcriptional profile of the HLA class II gene HLA-DQA1 and HLA-DPA1 were associated with evidence of disease activity after 2 years of treatment. Our data support the evidence that FTY induces major transcriptional changes in monocytes, mainly regarding genes involved in cell trafficking and immune cell activation. The baseline transcriptional levels of genes associated with antigen presenting function were associated with disease activity after 2 years of FTY treatment.
Collapse
|
9
|
Pérez-Arnaiz P, Dattani A, Smith V, Allers T. Haloferax volcanii-a model archaeon for studying DNA replication and repair. Open Biol 2020; 10:200293. [PMID: 33259746 PMCID: PMC7776575 DOI: 10.1098/rsob.200293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The tree of life shows the relationship between all organisms based on their common ancestry. Until 1977, it comprised two major branches: prokaryotes and eukaryotes. Work by Carl Woese and other microbiologists led to the recategorization of prokaryotes and the proposal of three primary domains: Eukarya, Bacteria and Archaea. Microbiological, genetic and biochemical techniques were then needed to study the third domain of life. Haloferax volcanii, a halophilic species belonging to the phylum Euryarchaeota, has provided many useful tools to study Archaea, including easy culturing methods, genetic manipulation and phenotypic screening. This review will focus on DNA replication and DNA repair pathways in H. volcanii, how this work has advanced our knowledge of archaeal cellular biology, and how it may deepen our understanding of bacterial and eukaryotic processes.
Collapse
Affiliation(s)
| | | | | | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
10
|
Abstract
It is now well recognized that the information processing machineries of archaea are far more closely related to those of eukaryotes than to those of their prokaryotic cousins, the bacteria. Extensive studies have been performed on the structure and function of the archaeal DNA replication origins, the proteins that define them, and the macromolecular assemblies that drive DNA unwinding and nascent strand synthesis. The results from various archaeal organisms across the archaeal domain of life show surprising levels of diversity at many levels-ranging from cell cycle organization to chromosome ploidy to replication mode and nature of the replicative polymerases. In the following, we describe recent advances in the field, highlighting conserved features and lineage-specific innovations.
Collapse
Affiliation(s)
- Mark D Greci
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
| | - Stephen D Bell
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA; .,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
11
|
The archaeal RecJ-like proteins: nucleases and ex-nucleases with diverse roles in replication and repair. Emerg Top Life Sci 2018; 2:493-501. [PMID: 33525824 DOI: 10.1042/etls20180017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 11/17/2022]
Abstract
RecJ proteins belong to the DHH superfamily of phosphoesterases that has members in all three domains of life. In bacteria, the archetypal RecJ is a 5' → 3' ssDNA exonuclease that functions in homologous recombination, base excision repair and mismatch repair, while in eukaryotes, the RecJ-like protein Cdc45 (which has lost its nuclease activity) is a key component of the CMG (Cdc45-MCM-GINS) complex, the replicative DNA helicase that unwinds double-stranded DNA at the replication fork. In archaea, database searching identifies genes encoding one or more RecJ family proteins in almost all sequenced genomes. Biochemical analysis has confirmed that some but not all of these proteins are components of archaeal CMG complexes and has revealed a surprising diversity in mode of action and substrate preference. In addition to this, some archaea encode catalytically inactive RecJ-like proteins, and others a mix of active and inactive proteins, with the inactive proteins being confined to structural roles only. Here, I summarise current knowledge of the structure and function of the archaeal RecJ-like proteins, focusing on similarities and differences between proteins from different archaeal species, between proteins within species and between the archaeal proteins and their bacterial and eukaryotic relatives. Models for RecJ-like function are described and key areas for further study highlighted.
Collapse
|
12
|
Deng YJ, Feng L, Zhou H, Xiao X, Wang FP, Liu XP. NanoRNase from Aeropyrum pernix shows nuclease activity on ssDNA and ssRNA. DNA Repair (Amst) 2018; 65:54-63. [PMID: 29609115 DOI: 10.1016/j.dnarep.2018.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/07/2018] [Accepted: 03/23/2018] [Indexed: 01/09/2023]
Abstract
In cells, degrading DNA and RNA by various nucleases is very important. These processes are strictly controlled and regulated to maintain DNA integrity and to mature or recycle various RNAs. NanoRNase (Nrn) is a 3'-exonuclease that specifically degrades nanoRNAs shorter than 5 nucleotides. Several Nrns have been identified and characterized in bacteria, mainly in Firmicutes. Archaea often grow in extreme environments and might be subjected to more damage to DNA/RNA, so DNA repair and recycling of damaged RNA are very important in archaea. There is no report on the identification and characterization of Nrn in archaea. Aeropyrum pernix encodes three potential Nrns: NrnA (Ape1437), NrnB (Ape0124), and an Nrn-like protein Ape2190. Biochemical characterization showed that only Ape0124 could degrade ssDNA and ssRNA from the 3'-end in the presence of Mn2+. Interestingly, unlike bacterial Nrns, Ape0124 prefers ssDNA, including short nanoDNA, and degrades nanoRNA with lower efficiency. The 3'-DNA backbone was found to be required for efficiently hydrolyzing the phosphodiester bonds. In addition, Ape0124 also degrads the 3'-overhang of double-stranded DNA. Interestingly, Ape0124 could hydrolyze pAp into AMP, which is a feature of bacterial NrnA, not NrnB. Our results indicate that Ape0124 is a novel Nrn with a combined substrate profile of bacterial NrnA and NrnB.
Collapse
Affiliation(s)
- Yong-Jie Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Lei Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Huan Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 239 Zhangheng Road, Shanghai 201204, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China; State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Feng-Ping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China; State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Xi-Peng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China; State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| |
Collapse
|