1
|
Rodriguez VR, Essex M, Poddubnyy D. The gut microbiota in spondyloarthritis: an update. Curr Opin Rheumatol 2025:00002281-990000000-00161. [PMID: 39968641 DOI: 10.1097/bor.0000000000001079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
PURPOSE OF REVIEW This review provides an updated overview of the gut microbiota's involvement in spondyloarthritis (SpA) from a clinical perspective. It explores mechanisms by which the gut microbiota may influence SpA pathogenesis and considers the therapeutic implications of targeting the microbiome in SpA treatment. RECENT FINDINGS The pathogenesis of SpA is multifactorial, involving genetic predisposition, external factors and dysregulation of the immune system. Recent studies have identified alterations in the gut microbiome of patients with SpA, including changes in microbial diversity and specific taxa linked to disease activity. HLA-B27 status seems to influence gut microbiota composition, potentially impacting disease progression. In HLA-B27 transgenic rats, the association between gut microbiota and SpA development has been confirmed, supporting findings from human studies. A compromised gut barrier, influenced by proteins like zonulin, may allow microbial antigens to translocate, triggering immune responses associated with SpA. SUMMARY These findings highlight the potential for microbiota-modulating therapies, such as probiotics, prebiotics, diet and exercise, in managing SpA. However, methodological variability in human studies exposes the need for more rigorous research to better understand these associations. This may offer the opportunity to refine treatment strategies, offering a personalized approach to managing the disease.
Collapse
Affiliation(s)
- Valeria Rios Rodriguez
- Department of Gastroenterology, Infectiology and Rheumatology (including Nutrition Medicine), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Morgan Essex
- Department of Gastroenterology, Infectiology and Rheumatology (including Nutrition Medicine), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Denis Poddubnyy
- Department of Gastroenterology, Infectiology and Rheumatology (including Nutrition Medicine), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Division of Rheumatology, University of Toronto and University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Guo J, Wang C, Li H, Ding C. Exploring the causal associations of the gut microbiota and plasma metabolites with ovarian cancer: an approach of mendelian randomization analysis combined with network pharmacology and molecular docking. J Ovarian Res 2025; 18:27. [PMID: 39948579 PMCID: PMC11823090 DOI: 10.1186/s13048-025-01610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND While increasing evidence suggests that alterations in the gut microbiota and metabolites are associated with ovarian cancer (OC) risk, whether these associations imply causation remains to be identified. METHODS We conducted a two-sample Mendelian randomization (MR) study utilizing a large-scale genome-wide association study (GWAS) to explore the causal effects of the gut microbiota of 196/220 individuals and 1,400 plasma metabolites on OC and epithelial ovarian cancer (EOC) subtypes. Data on the gut microbiota were obtained from the MiBioGen consortium of 18,340 subjects and the Dutch Microbiome Project of 7,738 volunteers. Data on plasma metabolites were derived from a GWAS of plasma metabolites in 8,299 participants. Ovarian cancer (n = 25,509) and EOC subtypes were obtained from the Ovarian Cancer Association Consortium (OCAC). Metabolites and associated targets were analyzed via network pharmacology and molecular docking. RESULTS At the genus and species levels, we identified seven risk factors for the gut microbiota: the genus Dialister (P = 0.024), genus Ruminiclostridium5 (P = 0.0004), genus Phascolarctobacterium (P = 0.0217), species Bacteroides massiliensis (P = 0.011), species Phascolarctobacterium succinatutens (P = 0.0212), species Paraprevotella clara (P = 0.0247) and species Bacteroides dorei (P = 0.0054). In addition, five gut microbes at the genus and species levels were found to be protective: genus Family XIII AD3011 group (P = 0.006), genus Butyrivibrio (P = 0.0095), genus Oscillibacter (P = 0.0206), species Roseburia hominis (P = 0.0241), and species Bifidobacterium bifidum (P = 0.0224). For plasma metabolites, we revealed five positive and four negative correlations with OC. Among these, caffeic acid and caffeine metabolites and sphingomyelin and ceramide metabolites were identified as risk factors, whereas phenylalanine metabolites, butyric acid metabolites, and some lipid metabolites were recognized as protective factors. A series of sensitivity analyses revealed no abnormalities, including pleiotropy and heterogeneity analyses. CONCLUSION Our MR analysis demonstrated that the gut microbiota and metabolites are causally associated with OC, which has significant potential for the early detection and diagnosis of OC and EOC subtypes, providing valuable insights into this area of research.
Collapse
Affiliation(s)
- Junfeng Guo
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chen Wang
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - He Li
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Chenhuan Ding
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Department of Traditional Chinese Medicine, School of Medicine, Pujiang Hospital, Minhang Campus of Renji Hospital, Shanghai Jiao Tong University, Shanghai, 201112, China.
| |
Collapse
|
3
|
Wang M, Xiang YH, Liu M, Jiang S, Guo JY, Jin XY, Sun HF, Zhang N, Wang ZG, Liu JX. The application prospects of sacha inchi ( Plukenetia volubilis linneo) in rheumatoid arthritis. Front Pharmacol 2024; 15:1481272. [PMID: 39484157 PMCID: PMC11524839 DOI: 10.3389/fphar.2024.1481272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
Sacha Inchi (Plukenetia volubilis L) (SI) is a traditional natural medicine from tropical rainforests of Amazon region in South America. As a raw material for edible oil, it has various pharmacological effects such as antioxidant, anti-inflammatory, hypolipidemia, and blood pressure lowering, which have attracted increasing attentions of pharmacists. This has prompted researchers to explore its pharmacological effects for potential applications in certain diseases. Among these, the study of its anti-inflammatory effects has become a particularly interesting topic, especially in rheumatoid arthritis (RA). RA is a systemic autoimmune disease, and often accompanied by chronic inflammatory reactions. Despite significant progress in its treatment, there is still an urgent need to find effective anti-RA drugs in regard to safety. This review summarizes the potential therapeutic effects of SI on RA by modulating gut microbiota, targeting inflammatory cells and pathways, and mimicking biologic antibody drugs, predicting the application prospects of SI in RA, and providing references for research aimed at using SI to treat RA.
Collapse
Affiliation(s)
- Min Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yin-Hong Xiang
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Mei Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan, China
| | - Shan Jiang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jia-ying Guo
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiao-yan Jin
- School of Pharmaceutical Sciences, Xinjiang medical University, Wulumuqi, Xinjiang, China
| | - Hui-feng Sun
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ning Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Zhi-Gang Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jian-xin Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan, China
| |
Collapse
|
4
|
Qi P, Chen X, Tian J, Zhong K, Qi Z, Li M, Xie X. The gut homeostasis-immune system axis: novel insights into rheumatoid arthritis pathogenesis and treatment. Front Immunol 2024; 15:1482214. [PMID: 39391302 PMCID: PMC11464316 DOI: 10.3389/fimmu.2024.1482214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Rheumatoid arthritis is a widely prevalent autoimmune bone disease that imposes a significant burden on global healthcare systems due to its increasing incidence. In recent years, attention has focused on the interaction between gut homeostasis and the immune system, particularly in relation to bone health. Dysbiosis, which refers to an imbalance in the composition and function of the gut microbiota, has been shown to drive immune dysregulation through mechanisms such as the release of pro-inflammatory metabolites, increased gut permeability, and impaired regulatory T cell function. These factors collectively contribute to immune system imbalance, promoting the onset and progression of Rheumatoid arthritis. Dysbiosis induces both local and systemic inflammatory responses, activating key pro-inflammatory cytokines such as tumor necrosis factor-alpha, Interleukin-6, and Interleukin-17, which exacerbate joint inflammation and damage. Investigating the complex interactions between gut homeostasis and immune regulation in the context of Rheumatoid arthritis pathogenesis holds promise for identifying new therapeutic targets, revealing novel mechanisms of disease progression, and offering innovative strategies for clinical treatment.
Collapse
Affiliation(s)
- Peng Qi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xin Chen
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jiexiang Tian
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Kexin Zhong
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zhonghua Qi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Menghan Li
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xingwen Xie
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
5
|
Gusakov K, Kalinkovich A, Ashkenazi S, Livshits G. Nature of the Association between Rheumatoid Arthritis and Cervical Cancer and Its Potential Therapeutic Implications. Nutrients 2024; 16:2569. [PMID: 39125448 PMCID: PMC11314534 DOI: 10.3390/nu16152569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
It is now established that patients with rheumatoid arthritis (RA) have an increased risk of developing cervical cancer (CC) or its precursor, cervical intraepithelial neoplasia (CIN). However, the underlying mechanisms of this association have not been elucidated. RA is characterized by unresolved chronic inflammation. It is suggested that human papillomavirus (HPV) infection in RA patients exacerbates inflammation, increasing the risk of CC. The tumor microenvironment in RA patients with CC is also marked by chronic inflammation, which aggravates the manifestations of both conditions. Gut and vaginal dysbiosis are also considered potential mechanisms that contribute to the chronic inflammation and aggravation of RA and CC manifestations. Numerous clinical and pre-clinical studies have demonstrated the beneficial effects of various nutritional approaches to attenuate chronic inflammation, including polyunsaturated fatty acids and their derivatives, specialized pro-resolving mediators (SPMs), probiotics, prebiotics, and certain diets. We believe that successful resolution of chronic inflammation and correction of dysbiosis, in combination with current anti-RA and anti-CC therapies, is a promising therapeutic approach for RA and CC. This approach could also reduce the risk of CC development in HPV-infected RA patients.
Collapse
Affiliation(s)
- Kirill Gusakov
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; (K.G.); (S.A.)
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel;
| | - Shai Ashkenazi
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; (K.G.); (S.A.)
| | - Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; (K.G.); (S.A.)
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel;
| |
Collapse
|
6
|
Ermencheva P, Kotov G, Shumnalieva R, Velikova T, Monov S. Exploring the Role of the Microbiome in Rheumatoid Arthritis-A Critical Review. Microorganisms 2024; 12:1387. [PMID: 39065155 PMCID: PMC11278530 DOI: 10.3390/microorganisms12071387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune rheumatic disease characterized by synovial joint inflammation with subsequent destruction as well as systemic manifestation, leading to impaired mobility and impaired quality of life. The etiopathogenesis of RA is still unknown, with genetic, epigenetic and environmental factors (incl. tobacco smoking) contributing to disease susceptibility. The link between genetic factors like "shared epitope alleles" and the development of RA is well known. However, why only some carriers have a break in self-tolerance and develop autoimmunity still needs to be clarified. The presence of autoantibodies in patients' serum months to years prior to the onset of clinical manifestations of RA has moved the focus to possible epigenetic factors, including environmental triggers that could contribute to the initiation and perpetuation of the inflammatory reaction in RA. Over the past several years, the role of microorganisms at mucosal sites (i.e., microbiome) has emerged as an essential mediator of inflammation in RA. An increasing number of studies have revealed the microbial role in the immunopathogenesis of autoimmune rheumatic diseases. Interaction between the host immune system and microbiota initiates loss of immunological tolerance and autoimmunity. The alteration in microbiome composition, the so-called dysbiosis, is associated with an increasing number of diseases. Immune dysfunction caused by dysbiosis triggers and sustains chronic inflammation. This review aims to provide a critical summary of the literature findings related to the hypothesis of a reciprocal relation between the microbiome and the immune system. Available data from studies reveal the pivotal role of the microbiome in RA pathogenesis.
Collapse
Affiliation(s)
- Plamena Ermencheva
- Clinic of Rheumatology, University Hospital ‘St. Ivan Rilski’, 13 Urvich Str., 1612 Sofia, Bulgaria; (P.E.); (G.K.); (R.S.); (S.M.)
| | - Georgi Kotov
- Clinic of Rheumatology, University Hospital ‘St. Ivan Rilski’, 13 Urvich Str., 1612 Sofia, Bulgaria; (P.E.); (G.K.); (R.S.); (S.M.)
| | - Russka Shumnalieva
- Clinic of Rheumatology, University Hospital ‘St. Ivan Rilski’, 13 Urvich Str., 1612 Sofia, Bulgaria; (P.E.); (G.K.); (R.S.); (S.M.)
- Department of Rheumatology, Medical University of Sofia, 13 Urvich Str., 1612 Sofia, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Kozyak 1, 1407 Sofia, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Kozyak 1, 1407 Sofia, Bulgaria
| | - Simeon Monov
- Clinic of Rheumatology, University Hospital ‘St. Ivan Rilski’, 13 Urvich Str., 1612 Sofia, Bulgaria; (P.E.); (G.K.); (R.S.); (S.M.)
- Department of Rheumatology, Medical University of Sofia, 13 Urvich Str., 1612 Sofia, Bulgaria
| |
Collapse
|
7
|
Khokhar M, Dey S, Tomo S, Jaremko M, Emwas AH, Pandey RK. Unveiling Novel Drug Targets and Emerging Therapies for Rheumatoid Arthritis: A Comprehensive Review. ACS Pharmacol Transl Sci 2024; 7:1664-1693. [PMID: 38898941 PMCID: PMC11184612 DOI: 10.1021/acsptsci.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disease, that causes joint damage, deformities, and decreased functionality. In addition, RA can also impact organs like the skin, lungs, eyes, and blood vessels. This autoimmune condition arises when the immune system erroneously targets the joint synovial membrane, resulting in synovitis, pannus formation, and cartilage damage. RA treatment is often holistic, integrating medication, physical therapy, and lifestyle modifications. Its main objective is to achieve remission or low disease activity by utilizing a "treat-to-target" approach that optimizes drug usage and dose adjustments based on clinical response and disease activity markers. The primary RA treatment uses disease-modifying antirheumatic drugs (DMARDs) that help to interrupt the inflammatory process. When there is an inadequate response, a combination of biologicals and DMARDs is recommended. Biological therapies target inflammatory pathways and have shown promising results in managing RA symptoms. Close monitoring for adverse effects and disease progression is critical to ensure optimal treatment outcomes. A deeper understanding of the pathways and mechanisms will allow new treatment strategies that minimize adverse effects and maintain quality of life. This review discusses the potential targets that can be used for designing and implementing precision medicine in RA treatment, spotlighting the latest breakthroughs in biologics, JAK inhibitors, IL-6 receptor antagonists, TNF blockers, and disease-modifying noncoding RNAs.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Sangita Dey
- CSO
Department, Cellworks Research India Pvt
Ltd, Bengaluru, 560066 Karnataka, India
| | - Sojit Tomo
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Mariusz Jaremko
- Smart-Health
Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological
and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Jeddah, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Rajan Kumar Pandey
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
8
|
Nkeck JR, Tchuisseu-Kwangoua AL, Pelda A, Tamko WC, Hamadjoda S, Essama DB, Fojo B, Niasse M, Diallo S, Ngandeu-Singwé M. Current Approaches to Prevent or Reverse Microbiome Dysbiosis in Chronic Inflammatory Rheumatic Diseases. Mediterr J Rheumatol 2024; 35:220-233. [PMID: 39211023 PMCID: PMC11350408 DOI: 10.31138/mjr.240224.cap] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 09/04/2024] Open
Abstract
Advances in knowledge of the microbiome and its relationship with the immune system have led to a better understanding of the pathogenesis of chronic inflammatory rheumatic diseases (CIRD). Indeed, the microbiome dysbiosis now occupies a particular place with implications for the determinism and clinical expression of CIRD, as well as the therapeutic response of affected patients. Several approaches exist to limit the impact of the microbiome during CIRD. This review aimed to present current strategies to prevent or reverse microbiome dysbiosis based on existing knowledge, in order to provide practical information to healthcare professionals treating patients suffering from CIRD.
Collapse
Affiliation(s)
- Jan René Nkeck
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Ange Larissa Tchuisseu-Kwangoua
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Adeline Pelda
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Rheumatology Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Wilson Chia Tamko
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Rheumatology Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Saquinatou Hamadjoda
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Rheumatology Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Doris Bibi Essama
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Baudelaire Fojo
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Rheumatology Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Moustapha Niasse
- Department of Rheumatology, Dantec Teaching Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Saïdou Diallo
- Department of Rheumatology, Dantec Teaching Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Madeleine Ngandeu-Singwé
- Yaoundé Rheumatology Research Team, Yaoundé, Cameroon
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Rheumatology Unit, Yaoundé Central Hospital, Yaoundé, Cameroon
| |
Collapse
|
9
|
Juárez-Chairez MF, Cid-Gallegos MS, Jiménez-Martínez C, Prieto-Contreras LF, Bollain-Y-Goytia de-la-Rosa JJ. The role of microbiota on rheumatoid arthritis onset. Int J Rheum Dis 2024; 27:e15122. [PMID: 38487975 DOI: 10.1111/1756-185x.15122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes inflammation and pain, which can lead to the loss of normal joint function. Although the exact cause of the disease is not yet fully understood, both environmental factors and genetics may play a role in its development. Moreover, research suggests microbiota contributes to the onset and progression of RA. People with RA show higher quantities of bacteria such as Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Prevotella copri, Proteus mirabilis, and Lactobacillus salivarius compared to healthy individuals. Conversely, studies propose that Lactobacillus casei, a probiotic bacterium with immunomodulatory properties, has beneficial effects for RA in murine and human models. Therefore, this work reviews the potential role of the gut microbiota in the development of RA and explores the feasibility of using probiotic bacteria as a supplementary treatment for this disease.
Collapse
Affiliation(s)
- Milagros Faridy Juárez-Chairez
- Laboratorios de Inmunología y Biología Molecular, Unidad Académica de Ciencias Biológicas de la Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - María Stephanie Cid-Gallegos
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| | - Cristian Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Ciudad de Mexico, Mexico
| | - Luis Fernando Prieto-Contreras
- Laboratorio de Microbiología, Unidad Académica de Ciencias Químicas de la Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| | - Juan José Bollain-Y-Goytia de-la-Rosa
- Laboratorios de Inmunología y Biología Molecular, Unidad Académica de Ciencias Biológicas de la Universidad Autónoma de Zacatecas, Zacatecas, Mexico
| |
Collapse
|
10
|
Courel-Ibáñez J, Vetrovsky T, Růžičková N, Marañón C, Durkalec-Michalski K, Tomcik M, Filková M. Integrative non-pharmacological care for individuals at risk of rheumatoid arthritis. Rheumatol Int 2024; 44:413-423. [PMID: 38180500 DOI: 10.1007/s00296-023-05507-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024]
Abstract
There is increasing knowledge in the recognition of individuals at risk for progression to rheumatoid arthritis (RA) before the clinical manifestation of the disease. This prodromal phase preceding the manifestation of RA may represent a "window of opportunity" for preventive interventions that may transform the clinical approach to this disease. However, limited evidence exists in support of effective interventions to delay the onset or even halt the manifestation of RA. Given the multifactorial nature of RA development and disease progression, the latest guidelines for established RA stress the use of integrative interventions and multidisciplinary care strategies, combining pharmacologic treatment with non-pharmacological approaches. Accordingly, individuals at risk of RA could be offered an integrative, multifactorial intervention approach. Current data point toward pharmacological intervention reverting the subclinical inflammation and delay in the disease onset. In addition, targeting life style modifiable factors (smoking cessation, dental health, physical activity, and diet) may presumably improve RA prognosis in individuals at risk, mainly by changes in epigenetics, autoantibodies, cytokines profiles, and microbiome. Nonetheless, the benefits of multidisciplinary interventions to halt the manifestation of RA in at-risk individuals remain unknown. As there is a growing knowledge of possible pharmacological intervention in the preclinical phase, this narrative review aims to provide a comprehensive overview of non-pharmacological treatments in individuals at risk of RA. Considering the mechanisms preceding the clinical manifestation of RA we explored all aspects that would be worth modifying and that would represent an integrative non-pharmacological care for individuals at risk of RA.
Collapse
Affiliation(s)
- Javier Courel-Ibáñez
- Department of Physical Education and Sport, University of Granada, C/Camino de Alfacar, 21, 18071, Granada, Spain.
| | - Tomas Vetrovsky
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Nora Růžičková
- Department of Rheumatology, 1st Faculty of Medicine, Institute of Rheumatology, Charles University, Prague, Czech Republic
| | - Concepción Marañón
- Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Krzysztof Durkalec-Michalski
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
- Department of Sports Dietetics, Poznan University of Physical Education, Poznan, Poland
| | - Michal Tomcik
- Department of Rheumatology, 1st Faculty of Medicine, Institute of Rheumatology, Charles University, Prague, Czech Republic
| | - Mária Filková
- Department of Rheumatology, 1st Faculty of Medicine, Institute of Rheumatology, Charles University, Prague, Czech Republic
| |
Collapse
|
11
|
Coradduzza D, Bo M, Congiargiu A, Azara E, De Miglio MR, Erre GL, Carru C. Decoding the Microbiome's Influence on Rheumatoid Arthritis. Microorganisms 2023; 11:2170. [PMID: 37764014 PMCID: PMC10536067 DOI: 10.3390/microorganisms11092170] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The aim is better to understand and critically explore and present the available data from observational studies on the pathogenetic role of the microbiome in the development of rheumatoid arthritis (RA). The electronic databases PubMed, Scopus, and Web of Science were screened for the relevant literature published in the last ten years. The primary outcomes investigated included the influence of the gut microbiome on the pathogenesis and development of rheumatoid arthritis, exploring the changes in microbiota diversity and relative abundance of microbial taxa in individuals with RA and healthy controls (HCs). The risk of bias in the included literature was assessed using the GRADE criteria. Ten observational studies were identified and included in the qualitative assessment. A total of 647 individuals with RA were represented in the literature, in addition to 16 individuals with psoriatic arthritis (PsA) and 247 HCs. The biospecimens comprised fecal samples across all the included literature, with 16S rDNA sequencing representing the primary method of biological analyses. Significant differences were observed in the RA microbiome compared to that of HCs: a decrease in Faecalibacterium, Fusicatenibacter, Enterococcus, and Megamonas and increases in Eggerthellales, Collinsella, Prevotella copri, Klebsiella, Escherichia, Eisenbergiella, and Flavobacterium. There are significant alterations in the microbiome of individuals with RA compared to HCs. This includes an increase in Prevotella copri and Lactobacillus and reductions in Collinsella. Collectively, these alterations are proposed to induce inflammatory responses and degrade the integrity of the intestinal barrier; however, further studies are needed to confirm this relationship.
Collapse
Affiliation(s)
- Donatella Coradduzza
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.B.); (A.C.)
| | - Marco Bo
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.B.); (A.C.)
| | - Antonella Congiargiu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.B.); (A.C.)
| | - Emanuela Azara
- Institute of Biomolecular Chemistry, National Research Council, 07100 Sassari, Italy;
| | - Maria Rosaria De Miglio
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (M.R.D.M.); (G.L.E.)
| | - Gian Luca Erre
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (M.R.D.M.); (G.L.E.)
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.B.); (A.C.)
- Control Quality Unit, Azienda-Ospedaliera Universitaria (AOU), 07100 Sassari, Italy
| |
Collapse
|