1
|
Jeong S, Schütz V, Demir F, Preusche M, Huesgen P, Bigler L, Kovacic F, Gutbrod K, Dörmann P, Schulz M. Cyclic Isothiocyanate Goitrin Impairs Lotus japonicus Nodulation, Affects the Proteomes of Nodules and Free Mesorhizobium loti, and Induces the Formation of Caffeic Acid Derivatives in Bacterial Cultures. PLANTS (BASEL, SWITZERLAND) 2024; 13:2897. [PMID: 39458844 PMCID: PMC11511026 DOI: 10.3390/plants13202897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
The continuous release of glucosinolates into the soil by Brassicaceae root exudation is a prerequisite to maintaining toxic levels of breakdown products such as isothiocyanates (ITCs). ITCs influence plant and microbial diversity in ecosystems, while fungi and Rhizobiaceae are particularly injured. Studies explaining the molecular mechanisms of the negative effects are presently limited. Therefore, we investigated the early effects of cyclic ITC goitrin on proteomes of the host and symbiotic Mesorhizobium loti in the nodules of Lotus japonicus and of free-living bacteria. In the nodules, many host proteins had a higher abundance, among them, peroxidases and pathogenesis-related PR-10 proteins functioning in the abscisic-acid-activated signaling pathway. In the microsymbiont, transporter proteins as a prominent group are enhanced; some proteins involved in N-fixation decreased. The proteomes give a report about the loss of immunity suppression resulting in the termination of symbiosis, which initiates nodule senescence. Free-living M. loti are severely damaged, indicated, i.a., by a decrease in transporter proteins, the assumed candidates for goitrin protein complex formation, and high proteolysis. The production of chicoric acid by the accompanying bacteria is inhibitory for M. loti but connected to goitrin elimination, as confirmed by mass spectrometric (MS) analysis. In summary, the nodulation process is severely affected by goitrin, causing nodule dysfunction and failed nodule development. N deficiency conditions leads to yellowish leaves and leaf abscission.
Collapse
Affiliation(s)
- Seungwoo Jeong
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
| | - Vadim Schütz
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
| | - Fatih Demir
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Matthias Preusche
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
- Faculty of Agricultural Sciences and Landscape Architecture, University of Applied Sciences Osnabrueck, 49090 Osnabrueck, Germany
| | - Pitter Huesgen
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany;
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University of Düsseldorf, Forschungszentrum Jülich, 52428 Jülich, Germany;
| | - Katharina Gutbrod
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
| | - Peter Dörmann
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
| | - Margot Schulz
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
| |
Collapse
|
2
|
Ranner JL, Schalk S, Martyniak C, Parniske M, Gutjahr C, Stark TD, Dawid C. Primary and Secondary Metabolites in Lotus japonicus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37466334 DOI: 10.1021/acs.jafc.3c02709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Lotus japonicus is a leguminous model plant used to gain insight into plant physiology, stress response, and especially symbiotic plant-microbe interactions, such as root nodule symbiosis or arbuscular mycorrhiza. Responses to changing environmental conditions, stress, microbes, or insect pests are generally accompanied by changes in primary and secondary metabolism to account for physiological needs or to produce defensive or signaling compounds. Here we provide an overview of the primary and secondary metabolites identified in L. japonicus to date. Identification of the metabolites is mainly based on mass spectral tags (MSTs) obtained by gas chromatography linked with tandem mass spectrometry (GC-MS/MS) or liquid chromatography-MS/MS (LC-MS/MS). These MSTs contain retention index and mass spectral information, which are compared to databases with MSTs of authentic standards. More than 600 metabolites are grouped into compound classes such as polyphenols, carbohydrates, organic acids and phosphates, lipids, amino acids, nitrogenous compounds, phytohormones, and additional defense compounds. Their physiological effects are briefly discussed, and the detection methods are explained. This review of the exisiting literature on L. japonicus metabolites provides a valuable basis for future metabolomics studies.
Collapse
Affiliation(s)
- Josef L Ranner
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Sabrina Schalk
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Cindy Martyniak
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Martin Parniske
- Faculty of Biology, Genetics, University of Munich (LMU), Großhaderner Straße 2-4, 82152 Martinsried, Germany
| | - Caroline Gutjahr
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Timo D Stark
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
- Professorship of Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| |
Collapse
|
3
|
Thal B, Braun HP, Eubel H. Proteomic analysis dissects the impact of nodulation and biological nitrogen fixation on Vicia faba root nodule physiology. PLANT MOLECULAR BIOLOGY 2018; 97:233-251. [PMID: 29779088 DOI: 10.1007/s11103-018-0736-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 05/08/2018] [Indexed: 05/25/2023]
Abstract
Symbiotic nitrogen fixation in root nodules of legumes is a highly important biological process which is only poorly understood. Root nodule metabolism differs from that of roots. Differences in root and nodule metabolism are expressed by altered protein abundances and amenable to quantitative proteome analyses. Differences in the proteomes may either be tissue specific and related to the presence of temporary endosymbionts (the bacteroids) or related to nitrogen fixation activity. An experimental setup including WT bacterial strains and strains not able to conduct symbiotic nitrogen fixation as well as root controls enables identification of tissue and nitrogen fixation specific proteins. Root nodules are specialized plant organs housing and regulating the mutual symbiosis of legumes with nitrogen fixing rhizobia. As such, these organs fulfill unique functions in plant metabolism. Identifying the proteins required for the metabolic reactions of nitrogen fixation and those merely involved in sustaining the rhizobia:plant symbiosis, is a challenging task and requires an experimental setup which allows to differentiate between these two physiological processes. Here, quantitative proteome analyses of nitrogen fixing and non-nitrogen fixing nodules as well as fertilized and non-fertilized roots were performed using Vicia faba and Rhizobium leguminosarum. Pairwise comparisons revealed altered enzyme abundance between active and inactive nodules. Similarly, general differences between nodules and root tissue were observed. Together, these results allow distinguishing the proteins directly involved in nitrogen fixation from those related to nodulation. Further observations relate to the control of nodulation by hormones and provide supportive evidence for the previously reported correlation of nitrogen and sulfur fixation in these plant organs. Additionally, data on altered protein abundance relating to alanine metabolism imply that this amino acid may be exported from the symbiosomes of V. faba root nodules in addition to ammonia. Data are available via ProteomeXchange with identifier PXD008548.
Collapse
Affiliation(s)
- Beate Thal
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hanover, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hanover, Germany
| | - Holger Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hanover, Germany.
| |
Collapse
|
4
|
|
5
|
Lu Y, Liu L, Wang X, Han Z, Ouyang B, Zhang J, Li H. Genome-wide identification and expression analysis of the expansin gene family in tomato. Mol Genet Genomics 2015; 291:597-608. [PMID: 26499956 DOI: 10.1007/s00438-015-1133-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/12/2015] [Indexed: 11/25/2022]
Abstract
Plant expansins are capable of inducing pH-dependent cell wall extension and stress relaxation. They may be useful as targets for crop improvement to enhance fruit development and stress resistance. Tomato is a major agricultural crop and a model plant for studying fruit development. Because only some tomato expansins have been studied, a genome-wide analysis of the tomato expansin family is necessary. In this study, we identified 25 SlEXPAs, eight SlEXPBs, one SlEXLA, four SlEXLBs, and five short homologs in the tomato genome. 25 of these genes were identified as being expressed. Bioinformatic analysis showed that although tomato expansins share similarities with those from other plants, they also exhibit specific features regarding genetic structure and amino acid sequences, which indicates a unique evolutionary process. Segmental and tandem duplication events have played important roles in expanding the tomato expansin family. Additionally, the 3-exon/2-intron structure may form the basic organization of expansin genes. We identified new expansin genes preferentially expressed in fruits (SlEXPA8, SlEXPB8, and SlEXLB1), roots (SlEXPA9, SlEXLB2, and SlEXLB4), and floral organs. Among the analyzed genes those that were inducible by hormone or stress treatments, including SlEXPA3, SlEXPA7, SlEXPB1-B2, SlEXPB8, SlEXLB1-LB2, and SlEXLB4. Our findings may further clarify the biological activities of tomato expansins, especially those related to fruit development and stress resistance, and contribute to the genetic modification of tomato plants to improve crop quality and yield.
Collapse
Affiliation(s)
- Yongen Lu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lifeng Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xin Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhihui Han
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
6
|
D'Apuzzo E, Valkov VT, Parlati A, Omrane S, Barbulova A, Sainz MM, Lentini M, Esposito S, Rogato A, Chiurazzi M. PII Overexpression in Lotus japonicus Affects Nodule Activity in Permissive Low-Nitrogen Conditions and Increases Nodule Numbers in High Nitrogen Treated Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:432-42. [PMID: 25390190 DOI: 10.1094/mpmi-09-14-0285-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report here the first characterization of a GLNB1 gene coding for the PII protein in leguminous plants. The main purpose of this work was the investigation of the possible roles played by this multifunctional protein in nodulation pathways. The Lotus japonicus LjGLB1 gene shows a significant transcriptional regulation during the light-dark cycle and different nitrogen availability, conditions that strongly affect nodule formation, development, and functioning. We also report analysis of the spatial profile of expression of LjGLB1 in root and nodule tissues and of the protein's subcellular localization. Transgenic L. japonicus lines overexpressing the PII protein were obtained and tested for the analysis of the symbiotic responses in different conditions. The uncoupling of PII from its native regulation affects nitrogenase activity and nodule polyamine content. Furthermore, our results suggest the involvement of PII in the signaling of the nitrogen nutritional status affecting the legumes' predisposition for nodule formation.
Collapse
Affiliation(s)
- Enrica D'Apuzzo
- 1 Institute of Biosciences and Bioresources, CNR, Via P. Castellino 111, Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jiménez-Bremont JF, Marina M, Guerrero-González MDLL, Rossi FR, Sánchez-Rangel D, Rodríguez-Kessler M, Ruiz OA, Gárriz A. Physiological and molecular implications of plant polyamine metabolism during biotic interactions. FRONTIERS IN PLANT SCIENCE 2014; 5:95. [PMID: 24672533 PMCID: PMC3957736 DOI: 10.3389/fpls.2014.00095] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/25/2014] [Indexed: 05/19/2023]
Abstract
During ontogeny, plants interact with a wide variety of microorganisms. The association with mutualistic microbes results in benefits for the plant. By contrast, pathogens may cause a remarkable impairment of plant growth and development. Both types of plant-microbe interactions provoke notable changes in the polyamine (PA) metabolism of the host and/or the microbe, being each interaction a complex and dynamic process. It has been well documented that the levels of free and conjugated PAs undergo profound changes in plant tissues during the interaction with microorganisms. In general, this is correlated with a precise and coordinated regulation of PA biosynthetic and catabolic enzymes. Interestingly, some evidence suggests that the relative importance of these metabolic pathways may depend on the nature of the microorganism, a concept that stems from the fact that these amines mediate the activation of plant defense mechanisms. This effect is mediated mostly through PA oxidation, even though part of the response is activated by non-oxidized PAs. In the last years, a great deal of effort has been devoted to profile plant gene expression following microorganism recognition. In addition, the phenotypes of transgenic and mutant plants in PA metabolism genes have been assessed. In this review, we integrate the current knowledge on this field and analyze the possible roles of these amines during the interaction of plants with microbes.
Collapse
Affiliation(s)
- Juan F. Jiménez-Bremont
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis PotosíMéxico
| | - María Marina
- UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| | | | - Franco R. Rossi
- UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| | - Diana Sánchez-Rangel
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis PotosíMéxico
| | | | - Oscar A. Ruiz
- UB1, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| | - Andrés Gárriz
- UB3, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasChascomús, Argentina
| |
Collapse
|
8
|
Ampomah OY, Jensen JB. The trehalose utilization gene thuA ortholog in Mesorhizobium loti does not influence competitiveness for nodulation on Lotus spp. World J Microbiol Biotechnol 2014; 30:1129-34. [DOI: 10.1007/s11274-013-1527-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/14/2013] [Indexed: 11/30/2022]
|
9
|
Takanashi K, Takahashi H, Sakurai N, Sugiyama A, Suzuki H, Shibata D, Nakazono M, Yazaki K. Tissue-specific transcriptome analysis in nodules of Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:869-76. [PMID: 22432875 DOI: 10.1094/mpmi-01-12-0011-r] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Legume plants can establish symbiotic nitrogen fixation (SNF) with rhizobia mostly in root nodules, where rhizobia-infected cells are accompanied by uninfected cells in a mosaic pattern. Inside the mature nodules of the legume, carbon and nitrogen nutrients between host plant cells and their resident bacteria are actively exchanged. To elucidate the metabolite dynamics relevant for SNF in nodules, three tissues from a nodule of a model legume, Lotus japonicus, were isolated using laser microdissesction, and transcriptome analysis was done by an oligoarray of 60-mer length representing 21,495 genes. In our tissue-specific profiling, many genes were identified as being expressed in nodules in a spatial-specific manner. Among them, genes coding for metabolic enzymes were classified according to their function, and detailed data analysis showed that a secondary metabolic pathway was highly activated in the nodule cortex. In particular, a number of metabolic genes for a phenylpropanoid pathway were found as highly expressed genes accompanied by those encoding putative transporters of secondary metabolites. These data suggest the involvement of a novel physiological function of phenylpropanoids in SNF. Moreover, five representative genes were selected, and detailed tissue-specific expression was characterized by promoter-β-glucuronidase experiments. Our results provide a new data source for investigation of both nodule differentiation and tissue-specific physiological functions in nodules.
Collapse
Affiliation(s)
- Kojiro Takanashi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Root-nodule bacteria (rhizobia) are of great importance for nitrogen acquisition through symbiotic nitrogen fixation in a wide variety of leguminous plants. These bacteria differ from most other soil microorganisms by taking dual forms, i.e. a free-living form in soils and a symbiotic form inside of host legumes. Therefore, they should have a versatile strategy for survival, whether inhabiting soils or root nodules formed through rhizobia-legume interactions. Rhizobia generally contain large amounts of the biogenic amine homospermidine, an analog of spermidine which is an essential cellular component in most living systems. The external pH, salinity and a rapid change in osmolarity are thought to be significant environmental factors affecting the persistence of rhizobia. The present review describes the regulation of homospermidine biosynthesis in response to environmental stress and its possible functional role in rhizobia. Legume root nodules, an alternative habitat of rhizobia, usually contain a variety of biogenic amines besides homospermidine and the occurrence of some of these amines is closely associated with rhizobial infections. In the second half of this review, novel biogenic amines found in certain legume root nodules and the mechanism of their synthesis involving cooperation between the rhizobia and host legume cells are also described.
Collapse
Affiliation(s)
- Shinsuke Fujihara
- National Agricultural Research Center, Kannondai 3-1-1, Tsukuba, Ibaraki 305-8666. Japan
| |
Collapse
|
11
|
Tani E, Tsaballa A, Stedel C, Kalloniati C, Papaefthimiou D, Polidoros A, Darzentas N, Ganopoulos I, Flemetakis E, Katinakis P, Tsaftaris A. The study of a SPATULA-like bHLH transcription factor expressed during peach (Prunus persica) fruit development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:654-63. [PMID: 21324706 DOI: 10.1016/j.plaphy.2011.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 12/28/2010] [Accepted: 01/11/2011] [Indexed: 05/03/2023]
Abstract
Extensive studies on the dry fruits of the model plant arabidopsis (Arabidopsis thaliana) have revealed various gene regulators of the development and dehiscence of the siliques. Peach pericarp is analogous to the valve tissues of the arabidopsis siliques. The stone (otherwise called pit) in drupes is formed through lignification of the fruit endocarp. The lignified endocarp in peach can be susceptible to split-pit formation under certain genetic as well as environmental factors. This phenomenon delays processing of the clingstone varieties of peach and causes economical losses for the peach fruit canning industry. The fruitfull (FUL) and shatterproof (SHP) genes are key MADS-box transcription protein coding factors that control fruit development and dehiscence in arabidopsis by promoting the expression of basic helix-loop-helix (bHLH) transcription factors like Spatula (SPT) and Alcatraz (ALC). Results from our previous studies on peach suggested that temporal regulation of PPERFUL and PPERSHP gene expression may be involved in the regulation of endocarp margin development. In the present study a PPERSPATULA-like (PPERSPT) gene was cloned and characterized. Comparative analysis of temporal regulation of PPERSPT gene expression during pit hardening in a resistant and a susceptible to split-pit variety, suggests that this gene adds one more component to the genes network that controls endocarp margins development in peach. Taking into consideration that no ALC-like genes have been identified in any dicot plant species outside the Brassicaceae family, where arabidopsis belongs, PPERSPT may have additional role(s) in peach that are fulfilled in arabidopsis by ALC.
Collapse
Affiliation(s)
- Eleni Tani
- Institute of Agrobiotechnology, CERTH, 6th km Charilaou-Thermis Road, Thermi GR-570 01, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Becana M, Matamoros MA, Udvardi M, Dalton DA. Recent insights into antioxidant defenses of legume root nodules. THE NEW PHYTOLOGIST 2010; 188:960-76. [PMID: 21039567 DOI: 10.1111/j.1469-8137.2010.03512.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Legume root nodules are sites of intense biochemical activity and consequently are at high risk of damage as a result of the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). These molecules can potentially give rise to oxidative and nitrosative damage but, when their concentrations are tightly controlled by antioxidant enzymes and metabolites, they also play positive roles as critical components of signal transduction cascades during nodule development and stress. Thus, recent advances in our understanding of ascorbate and (homo)glutathione biosynthesis in plants have opened up the possibility of enhancing N(2) fixation through an increase of their concentrations in nodules. It is now evident that antioxidant proteins other than the ascorbate-glutathione enzymes, such as some isoforms of glutathione peroxidases, thioredoxins, peroxiredoxins, and glutathione S-transferases, are also critical for nodule activity. To avoid cellular damage, nodules are endowed with several mechanisms for sequestration of Fenton-active metals (nicotianamine, phytochelatins, and metallothioneins) and for controlling ROS/RNS bioactivity (hemoglobins). The use of 'omic' technologies has expanded the list of known antioxidants in plants and nodules that participate in ROS/RNS/antioxidant signaling networks, although aspects of developmental variation and subcellular localization of these networks remain to be elucidated. To this end, a critical point will be to define the transcriptional and post-transcriptional regulation of antioxidant proteins.
Collapse
Affiliation(s)
- Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | | | | | | |
Collapse
|
13
|
Organogenic nodule formation in hop: a tool to study morphogenesis in plants with biotechnological and medicinal applications. J Biomed Biotechnol 2010; 2010. [PMID: 20811599 PMCID: PMC2929504 DOI: 10.1155/2010/583691] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 06/14/2010] [Accepted: 06/28/2010] [Indexed: 11/18/2022] Open
Abstract
The usage of Humulus lupulus for brewing increased the demand for high-quality plant material. Simultaneously, hop has been used in traditional medicine and recently recognized with anticancer and anti-infective properties. Tissue culture techniques have been reported for a wide range of species, and open the prospect for propagation of disease-free, genetically uniform and massive amounts of plants in vitro. Moreover, the development of large-scale culture methods using bioreactors enables the industrial production of secondary metabolites.
Reliable and efficient tissue culture protocol for shoot regeneration through organogenic nodule formation was established for hop. The present review describes the histological, and biochemical changes occurring during this morphogenic process, together with an analysis of transcriptional and metabolic profiles. We also discuss the existence of common molecular factors among three different morphogenic processes: organogenic nodules and somatic embryogenesis, which strictly speaking depend exclusively on intrinsic developmental reprogramming, and legume nitrogen-fixing root nodules, which arises in response to symbiosis. The review of the key factors that participate in hop nodule organogenesis and the comparison with other morphogenic processes may have merit as a study presenting recent advances in complex molecular networks occurring during morphogenesis and together, these provide a rich framework for biotechnology applications.
Collapse
|
14
|
Tani E, Polidoros AN, Flemetakis E, Stedel C, Kalloniati C, Demetriou K, Katinakis P, Tsaftaris AS. Characterization and expression analysis of AGAMOUS-like, SEEDSTICK-like, and SEPALLATA-like MADS-box genes in peach (Prunus persica) fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:690-700. [PMID: 19409800 DOI: 10.1016/j.plaphy.2009.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/23/2009] [Accepted: 03/31/2009] [Indexed: 05/06/2023]
Abstract
MADS-box genes encode transcriptional regulators that are critical for flowering, flower organogenesis and plant development. Although there are extensive reports on genes involved in flower organogenesis in model and economically important plant species, there are few reports on MADS-box genes in woody plants. In this study, we have cloned and characterized AGAMOUS (AG), SEEDSTICK (STK) and SEPALLATA (SEP) homologs from peach tree (Prunus persica L. Batsch) and studied their expression patterns in different tissues as well as in fruit pericarp during pit hardening. AG- STK- and SEP-like homologs, representative of the C-, D-, E-like MADS-box gene lineages, respectively, play key roles in stamen, carpel, ovule and fruit development in Arabidopsis thaliana. Sequence similarities, phylogenetic analysis and structural characteristics were used to provide classification of the isolated genes in type C (PPERAG), type D (PPERSTK) and type E (PPERSEP1, PPERSEP3, PPERFB9) organ identity genes. Expression patterns were determined and in combination with phylogenetic data provided useful indications on the function of these genes. These data suggest the involvement of MADS-box genes in peach flower and fruit development and provide further evidence for the role of these genes in woody perennial trees that is compatible with their function in model plant species.
Collapse
Affiliation(s)
- Eleni Tani
- Institute of Agrobiotechnology (IN.A.), CERTH, 6th km Charilaou-Thermis Road, Thermi GR-570 01, Greece
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Andreadeli A, Flemetakis E, Axarli I, Dimou M, Udvardi MK, Katinakis P, Labrou NE. Cloning and characterization of Lotus japonicus formate dehydrogenase: a possible correlation with hypoxia. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:976-84. [PMID: 19281876 DOI: 10.1016/j.bbapap.2009.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
Abstract
Formate dehydrogenases (FDHs, EC 1.2.1.2) comprise a group of enzymes found in both prokaryotes and eukaryotes that catalyse the oxidation of formate to CO(2). FDH1 from the model legume Lotus japonicus (LjFDH1) was cloned and expressed in E. coli BL21(DE3) as soluble active protein. The enzyme was purified using affinity chromatography on Cibacron blue 3GA-Sepharose. The enzymatic properties of the recombinant enzyme were investigated and the kinetic parameters (K(m), k(cat)) for a number of substrates were determined. Molecular modelling studies were also employed to create a model of LjFDH1, based on the known structure of the Pseudomonas sp. 101 enzyme. The molecular model was used to help interpret biochemical data concerning substrate specificity and catalytic mechanism of the enzyme. The temporal expression pattern of LjFDH1 gene was studied by real-time RT-PCR in various plant organs and during the development of nitrogen-fixing nodules. Furthermore, the spatial transcript accumulation during nodule development and in young seedpods was determined by in situ RNA-RNA hybridization. These results considered together indicate a possible role of formate oxidation by LjFDH1 in plant tissues characterized by relative hypoxia.
Collapse
Affiliation(s)
- A Andreadeli
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
16
|
Rogato A, D'Apuzzo E, Barbulova A, Omrane S, Stedel C, Simon-Rosin U, Katinakis P, Flemetakis M, Udvardi M, Chiurazzi M. Tissue-specific down-regulation of LjAMT1;1 compromises nodule function and enhances nodulation in Lotus japonicus. PLANT MOLECULAR BIOLOGY 2008; 68:585-595. [PMID: 18781388 DOI: 10.1007/s11103-008-9394-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 08/27/2008] [Indexed: 05/26/2023]
Abstract
Plant ammonium transporters of the AMT1 family are involved in N-uptake from the soil and ammonium transport, and recycling within the plant. Although AMT1 genes are known to be expressed in nitrogen-fixing nodules of legumes, their precise roles in this specialized organ remain unknown. We have taken a reverse-genetic approach to decipher the physiological role of LjAMT1;1 in Lotus japonicus nodules. LjAMT1;1 is normally expressed in both the infected zone and the vascular tissue of Lotus nodules. Inhibition of LjAMT1;1 gene expression, using an antisense gene construct driven by a leghemoglobin promoter resulted in a substantial reduction of LjAMT1;1 transcript in the infected tissue but not the vascular bundles of transgenic plants. As a result, the nitrogen-fixing activity of nodules was partially impaired and nodule number increased compared to control plants. Expression of LjAMT1;1-GFP fusion protein in plant cells indicated a plasma-membrane location for the LjAMT1;1 protein. Taken together, the results are consistent with a role of LjAMT1;1 in retaining ammonium derived from symbiotic nitrogen fixation in plant cells prior to its assimilation.
Collapse
Affiliation(s)
- Alessandra Rogato
- Institute of Genetics and Biophysics A. Buzzati Traverso, Via P. Castellino 12, 80131, Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Efrose RC, Flemetakis E, Sfichi L, Stedel C, Kouri ED, Udvardi MK, Kotzabasis K, Katinakis P. Characterization of spermidine and spermine synthases in Lotus japonicus: induction and spatial organization of polyamine biosynthesis in nitrogen fixing nodules. PLANTA 2008; 228:37-49. [PMID: 18320213 DOI: 10.1007/s00425-008-0717-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 02/15/2008] [Indexed: 05/10/2023]
Abstract
The biosynthesis of the polyamines spermidine (Spd) and spermine (Spm) from putrescine (Put) is catalysed by the consequent action of two aminopropyltransferases, spermidine synthase (SPDS EC: 2.5.1.16) and spermine synthase (SPMS EC: 2.5.1.22). Two cDNA clones coding for SPDS and SPMS homologues in the nitrogen-fixing nodules of the model legume Lotus japonicus were identified. Functionality of the encoded polypeptides was confirmed by their ability to complement spermidine and spermine deficiencies in yeast. The temporal and spatial expression pattern of the respective genes was correlated with the accumulation of total polyamines in symbiotic and non-symbiotic organs. Expression of both genes was maximal at early stages of nodule development, while at later stages the levels of both transcripts declined. Both genes were expressed in nodule inner cortical cells, vascular bundles, and central tissue. In contrast to gene expression, increasing amounts of Put, Spd, and Spm were found to accumulate during nodule development and after maturity. Interestingly, nodulated plants exhibited systemic changes in both LjSPDS and LjSPMS transcript levels and polyamine content in roots, stem and leaves, in comparison to uninoculated plants. These results give new insights into the neglected role of polyamines during nodule development and symbiotic nitrogen fixation (SNF).
Collapse
Affiliation(s)
- R C Efrose
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Flemetakis E, Efrose RC, Ott T, Stedel C, Aivalakis G, Udvardi MK, Katinakis P. Spatial and temporal organization of sucrose metabolism in Lotus japonicus nitrogen-fixing nodules suggests a role for the elusive alkaline/neutral invertase. PLANT MOLECULAR BIOLOGY 2006; 62:53-69. [PMID: 16897473 DOI: 10.1007/s11103-006-9003-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 04/11/2006] [Indexed: 05/11/2023]
Abstract
Symbiotic nitrogen fixation (SNF) in legume nodules is a highly energy demanding process, fuelled by plant-supplied carbohydrates mainly in the form of sucrose. In this study, we have combined molecular and biochemical approaches in order to study the spatial and temporal organisation of sucrose metabolism in nitrogen-fixing nodules of the model legume Lotus japonicus, with an emphasis on the neglected role of alkaline/neutral invertase. For this purpose, a full-length cDNA clone coding for an alkaline/neutral invertase isoform, termed LjInv1, was identified in a L. japonicus mature nodule cDNA libraries. Alkaline/neutral invertase activity was also found to be the predominant invertase activity in mature nodules. Real-time reverse-transcription polymerase chain reaction analysis was used in order to study the temporal expression patterns of LjInv1 in parallel with genes encoding acid invertase and sucrose synthase (SuSy) isoforms, and enzymes involved in the subsequent hexose partitioning including hexokinase, phosphoglucomutase (PGM) and phosphoglucose isomerase (PGI). The spatial organisation of sucrose metabolism was studied by in situ localisation of LjInv1 transcripts and alkaline/neutral invertase activity, and SuSy protein during nodule development. Furthermore, the spatial organisation of hexose metabolism was investigated by histochemical localisation of hexokinase, PGM and PGI activities in mature nodules. The results considered together indicate that alkaline/neutral invertase could contribute to both the Glc-1-P and Glc-6-P pools in nodules, fuelling both biosynthetic processes and SNF. Furthermore, transcript profiling analysis revealed that genes coding for hexokinase and putative plastidic PGM and PGI isoforms are upregulated during the early stages of nodule development, while the levels of transcripts corresponding to cytosolic PGM and PGI isoforms remained similar to uninfected roots, indicating a possible role of LjInv1 in producing hexoses for starch production and other biosynthetic processes in developing nodules.
Collapse
Affiliation(s)
- Emmanouil Flemetakis
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
19
|
Desbrosses GG, Kopka J, Udvardi MK. Lotus japonicus metabolic profiling. Development of gas chromatography-mass spectrometry resources for the study of plant-microbe interactions. PLANT PHYSIOLOGY 2005; 137:1302-18. [PMID: 15749991 PMCID: PMC1088322 DOI: 10.1104/pp.104.054957] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 12/08/2004] [Accepted: 12/12/2004] [Indexed: 05/18/2023]
Abstract
Symbiotic nitrogen fixation (SNF) in legume root nodules requires differentiation and integration of both plant and bacterial metabolism. Classical approaches of biochemistry, molecular biology, and genetics have revealed many aspects of primary metabolism in legume nodules that underpin SNF. Functional genomics approaches, especially transcriptomics and proteomics, are beginning to provide a more holistic picture of the metabolic potential of nodules in model legumes like Medicago truncatula and Lotus japonicus. To extend these approaches, we have established protocols for nonbiased measurement and analysis of hundreds of metabolites from L. japonicus, using gas chromatography coupled with mass spectrometry. Following creation of mass spectral tag libraries, which represent both known and unknown metabolites, we measured and compared relative metabolite levels in nodules, roots, leaves, and flowers of symbiotic plants. Principal component analysis of the data revealed distinct metabolic phenotypes for the different organs and led to the identification of marker metabolites for each. Metabolites that were enriched in nodules included: octadecanoic acid, asparagine, glutamate, homoserine, cysteine, putrescine, mannitol, threonic acid, gluconic acid, glyceric acid-3-P, and glycerol-3-P. Hierarchical cluster analysis enabled discrimination of 10 groups of metabolites, based on distribution patterns in diverse Lotus organs. The resources and tools described here, together with ongoing efforts in the areas of genome sequencing, and transcriptome and proteome analysis of L. japonicus and Mesorhizobium loti, should lead to a better understanding of nodule metabolism that underpins SNF.
Collapse
|