1
|
Motorina DM, Galimova YA, Battulina NV, Omelina ES. Systems for Targeted Silencing of Gene Expression and Their Application in Plants and Animals. Int J Mol Sci 2024; 25:5231. [PMID: 38791270 PMCID: PMC11121118 DOI: 10.3390/ijms25105231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
At present, there are a variety of different approaches to the targeted regulation of gene expression. However, most approaches are devoted to the activation of gene transcription, and the methods for gene silencing are much fewer in number. In this review, we describe the main systems used for the targeted suppression of gene expression (including RNA interference (RNAi), chimeric transcription factors, chimeric zinc finger proteins, transcription activator-like effectors (TALEs)-based repressors, optogenetic tools, and CRISPR/Cas-based repressors) and their application in eukaryotes-plants and animals. We consider the advantages and disadvantages of each approach, compare their effectiveness, and discuss the peculiarities of their usage in plant and animal organisms. This review will be useful for researchers in the field of gene transcription suppression and will allow them to choose the optimal method for suppressing the expression of the gene of interest depending on the research object.
Collapse
Affiliation(s)
| | | | | | - Evgeniya S. Omelina
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Yin HC, Chen XY, Wang W, Meng QW. Identification and comparison of the porcine H1, U6, and 7SK RNA polymerase III promoters for short hairpin RNA expression. Mamm Genome 2020; 31:110-116. [PMID: 32318815 DOI: 10.1007/s00335-020-09838-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
RNA polymerase III is an essential enzyme in eukaryotes for synthesis of tRNA, 5S rRNA, and other small nuclear and cytoplasmic RNAs. Thus, RNA polymerase III promoters are often used in small hairpin RNA (shRNA) expression. In this study, the porcine H1, U6, and 7SK RNA polymerase III type promoters were cloned into a pcDNA3.1( +) expression vector containing a shRNA sequence targeting enhanced green fluorescent protein (EGFP). PK and DF-1 cells were cotransfected with the construction of recombinant interference expression vector and the EGFP expression vector, pEGFP-N1. The average fluorescence intensity of EGFP in transfected cells was measured by fluorescence microscopy and flow cytometry. Real-time PCR was used to detect expressed shRNAs and the relative expression of EGFP, to confirm the activity of the promoters. The results showed that the activity of porcine 7SK promoter is stronger than the U6 promoter, which is in turn stronger than porcine H1. While the high levels of expression of the U6 and 7SK promoters saturate the shRNAs level in the host cell, which can cause cytotoxicity and tissue damage. Therefore, porcine H1 promoter is effective for expression of shRNA, and may be an excellent tool to knockdown gene expression in pigs for functional genomics studies. The results also lay a foundation for the development of porcine RNAi technology and genetically modified porcine research.
Collapse
Affiliation(s)
- Hai-Chang Yin
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, 161006, Heilongjiang, People's Republic of China.,Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, 161006, Heilongjiang, People's Republic of China
| | - Xin-Yu Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Qing-Wen Meng
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China.
| |
Collapse
|
3
|
Qin Y, Tang T, Li W, Liu Z, Yang X, Shi X, Sun G, Liu X, Wang M, Liang X, Cong P, Mo D, Liu X, Chen Y, He Z. Bone Morphogenetic Protein 15 Knockdown Inhibits Porcine Ovarian Follicular Development and Ovulation. Front Cell Dev Biol 2019; 7:286. [PMID: 31803742 PMCID: PMC6877722 DOI: 10.3389/fcell.2019.00286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Bone morphogenetic protein 15 (BMP15) is strongly associated with animal reproduction and woman reproductive disease. As a multifunctional oocyte-specific secret factor, BMP15 controls female fertility and follicular development in both species-specific and dosage-sensitive manners. Previous studies found that BMP15 played a critical role in follicular development and ovulation rate in mono-ovulatory mammalian species, especially in sheep and human, but study on knockout mouse model implied that BMP15 possibly has minimal impact on female fertility of poly-ovulatory species. However, this needs to be validated in other poly-ovulatory species. To investigate the regulatory role of BMP15 on porcine female fertility, we generated a BMP15-knockdown pig model through somatic nuclear transfer technology. The BMP15-knockdown gilts showed markedly reduced fertility accompanied by phenotype of dysplastic ovaries containing significantly declined number of follicles, increased number of abnormal follicles, and abnormally enlarged antral follicles resulting in disordered ovulation, which is remarkably different from the unchanged fertility observed in BMP15 knockout mice. Molecular and transcriptome analysis revealed that the knockdown of BMP15 significantly affected both granulosa cells (GCs) and oocytes development, including suppression of cell proliferation, differentiation, and follicle stimulating hormone receptor (Fshr) expression, leading to premature luteinization and reduced estradiol (E2) production in GCs, and simultaneously decreased quality and meiotic maturation of oocyte. Our results provide in vivo evidence of the essential role of BMP15 in porcine ovarian and follicular development, and new insight into the complicated regulatory function of BMP15 in female fertility of poly-ovulatory species.
Collapse
Affiliation(s)
- Yufeng Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiguo Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoliang Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuan Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guanjie Sun
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinyu Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Matthes S, Mosienko V, Popova E, Rivalan M, Bader M, Alenina N. Targeted Manipulation of Brain Serotonin: RNAi-Mediated Knockdown of Tryptophan Hydroxylase 2 in Rats. ACS Chem Neurosci 2019; 10:3207-3217. [PMID: 30977636 DOI: 10.1021/acschemneuro.8b00635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in the biosynthesis of the biogenic monoamine serotonin (5-hydroxytryptamine, 5-HT). Two existing TPH isoforms are responsible for the generation of two distinct serotonergic systems in vertebrates. TPH1, predominantly expressed in the gastrointestinal tract and pineal gland, mediates 5-HT biosynthesis in non-neuronal tissues, while TPH2, mainly found in the raphe nuclei of the brain stem, is accountable for the production of 5-HT in the brain. Neuronal 5-HT is a key regulator of mood and behavior and its deficiency has been implicated in a variety of neuropsychiatric disorders, e.g., depression and anxiety. To gain further insights into the complexity of central 5-HT modulations of physiological and pathophysiological processes, a new transgenic rat model, allowing an inducible gene knockdown of Tph2, was established based on doxycycline-inducible shRNA-expression. Biochemical phenotyping revealed a functional knockdown of Tph2 mRNA expression following oral doxycycline administration, with subsequent reductions in the corresponding levels of TPH2 enzyme expression and activity. Transgenic rats showed also significantly decreased tissue levels of 5-HT and its degradation product 5-Hydroxyindoleacetic acid (5-HIAA) in the raphe nuclei, hippocampus, hypothalamus, and cortex, while peripheral 5-HT concentrations in the blood remained unchanged. In summary, this novel transgenic rat model allows inducible manipulation of 5-HT biosynthesis specifically in the brain and may help to elucidate the role of 5-HT in the pathophysiology of affective disorders.
Collapse
Affiliation(s)
- Susann Matthes
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
- Institute for Biology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Valentina Mosienko
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
- College of Medicine and Health, Institute of Biomedical and Clinical Sciences, University of Exeter, Hatherly Building, Prince of Wales Rd., EX4 4PS Exeter, United Kingdom
| | - Elena Popova
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
| | - Marion Rivalan
- Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
- Institute for Biology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 13316 Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany
| | - Natalia Alenina
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 13316 Berlin, Germany
- Institute of Translational Biomedicine, St. Petersburg State University, Saint Petersburg 199034, Russia
| |
Collapse
|
5
|
Abstract
Small-molecule and protein/antibody drugs mainly act on genome-derived proteins to exert pharmacological effects. RNA based therapies hold the promise to expand the range of druggable targets from proteins to RNAs and the genome, as evidenced by several RNA drugs approved for clinical practice and many others under active trials. While chemo-engineered RNA mimics have found their success in marketed drugs and continue dominating basic research and drug development, these molecules are usually conjugated with extensive and various modifications. This makes them completely different from cellular RNAs transcribed from the genome that usually consist of unmodified ribonucleotides or just contain a few posttranscriptional modifications. The use of synthetic RNA mimics for RNA research and drug development is also in contrast with the ultimate success of protein research and therapy utilizing biologic or recombinant proteins produced and folded in living cells instead of polypeptides or proteins synthesized in vitro. Indeed, efforts have been made recently to develop RNA bioengineering technologies for cost-effective and large-scale production of biologic RNA molecules that may better capture the structures, functions, and safety profiles of natural RNAs. In this article, we provide an overview on RNA therapeutics for the treatment of human diseases via RNA interference mechanisms. By illustrating the structural differences between natural RNAs and chemo-engineered RNA mimics, we focus on discussion of a novel class of bioengineered/biologic RNA agents produced through fermentation and their potential applications to RNA research and drug development.
Collapse
Affiliation(s)
- Ai-Ming Yu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| | - Chao Jian
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Allan H Yu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Mei-Juan Tu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
6
|
Chang HY, Chen SY, Wu CH, Lu CC, Yen GC. Glycyrrhizin Attenuates the Process of Epithelial-to-Mesenchymal Transition by Modulating HMGB1 Initiated Novel Signaling Pathway in Prostate Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3323-3332. [PMID: 30832473 DOI: 10.1021/acs.jafc.9b00251] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High mobility group box 1 (HMGB1) is upregulated in nearly every tumor type. Importantly, clinical evidence also proposed that HMGB1 is particularly increased in metastatic prostate cancer patients. Besides, a growing number of studies highlighted that HMGB1 could be a successful therapeutic target for prostate cancer patients. Glycyrrhizin is a novel pharmacological inhibitor of HMGB1 that may repress prostate cancer metastasis. This research was aimed to investigate the effect of glycyrrhizin on inhibition of HMGB1-induced epithelial-to-mesenchymal transition (EMT), a key step of tumor metastasis, in prostate cancer cells. In this study, HMGB1 knock-downed DU145 prostate cancer cells were used. Silencing the HMGB1 gene expression triggered a change of cell morphology to a more epithelial-like shape, which was accompanied by a reduction of Cdc42/GSK-3β/Snail and induction of E-cadherin levels estimated by immunoblotting. Furthermore, HMGB1 facilitated cell migration and invasion via downstream signaling, whereas HMGB1 targeting by 10 mM ethyl pyruvate effectively inhibited EMT characteristics. Interestingly, cell migration capacity induced by HMGB1 in DU145 cells was abolished in a dose-dependent effect of 25-200 μM glycyrrhizin treatment. In conclusion, glycyrrhizin successfully inhibited HMGB1-induced EMT phenomenon, which suggested that glycyrrhizin may serves as a therapeutic agent for metastatic prostate cancer.
Collapse
Affiliation(s)
| | | | - Chi-Hao Wu
- Department of Human Development and Family Studies , National Taiwan Normal University , 162, Section 1, Heping East Road , Taipei City 106 , Taiwan
| | - Chi-Cheng Lu
- Department of Sport Performance , National Taiwan University of Sport , 16, Sec. 1, Shuang-Shih Road , Taichung City 40404 , Taiwan
| | | |
Collapse
|
7
|
Park SK, Hwang BJ, Kee Y. Promoter cross-talk affects the inducible expression of intronic shRNAs from the tetracycline response element. Genes Genomics 2019; 41:483-490. [PMID: 30656518 DOI: 10.1007/s13258-019-00784-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND RNA interference (RNAi), defined as double-stranded, RNA-mediated gene silencing, is a useful tool for functional genomic studies. Along with increasing information about genomic sequences due to the innovative development of genome-sequencing technologies, functional genomic technologies are needed to annotate the genome and determine the processes by which each gene is regulated. Lentiviral vectors have been used to efficiently deliver reagents, such as small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs), into cells and tissues for functional genomic analyses. OBJECTIVE We developed a lentiviral vector that efficiently expresses intronic shRNA from the tetracycline regulatory element (TRE) promoter in a doxycycline-dependent manner. METHODS We developed a lentiviral vector system that contains reverse tetracycline-controlled transactivator 3 (rtTA3) and the TRE promoter, which are necessary for the doxycycline-inducible expression of shRNAs that are expressed as intronic miR-30a precursors. We then measured the cross-talk between the cytomegalovirus (CMV) and TRE promoters in the vector. RESULTS We found that nearby promoters influence each other and that the TRE promoter should be located far from other promoters, such as the CMV promoter, in a vector. The orientation of a promoter with respect to other promoters also influences its transcriptional activity. A head-to-head orientation of the CMV and TRE promoters maintains the lowest level of transcription from TRE in the absence of doxycycline, compared to the tail-to-tail and head-to-tail orientations. CONCLUSION Based on these findings, we were able to construct a lentiviral vector that faithfully expresses intronic miR-30a shRNA precursors in a doxycycline-inducible manner.
Collapse
Affiliation(s)
- Seong Kyun Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea
| | - Byung Joon Hwang
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea.
| |
Collapse
|
8
|
Abstract
Experimental animal tumor models have been broadly used to evaluate anticancer drugs in the preclinical setting. They have also been widely applied for drug target discovery and validation, which usually follows four experimental strategies: first, assess the roles of putative drug targets using in vivo tumorigenicity and tumor growth kinetics assays of transplanted tumors, engineered through gain-of-function (GOF) by overexpressing transgene or knock-in (KI) or loss-of-function by gene silencing using knockdown (KD) or knockout (KO) or mutation via mutagenesis procedures; second, similarly genetically engineered mouse models (GEMM), through either germline or somatic cell procedures, are used to test the roles of potential targets in spontaneous tumorigenicity assays; third, patient-derived xenografts (PDXs), which most closely resemble patient genetics and histopathology, are used in tumor inhibition assays for evaluating target-/pathway-specific inhibitors, including large and small molecules, thus assessing the drug target; and fourth, the targets can be assessed in population-based trials, mouse clinical trials (MCT), so that the validation can be generally meaningful as performed in human clinical trials. This chapter outlines the commonly used protocols in cancer drug target research: the first four sections describe four sets of different, specific pharmacology protocols used in the respective cancer modeling stages, with the last section summarizing the common protocols applicable to all four pharmacology modeling steps.
Collapse
|
9
|
Gemperle J, Dibus M, Koudelková L, Rosel D, Brábek J. The interaction of p130Cas with PKN3 promotes malignant growth. Mol Oncol 2018; 13:264-289. [PMID: 30422386 PMCID: PMC6360386 DOI: 10.1002/1878-0261.12401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/05/2018] [Accepted: 10/28/2018] [Indexed: 01/05/2023] Open
Abstract
Protein p130Cas constitutes an adaptor protein mainly involved in integrin signaling downstream of Src kinase. Owing to its modular structure, p130Cas acts as a general regulator of cancer cell growth and invasiveness induced by different oncogenes. However, other mechanisms of p130Cas signaling leading to malignant progression are poorly understood. Here, we show a novel interaction of p130Cas with Ser/Thr kinase PKN3, which is implicated in prostate and breast cancer growth downstream of phosphoinositide 3‐kinase. This direct interaction is mediated by the p130Cas SH3 domain and the centrally located PKN3 polyproline sequence. PKN3 is the first identified Ser/Thr kinase to bind and phosphorylate p130Cas and to colocalize with p130Cas in cell structures that have a pro‐invasive function. Moreover, the PKN3–p130Cas interaction is important for mouse embryonic fibroblast growth and invasiveness independent of Src transformation, indicating a mechanism distinct from that previously characterized for p130Cas. Together, our results suggest that the PKN3–p130Cas complex represents an attractive therapeutic target in late‐stage malignancies.
Collapse
Affiliation(s)
- Jakub Gemperle
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Michal Dibus
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Lenka Koudelková
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science - Biocev, Charles University, Prague 2, Czech Republic
| |
Collapse
|
10
|
Millán-Uclés Á, Zuluaga S, Marqués M, Vallejo-Díaz J, Sanz L, Cariaga-Martínez AE, Real FX, Carrera AC. E-cadherin downregulation sensitizes PTEN-mutant tumors to PI3Kβ silencing. Oncotarget 2016; 7:84054-84071. [PMID: 27863432 PMCID: PMC5356644 DOI: 10.18632/oncotarget.13414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 10/25/2016] [Indexed: 01/10/2023] Open
Abstract
Alterations in phosphatidylinositol 3-kinase (PI3K) and in PTEN (phosphatase and tensin homolog), the negative regulator of the PI3K pathway, are found in nearly half of human tumors. As PI3Kβ, the main isoform activated in PTEN-mutant tumors, has kinase-dependent and -independent activities, we compared the effects of depleting vs. drug-inhibiting PI3Kβ kinase activity in a collection of diverse tumor types and in a set of bladder carcinoma cell lines grown as xenografts in mice. PI3Kβ depletion (by intratumor injection of PIK3CB siRNA) induced apoptosis and triggered regression of PTEN-mutant tumors more efficiently than PI3Kβ inhibition. A small proportion of these tumors was resistant to PI3Kβ downregulation; we analyzed what determined resistance in these cases. Using add-back experiments, we show that both PTEN mutation and low E-cadherin expression are necessary for PI3Kβ dependence. In bladder carcinoma, loss of E-cadherin expression coincides with N-cadherin upregulation. We found that PI3Kβ associated with N-cadherin and that PIK3CB depletion selectively disrupted N-cadherin cell adhesions in PTEN-mutant bladder carcinoma. These results support the use of PIK3CB interfering RNA as a therapeutic approach for high-risk bladder cancers that show E-cadherin loss and express mutant PTEN.
Collapse
Affiliation(s)
- África Millán-Uclés
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Susana Zuluaga
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Miriam Marqués
- Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro 3, Madrid, Spain
| | - Jesus Vallejo-Díaz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Lorena Sanz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Ariel E Cariaga-Martínez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Francisco X Real
- Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro 3, Madrid, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ana C. Carrera
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| |
Collapse
|
11
|
Poly(lactic acid) for delivery of bioactive macromolecules. Adv Drug Deliv Rev 2016; 107:277-288. [PMID: 27349593 DOI: 10.1016/j.addr.2016.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/02/2016] [Accepted: 06/15/2016] [Indexed: 12/18/2022]
Abstract
Therapeutic biomolecules often require frequent administration and supramolecular dosing to achieve therapeutic efficiencies and direct infusion into treatment or defect sites results in inadequate physiological response and at times severe side effects or mis-targeting. Delivery systems serve several purposes such as increased circulatory time, increased biomolecule half-life, and incorporation of new innovations can enable highly specific cell targeting and improved cell and nucleus permeability. Poly(lactic acid) (PLA) has become a "material of choice" due to wide availability, reproducible synthetic route, customization, versatility, biodegradability and biocompatibility. Furthermore, PLA is amenable to a variety of fabrication methodologies and chemistries allowing an expansive library correlating physio-chemical properties, characteristics, and applications. This article discusses challenges to biomolecule delivery, and classical approaches of PLA based biomolecule delivery and targeting strategies under development and in trials.
Collapse
|
12
|
Bofill-De Ros X, Gu S. Guidelines for the optimal design of miRNA-based shRNAs. Methods 2016; 103:157-66. [PMID: 27083402 PMCID: PMC4921303 DOI: 10.1016/j.ymeth.2016.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 03/28/2016] [Accepted: 04/04/2016] [Indexed: 12/21/2022] Open
Abstract
RNA interference (RNAi) is an extremely useful tool for inhibiting gene expression. It can be triggered by transfected synthetic small interfering RNA (siRNA) or by expressed small hairpin RNA (shRNA). The cellular machinery processes the latter into siRNA in vivo. shRNA is preferred or required in genetic screens and specific RNAi approaches in gene therapy settings. Despite its many successes, the field of shRNAs faces many challenges. Insufficient knockdowns and off-target effects become obstacles for shRNA usage in many applications. Numerous failures are triggered by pitfalls in shRNA design that is often associated with impoverished biogenesis. Here, based on current understanding of the miRNA maturation pathway, we discuss the principles of different shRNA design (pre-miRNA-like, pri-miRNA-like and Ago-shRNA) with an emphasis on the RNA structure. We also provide detailed instructions for an optimal design of pre-miRNA-like shRNA.
Collapse
Affiliation(s)
- Xavier Bofill-De Ros
- Gene Regulation and Chromosome Biology Laboratory, Center For Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Shuo Gu
- Gene Regulation and Chromosome Biology Laboratory, Center For Cancer Research, National Cancer Institute, Frederick, MD, United States.
| |
Collapse
|
13
|
Feng J, Wang X, Liao Y, Feng J, Tang L. A novel conditional gene silencing method using a tumor-specific and heat-inducible siRNA system. J Ind Microbiol Biotechnol 2016; 43:761-770. [PMID: 27033537 DOI: 10.1007/s10295-016-1759-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/15/2016] [Indexed: 12/30/2022]
Abstract
RNAi technology is an invaluable tool for investigating gene function. However, the non-temporal and non-spatial control is the primary limitation, which leads to siRNA leakiness and off-target effects. In this study, we inserted three kinds of HSE into tumor specific promoter hTERT, which aims to construct a temperature-inducible and tumor-specific RNAi plasmid vector. In our system, the expression of mature siRNA is tightly controlled by the heat shock-inducible and tumor-specific promoters. From the expression level of RNA and protein, we determined the efficiency of the inducible siRNA system by targeting SNCG gene in HepG2 and MCF-7 cells. Results showed that the controllable siRNA system could be induced to initiate siRNA expression by heat-induce. The silencing effect of SNCG is on a relative low level (10 %) at 37 °C, while it is significantly increased to 50 or 60 % after heat inducing at 43 °C. This new conditional siRNA system provides a novel approach to drive the siRNA expression by heat-inducible and tumor-specific promoter.
Collapse
Affiliation(s)
- Jing Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xiaoyu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yi Liao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jianguo Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
14
|
Al-Furoukh N, Ianni A, Nolte H, Hölper S, Krüger M, Wanrooij S, Braun T. ClpX stimulates the mitochondrial unfolded protein response (UPRmt) in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2580-91. [DOI: 10.1016/j.bbamcr.2015.06.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/09/2015] [Accepted: 06/27/2015] [Indexed: 02/06/2023]
|
15
|
Abstract
RNA interference (RNAi) was discovered as a cellular defense mechanism more than decade ago. It has been exploited as a powerful tool for genetic manipulation. Characterized with specifically silencing target gene expression, it has great potential application for disease treatment. Currently, there are human clinical trials in progress or planned. Despite the excitement regarding this prominent technology, there are many obstacles and concerns that prevent RNAi from being widely used in the therapeutic field. Among them, the non-spatial and non-temporal control is the most difficult challenge, as well as off-target effects and triggering type I immune responses. Inducible RNAi technology can effectively regulate target genes by inducer-mediated small hairpin RNA expression. Combination with inducible regulation systems this makes RNAi technology more sophisticated and may provide a wider application field. This review discusses approaches of inducible RNAi systems, the potential problem areas and solutions and their therapeutic applications. Given the limitations discussed herein being resolved, we believe that inducible RNAi will be a major therapeutic modality within the next several years.
Collapse
Affiliation(s)
- Yi Liao
- a Key Laboratory of Biorheological Science and Technology , Ministry of Education, College of Bioengineering, Chongqing University , Chongqing , China
| | - Liling Tang
- a Key Laboratory of Biorheological Science and Technology , Ministry of Education, College of Bioengineering, Chongqing University , Chongqing , China
| |
Collapse
|
16
|
Marimani M, Hean J, Bloom K, Ely A, Arbuthnot P. Recent advances in developing nucleic acid-based HBV therapy. Future Microbiol 2014; 8:1489-504. [PMID: 24199806 DOI: 10.2217/fmb.13.87] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chronic HBV infection remains an important public health problem and currently licensed therapies rarely prevent complications of viral persistence. Silencing HBV gene expression using gene therapy, particularly with exogenous activators of RNAi, holds promise for developing an HBV gene therapy. However, immune stimulation, off-targeting effects and inefficient delivery of RNAi activators remain problematic. Several new approaches have recently been employed to address these issues. Chemical modifications to anti-HBV synthetic siRNAs have been investigated and a variety of vectors are being developed for delivery of RNAi effectors. In this article, we review the potential utility of gene therapy for treating HBV infection.
Collapse
Affiliation(s)
- Musa Marimani
- Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | | |
Collapse
|
17
|
Jo W, Jeong D, Kim J, Cho S, Jang SC, Han C, Kang JY, Gho YS, Park J. Microfluidic fabrication of cell-derived nanovesicles as endogenous RNA carriers. LAB ON A CHIP 2014; 14:1261-9. [PMID: 24493004 DOI: 10.1039/c3lc50993a] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Exosomes/microvesicles are known to shuttle biological signals between cells, possibly by transferring biological signal components such as encapsulated RNAs and proteins, plasma membrane proteins, or both. Therefore exosomes are being considered for use as RNA and protein delivery vehicles for various therapeutic applications. However, living cells in nature secrete only a small number of exosomes, and procedures to collect them are complex; these complications impede their use in mass delivery of components to targeted cells. We propose a novel and efficient method that forces cells through hydrophilic microchannels to generate artificial nanovesicles. These mimetic nanovesicles contain mRNAs, intracellular proteins and plasma membrane proteins, and are shaped like cell-secreted exosomes. When recipient cells are exposed to nanovesicles from embryonic stem cells, mRNAs of Oct 3/4 and Nanog are transferred from embryonic stem cells to the target cells. This result suggests that mimetic nanovesicles can be used as vehicles to deliver RNA. This nanovesicle formation method is expected to be used in exosome research and to have applications in drug and RNA-delivery systems.
Collapse
Affiliation(s)
- Wonju Jo
- Dept. Mechanical Engineering, POSTECH, San 31, Hyoja-dong, Nam-gu, Pohang, Gyoengbuk, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Şalva E, Turan SO, Kabasakal L, Alan S, Özkan N, Eren F, Akbuğa J. Investigation of the Therapeutic Efficacy of Codelivery of psiRNA–Vascular Endothelial Growth Factor and pIL-4 into Chitosan Nanoparticles in the Breast Tumor Model. J Pharm Sci 2014; 103:785-95. [DOI: 10.1002/jps.23815] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 11/13/2013] [Accepted: 11/20/2013] [Indexed: 01/16/2023]
|
19
|
Love DR, Lan CC, Dodd A, Shelling AN, McNabb WC, Ferguson LR. Modeling inflammatory bowel disease: the zebrafish as a way forward. Expert Rev Mol Diagn 2014; 7:177-93. [PMID: 17331065 DOI: 10.1586/14737159.7.2.177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The zebrafish has proved to be an informative model of vertebrate development and, more recently, an emerging model of human disease. The realization of the full potential of the zebrafish as a disease model lies in two interdependent areas. The first is an appreciation that the often overlooked strength of this species lies in allowing the design of experiments that address the interplay of genetics and the environment in a manipulable manner. The second is in the application and further development of gene targeting approaches. These twin features will be addressed in this review in the context of modeling inflammatory bowel disease.
Collapse
Affiliation(s)
- Donald R Love
- University of Auckland, School of Biological Sciences, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.
| | | | | | | | | | | |
Collapse
|
20
|
Livshits G, Lowe SW. Accelerating cancer modeling with RNAi and nongermline genetically engineered mouse models. Cold Spring Harb Protoc 2013; 2013:2013/11/pdb.top069856. [PMID: 24184755 DOI: 10.1101/pdb.top069856] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
For more than two decades, genetically engineered mouse models have been key to our mechanistic understanding of tumorigenesis and cancer progression. Recently, the massive quantity of data emerging from cancer genomics studies has demanded a corresponding increase in the efficiency and throughput of in vivo models for functional testing of putative cancer genes. Already a mainstay of cancer research, recent innovations in RNA interference (RNAi) technology have extended its utility for studying gene function and genetic interactions, enabling tissue-specific, inducible and reversible gene silencing in vivo. Concurrent advances in embryonic stem cell (ESC) culture and genome engineering have accelerated several steps of genetically engineered mouse model production and have facilitated the incorporation of RNAi technology into these models. Here, we review the current state of these technologies and examine how their integration has the potential to dramatically enhance the throughput and capabilities of animal models for cancer.
Collapse
Affiliation(s)
- Geulah Livshits
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | | |
Collapse
|
21
|
Guo J, Evans JC, O’Driscoll CM. Delivering RNAi therapeutics with non-viral technology: a promising strategy for prostate cancer? Trends Mol Med 2013; 19:250-61. [DOI: 10.1016/j.molmed.2013.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/30/2013] [Accepted: 02/07/2013] [Indexed: 02/07/2023]
|
22
|
p120 catenin is a key effector of a Ras-PKCɛ oncogenic signaling axis. Oncogene 2013; 33:1385-94. [PMID: 23542175 DOI: 10.1038/onc.2013.91] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/24/2013] [Accepted: 02/04/2013] [Indexed: 12/18/2022]
Abstract
Within the family of protein kinase C (PKC) molecules, the novel isoform PRKCE (PKCɛ) acts as a bona fide oncogene in in vitro and in vivo models of tumorigenesis. Previous studies have reported expression of PKCɛ in breast, prostate and lung tumors above that of normal adjacent tissue. Data from the cancer genome atlas suggest increased copy number of PRKCE in triple negative breast cancer (TNBC). We find that overexpression of PKCɛ in a non-tumorigenic breast epithelial cell line is sufficient to overcome contact inhibition and results in the formation of cellular foci. Correspondingly, inhibition of PKCɛ in a TNBC cell model results in growth defects in two-dimensional (2D) and three-dimensional (3D) culture conditions and orthotopic xenografts. Using stable isotope labeling of amino acids in a cell culture phosphoproteomic approach, we find that CTNND1/p120ctn phosphorylation at serine 268 (P-S268) occurs in a strictly PKCɛ-dependent manner, and that loss of PKCɛ signaling in TNBC cells leads to reversal of mesenchymal morphology and signaling. In a model of Ras activation, inhibition of PKCɛ is sufficient to block mesenchymal cell morphology. Finally, treatment with a PKCɛ ATP mimetic inhibitor, PF-5263555, recapitulates genetic loss of function experiments impairing p120ctn phosphorylation as well as compromising TNBC cell growth in vitro and in vivo. We demonstrate PKCɛ as a tractable therapeutic target for TNBC, where p120ctn phosphorylation may serve as a readout for monitoring patient response.
Collapse
|
23
|
Abstract
Since the first application of RNA interference (RNAi) in mammalian cells, the expression of short hairpin RNAs (shRNAs) for targeted gene silencing has become a benchmark technology. Using plasmid and viral vectoring systems, the transcription of shRNA precursors that are effectively processed by the RNAi pathway can lead to potent gene knockdown. The past decade has seen continual advancement and improvement to the various strategies that can be used for shRNA delivery, and the use of shRNAs for clinical applications is well underway. Driving these developments has been the many benefits afforded by shRNA technologies, including the stable integration of expression constructs for long-term expression, infection of difficult-to-target cell lines and tissues using viral vectors, and the temporal control of shRNA transcription by inducible promoters. The use of different effector molecule formats, promoters, and vector types, has meant that experiments can be tailored to target specific cell types and minimize cellular toxicities. Through the application of combinatorial RNAi (co-RNAi), multiple shRNA delivery strategies can improve gene knockdown, permit multiple transcripts to be targeted simultaneously, and curtail the emergence of viral escape mutants. This chapter reviews the history, cellular processing, and various applications of shRNAs in mammalian systems, including options for effector molecule design, vector and promoter types, and methods for multiple shRNA delivery.
Collapse
Affiliation(s)
- Luke S Lambeth
- Murdoch Childrens Research Institute, Royal Childrens Hospital, Melbourne, VIC, Australia.
| | | |
Collapse
|
24
|
Brestovitsky A, Sharf R, Kleinberger T. Preparation of cell-lines for conditional knockdown of gene expression and measurement of the knockdown effects on E4orf4-induced cell death. J Vis Exp 2012:4442. [PMID: 23117279 DOI: 10.3791/4442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Functional inactivation of gene expression in mammalian cells is crucial for the study of the contribution of a protein of interest to various pathways(1,2). However, conditional knockdown of gene expression is required in cases when constitutive knockdown is not tolerated by cells for a long period of time(3-5). Here we describe a protocol for preparation of cell lines allowing conditional knockdown of subunits of the ACF chromatin remodeling factor. These cell lines facilitate the determination of the contribution of ACF to induction of cell death by the adenovirus E4orf4 protein(6). Sequences encoding short hairpin RNAs for the Acf1 and SNF2h subunits of the ACF chromatin remodeling factor were cloned next to a doxycycline-inducible promoter in a plasmid also containing a gene for the neomycin resistance gene. Neomycin-resistant cell clones were selected in the presence of G418 and isolated. The resulting cell lines were induced by doxycycline treatment, and once Acf1 or SNF2h expression levels were reduced, the cells were transfected with a plasmid encoding E4orf4 or an empty vector. To confirm the specific effect of the shRNA constructs, Acf1 or SNF2h protein levels were restored to WT levels by cotransfection with a plasmid expressing Acf1 or SNF2h which were rendered resistant to the shRNA by introduction of silent mutations. The ability of E4orf4 to induce cell death in the various samples was determined by a DAPI assay, in which the frequency of appearance of nuclei with apoptotic morphologies in the transfected cell population was measured(7-9). The protocol described here can be utilized for determination of the functional contribution of various proteins to induction of cell death by their protein partners in cases when constitutive knockdown may be cell lethal.
Collapse
Affiliation(s)
- Anna Brestovitsky
- Department of Molecular Microbiology, Technion - Israel Institute of Technology.
| | | | | |
Collapse
|
25
|
Zhang ZX, Min WP, Jevnikar AM. Use of RNA interference to minimize ischemia reperfusion injury. Transplant Rev (Orlando) 2012; 26:140-55. [PMID: 22000663 DOI: 10.1016/j.trre.2011.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/22/2011] [Indexed: 12/21/2022]
|
26
|
Abstract
RNA interference appears as a promising tool for therapeutic gene silencing to block protein expression. A long-lived silencing is obtained through the in situ expression of shRNA. A safe approach is to use a physical method such as in vivo electropulsation with plate electrodes. This is presently validated in muscles by the in vivo coelectrotransfer of plasmids specifically coding for expression and silencing of a fluorescent protein. No long-lived tissue damage is observed by the proper choice of the electric pulsing parameters and the amount of injected plasmids. Using a noninvasive fluorescence imaging assay, electrodelivery in mouse muscles is observed to induce complete silencing over more than 2 months in a specific way. The proper choices of the plasmids (sequence, promoter, and relative amounts) appear as key parameters in the successful long-term silencing.
Collapse
Affiliation(s)
- Muriel Golzio
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Université de Toulouse, Toulouse, France.
| | | | | |
Collapse
|
27
|
Unsal-Kacmaz K, Ragunathan S, Rosfjord E, Dann S, Upeslacis E, Grillo M, Hernandez R, Mack F, Klippel A. The interaction of PKN3 with RhoC promotes malignant growth. Mol Oncol 2011; 6:284-98. [PMID: 22217540 DOI: 10.1016/j.molonc.2011.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/30/2011] [Accepted: 12/21/2011] [Indexed: 12/24/2022] Open
Abstract
PKN3 is an AGC-family protein kinase implicated in growth of metastatic prostate cancer cells with phosphoinositide 3-kinase pathway deregulation. The molecular mechanism, however, by which PKN3 contributes to malignant growth and tumorigenesis is not well understood. Using orthotopic mouse tumor models, we now show that inducible knockdown of PKN3 protein not only blocks metastasis, but also impairs primary prostate and breast tumor growth. Correspondingly, overexpression of exogenous PKN3 in breast cancer cells further increases their malignant behavior and invasiveness in-vitro. Mechanistically, we demonstrate that PKN3 physically interacts with Rho-family GTPases, and preferentially with RhoC, a known mediator of tumor invasion and metastasis in epithelial cancers. Likewise, RhoC predominantly associates with PKN3 compared to its closely related PKN family members. Unlike the majority of Rho GTPases and PKN molecules, which are ubiquitously expressed, both PKN3 and RhoC show limited expression in normal tissues and become upregulated in late-stage malignancies. Since PKN3 catalytic activity is increased in the presence of Rho GTPases, the co-expression and preferential interaction of PKN3 and RhoC in tumor cells are functionally relevant. Our findings provide novel insight into the regulation and function of PKN3 and suggest that the PKN3-RhoC complex represents an attractive therapeutic target in late-stage malignancies.
Collapse
Affiliation(s)
- Keziban Unsal-Kacmaz
- Oncology Research Unit, Pfizer Oncology, Pfizer Worldwide Research and Development, Pearl River, NY 10965, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
MicroRNAs (miRNAs) are small physiological non-coding RNAs that regulate gene expression through an RNA interference (RNAi) mechanism. The expression of miRNAs is tightly controlled both spatially and temporally. Aberrant miRNA expression has been correlated with various cancers. Recent findings suggest that some miRNAs can function as tumor suppressors or oncogenes. In model experiments, the cancer phenotype of some cells can be reverted to normal when the cells are treated with miRNA mimics or inhibitors. Here, we discuss in brief the potential utility of miRNA-based cancer therapy as well as the current limitations thwarting their useful clinical application.
Collapse
Affiliation(s)
- Man Lung Yeung
- Department of Microbiology, the University of Hong Kong, SAR, China
| | - Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| |
Collapse
|
29
|
Heidler J, Al-Furoukh N, Kukat C, Salwig I, Ingelmann ME, Seibel P, Krüger M, Holtz J, Wittig I, Braun T, Szibor M. Nitric oxide-associated protein 1 (NOA1) is necessary for oxygen-dependent regulation of mitochondrial respiratory complexes. J Biol Chem 2011; 286:32086-93. [PMID: 21771794 DOI: 10.1074/jbc.m111.221986] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells, maintenance of cellular ATP stores depends mainly on mitochondrial oxidative phosphorylation (OXPHOS), which in turn requires sufficient cellular oxygenation. The crucial role of proper oxygenation for cellular viability is reflected by involvement of several mechanisms, which sense hypoxia and regulate activities of respiratory complexes according to available oxygen concentrations. Here, we focus on mouse nitric oxide-associated protein 1 (mNOA1), which has been identified as an important component of the machinery that adjusts OXPHOS activity to oxygen concentrations. mNOA1 is an evolutionary conserved GTP-binding protein that is involved in the regulation of mitochondrial protein translation and respiration. We found that mNOA1 is located mostly in the mitochondrial matrix from where it interacts with several high molecular mass complexes, most notably with the complex IV of the respiratory chain and the prohibitin complex. Knock-down of mNOA1 impaired enzyme activity I+III, resulting in oxidative stress and eventually cell death. mNOA1 is transcriptionally regulated in an oxygen-sensitive manner. We propose that oxygen-dependent regulation of mNOA1 is instrumental to adjusting OXPHOS activity to oxygen availability, thereby controlling mitochondrial metabolism.
Collapse
Affiliation(s)
- Juliana Heidler
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Arbuthnot P. MicroRNA-like antivirals. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:746-55. [PMID: 21616187 DOI: 10.1016/j.bbagrm.2011.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/28/2011] [Accepted: 05/09/2011] [Indexed: 12/26/2022]
Abstract
Employing engineered DNA templates to express antiviral microRNA (miRNA) sequences has considerable therapeutic potential. The durable silencing that may be achieved with these RNAi activators is valuable to counter chronic viral infections, such as those caused by HIV-1, hepatitis B, hepatitis C and dengue viruses. Early use of expressed antiviral miRNAs entailed generation of cassettes containing Pol III promoters (e.g. U6 and H1) that transcribe virus-targeting short hairpin RNA mimics of precursor miRNAs. Virus escape from single gene silencing elements prompted later development of combinatorial antiviral miRNA expression cassettes that form multitargeting siRNAs from transcribed long hairpin RNA and polycistronic primary miRNA sequences. Weaker Pol III and Pol II promoters have also been employed to control production of antiviral miRNA mimics, improve dose regulation and address concerns about toxicity caused by saturation of the endogenous miRNA pathway. Efficient delivery of expressed antiviral sequences remains challenging and utilizing viral vectors, which include recombinant adenoviruses, adeno-associated viruses and lentiviruses, has been favored. Investigations using recombinant lentiviruses to transduce CD34+ hematological precursor cells with expressed HIV-1 gene silencers are at advanced stages and show promise in preclinical and clinical trials. Although the use of expressed antiviral miRNA sequences to treat viral infections is encouraging, eventual therapeutic application will be dependent on rigorously proving their safety, efficient delivery to target tissues and uncomplicated large scale preparation of vector formulations. This article is part of a special issue entitled: MicroRNAs in viral gene regulation.
Collapse
|
31
|
Hou X, Omi M, Harada H, Ishii S, Takahashi Y, Nakamura H. Conditional knockdown of target gene expression by tetracycline regulated transcription of double strand RNA. Dev Growth Differ 2011; 53:69-75. [PMID: 21261612 DOI: 10.1111/j.1440-169x.2010.01229.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In vivo electroporation has served as an effective tool for the study of developmental biology. Here we report tetracycline inducible gene knockdown by electroporation. Our system consists of genome integration of a cassette encoding long double strand RNA (dsRNA) of a gene of interest by electroporation, transcription of which is assured by RNA polymerase II, and induction of transcription of dsRNA by tetracyclin. Long dsRNA decapped by ribozyme in the cassette and without poly A tail is processed into siRNA within nuclei. We could successfully induce knockdown of En2 and Coactosin by Dox administration.
Collapse
Affiliation(s)
- Xubin Hou
- Department of Molecular Neurobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Hikichi M, Kidokoro M, Haraguchi T, Iba H, Shida H, Tahara H, Nakamura T. MicroRNA regulation of glycoprotein B5R in oncolytic vaccinia virus reduces viral pathogenicity without impairing its antitumor efficacy. Mol Ther 2011; 19:1107-15. [PMID: 21386827 DOI: 10.1038/mt.2011.36] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vaccinia virus, once widely used for smallpox vaccine, has recently been engineered and used as an oncolytic virus for cancer virotherapy. Their replication has been restricted to tumors by disrupting viral genes and complementing them with products that are found specifically in tumor cells. Here, we show that microRNA (miRNA) regulation also enables tumor-specific viral replication by altering the expression of a targeted viral gene. Since the deletion of viral glycoprotein B5R not only decreases viral pathogenicity but also impairs the oncolytic activity of vaccinia virus, we used miRNA-based gene regulation to suppress B5R expression through let-7a, a miRNA that is downregulated in many tumors. The expression of B5R and the replication of miRNA-regulated vaccinia virus (MRVV) with target sequences complementary to let-7a in the 3'-untranslated region (UTR) of the B5R gene depended on the endogenous expression level of let-7a in the infected cells. Intratumoral administration of MRVV in mice with human cancer xenografts that expressed low levels of let-7a resulted in tumor-specific viral replication and significant tumor regression without side effects, which were observed in the control virus. These results demonstrate that miRNA-based gene regulation is a potentially novel and versatile platform for engineering vaccinia viruses for cancer virotherapy.
Collapse
Affiliation(s)
- Mina Hikichi
- Core Facility for Therapeutic Vectors, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Li F, Mahato RI. RNA interference for improving the outcome of islet transplantation. Adv Drug Deliv Rev 2011; 63:47-68. [PMID: 21156190 DOI: 10.1016/j.addr.2010.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/19/2010] [Accepted: 11/25/2010] [Indexed: 01/06/2023]
Abstract
Islet transplantation has the potential to cure type 1 diabetes. Despite recent therapeutic success, it is still not common because a large number of transplanted islets get damaged by multiple challenges including instant blood mediated inflammatory reaction, hypoxia/reperfusion injury, inflammatory cytokines, and immune rejection. RNA interference (RNAi) is a novel strategy to selectively degrade target mRNA. The use of RNAi technologies to downregulate the expression of harmful genes has the potential to improve the outcome of islet transplantation. The aim of this review is to gain a thorough understanding of biological obstacles to islet transplantation and discuss how to overcome these barriers using different RNAi technologies. This eventually will help improve islet survival and function post transplantation. Chemically synthesized small interferring RNA (siRNA), vector based short hairpin RNA (shRNA), and their critical design elements (such as sequences, promoters, and backbone) are discussed. The application of combinatorial RNAi in islet transplantation is also discussed. Last but not the least, several delivery strategies for enhanced gene silencing are discussed, including chemical modification of siRNA, complex formation, bioconjugation, and viral vectors.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | | |
Collapse
|
34
|
Fan R, Li X, Du W, Zou X, Du R, Zhao L, Luo G, Mo P, Xia L, Pan Y, Shi Y, Lian Z, Feitelson MA, Nie Y, Liu J, Fan D. Adenoviral-mediated RNA interference targeting URG11 inhibits growth of human hepatocellular carcinoma. Int J Cancer 2010; 128:2980-93. [PMID: 20725996 DOI: 10.1002/ijc.25624] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 07/30/2010] [Indexed: 01/25/2023]
Abstract
Hepatocellular carcinoma (HCC) is the second most common malignancy in Asia, with a 5-year survival rate of less than 5% due to high recurrence after surgery and resistance to chemotherapy. A variety of therapeutic interventions to treat HCC, particularly gene therapy, have recently been investigated in tumor model systems to provide a more complete understanding of hepatocarcinogenesis and effectively design therapeutic strategies to treat this disease. In our study, we constructed an adenoviral vector expressing small interfering RNA (siRNA) targeting a newly discovered gene named upregulated gene 11 (URG11). We introduced this vector into HCC cells to investigate the role of URG11 in HCC carcinogenesis. We observed that upon URG11 knockdown, HCC cell proliferation was inhibited through downregulation of several G1-S phase related molecules including cyclin D1 and apoptosis was induced as a result of Bcl-2 downregulation. Besides decreased expression of cyclin D1, CDK4, pRb and Bcl-2, URG11 also suppressed several other proteins including CAPN9, which was identified by cDNA microarray and 2D gel electrophoresis. Moreover, Ad-URG11-siRNA significantly suppressed HCC tumor growth in nude mice. In conclusion, Ad-URG11-siRNA can significantly suppress HCC tumor growth in vitro and in vivo by silencing the URG11 gene, and the use of this vector for gene therapy may represent a novel strategy to treat human HCC.
Collapse
Affiliation(s)
- Rui Fan
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The completion of the genome sequencing for several organisms has
created a great demand for genomic tools that can systematically
analyze the growing wealth of data. In contrast to the classical
reverse genetics approach of creating specific knockout cell lines
or animals that is time-consuming and expensive, RNA-mediated
interference (RNAi) has emerged as a fast, simple, and
cost-effective technique for gene knockdown in large scale. Since
its discovery as a gene silencing response to double-stranded RNA
(dsRNA) with homology to endogenous genes in
Caenorhabditis elegans (C elegans),
RNAi technology has been adapted to various high-throughput
screens (HTS) for genome-wide loss-of-function (LOF) analysis.
Biochemical insights into the endogenous mechanism of
RNAi have led to advances in RNAi methodology including RNAi
molecule synthesis, delivery, and sequence design. In this
article, we will briefly review these various RNAi library designs
and discuss the benefits and drawbacks of each library strategy.
Collapse
Affiliation(s)
- Julie Clark
- Department of Chemistry and the Skaggs Institute for
Chemical Biology, The Scripps Research Institute, 10550
North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sheng Ding
- Department of Chemistry and the Skaggs Institute for
Chemical Biology, The Scripps Research Institute, 10550
North Torrey Pines Road, La Jolla, CA 92037, USA
- *Sheng Ding:
| |
Collapse
|
36
|
Bak G, Hwang SW, Ko Y, Lee J, Kim Y, Kim K, Hong SK, Lee Y. On-off controllable RNA hybrid expression vector for yeast three-hybrid system. BMB Rep 2010; 43:110-4. [PMID: 20193129 DOI: 10.5483/bmbrep.2010.43.2.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The yeast three-hybrid system (Y3H), a powerful method for identifying RNA-binding proteins, still suffers from many false positives, due mostly to RNA-independent interactions. In this study, we attempted to efficiently identify false positives by introducing a tetracycline operator (tetO) motif into the RPR1 promoter of an RNA hybrid expression vector. We successfully developed a tight tetracycline-regulatable RPR1 promoter variant containing a single tetO motif between the transcription start site and the A-box sequence of the RPR1 promoter. Expression from this tetracycline-regulatable RPR1 promoter in the presence of tetracycline-response transcription activator (tTA) was positively controlled by doxycycline (Dox), a derivative of tetracycline. This on-off control runs opposite to the general knowledge that Dox negatively regulates tTA. This positively controlled RPR1 promoter system can therefore efficiently eliminate RNA-independent false positives commonly observed in the Y3H system by directly monitoring RNA hybrid expression.
Collapse
Affiliation(s)
- Geunu Bak
- Department of Chemistry, KAIST, Daejeon 305-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Junn HJ, Kim JY, Seol DW. Effective knockdown of multiple target genes by expressing the single transcript harbouring multi-cistronic shRNAs. Biochem Biophys Res Commun 2010; 396:861-5. [PMID: 20451494 DOI: 10.1016/j.bbrc.2010.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 05/02/2010] [Indexed: 01/14/2023]
Abstract
Gene silencing by RNA interference (RNAi) using short interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) has become a valuable tool for evaluating the target gene function. Here, we report an approach for silencing multiple target genes simultaneously by expressing one single transcript encoding different target shRNAs. We first constructed the cytomegalovirus (CMV) promoter-driven expression vectors, each of which expresses microRNA mir-30-mimicked shRNA specifically targeting X-chromosome-linked inhibitor of apoptosis protein (XIAP), Akt, or Bcl-2. Adenovirus harbouring each shRNA expression cassette silenced corresponding target gene expression. Using these mono-cistronic shRNA cassettes, we again constructed the CMV promoter-driven expression vector, into which multi-cistronic shRNAs for XIAP, Akt and Bcl-2 in order were cloned. Adenovirus delivering this multi-cistronic expression cassette silenced each of the target genes as effectively as adenovirus containing individual shRNA did. Our data indicate that single promoter-driven multi-cistronic shRNAs effectively silence multiple target genes. Our approach provides a new smart tool for silencing multiple target genes and will potentially serve as an RNAi-based tailored therapy requiring suppression of target gene expression.
Collapse
Affiliation(s)
- Hyun Jung Junn
- Faculty of Pharmacy, Chung-Ang University School of Pharmacy, Seoul 156-756, Republic of Korea
| | | | | |
Collapse
|
38
|
Interference RNA for in vivo Knock-down of gene expression or genome-wide screening using shRNA. Methods Mol Biol 2010; 597:189-209. [PMID: 20013235 DOI: 10.1007/978-1-60327-389-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
With the lack of tools available to manipulate the rat genome, alternative technologies have been investigated to generate loss-of-function rat models by gene invalidation. The recent demonstration that RNA interference (RNAi)-mediated gene silencing occurs in rodents has opened new opportunities for rat functional genetics. In this chapter, we provide some practical guidelines for RNAi working in rat, based on the recent design and development of mice and rat Knock down models.
Collapse
|
39
|
Abstract
Within the past 10 years, RNA interference has emerged as a powerful experimental tool as it allows rapid gene function analysis. Unique features such as reversibility of gene silencing and simultaneous targeting of several genes characterize the approach. In this chapter, transgenic RNAi techniques in reverse mouse genetics are discussed and protocols are provided.
Collapse
|
40
|
Liu B, Sun H, Wang W, Li W, Yan YF, Chen SM, Yang YP, Xu CX, Xin JX, Liu XX. Adenovirus vector-mediated upregulation of spermidine /spermine N1-acetyltransferase impairs human gastric cancer growth in vitro and in vivo. Cancer Sci 2009; 100:2126-32. [PMID: 19686286 PMCID: PMC11159126 DOI: 10.1111/j.1349-7006.2009.01290.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 06/14/2009] [Accepted: 07/12/2009] [Indexed: 12/01/2022] Open
Abstract
Spermidine/spermine N(1)-acetyltransferase (SSAT) is the rate-limiting step in polyamine catabolism. In a previous study, we constructed a recombinant adenovirus, Ad-SSAT, which can express human SSAT. In the present study, we investigated the effect of upregulated and downregulated SSAT on gastric cancer cells. We found that upregulated SSAT could inhibit the growth of MGC803 and SGC7901 cells, whereas adverse results were found with downregulated SSAT. We further analyzed cell cycle profiles and the expression levels of the major cell cycle regulatory proteins of S phase. The results showed that the growth inhibition was caused by S phase arrest. Ad-SSAT suppressed the expression of cyclin A and nuclear factor E2F1 in MGC803 and SGC7901 cells. We observed the E2F promoter activity caused by Ad-SSAT using a reporter gene assay. We also investigated the antitumorigenicity of upregulated SSAT by Ad-SSAT using a SGC7901 xenograft model in nude mice. Our results suggest that the upregulation of SSAT by Ad-SSAT infection inhibited the growth of gastric cancer in vitro and in vivo. Ad-SSAT arrested gastric cancer cells in S phase, which was mediated through downregulation of the cyclin A-E2F signaling pathway.
Collapse
Affiliation(s)
- Bin Liu
- Institute of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, Shandong, 250012, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
A significant increase of RNAi efficiency in human cells by the CMV enhancer with a tRNAlys promoter. J Biomed Biotechnol 2009; 2009:514287. [PMID: 19859553 PMCID: PMC2766573 DOI: 10.1155/2009/514287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 06/21/2009] [Accepted: 07/31/2009] [Indexed: 01/10/2023] Open
Abstract
RNA interference (RNAi) is the process of mRNA degradation induced by double-stranded RNA in a sequence-specific manner. Different types of promoters, such as U6, H1, tRNA, and CMV, have been used to control the inhibitory effect of RNAi expression vectors. In the present study, we constructed two shRNA expression vectors, respectively, controlled by tRNAlys
and CMV enhancer-tRNAlys promoters. Compared to the vectors with tRNAlys or U6 promoter, the vector with a CMV enhancer-tRNAlys promoter silenced pokemon more efficiently on both the mRNA and the protein levels. Meanwhile, the silencing of pokemon inhibited the proliferation of MCF7 cells, but the induction of apoptosis of MCF7 cells was not observed. We conclude that the CMV enhancer-tRNAlys promoter may be a powerful tool in driving intracellular expression of shRNA which can efficiently silence targeted gene.
Collapse
|
42
|
Suppression of zebrafish VEGF gene by cytomegalovirus promoter-driven short hairpin constructs induces vascular development defects and down regulation NRP1 expression. Biologia (Bratisl) 2009. [DOI: 10.2478/s11756-009-0154-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Yang SL, Yan S, Niu RL, Lin XK. VEGF gene silencing by cytomegalovirus promoter driven ShRNA expression vector results in vascular development defects in zebrafish. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409090038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Nonviral vector-mediated RNA interference: its gene silencing characteristics and important factors to achieve RNAi-based gene therapy. Adv Drug Deliv Rev 2009; 61:760-6. [PMID: 19386274 DOI: 10.1016/j.addr.2009.04.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 04/05/2009] [Indexed: 01/03/2023]
Abstract
RNA interference (RNAi) is a potent and specific gene silencing event in which small interfering RNA (siRNA) degrades target mRNA. Therefore, RNAi is of potential use as a therapeutic approach for the treatment of a variety of diseases in which aberrant expression of mRNA causes a problem. RNAi can be achieved by delivering siRNA or vectors that transcribe siRNA or short-hairpin RNA (shRNA). The aim of this review is to examine the potential of nonviral vector-mediated RNAi technology in treating diseases. The characteristics of plasmid DNA expressing shRNA were compared with those of siRNA, focusing on the duration of gene silencing, delivery to target cells and target specificity. Recent progresses in prolonging the RNAi effect, improving the delivery to target cells and increasing the specificity of RNAi in vivo are also reviewed.
Collapse
|
45
|
Stieger K, Belbellaa B, Le Guiner C, Moullier P, Rolling F. In vivo gene regulation using tetracycline-regulatable systems. Adv Drug Deliv Rev 2009; 61:527-41. [PMID: 19394373 PMCID: PMC7103297 DOI: 10.1016/j.addr.2008.12.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 12/15/2008] [Indexed: 10/26/2022]
Abstract
Numerous preclinical studies have demonstrated the efficacy of viral gene delivery vectors, and recent clinical trials have shown promising results. However, the tight control of transgene expression is likely to be required for therapeutic applications and in some instances, for safety reasons. For this purpose, several ligand-dependent transcription regulatory systems have been developed. Among these, the tetracycline-regulatable system is by far the most frequently used and the most advanced towards gene therapy trials. This review will focus on this system and will describe the most recent progress in the regulation of transgene expression in various organs, including the muscle, the retina and the brain. Since the development of an immune response to the transactivator was observed following gene transfer in the muscle of nonhuman primate, focus will be therefore, given on the immune response to transgene products of the tetracycline inducible promoter.
Collapse
Affiliation(s)
- Knut Stieger
- INSERM UMR U649, CHU-Hotel Dieu, Nantes, France
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
46
|
Lee SK, Kumar P. Conditional RNAi: towards a silent gene therapy. Adv Drug Deliv Rev 2009; 61:650-64. [PMID: 19394374 DOI: 10.1016/j.addr.2009.03.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 03/19/2009] [Indexed: 11/28/2022]
Abstract
RNA interference (RNAi) has the potential to permit the downregulation of virtually any gene. While transgenic RNAi enables stable propagation of the resulting phenotype to progeny, the dominant nature of RNAi limits its use to applications where the continued suppression of gene expression does not disturb normal cell functioning. This is of particular importance when the target gene product is essential for cell survival, development or differentiation. It is therefore desirable that knockdown be externally regulatable. This review is aimed at providing an overview of the approaches for conditional RNAi in mammalian systems, with a special mention of studies employing these approaches to target therapeutically/biologically relevant molecules, their advantages and disadvantages, and a pointer towards approaches best suited for RNAi-based gene therapy.
Collapse
Affiliation(s)
- Sang-Kyung Lee
- Department of Bioengineering, Hanyang University, Seoul 133-797, South Korea
| | | |
Collapse
|
47
|
Maeda Y, Sheffield AM, Smith RJH. Therapeutic regulation of gene expression in the inner ear using RNA interference. Adv Otorhinolaryngol 2009; 66:13-36. [PMID: 19494570 DOI: 10.1159/000218205] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Targeting and downregulating specific genes with antisense and decoy oligonucleotides, ribozymes or RNA interference (RNAi) offer the theoretical potential of altering a disease phenotype. Here we review the molecular mechanism behind the in vivo application of RNAi-mediated gene silencing, focusing on its application to the inner ear. RNAi is a physiological phenomenon in which small, double-stranded RNA molecules (small interfering RNA, siRNA) reduce expression of homologous genes. Notable for its exquisite sequence specificity, it is ideally applied to diseases caused by a gain-of-function mechanism of action. Types of deafness in which gain-of-function mutations are observed include DFNA2 (KCNQ4), DFNA3 (GJB2) and DFNA5 (DFNA5). Several strategies can be used to deliver siRNA into the inner ear, including cationic liposomes, adeno-associated and lentiviral vectors, and adenoviral vectors. Transduction efficiency with cationic liposomes is low and the effect is transient; with adeno-associated and lentiviral vectors, long-term transfection is possible using a small hairpin RNA expression cassette.
Collapse
|
48
|
Kotnik K, Popova E, Todiras M, Mori MA, Alenina N, Seibler J, Bader M. Inducible transgenic rat model for diabetes mellitus based on shRNA-mediated gene knockdown. PLoS One 2009; 4:e5124. [PMID: 19340286 PMCID: PMC2659743 DOI: 10.1371/journal.pone.0005124] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 03/02/2009] [Indexed: 01/17/2023] Open
Abstract
The rat is an important animal model in biomedical research, but gene targeting technology is not established for this species. Therefore, we aimed to produce transgenic knockdown rats using shRNA technology and pronuclear microinjection. To this purpose, we employed a tetracycline-inducible shRNA expression system targeting the insulin receptor (IR). Doxycycline (DOX) treatment of the resulting transgenic rats led to a dose-dependent and reversible increase in blood glucose caused by ubiquitous inhibition of IR expression and signalling. We could neither detect an interferon response nor disturbances in microRNA processing after DOX treatment excluding toxic effects of shRNA expression. Low dose DOX treatment induced a chronic state of diabetes mellitus. In conclusion, we have developed a technology which allows the specific, inducible, and reversible suppression of any gene of interest in the rat. Our first transgenic rat line generated with this method represents an inducible model for diabetes mellitus.
Collapse
Affiliation(s)
- Katarina Kotnik
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Høj BR, la Cour JM, Mollerup J, Berchtold MW. ALG-2 knockdown in HeLa cells results in G2/M cell cycle phase accumulation and cell death. Biochem Biophys Res Commun 2008; 378:145-8. [PMID: 19013425 DOI: 10.1016/j.bbrc.2008.11.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 11/07/2008] [Indexed: 12/27/2022]
Abstract
ALG-2 (apoptosis-linked gene-2 encoded protein) has been shown to be upregulated in a variety of human tumors questioning its previously assumed pro-apoptotic function. The aim of the present study was to obtain insights into the role of ALG-2 in human cancer cells. We show that ALG-2 downregulation induces accumulation of HeLa cells in the G2/M cell cycle phase and increases the amount of early apoptotic and dead cells. Caspase inhibition by the pan-caspase inhibitor zVAD-fmk attenuated the increase in the amount of dead cells following ALG-2 downregulation. Thus, our results indicate that ALG-2 has an anti-apoptotic function in HeLa cells by facilitating the passage through checkpoints in the G2/M cell cycle phase.
Collapse
Affiliation(s)
- Berit R Høj
- Copenhagen Biocenter, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | | | | | | |
Collapse
|
50
|
Combination therapy with short interfering RNA vectors against VEGF-C and VEGF-A suppresses lymph node and lung metastasis in a mouse immunocompetent mammary cancer model. Cancer Gene Ther 2008; 15:776-86. [DOI: 10.1038/cgt.2008.43] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|