1
|
Saxena S, Roy S, Ahmad MN, Nandi AK. LDL2 and PAO5 genes are essential for systemic acquired resistance in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2025; 177:e70102. [PMID: 39903087 DOI: 10.1111/ppl.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/30/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
A partly infected plant becomes more resistant to subsequent infections by developing systemic acquired resistance (SAR). Primary infected tissues produce signals that travel to systemic tissues for SAR-associated priming of defense-related genes. The mechanism through which mobile signals contribute to long-lasting infection memory is mostly unknown. RSI1/FLD, a putative histone demethylase, is required for developing SAR. Here, we report that two other FLD homologs, LSD1-LIKE2 (LDL2) and POLYAMINE OXIDASE 5 (PAO5), are required for SAR development. The mutants of LDL2 and PAO5 are not defective in local resistance but are specifically impaired for SAR. The mutants are defective in salicylic acid accumulation and priming of defence-related genes such as PR1, FMO1, and SnRK2.8. LDL2 and PAO5 are expressed in systemic tissues upon SAR induction by pathogens or SAR mobile signal azelaic acid. The ldl2 and pao5 mutants generate SAR mobile signals like wild-type (WT) plants but fail to respond to the signal at the systemic leaves. Both LDL2 and PAO5 proteins contain polyamine oxidase (PAO) domains, suggesting their involvement in polyamine metabolism. Exogenous applications of polyamines such as spermine and spermidine activate SAR in WT and rescue SAR defects of ldl2 and pao5 plants. Inhibition of polyamine biosynthetic gene arginine decarboxylase blocks SAR development. Results altogether demonstrate specific non-redundant roles of LDL2 and PAO5 in SAR development with their possible involvement in polyamine metabolism.
Collapse
Affiliation(s)
- Shobhita Saxena
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shweta Roy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mir Nasir Ahmad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
2
|
Gao S, Hou Y, Huang Q, Wu P, Han Z, Wei D, Xie H, Gu F, Chen C, Wang J. Osa-miR11117 Targets OsPAO4 to Regulate Rice Immunity against the Blast Fungus Magnaporthe oryzae. Int J Mol Sci 2023; 24:16052. [PMID: 38003241 PMCID: PMC10670930 DOI: 10.3390/ijms242216052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The intricate regulatory process governing rice immunity against the blast fungus Magnaporthe oryzae remains a central focus in plant-pathogen interactions. In this study, we investigated the important role of Osa-miR11117, an intergenic microRNA, in regulating rice defense mechanisms. Stem-loop qRT-PCR analysis showed that Osa-miR11117 is responsive to M. oryzae infection, and overexpression of Osa-miR11117 compromises blast resistance. Green fluorescent protein (GFP)-based reporter assay indicated OsPAO4 is one direct target of Osa-miR11117. Furthermore, qRT-PCR analysis showed that OsPAO4 reacts to M. oryzae infection and polyamine (PA) treatment. In addition, OsPAO4 regulates rice resistance to M. oryzae through the regulation of PA accumulation and the expression of the ethylene (ETH) signaling genes. Taken together, these results suggest that Osa-miR11117 is targeting OsPAO4 to regulate blast resistance by adjusting PA metabolism and ETH signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jiafeng Wang
- National Plant Space Breeding Engineering Technology Research Center, Guangdong Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (S.G.); (Y.H.); (Q.H.); (P.W.); (Z.H.); (D.W.); (H.X.); (F.G.); (C.C.)
| |
Collapse
|
3
|
Hong JK, Sook Jo Y, Jeong DH, Woo SM, Park JY, Yoon DJ, Lee YH, Choi SH, Park CJ. Vapours from plant essential oils to manage tomato grey mould caused by Botrytis cinerea. Fungal Biol 2023; 127:985-996. [PMID: 37024158 DOI: 10.1016/j.funbio.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 03/11/2023]
Abstract
Tomato grey mould has been a great concern during tomato production. The in vitro antifungal activity of vapours emitted from four plant essential oils (EOs) (cinnamon oil, fennel oil, origanum oil, and thyme oil) were evaluated during in vitro conidial germination and mycelial growth of Botrytis cinerea, the causal agent of grey mould. Cinnamon oil vapour was the most effective in suppressing conidial germination, whereas the four EOs showed similar activities regarding inhibiting mycelial growth in dose-dependent manners. The in planta protection effect of the four EO vapours was also investigated by measuring necrotic lesions on tomato leaves inoculated by B. cinerea. Grey mould lesions on the inoculated leaves were reduced by the vapours from cinnamon oil, origanum oil and thyme oil at different levels, but fennel oil did not limit the spread of the necrotic lesions. Decreases in cuticle defect, lipid peroxidation, and hydrogen peroxide production in the B. cinerea-inoculated leaves were correlated with reduced lesions by the cinnamon oil vapours. The reduced lesions by the cinnamon oil vapour were well matched with arrested fungal proliferation on the inoculated leaves. The cinnamon oil vapour regulated tomato defence-related gene expression in the leaves with or without fungal inoculation. These results suggest that the plant essential oil vapours, notably cinnamon oil vapour, can provide eco-friendly alternatives to manage grey mould during tomato production.
Collapse
|
4
|
Cai J, Aharoni A. Amino acids and their derivatives mediating defense priming and growth tradeoff. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102288. [PMID: 35987012 DOI: 10.1016/j.pbi.2022.102288] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Plant response to pathogens attacks generally comes at the expense of growth. Defense priming is widely accepted as an efficient strategy used for augmenting resistance with reduced fitness in terms of growth and yield. Plant-derived small molecules, both primary as well as secondary metabolites, can function as activators to prime plant defense. Amino acids and their derivatives regulate numerous aspects of plant growth and development, and biotic and abiotic stress responses. In this review, we discuss the recent progress in understanding the roles of amino acids and related molecules in defense priming and their link with plant growth. We also highlight some of the outstanding questions and provide an outlook on the prospects of 'engineering' the tradeoff between defense and growth in plants.
Collapse
Affiliation(s)
- Jianghua Cai
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
5
|
Liu X, Bai Y, Zhang Z. Priming defense by transiently suppressing plant susceptibility genes in ornamental crops: A novel strategy for post-harvest diseases management. FRONTIERS IN PLANT SCIENCE 2022; 13:1025165. [PMID: 36186046 PMCID: PMC9520194 DOI: 10.3389/fpls.2022.1025165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
6
|
Takahashi I, Ota T, Asami T. Function of hydroxycinnamoyl spermidines in seedling growth of Arabidopsis. Biosci Biotechnol Biochem 2022; 86:294-299. [PMID: 34958361 DOI: 10.1093/bbb/zbab223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/18/2021] [Indexed: 11/13/2022]
Abstract
Hydroxycinnamic acid amides are involved in various developmental processes as well as in biotic and abiotic stress responses. Among them, the presence of spermidine derivatives, such as N1,N8-di(coumaroyl)-spermidine and N1,N8-di(sinapoyl)-spermidine, and their biosynthetic genes have been reported in Arabidopsis, but their functions in plants are still unknown. We chemically synthesized the above-mentioned spermidine derivatives to assess their physiological functions in Arabidopsis. We evaluated the growth and development of chemically treated Arabidopsis and demonstrated that these compounds inhibited seed germination, hypocotyl elongation, and primary root growth, which could be due to modulation of plant hormone homeostasis and signaling. The results suggest that these compounds are regulatory metabolites that modulate plant growth and development.
Collapse
Affiliation(s)
- Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Ota
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Shelp BJ. From plant biology research to technology transfer and knowledge extension: improving food quality and mitigating environmental impacts. Facets (Ott) 2022. [DOI: 10.1139/facets-2022-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Academic scientists face an unpredictable path from plant biology research to real-life application. Fundamental studies of γ-aminobutyrate and carotenoid metabolism, control of Botrytis infection, and the uptake and distribution of mineral nutrients illustrate that most academic research in plant biology could lead to innovative solutions for food, agriculture, and the environment. The time to application depends on various factors such as the fundamental nature of the scientific questions, the development of enabling technologies, the research priorities of funding agencies, the existence of competitive research, the willingness of researchers to become engaged in commercial activities, and ultimately the insight and creativity of the researchers. Applied research is likely to be adopted more rapidly by industry than basic research, so academic scientists engaged in basic research are less likely to participate in science commercialization. It is argued that the merit of Discovery Grant applications to the Natural Sciences and Engineering Research Council (NSERC) of Canada should not be evaluated for their potential impact on policy and (or) technology. Matching industry funds in Canada rarely support the search for knowledge. Therefore, NSERC Discovery Grants should fund basic research in its entirety.
Collapse
Affiliation(s)
- Barry J. Shelp
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
8
|
Dmochowska-Boguta M, Kloc Y, Orczyk W. Polyamine Oxidation Is Indispensable for Wheat (Triticum aestivum L.) Oxidative Response and Necrotic Reactions during Leaf Rust (Puccinia triticina Eriks.) Infection. PLANTS 2021; 10:plants10122787. [PMID: 34961257 PMCID: PMC8703351 DOI: 10.3390/plants10122787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
Hydrogen peroxide is a signal and effector molecule in the plant response to pathogen infection. Wheat resistance to Puccinia triticina Eriks. is associated with necrosis triggered by oxidative burst. We investigated which enzyme system dominated in host oxidative reaction to P. triticina infection. The susceptible Thatcher cultivar and isogenic lines with defined resistance genes were inoculated with P. triticina spores. Using diamine oxidase (DAO) and polyamine oxidase (PAO) inhibitors, accumulation of H2O2 was analyzed in the infection sites. Both enzymes participated in the oxidative burst during compatible and incompatible interactions. Accumulation of H2O2 in guard cells, i.e., the first phase of the response, depended on DAO and the role of PAO was negligible. During the second phase, the patterns of H2O2 accumulation in the infection sites were more complex. Accumulation of H2O2 during compatible interaction (Thatcher and TcLr34 line) moderately depended on DAO and the reaction of TcLr34 was stronger than that of Thatcher. Accumulation of H2O2 during incompatible interaction of moderately resistant plants (TcLr24, TcLr25 and TcLr29) was DAO-dependent in TcLr29, while the changes in the remaining lines were not statistically significant. A strong oxidative burst in resistant plants (TcLr9, TcLr19, TcLr26) was associated with both enzymes’ activities in TcLr9 and only with DAO in TcLr19 and TcLr26. The results are discussed in relation to other host oxidative systems, necrosis, and resistance level.
Collapse
|
9
|
Shelp BJ, Aghdam MS, Flaherty EJ. γ-Aminobutyrate (GABA) Regulated Plant Defense: Mechanisms and Opportunities. PLANTS (BASEL, SWITZERLAND) 2021; 10:1939. [PMID: 34579473 PMCID: PMC8468876 DOI: 10.3390/plants10091939] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Global climate change and associated adverse abiotic and biotic stress conditions affect plant growth and development, and agricultural sustainability in general. Abiotic and biotic stresses reduce respiration and associated energy generation in mitochondria, resulting in the elevated production of reactive oxygen species (ROS), which are employed to transmit cellular signaling information in response to the changing conditions. Excessive ROS accumulation can contribute to cell damage and death. Production of the non-protein amino acid γ-aminobutyrate (GABA) is also stimulated, resulting in partial restoration of respiratory processes and energy production. Accumulated GABA can bind directly to the aluminum-activated malate transporter and the guard cell outward rectifying K+ channel, thereby improving drought and hypoxia tolerance, respectively. Genetic manipulation of GABA metabolism and receptors, respectively, reveal positive relationships between GABA levels and abiotic/biotic stress tolerance, and between malate efflux from the root and heavy metal tolerance. The application of exogenous GABA is associated with lower ROS levels, enhanced membrane stability, changes in the levels of non-enzymatic and enzymatic antioxidants, and crosstalk among phytohormones. Exogenous GABA may be an effective and sustainable tolerance strategy against multiple stresses under field conditions.
Collapse
Affiliation(s)
- Barry J. Shelp
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, Qazvin 34148-96818, Iran;
| | - Edward J. Flaherty
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
10
|
Velázquez-Márquez S, De-la-Cruz IM, Tapia-López R, Núñez-Farfán J. Tropane alkaloids and terpenes synthase genes of Datura stramonium (Solanaceae). PeerJ 2021; 9:e11466. [PMID: 34178440 PMCID: PMC8212831 DOI: 10.7717/peerj.11466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background Plants have evolved physical–chemical defense to prevent/diminish damage by their enemies. Chemical defense involves the synthesis’ pathways of specialized toxic, repellent, or anti-nutritive metabolites to herbivores. Molecular evolutionary studies have revealed the origin of new genes, acquisition and functional diversification along time in different plant lineages. Methods Using bioinformatic tools we analyze gene divergence of tropane alkaloids (TAs) and terpene synthases (TPSs) in Datura stramonium and other species of Solanaceae; compared gene and amino acids sequence of TAs and TPSs on genomes, cDNA and proteins sequences of Viridiplantae. We analyzed two recently assembled genomes of D. stramonium (Ticumán and Teotihuacán), transcriptomes of Datura metel and genomes of other Solanaceae. Hence, we analyzed variation of TAs and TPSs to infer genes involved in plant defense and plant responses before stress. We analyzed protein modeling and molecular docking to predict interactions between H6H and ligand; we translated the sequences (Teo19488, Tic8550 and Tic8549) obtained from the two genomes of D. stramonium by using Swiss-Model and Ramachandran plot and MolProbity structure validation of Teo19488 protein model. Results For TAs, we detected an expansion event in the tropinone reductase II (TRII) and the ratio synonymous/non-synonymous substitutions indicate positive selection. In contrast, a contraction event and negative selection was detected in tropinone reductase I (TRI). In Hy-oscyamine 6 b-hydroxylase (H6H), enzyme involved in the production of tropane alkaloids atropine and scopolamine, the synonymous/non-synonymous substitution ratio in its dominion indicates positive selection. For terpenes (TPS), we found 18 DsTPS in D. stramomiun and seven in D. metel; evolutionary analyses detected positive selection in TPS10.1 and TPS10.2 of D. stramonium and D. metel. Comparison of copies of TPSs in D. stramonium detected variation among them in the binding site. Duplication events and differentiation of TAs and TPSs of D. stramonium, as compared to other Solanaceae, suggest their possible involvement on adaptive evolution of defense to herbivores. Protein modeling and docking show that the three protein structures obtained of DsH6H from Teo19488, Tic-8550 and Tic8549 maintain the same interactions and the union site of 2OG-FeII_Oxy with the Hy-o ligand as in 6TTM of D. metel. Conclusion Our results indicate differences in the number of gene copies involved in the synthesis of tropane alkaloids, between the genomes of D. stramonium from two Mexican populations. More copies of genes related to the synthesis of tropane alkaloids (TRI, TRII, H6H, PMT) are found in D. stramonium as compared to Viridiplantae. Likewise, for terpene synthases (TPS), TPS-10 is duplicated in D. stramonium and D. metel. Further studies should be directed to experimentally assess gain (overexpression) or loss (silencing) of function of duplicated genes.
Collapse
Affiliation(s)
- Sabina Velázquez-Márquez
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, DF, Mexico
| | - Iván M De-la-Cruz
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, DF, Mexico
| | - Rosalinda Tapia-López
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, DF, Mexico
| | - Juan Núñez-Farfán
- Laboratorio de Genética Ecológica y Evolución, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, DF, Mexico
| |
Collapse
|
11
|
Janse van Rensburg HC, Limami AM, Van den Ende W. Spermine and Spermidine Priming against Botrytis cinerea Modulates ROS Dynamics and Metabolism in Arabidopsis. Biomolecules 2021; 11:223. [PMID: 33562549 PMCID: PMC7914871 DOI: 10.3390/biom11020223] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
Polyamines (PAs) are ubiquitous small aliphatic polycations important for growth, development, and environmental stress responses in plants. Here, we demonstrate that exogenous application of spermine (Spm) and spermidine (Spd) induced cell death at high concentrations, but primed resistance against the necrotrophic fungus Botrytis cinerea in Arabidopsis. At low concentrations, Spm was more effective than Spd. Treatments with higher exogenous Spd and Spm concentrations resulted in a biphasic endogenous PA accumulation. Exogenous Spm induced the accumulation of H2O2 after treatment but also after infection with B. cinerea. Both Spm and Spd induced the activities of catalase, ascorbate peroxidase, and guaiacol peroxidase after treatment but also after infection with B. cinerea. The soluble sugars glucose, fructose, and sucrose accumulated after treatment with high concentrations of PAs, whereas only Spm induced sugar accumulation after infection. Total and active nitrate reductase (NR) activities were inhibited by Spm treatment, whereas Spd inhibited active NR at low concentrations but promoted active NR at high concentrations. Finally, γaminobutyric acid accumulated after treatment and infection in plants treated with high concentrations of Spm. Phenylalanine and asparagine also accumulated after infection in plants treated with a high concentration of Spm. Our data illustrate that Spm and Spd are effective in priming resistance against B. cinerea, opening the door for the development of sustainable alternatives for chemical pesticides.
Collapse
Affiliation(s)
| | - Anis M. Limami
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France;
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium;
| |
Collapse
|
12
|
Gahir S, Bharath P, Raghavendra AS. Stomatal Closure Sets in Motion Long-Term Strategies of Plant Defense Against Microbial Pathogens. FRONTIERS IN PLANT SCIENCE 2021; 12:761952. [PMID: 34646293 PMCID: PMC8502850 DOI: 10.3389/fpls.2021.761952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 05/08/2023]
|
13
|
Liu C, Atanasov KE, Arafaty N, Murillo E, Tiburcio AF, Zeier J, Alcázar R. Putrescine elicits ROS-dependent activation of the salicylic acid pathway in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2020; 43:2755-2768. [PMID: 32839979 DOI: 10.1111/pce.13874] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 05/20/2023]
Abstract
Polyamines are small amines that accumulate during stress and contribute to disease resistance through as yet unknown signaling pathways. Using a comprehensive RNA-sequencing analysis, we show that early transcriptional responses triggered by each of the most abundant polyamines (putrescine, spermidine, spermine, thermospermine and cadaverine) exhibit specific quantitative differences, suggesting that polyamines (rather than downstream metabolites) elicit defense responses. Signaling by putrescine, which accumulates in response to bacteria that trigger effector triggered immunity (ETI) and systemic acquired resistance (SAR), is largely dependent on the accumulation of hydrogen peroxide, and is partly dependent on salicylic acid (SA), the expression of ENHANCED DISEASE SUSCEPTIBILITY (EDS1) and NONEXPRESSOR of PR GENES1 (NPR1). Putrescine elicits local SA accumulation as well as local and systemic transcriptional reprogramming that overlaps with SAR. Loss-of-function mutations in arginine decarboxylase 2 (ADC2), which is required for putrescine synthesis and copper amine oxidase (CuAO), which is involved in putrescine oxidation, compromise basal defenses, as well as putrescine and pathogen-triggered systemic resistance. These findings confirm that putrescine elicits ROS-dependent SA pathways in the activation of plant defenses.
Collapse
Affiliation(s)
- Changxin Liu
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Kostadin E Atanasov
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Nazanin Arafaty
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Ester Murillo
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Antonio F Tiburcio
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Jürgen Zeier
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf, Germany
| | - Rubén Alcázar
- Department of Biology, Healthcare and Environment, Section of Plant Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Singla P, Bhardwaj RD, Kaur S, Kaur J, Grewal SK. Metabolic adjustments during compatible interaction between barley genotypes and stripe rust pathogen. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:295-302. [PMID: 31901452 DOI: 10.1016/j.plaphy.2019.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/15/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Stripe rust is a fungal disease that has devastated the barley production for a long time. The present study focused on the role of β-glucan, PR proteins, diamine oxidase (DAO), polyamine oxidase (PAO), key enzymes and metabolites of phenol and proline metabolism in the stripe rust resistance of barley. RD2901 with resistant behavior against stripe rust showed increased levels of PR proteins, phenylalanine ammonia lyase (PAL), tyrosine ammonia lyase (TAL) along with the accumulation of β-glucan and lignin which strengthen the plant cell wall during plant-pathogen interaction. It also depicted the enhanced activities of glutamate dehydrogenase (GDH) and ornithine aminotransferase (OAT) coupled with the increased amounts of proline, glycine betaine and choline after infection with M-race of P. striiformis f. sp. hordei. On the contrary, the sensitive genotype Jyoti was unable to enhance the activities of most of these enzymes except PAL and OAT so that it showed an increase in lignin and choline contents only. Secondly, the increase in lignin content was less as compared to the tolerant genotype. Hence, it can be inferred that these key metabolites and enzymes of various metabolic pathways may contribute to the resistance of barley against stripe rust pathogen. This study suggested that these key enzymes and their metabolites could serve as markers for the characterization of plant defensive state that is essential for crop protection.
Collapse
Affiliation(s)
- Prabhjot Singla
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004, India
| | - Rachana D Bhardwaj
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Simarjit Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| | - Jaspal Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| | - Satvir K Grewal
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
15
|
Identification of SWI2/SNF2-Related 1 Chromatin Remodeling Complex (SWR1-C) Subunits in Pineapple and the Role of Pineapple SWR1 COMPLEX 6 (AcSWC6) in Biotic and Abiotic Stress Response. Biomolecules 2019; 9:biom9080364. [PMID: 31412667 PMCID: PMC6723344 DOI: 10.3390/biom9080364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 12/18/2022] Open
Abstract
Chromatin remodeling complex orchestrates numerous aspects of growth and development in eukaryotes. SWI2/SNF2-Related 1 chromatin remodeling complex (SWR1-C) is a member of the SWI/SNF ATPase-containing chromatin remodeling complex responsible for the exchange of H2A for H2A.Z. In plants, SWR1-C plays a crucial role by transcriptionally regulating numerous biological and developmental processes. However, SWR1-C activity remains obscure in pineapple. Here, we aim to identify the SWR1-C subunits in pineapple. By genome-wide identification, we found a total of 11 SWR1-C subunits in the pineapple. The identified SWR1-C subunits were named and classified based on the sequence similarity and phylogenetic analysis. RNA-Seq analysis showed that pineapple SWR1-C subunits are expressed differentially in different organs and at different stages. Additionally, the qRT-PCR of pineapple SWR1-C subunits during abiotic stress exposure showed significant changes in their expression. We further investigated the functions of pineapple SWR1 COMPLEX 6 (AcSWC6) by ectopically expressing it in Arabidopsis. Interestingly, transgenic plants ectopically expressing AcSWC6 showed susceptibility to fungal infection and enhanced resistance to salt and osmotic stress, revealing its involvement in biotic and abiotic stress. Moreover, the complementation of mutant Arabidopsisswc6 by pineapple SWC6 suggested the conserved function of SWC6 in plants.
Collapse
|