1
|
Peña FJ, Martín-Cano FE, Becerro-Rey L, da Silva-Álvarez E, Gaitskell-Phillips G, Ortega-Ferrusola C, Aparicio IM, Gil MC. Reimagining stallion sperm conservation: Combating carbotoxicity through pyruvate-induced Warburg effect to enhance sperm longevity and function. J Equine Vet Sci 2024; 143:105204. [PMID: 39384120 DOI: 10.1016/j.jevs.2024.105204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Although stallion spermatozoa are now recognized as highly dependent on oxidative phosphorylation for ATP production in the mitochondria, most extenders in use contain supraphysiological concentrations of glucose as the main energy source. While the toxicity of cryoprotectants has been well documented in the literature, the potential toxicity of excessive glucose in extenders is largely ignored. However, the toxicity of excess glucose, known as "carbotoxicity", is well-established in many areas of medicine. In this paper, we review the basic aspects of stallion spermatozoa metabolism, focusing on factors that significantly impact the lifespan and functionality of spermatozoa during conservation.
Collapse
Affiliation(s)
- Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain.
| | - Francisco Eduardo Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Laura Becerro-Rey
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Eva da Silva-Álvarez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - Inés M Aparicio
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| | - María Cruz Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
2
|
Spanner EA, de Graaf SP, Rickard JP. A multivariate model for the prediction of pregnancy following laparoscopic artificial insemination of sheep. Sci Rep 2024; 14:27556. [PMID: 39528692 PMCID: PMC11555048 DOI: 10.1038/s41598-024-79253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
The causes of variation in the success of laparoscopic artificial insemination (AI) in sheep are not well understood. As such, this study incorporated the contributions of multiple male and female factors relevant to the success of AI into a comprehensive prediction model for pregnancy success. Data from Merino ewes (N = 30 254) including age, uterine tone (1; pale/flaccid-5; turgid/pink), intra-abdominal fat (1; little to no fat present-5; high fat), time of insemination and sire used, were recorded during AI. A subset of semen per sire (N = 388) was thawed and assessed for volume, subjective motility, sperm concentration, and morphology. Sperm motility (CASA), viability and acrosome integrity (FITC-PNA/PI), membrane fluidity (M540/Yo-Pro), mitochondrial superoxide production (Mitosox Red/Sytox Green), lipid peroxidation (Bodipy C11), level of intracellular reactive oxygen species (H2DCFDA) and DNA fragmentation (Acridine Orange) were also assessed 0, 3 and 6 h post-thaw. Logistic binomial regression revealed sperm concentration (P < 0.001), CASA parameters at 0 h (PCA3; P = 0.03), viable acrosome intact sperm at 6 h (P = 0.02), abnormal morphology (P < 0.001), uterine tone (P < 0.001) and intra-abdominal fat (P = 0.03) of ewes influenced likelihood of pregnancy. Results generated will help standardise the pre-screening and selection of semen and ewes prior to artificial breeding programs, reducing variation in the success of sheep AI.
Collapse
Affiliation(s)
- Eloise A Spanner
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Room 344, Level 3 Gunn Building, Sydney, New South Wales, 2006, Australia.
| | - S P de Graaf
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Room 344, Level 3 Gunn Building, Sydney, New South Wales, 2006, Australia
| | - J P Rickard
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Room 344, Level 3 Gunn Building, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
3
|
An Z, Shi L, Zhou H, Hou G, Xun W. Exploratory Metabolomics and Lipidomics Profiling Contributes to Understanding How Curcumin Improves Quality of Goat Semen Stored at 16 °C in Tropical Areas. Int J Mol Sci 2024; 25:10200. [PMID: 39337684 PMCID: PMC11432619 DOI: 10.3390/ijms251810200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/24/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) exert a vital role in sperm quality during semen preservation, where excessive ROS leads to oxidative damage and undermines sperm integrity. Curcumin, a botanical extract, is capable of neutralizing ROS and enhancing the activity of antioxidant enzymes. This study was aimed at evaluating the effects of curcumin on sperm viability, acrosome integrity, and antioxidant levels, as well as metabolomic and lipidomic profiles. The results demonstrated that curcumin at 25 µmol/L significantly enhanced sperm motility, plasma membrane, and acrosome integrity, elevated the levels of antioxidant enzymes (T-AOC, CAT, SOD), and decreased ROS production (p < 0.05). Metabolomic analysis identified 93 distinct metabolites that showed significant differences between the control and curcumin-treated groups. KEGG pathways emphasized the participation of these metabolites in key metabolic processes such as the citric acid cycle, cholesterol metabolism, and fatty acid metabolism. Curcumin treatment brought about notable variations in lipid profiles, including increased levels of phosphatidylcholine, acylcarnitine, and triglyceride over the storage time, suggesting enhanced lipid anabolic activity. Overall, the supplementation of curcumin at 25 µmol/L effectively mitigates oxidative stress and prolongs the viability of semen storage at 16 °C by modulating specific metabolic and lipid profiles.
Collapse
Affiliation(s)
- Zhaoxiang An
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Liguang Shi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - Hanlin Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - Wenjuan Xun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Mukherjee AG, Valsala Gopalakrishnan A. Rosolic acid as a novel activator of the Nrf2/ARE pathway in arsenic-induced male reproductive toxicity: An in silico study. Biochem Biophys Rep 2024; 39:101801. [PMID: 39175663 PMCID: PMC11340599 DOI: 10.1016/j.bbrep.2024.101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Male reproductive toxicity as a result of arsenic exposure is linked with oxidative stress and excessive generation of reactive oxygen species (ROS). It leads to an imbalance between ROS production and antioxidant defense mechanisms ultimately resulting in male infertility. The nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) is a transcription factor that responds to cellular stressors controlling the oxidative state, mitochondrial dysfunction, inflammation, and proteostasis. This study aims to investigate the potential of Rosolic acid (ROA) to act as a novel Nrf2 activator by mitigating oxidative stress to combat arsenic-induced male reproductive toxicity. The protein and ligands were prepared in the BIOVIA Discovery Studio, followed by protein-ligand docking using auto dock vina integrated with the PyRx-Virtual Screening Tool. Then the ADME properties were analyzed using the SwissADME tool to get a clear idea about the physicochemical properties, lipophilicity, water solubility, pharmacokinetics, and drug likeliness of ROA. It was followed by molecular dynamics simulation (MDS) studies using GROMACS. The 3D and 2D interaction maps revealed the interactions of Keap 1 with ROA. Keap1-ROA complex was found to have a binding energy of -7.8 kcal/mol. ROA showed 0 violations for Lipinski and 0 alerts each for PAINS and Brenk and a bioavailability score of 0.55. The BOILED-Egg representation showcases that ROA is predicted as passively crossing the blood-brain barrier (BBB). The MDS described 2FLU-ROA as a stable system. This work portrays that ROA can be a potent Nrf2 activator by exhibiting an inhibitory activity against the Keap1 protein and thus mitigating oxidative stress in arsenic-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
5
|
Gibb Z, Aitken RJ, Sheridan AR, Holt B, Waugh S, Swegen A. The effects of oxidative stress and intracellular calcium on mitochondrial permeability transition pore formation in equine spermatozoa. FASEB Bioadv 2024; 6:143-158. [PMID: 38846376 PMCID: PMC11150759 DOI: 10.1096/fba.2023-00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 06/09/2024] Open
Abstract
The in vitro storage of stallion spermatozoa for use in artificial insemination leads to oxidative stress and imbalances in calcium homeostasis that trigger the formation of the mitochondrial permeability transition pore (mPTP), resulting in premature cell death. However, little is understood about the dynamics and the role of mPTP formation in mammalian spermatozoa. Here, we identify an important role for mPTP in stallion sperm Ca2+ homeostasis. We show that stallion spermatozoa do not exhibit "classical" features of mPTP; specifically, they are resistant to cyclosporin A-mediated inhibition of mPTP formation, and they do not require exogenous Ca2+ to form the mPTP. However, chelation of endogenous Ca2+ prevented mPTP formation, indicating a role for intracellular Ca2+ in this process. Furthermore, our findings suggest that this cell type can mobilize intracellular Ca2+ stores to form the mPTP in response to low Ca2+ environments and that under oxidative stress conditions, mPTP formation preceded a measurable increase in intracellular Ca2+, and vice versa. Contrary to previous work that identified mitochondrial membrane potential (MMP) as a proxy for mPTP formation, here we show that a loss of MMP can occur independently of mPTP formation, and thus MMP is not an appropriate proxy for the detection of mPTP formation. In conclusion, the mPTP plays a crucial role in maintaining Ca2+ and reactive oxygen species homeostasis in stallion spermatozoa, serving as an important regulatory mechanism for normal sperm function, thereby contraindicating the in vitro pharmacological inhibition of mPTP formation to enhance sperm longevity.
Collapse
Affiliation(s)
- Zamira Gibb
- School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentThe University of NewcastleCallaghanNew South WalesAustralia
| | - Robert J. Aitken
- School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentThe University of NewcastleCallaghanNew South WalesAustralia
| | - Alecia R. Sheridan
- School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentThe University of NewcastleCallaghanNew South WalesAustralia
| | - Brandan Holt
- Faculty of Health, School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Stephanie Waugh
- School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentThe University of NewcastleCallaghanNew South WalesAustralia
| | - Aleona Swegen
- School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentThe University of NewcastleCallaghanNew South WalesAustralia
| |
Collapse
|
6
|
Elkhawagah AR, Ricci A, Bertero A, Poletto ML, Nervo T, Donato GG, Vincenti L, Martino NA. Supplementation with MitoTEMPO before cryopreservation improves sperm quality and fertility potential of Piedmontese beef bull semen. Front Vet Sci 2024; 11:1376057. [PMID: 38812559 PMCID: PMC11135289 DOI: 10.3389/fvets.2024.1376057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
The purpose of this study was to improve the quality of frozen-thawed Piedmontese bull semen by incorporating MitoTEMPO (MT) in extended semen before cryopreservation. Semen was collected from 4 fertile bulls, using an artificial vagina, once weekly for 6 consecutive weeks. Semen samples were pooled, diluted with Bullxcell® extender, and supplemented with different concentrations of MT (0 as control, 5, 10, 20, 40, and 80 μM) before cooling, equilibration, and freezing procedures. The frozen-thawed semen was assessed for motility, vitality, acrosome intactness, plasma membrane integrity, DNA integrity, apoptosis, mitochondrial membrane potential, intracellular ROS level and in vitro fertilizing capability. The results showed that MT at concentrations of 10, 20, and 40 μM improved the total, progressive, and rapid motility directly after thawing while, at the highest tested concentration (80 μM), it decreased the progressive and rapid motility after 1, 2, and 3 h of incubation. The sperm kinetics including STR and LIN were noticeably increased at concentrations of 10, 20, and 40 μM directly after thawing (0 h), whereas the MT effect was variable on the other sperm kinetics during the different incubation periods. MitoTEMPO improved the sperm vitality at all tested concentrations, while the acrosomal and DNA integrity were improved at 20 μM and the mitochondrial membrane potentials was increased at 80 μM. The cleavage and blastocyst formation rates were significantly increased by using semen treated with 20 μM MT compared with controls. These findings suggest a potential use of MT mainly at a concentration of 20 μM as an additive in the cryopreservation media of bull semen to improve sperm quality.
Collapse
Affiliation(s)
- Ahmed R. Elkhawagah
- Theriogenology Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Alessandro Ricci
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Alessia Bertero
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | | | - Tiziana Nervo
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Gian Guido Donato
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Leila Vincenti
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Nicola Antonio Martino
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
7
|
Ding J, Lu B, Liu L, Zhong Z, Wang N, Li B, Sheng W, He Q. Guilu-Erxian-Glue alleviates Tripterygium wilfordii polyglycoside-induced oligoasthenospermia in rats by resisting ferroptosis via the Keap1/Nrf2/GPX4 signaling pathway. PHARMACEUTICAL BIOLOGY 2023; 61:213-227. [PMID: 36688426 PMCID: PMC9873281 DOI: 10.1080/13880209.2023.2165114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/04/2022] [Revised: 11/18/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
CONTEXT Guilu-Erxian-Glue (GLEXG) is a traditional Chinese formula used to improve male reproductive dysfunction. OBJECTIVE To investigate the ferroptosis resistance of GLEXG in the improvement of semen quality in the oligoasthenospermia (OAS) rat model. MATERIALS AND METHODS Male Sprague-Dawley (SD) rats were administered Tripterygium wilfordii polyglycoside, a compound extracted from Tripterygium wilfordii Hook F. (Celastraceae), at a dose of 40 mg/kg/day, to establish an OAS model. Fifty-four SD rats were randomly divided into six groups: sham, model, low-dose GLEXG (GLEXGL, 0.25 g/kg/day), moderate-dose GLEXG (GLEXGM, 0.50 g/kg/day), high-dose GLEXG (GLEXGH, 1.00 g/kg/day) and vitamin E (0.01 g/kg/day) group. The semen quality, structure and function of sperm mitochondria, histopathology, levels of oxidative stress and iron, and mRNA levels and protein expression in the Keap1/Nrf2/GPX4 pathway, were analyzed. RESULTS Compared with the model group, GLEXGH significantly improved sperm concentration (35.73 ± 15.42 vs. 17.40 ± 4.12, p < 0.05) and motility (58.59 ± 11.06 vs. 28.59 ± 9.42, p < 0.001), and mitigated testicular histopathology. Moreover, GLEXGH markedly reduced the ROS level (5684.28 ± 1345.47 vs. 15500.44 ± 2307.39, p < 0.001) and increased the GPX4 level (48.53 ± 10.78 vs. 23.14 ± 11.04, p < 0.01), decreased the ferrous iron level (36.31 ± 3.66 vs. 48.64 ± 7.74, p < 0.05), and rescued sperm mitochondrial morphology and potential via activating the Keap1/Nrf2/GPX4 pathway. DISCUSSION AND CONCLUSIONS Ferroptosis resistance from GLEXG might be driven by activation of the Keap1/Nrf2/GPX4 pathway. Targeting ferroptosis is a novel approach for OAS therapy.
Collapse
Affiliation(s)
- Jin Ding
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Department of Andrology Clinic, Affiliated Bao’an Hospital of Traditional Chinese Medicine, The Seventh Clinical Medical College, Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Baowei Lu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Lumei Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Zixuan Zhong
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Wang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Bonan Li
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Wen Sheng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Qinghu He
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, China
- Hunan University of Medicine, Huaihua, China
| |
Collapse
|
8
|
Makris A, Alevra AI, Exadactylos A, Papadopoulos S. The Role of Melatonin to Ameliorate Oxidative Stress in Sperm Cells. Int J Mol Sci 2023; 24:15056. [PMID: 37894737 PMCID: PMC10606652 DOI: 10.3390/ijms242015056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
It is widely accepted that oxidative stress (OS) coming from a wide variety of causes has detrimental effects on male fertility. Antioxidants could have a significant role in the treatment of male infertility, and the current systematic review on the role of melatonin to ameliorate OS clearly shows that improvement of semen parameters follows melatonin supplementation. Although melatonin has considerable promise, further studies are needed to clarify its ability to preserve or restore semen quality under stress conditions in varied species. The present review examines the actions of melatonin via receptor subtypes and its function in the context of OS across male vertebrates.
Collapse
Affiliation(s)
| | | | | | - Serafeim Papadopoulos
- Hydrobiology-Ichthyology Laboratory, Department of Ichthyology and Aquatic Environment, University of Thessaly, Fytokou Str., 38446 Volos, Greece; (A.M.); (A.I.A.); (A.E.)
| |
Collapse
|
9
|
Punjabi U, Goovaerts I, Peeters K, De Neubourg D. Antioxidants in Male Infertility-If We Want to Get This Right We Need to Take the Bull by the Horns: A Pilot Study. Antioxidants (Basel) 2023; 12:1805. [PMID: 37891884 PMCID: PMC10603832 DOI: 10.3390/antiox12101805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Antioxidant therapy should be reserved for infertile patients who actually exhibit signs of oxidative stress (OS). Nevertheless, there is no consensus regarding the measure of the primary endpoint and the assay that should be used. The formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG), an early marker of sperm DNA oxidation (SDO), was analyzed using flow cytometry, in men at a University hospital setup for infertility treatment. Similar to conventional semen parameters, 8-OHdG assay was validated on fresh semen samples to reduce the variability of results. SDO was associated with semen volume, sperm concentration, leucocytes and round cells, but not with age, body mass index, sperm DNA fragmentation (SDF) or OS. Whether the semen samples were normal or subnormal according to the WHO criteria, the expression of 8-OHdG was not different. Receiver operating characteristic curve analysis could discriminate two independent populations. Both SDF and SDO were independently expressed. A high SDF did not reveal a high SDO and vice versa. The thresholds for SDO have been established, but vary with the techniques used. The methodology for SDO needs to be further validated and optimized on a larger clinically defined patient population before the outcome measure is fit to monitor antioxidant therapy in male infertility.
Collapse
Affiliation(s)
- Usha Punjabi
- Centre for Reproductive Medicine, Antwerp University Hospital, 2650 Edegem, Belgium; (I.G.); (K.P.); (D.D.N.)
- Department of Reproductive Medicine, Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), Faculty of Medicine and Health Sciences, University of Antwerp, 2000 Antwerpen, Belgium
| | - Ilse Goovaerts
- Centre for Reproductive Medicine, Antwerp University Hospital, 2650 Edegem, Belgium; (I.G.); (K.P.); (D.D.N.)
- Department of Reproductive Medicine, Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), Faculty of Medicine and Health Sciences, University of Antwerp, 2000 Antwerpen, Belgium
| | - Kris Peeters
- Centre for Reproductive Medicine, Antwerp University Hospital, 2650 Edegem, Belgium; (I.G.); (K.P.); (D.D.N.)
- Department of Reproductive Medicine, Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), Faculty of Medicine and Health Sciences, University of Antwerp, 2000 Antwerpen, Belgium
| | - Diane De Neubourg
- Centre for Reproductive Medicine, Antwerp University Hospital, 2650 Edegem, Belgium; (I.G.); (K.P.); (D.D.N.)
- Department of Reproductive Medicine, Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), Faculty of Medicine and Health Sciences, University of Antwerp, 2000 Antwerpen, Belgium
| |
Collapse
|
10
|
Maiyo AK, Kibet JK, Kengara FO. A review of the characteristic properties of selected tobacco chemicals and their associated etiological risks. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:479-491. [PMID: 35538694 DOI: 10.1515/reveh-2022-0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/19/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Despite the quantum of research findings on tobacco epidemic, a review on the formation characteristics of nicotine, aldehydes and phenols, and their associated etiological risks is still limited in literature. Accordingly, knowledge on the chemical properties and free radical formation during tobacco burning is an important subject towards unravelling the relationship between smoking behaviour and disease. This review investigates how scientific efforts have been advanced towards understanding the release of molecular products from the thermal degradation of tobacco, and harm reduction strategies among cigarette smokers in general. The mechanistic characteristics of nicotine and selected aldehydes are critically examined in this review. For the purpose of this work, articles published during the period 2004-2021 and archived in PubMed, Google Scholar, Medley, Cochrane, and Web of Science were used. The articles were selected based on the health impacts of cigarette smoking, tobacco burning kinetics, tobacco cessation and tobacco as a precursor for emerging diseases such as Covid-19. CONTENT The toxicity of cigarette smoke is directly correlated with its chemical composition derived from the pyrolysis of tobacco stem and leaves. Most of the harmful toxic substances are generated by pyrolysis during smoking and depends on pyrolysis conditions. Detailed studies have been conducted on the kinetics of nicotine by use of robust theoretical models in order to determine the rate constants of reactions in nicotine and those of nicotine dissociation via C-C and C-N scission, yielding pyridinyl and methyl radicals, respectively. Research has suggested that acetaldehyde enhances the effect of nicotine, which in turn reinforces addiction characteristics whereas acrolein and crotonaldehyde are ciliatoxic, and can inhibit lung clearance. On the other hand, phenol affects liver enzymes, lungs, kidneys, and the cardiovascular system while m-cresol attacks the nervous system. SUMMARY AND OUTLOOK The characteristics of chemical release during tobacco burning are very important in the tobacco industry and the cigarette smoking community. Understanding individual chemical formation from cigarette smoking will provide the necessary information needed to formulate sound tobacco reform policies from a chemical standpoint. Nonetheless, intense research is needed in this field in order to prescribe possible measures to deter cigarette smoking addiction and ameliorate the grave miseries bedevilling the tobacco smoking community.
Collapse
Affiliation(s)
- Alfayo K Maiyo
- Department of Chemistry and Biochemistry, Moi University, Eldoret, Kenya
- African Centre of Excellence in Phytochemicals, Textiles and Renewable Energy (ACE II-PTRE), Eldoret, Kenya
| | - Joshua K Kibet
- Department of Chemistry, Egerton University, Njoro, Kenya
| | | |
Collapse
|
11
|
Traini G, Tamburrino L, Ragosta ME, Guarnieri G, Morelli A, Vignozzi L, Baldi E, Marchiani S. Effects of Benzo[a]pyrene on Human Sperm Functions: An In Vitro Study. Int J Mol Sci 2023; 24:14411. [PMID: 37833859 PMCID: PMC10572991 DOI: 10.3390/ijms241914411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Benzo(a)pyrene (BaP) is considered one of the most dangerous air pollutants for adverse health effects, including reproductive toxicity. It is found both in male and female reproductive fluids likely affecting spermatozoa after the selection process through cervical mucus, a process mimicked in vitro with the swim-up procedure. In vitro effects of BaP (1, 5, 10 µM) were evaluated both in unselected and swim-up selected spermatozoa after 3 and 24 h of incubation. BaP reduced total, progressive and hyperactivated motility and migration in a viscous medium both in swim-up selected and unselected spermatozoa. Viability was not significantly affected in swim-up selected but was reduced in unselected spermatozoa. In swim-up selected spermatozoa, increases in the percentage of spontaneous acrosome reaction and DNA fragmentation were observed after 24 h of incubation, whereas no differences between the control and BaP-treated samples were observed in caspase-3 and -7 activity, indicating no effects on apoptotic pathways. ROS species, evaluated by staining with CellROX® Orange and Dihydroethidium, did not differ in viable spermatozoa after BaP treatment. Conversely, the percentage of unviable ROS-positive spermatozoa increased. Our study suggests that BaP present in male and female genital fluids may heavily affect reproductive functions of human spermatozoa.
Collapse
Affiliation(s)
- Giulia Traini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.T.); (L.V.)
| | - Lara Tamburrino
- Andrology, Women’s Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi University Hospital, 50134 Florence, Italy;
| | - Maria Emanuela Ragosta
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (M.E.R.); (G.G.); (A.M.)
| | - Giulia Guarnieri
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (M.E.R.); (G.G.); (A.M.)
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (M.E.R.); (G.G.); (A.M.)
| | - Linda Vignozzi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.T.); (L.V.)
- Andrology, Women’s Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi University Hospital, 50134 Florence, Italy;
| | - Elisabetta Baldi
- Andrology, Women’s Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi University Hospital, 50134 Florence, Italy;
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (M.E.R.); (G.G.); (A.M.)
| | - Sara Marchiani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.T.); (L.V.)
- Andrology, Women’s Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi University Hospital, 50134 Florence, Italy;
| |
Collapse
|
12
|
Wang YY, Lin YH, Wu VC, Lin YH, Huang CY, Ku WC, Sun CY. Decreased Klotho Expression Causes Accelerated Decline of Male Fecundity through Oxidative Injury in Murine Testis. Antioxidants (Basel) 2023; 12:1671. [PMID: 37759974 PMCID: PMC10526093 DOI: 10.3390/antiox12091671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress is the etiology for 30-80% of male patients affected by infertility, which is a major health problem worldwide. Klotho protein is an aging suppressor that functions as a humoral factor modulating various cellular processes including antioxidation and anti-inflammation, and its dysregulation leads to human pathologies. Male mice lacking Klotho are sterile, and decreased Klotho levels in the serum are observed in men suffering from infertility with lower sperm counts. However, the mechanism by which Klotho maintains healthy male fertility remains unclear. Klotho haplodeficiency (Kl+/-) accelerates fertility reduction by impairing sperm quality and spermatogenesis in Kl+/- mice. Testicular proteomic analysis revealed that loss of Klotho predominantly disturbed oxidation and the glutathione-related pathway. We further focused on the glutathione-S-transferase (GST) family which counteracts oxidative stress in most cell types and closely relates with fertility. Several GST proteins, including GSTP1, GSTO2, and GSTK1, were significantly downregulated, which subsequently resulted in increased levels of the lipid peroxidation product 4-hydroxynonenal and apoptosis in murine testis with low or no expression of Klotho. Taken together, the loss of one Kl allele accelerates male fecundity loss because diminished antioxidant capability induces oxidative injury in mice. This is the first study that highlights a connection between Klotho and GST proteins.
Collapse
Affiliation(s)
- Ya-Yun Wang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan; (Y.-Y.W.); (Y.-H.L.)
| | - Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan; (Y.-Y.W.); (Y.-H.L.)
| | - Vin-Cent Wu
- Taiwan Consortium for Acute Kidney Injury and Renal Diseases (CAKs), Taipei 100, Taiwan;
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Yu-Hua Lin
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan;
- Division of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei City 231, Taiwan
| | - Chia-Yen Huang
- Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei 106, Taiwan;
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Wei-Chi Ku
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Chiao-Yin Sun
- Division of Nephrology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Keelung 204, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
13
|
Nayak J, Jena SR, Kumar S, Kar S, Dixit A, Samanta L. Human sperm proteome reveals the effect of environmental borne seminal polyaromatic hydrocarbons exposome in etiology of idiopathic male factor infertility. Front Cell Dev Biol 2023; 11:1117155. [PMID: 37261076 PMCID: PMC10228828 DOI: 10.3389/fcell.2023.1117155] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/06/2022] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction: Polyaromatic hydrocarbons (PAHs) are considered as redox active environmental toxicants inducing oxidative stress (OS) mediated injury to cells. Oxidative predominance is reported in 30%-80% of idiopathic male infertility (IMI) patients. Hence, this work aims to unravel correlation, if any, between seminal PAH exposome and sperm function in IMI patients through a proteomic approach. Methods: Seminal PAH exposome was analyzed in 43 fertile donors and 60 IMI patients by HPLC and receiver operating characteristic (ROC) curve was applied to find out the cut-off limits. Spermatozoa proteome was analyzed by label free liquid chromatography mass spectroscopy (LC-MS/MS) followed by molecular pathway analysis using bioinformatic tools. Validation of key proteins' expression and protein oxidative modifications were analyzed by western blot. Results and discussion: Of the 16 standards toxic PAH, 13 were detected in semen. Impact of the different PAHs on fertility are Anthracene < benzo (a) pyrene < benzo [b] fluoranthene < Fluoranthene < benzo (a) anthracene <indol (123CD) pyrene < pyrene < naphthalene < dibenzo (AH) anthracene < fluorene < 2bromonaphthalene < chrysene < benzo (GH1) perylene as revealed by ROC Curve analysis (AUCROC). Benzo [a] pyrene is invariably present in all infertile patients while naphthalene is present in both groups. Of the total 773 detected proteins (Control: 631 and PAH: 717); 71 were differentially expressed (13 underexpressed, 58 overexpressed) in IMI patients. Enrichment analysis revealed them to be involved in mitochondrial dysfunction and oxidative phosphorylation, DNA damage, Aryl hydrocarbon receptor (AHR) signaling, xenobiotic metabolism and induction of NRF-2 mediated OS response. Increased 4-hydroxynonenal and nitrosylated protein adduct formation, and declined antioxidant defense validates induction of OS. Increased GSH/GSSG ratio in patients may be an adaptive response for PAH metabolism via conjugation as evidenced by over-expression of AHR and Heat shock protein 90 beta (HSP90β) in patients. Seminal PAH concentrations, particularly benzo (a) pyrene can be used as a marker to distinguish IMI from fertile ones with 66.67% sensitivity and 100% specificity (95% confidence interval) along with oxidative protein modification and expression of AHR and HSP90β.
Collapse
Affiliation(s)
- Jasmine Nayak
- Redox Biology & Proteomics Laboratory, Department of Zoology, Ravenshaw University, Cuttack, India
- Center of Excellence in Environment & Public Health, Ravenshaw University, Cuttack, India
| | - Soumya Ranjan Jena
- Redox Biology & Proteomics Laboratory, Department of Zoology, Ravenshaw University, Cuttack, India
- Center of Excellence in Environment & Public Health, Ravenshaw University, Cuttack, India
| | - Sugandh Kumar
- Institute of Life Sciences, NALCO Square, Bhubaneswar, India
| | - Sujata Kar
- Kar Clinic and Hospital Pvt., Ltd., Unit-IV, Bhubaneswar, India
| | - Anshuman Dixit
- Institute of Life Sciences, NALCO Square, Bhubaneswar, India
| | - Luna Samanta
- Redox Biology & Proteomics Laboratory, Department of Zoology, Ravenshaw University, Cuttack, India
- Center of Excellence in Environment & Public Health, Ravenshaw University, Cuttack, India
| |
Collapse
|
14
|
Clulow J, Gibb Z. Liquid storage of stallion spermatozoa – Past, present and future. Anim Reprod Sci 2022; 247:107088. [DOI: 10.1016/j.anireprosci.2022.107088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022]
|
15
|
In Vitro Combination of Ascorbic and Ellagic Acids in Sperm Oxidative Damage Inhibition. Int J Mol Sci 2022; 23:ijms232314751. [PMID: 36499078 PMCID: PMC9740292 DOI: 10.3390/ijms232314751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
It is known that an altered redox balance interferes with normal spermatic functions. Exposure to genotoxic substances capable of producing oxidative stress (OS) can cause infertility in humans. The use of antioxidants to reduce oxidative stress contributes to the improvement in reproductive function. This study focused on an antigenotoxic evaluation of ellagic acid (EA) and ascorbic acid (AA) in combination against benzene genotoxic action on human spermatozoa in vitro. In addition to the evaluation of sperm parameters, damage in sperm genetic material and intracellular ROS quantification were assessed after AA, EA and benzene co-exposure using the TUNEL technique and DCF assay. The results showed that the combination of the two antioxidants generates a greater time-dependent antigenotoxic action, reducing both the sperm DNA fragmentation index and the oxidative stress. The genoprotective effect of AA and EA association in sperm cells lays the foundations for a more in-depth clinical study on the use of antioxidants as a therapy for male infertility.
Collapse
|
16
|
Extend the Survival of Human Sperm In Vitro in Non-Freezing Conditions: Damage Mechanisms, Preservation Technologies, and Clinical Applications. Cells 2022; 11:cells11182845. [PMID: 36139420 PMCID: PMC9496714 DOI: 10.3390/cells11182845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Preservation of human spermatozoa in vitro at normothermia or hypothermia maintaining their functions and fertility for several days plays a significant role in reproductive biology and medicine. However, it is well known that human spermatozoa left in vitro deteriorate over time irreversibly as the consequence of various stresses such as the change of osmolarity, energy deficiency, and oxidative damage, leading to substantial limitations including the need for semen examinations, fertility preservation, and assisted reproductive technology. These problems may be addressed with the aid of non-freezing storage techniques. The main and most effective preservation strategies are the partial or total replacement of seminal plasma with culture medium, named as extenders, and temperature-induced metabolic restriction. Semen extenders consist of buffers, osmolytes, and antioxidants, etc. to protect spermatozoa against the above-mentioned adverse factors. Extended preservation of human spermatozoa in vitro has a negative effect on sperm parameters, whereas its effect on ART outcomes remains inconsistent. The storage duration, temperature, and pre-treatment of semen should be determined according to the aims of preservation. Advanced techniques such as nanotechnology and omics have been introduced and show great potential in the lifespan extension of human sperm. It is certain that more patients will benefit from it in the near future. This review provided an overview of the current knowledge and prospects of prolonged non-freezing storage of human sperm in vitro.
Collapse
|
17
|
Escada-Rebelo S, Cristo MI, Ramalho-Santos J, Amaral S. Mitochondria-Targeted Compounds to Assess and Improve Human Sperm Function. Antioxid Redox Signal 2022; 37:451-480. [PMID: 34847742 DOI: 10.1089/ars.2021.0238] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Significance: Currently 10%-15% of couples in reproductive age face infertility issues. More importantly, male factor contributes to 50% of these cases (either alone or in combination with female causes). Among various reasons, impaired sperm function is the main cause for male infertility. Furthermore, mitochondrial dysfunction and oxidative stress due to increased reactive oxygen species (ROS) production, particularly of mitochondrial origin, are believed to be the main contributors. Recent Advances: Mitochondrial dysfunction, particularly due to increased ROS production, has often been linked to impaired sperm function/quality. For decades, different methods and approaches have been developed to assess mitochondrial features that might correlate with sperm functionality. This connection is now completely accepted, with mitochondrial functionality assessment used more commonly as a readout of sperm functionality. More recently, mitochondria-targeted compounds are on the frontline for both assessment and therapeutic approaches. Critical Issues: In this review, we summarize the current methods for assessing key mitochondrial parameters known to reflect sperm quality as well as therapeutic strategies using mitochondria-targeted antioxidants aiming to improve sperm function in various situations, particularly after sperm cryopreservation. Future Directions: Although more systematic research is needed, mitochondria-targeted compounds definitely represent a promising tool to assess as well as to protect and improve sperm function. Antioxid. Redox Signal. 37, 451-480.
Collapse
Affiliation(s)
- Sara Escada-Rebelo
- PhD Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra, Portugal
| | - Maria Inês Cristo
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sandra Amaral
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, Casa Costa Alemão, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
18
|
Upadhyay VR, Ramesh V, Dewry RK, Yadav DK, Ponraj P. Bimodal interplay of reactive oxygen and nitrogen species in physiology and pathophysiology of bovine sperm function. Theriogenology 2022; 187:82-94. [DOI: 10.1016/j.theriogenology.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2021] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022]
|
19
|
Medica AJ, Aitken RJ, Nicolson GL, Sheridan AR, Swegen A, De Iuliis GN, Gibb Z. Glycerophospholipids protect stallion spermatozoa from oxidative damage in vitro. REPRODUCTION AND FERTILITY 2022; 2:199-209. [PMID: 35118390 PMCID: PMC8801026 DOI: 10.1530/raf-21-0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
Stallion sperm membranes comprise a high proportion of polyunsaturated fatty acids, making stallion spermatozoa especially vulnerable to peroxidative damage from reactive oxygen species generated as a by-product of cell metabolism. Membrane lipid replacement therapy with glycerophospholipid (GPL) mixtures has been shown to reduce oxidative damage in vitro and in vivo. The aims of this study were to test the effects of a commercial preparation of GPL, NTFactor® Lipids, on stallion spermatozoa under oxidative stress. When oxidative damage was induced by the addition of arachidonic acid to stallion spermatozoa, the subsequent addition of GPL reduced the percentage of 4-hydroxynonenal (4-HNE; a key end product of lipid peroxidation) positive cells (32.9 ± 2.7 vs 20.9 ± 2.3%; P ≤ 0.05) and increased the concentration of 4-HNE within the spent media (0.026 ± 0.003 vs 0.039 ± 0.004 µg/mL; P ≤ 0.001), suggesting that oxidized lipids had been replaced by exogenous GPL. Lipid replacement improved several motility parameters (total motility: 2.0 ± 1.0 vs 68.8 ± 2.9%; progressive motility: 0 ± 0 vs 19.3 ± 2.6%; straight line velocity: 9.5 ± 2.1 vs 50.9 ± 4.1 µm/s; curvilinear velocity: 40.8 ± 10 vs 160.7 ± 7.8 µm/s; average path velocity: 13.4 ± 2.9 vs 81.9 ± 5.9 µm/s; P ≤ 0.001), sperm viability (13.5 ± 2.9 vs 80.2 ± 1.6%; P ≤ 0.001) and reduced mitochondrial ROS generation (98.2 ± 0.6 vs 74.8 ± 6.1%; P ≤ 0.001). Supplementation with GPL during 17°C in vitro sperm storage over 72 h improved sperm viability (66.4 ± 2.6 vs 78.1 ± 2.9%; P ≤ 0.01) and total motility (53 ± 5.6 vs 66.3 ± 3.5%; P ≤ 0.05). It is concluded that incubation of stallion spermatozoa with sub-µm-sized GPL micelles results in the incorporation of exogenous GPL into sperm membranes, diminishing lipid peroxidation and improving sperm quality in vitro.
Collapse
Affiliation(s)
- Ashlee J Medica
- Priority Research Centre for Reproductive Science, College of Engineering, Science and Environmental, and Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Robert J Aitken
- Priority Research Centre for Reproductive Science, College of Engineering, Science and Environmental, and Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Garth L Nicolson
- Institute for Molecular Medicine, Huntington Beach, California, USA
| | - Alecia R Sheridan
- Priority Research Centre for Reproductive Science, College of Engineering, Science and Environmental, and Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Aleona Swegen
- Priority Research Centre for Reproductive Science, College of Engineering, Science and Environmental, and Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Geoffry N De Iuliis
- Priority Research Centre for Reproductive Science, College of Engineering, Science and Environmental, and Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Zamira Gibb
- Priority Research Centre for Reproductive Science, College of Engineering, Science and Environmental, and Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
20
|
AITKEN RJ, GIBB Z. Sperm oxidative stress in the context of male infertility: current evidence, links with genetic and epigenetic factors and future clinical needs. Minerva Endocrinol (Torino) 2022; 47:38-57. [DOI: 10.23736/s2724-6507.21.03630-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
|
21
|
Ranéa C, Pariz JR, Drevet JR, Hallak J. Sperm motility in asthenozoospermic semen samples can be improved by incubation in a continuous single culture medium (CSCM®). Syst Biol Reprod Med 2022; 68:25-35. [PMID: 35100915 DOI: 10.1080/19396368.2021.2004623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2022]
Abstract
Standard protocols for clinical in vitro fertilization (IVF) laboratories recommend incubating semen at 37°C in 5% CO2 without strictly specifying which medium should be used or for how long. This study aimed to test the most common different incubation media used in Latin American andrology and micromanipulation laboratories and verify which, if any, is the most appropriate medium to improve asthenozoospermic semen samples' motility in the infertile male population. Ejaculates (136) collected from asthenozoospermic men were divided into two cohorts with similar characteristics (cohort 1; n = 28 and cohort 2; n = 108). Cohort 1 was used to evaluate the optimal incubation time with regard to unprepared asthenozoospermic sample sperm motility. After defining an optimal incubation period of 2 h, cohort 2 was used to evaluate which of the four media commonly used in IVF clinics (continuous single culture medium = CSCM®; SpermRinse medium = SR®; in vitro fertilization medium = G-IVF® and human tubal fluid medium = HTF®) was preferred for semen samples from asthenozoospermic patients. Overall, it was determined that a 2-h incubation in CSCM® medium led to the highest asthenozoospermic sperm motility. Thus, this simple, cost-effective, easily reproducible protocol could prove extremely useful for andrology laboratories working with IVF clinics dealing with asthenozoospermic semen specimens. This is particularly relevant since the incidence of the latter is on the rise as semen quality decreases around the globe.Abbreviations: ANOVA: Analysis of variance; ARTs: Assisted reproductive techniques; BWW: Biggers, Whitten, and Whittingham; CO2: Carbon dioxide; CPM: counted per minute; CSCM: Continuous Single Culture Medium; DAB: 3.3'- diaminobenzidine; DFI: DNA Fragmentation Index; DMSO: Dimethyl sulfoxide; G-IVF: In Vitro Fertilization Medium; GSH: Glutathione; GPx: glutathione peroxidase; HDS: High DNA Stainability; HSA: Human Serum Albumin; HTF: Human Tubal Fluid; HYP: Hyperactivity; ICSI: Intracytoplasmic sperm injection; IUI: Intrauterine insemination; IVF: in vitro fertilization; LIN: Linearity; ROS: Reactive Oxygen Species-level; SC: Sperm concentration; SCA: Sperm Computer Analysis; SCSA: Sperm Chromatin Structural Assay; SR: SpermRinse medium; SSS: Synthetic Serum Substitute; STR: Straightness; SOD: superoxide dismutase; TNE: Tris-Borate-EDTA; TSC: Total sperm count; VAP: Mean velocity; VCL: Curvilinear velocity; VSL: Linear velocity; WHO: World Health Organization; WOB: Wobble; spz: spermatozoa; AO: antioxidant.
Collapse
Affiliation(s)
- Caroline Ranéa
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Andrology Laboratory, São Paulo, Brazil.,Division of Urology, Department of Surgery, Hospital Das Clinicas, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Juliana Risso Pariz
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Andrology Laboratory, São Paulo, Brazil.,Division of Urology, Department of Surgery, Hospital Das Clinicas, University of Sao Paulo Medical School, São Paulo, Brazil.,Department of Pathology, Reproductive Toxicology Unit, University of São Paulo Medical School, São Paulo, Brazil.,Institute for Advanced Studies, University of Sao Paulo, Sao Paulo, Brazil
| | - Joël R Drevet
- Université Clermont Auvergne, GReD Institute, Faculty of Medicine, Clermont-Ferrand, France
| | - Jorge Hallak
- Androscience, Science and Innovation Center in Andrology and High-Complex Clinical and Andrology Laboratory, São Paulo, Brazil.,Division of Urology, Department of Surgery, Hospital Das Clinicas, University of Sao Paulo Medical School, São Paulo, Brazil.,Department of Pathology, Reproductive Toxicology Unit, University of São Paulo Medical School, São Paulo, Brazil.,Institute for Advanced Studies, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
22
|
Castleton PE, Deluao JC, Sharkey DJ, McPherson NO. Measuring Reactive Oxygen Species in Semen for Male Preconception Care: A Scientist Perspective. Antioxidants (Basel) 2022; 11:antiox11020264. [PMID: 35204147 PMCID: PMC8868448 DOI: 10.3390/antiox11020264] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Oxidative stress and elevated levels of seminal and sperm reactive oxygen species (ROS) may contribute to up to 80% of male infertility diagnosis, with sperm ROS concentrations at fertilization important in the development of a healthy fetus and child. The evaluation of ROS in semen seems promising as a potential diagnostic tool for male infertility and male preconception care with a number of clinically available tests on the market (MiOXSYS, luminol chemiluminescence and OxiSperm). While some of these tests show promise for clinical use, discrepancies in documented decision limits and lack of cohort studies/clinical trials assessing their benefits on fertilization rates, embryo development, pregnancy and live birth rates limit their current clinical utility. In this review, we provide an update on the current techniques used for analyzing semen ROS concentrations clinically, the potential to use of ROS research tools for improving clinical ROS detection in sperm and describe why we believe we are likely still a long way away before semen ROS concentrations might become a mainstream preconception diagnostic test in men.
Collapse
Affiliation(s)
- Patience E. Castleton
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide 5005, Australia; (P.E.C.); (J.C.D.)
- Robinson Research Institute, The University of Adelaide, Adelaide 5005, Australia;
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide 5005, Australia
| | - Joshua C. Deluao
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide 5005, Australia; (P.E.C.); (J.C.D.)
- Robinson Research Institute, The University of Adelaide, Adelaide 5005, Australia;
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide 5005, Australia
| | - David J. Sharkey
- Robinson Research Institute, The University of Adelaide, Adelaide 5005, Australia;
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide 5005, Australia
| | - Nicole O. McPherson
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide 5005, Australia; (P.E.C.); (J.C.D.)
- Robinson Research Institute, The University of Adelaide, Adelaide 5005, Australia;
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide 5005, Australia
- Repromed, 180 Fullarton Rd., Dulwich 5065, Australia
- Correspondence: ; Tel.: +61-8-8313-8201
| |
Collapse
|
23
|
Kattawy M D HAE, Abozaid ER, Abdullah DM. Humanin ameliorates late-onset hypogonadism in aged male rats. Curr Mol Pharmacol 2022; 15:996-1008. [PMID: 35086467 DOI: 10.2174/1874467215666220127115602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The reproductive potential declines with age. Late-onset hypogonadism is characterized by reduced serum testosterone. Humanin is a mitochondrial-derived signaling peptide encoded by short open reading frames within the mitochondrial genome. It may protect against some age-related diseases such as atherosclerosis by its cytoprotective effects. OBJECTIVE it aimed to investigate the potential anti-aging effects of humanin on the testicular architecture, oxidative stress, some apoptotic and inflammatory markers in the hypogonadal aged male rats. METHODS Forty male albino rats were divided into 4 groups: normal adult controls, aged vehicle-treated group, aged testosterone-treated group, and aged humanin-treated group. Twenty-month-old male rats with declined serum testosterone were selected to be the animal models of late-onset hypogonadism. Testicular weights, serum testosterone, and some sperm parameters were measured. Testicular tissue IL-6 and TNF-α, superoxide dismutase activity, glutathione peroxidase, and malondialdehyde were assessed. The activity of caspase-3, BCL2, PCNA, and the nuclear factor erythroid 2-related factor 2-antioxidant response element pathway were evaluated. Testes were subjected to histopathological and immunohistochemical examination. Statistical analysis was executed using One Way Analysis of variance (ANOVA) followed by Post hoc (LSD) test to compare means among all studied groups. RESULTS humanin treatment significantly improved serum testosterone, some sperm characteristics, and antioxidant defenses. It decreased active caspase-3, pro-apoptotic BAX expression, and increased antiapoptotic BCL2 and proliferating cell nuclear antigen (PCNA) possibly via activating the (Nrf2-ARE) pathway. CONCLUSION humanin might be a promising therapeutic modality in late-onset hypogonadism as it ameliorated some age-related testicular and hormonal adverse effects.
Collapse
Affiliation(s)
- Hany A El Kattawy M D
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, P.O. Box 71666, Riyadh, Saudi Arabia
- Medical Physiology Department, College of Medicine, Zagazig University, Egypt
| | - Eman R Abozaid
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, P.O. Box 71666, Riyadh, Saudi Arabia
| | - Doaa M Abdullah
- Clinical Pharmacology Department, College of Medicine, Zagazig University, Egypt
| |
Collapse
|
24
|
Rizkallah N, Chambers CG, de Graaf SP, Rickard JP. Factors Affecting the Survival of Ram Spermatozoa during Liquid Storage and Options for Improvement. Animals (Basel) 2022; 12:244. [PMID: 35158568 PMCID: PMC8833663 DOI: 10.3390/ani12030244] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 01/02/2023] Open
Abstract
Semen preservation is an essential component of reproductive technologies, as it promotes genetic gain and long-distance semen transport and multiplies the number of ewes able to be inseminated per single ejaculate. However, the reduced temperature during cold storage at 5 or 15 °C inflicts sub-lethal damage to spermatozoa, compromising sperm quality and the success of artificial breeding. New and emerging research in various species has reported the advantages of storing spermatozoa at higher temperatures, such as 23 °C; however, this topic has not been thoroughly investigated for ram spermatozoa. Despite the success of storing spermatozoa at 23 °C, sperm quality can be compromised by the damaging effects of lipid peroxidation, more commonly when metabolism is left unaltered during 23 °C storage. Additionally, given the biosafety concern surrounding the international transport of egg-yolk-containing extenders, further investigation is critical to assess the preservation ability of synthetic extenders and whether pro-survival factors could be supplemented to maximise sperm survival during storage at 23 °C.
Collapse
Affiliation(s)
- Natalie Rizkallah
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia; (C.G.C.); (S.P.d.G.); (J.P.R.)
| | | | | | | |
Collapse
|
25
|
Ojaghi M, Varghese J, Kastelic JP, Thundathil JC. Characterization of the Testis-Specific Angiotensin Converting Enzyme (tACE)-Interactome during Bovine Sperm Capacitation. Curr Issues Mol Biol 2022; 44:449-469. [PMID: 35723410 PMCID: PMC8928970 DOI: 10.3390/cimb44010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 12/29/2022] Open
Abstract
A comprehensive understanding of molecular and biochemical changes during sperm capacitation is critical to the success of assisted reproductive technologies. We reported involvement of the testis-specific isoform of Angiotensin Converting Enzyme (tACE) in bovine sperm capacitation. The objective of this study was to characterize the tACE interactome in fresh and heparin-capacitated bovine sperm through immunoprecipitation coupled with mass spectrometry. These interactions were validated by co-localization of tACE with beta-tubulin as an identified interactome constituent. Although interactions between tACE and several proteins remained unchanged in fresh and capacitated sperm, mitochondrial aldehyde dehydrogenase 2 (ALDH2), inactive serine/threonine protein-kinase 3 (VRK3), tubulin-beta-4B chain (TUBB4B), and tubulin-alpha-8 chain (TUBA8) were recruited during capacitation, with implications for cytoskeletal and membrane reorganization, vesicle-mediated transport, GTP-binding, and redox regulation. A proposed tACE interactional network with identified interactome constituents was generated. Despite tACE function being integral to capacitation, the relevance of interactions with its binding partners during capacitation and subsequent events leading to fertilization remains to be elucidated.
Collapse
|
26
|
Muranishi Y, Parry L, Vachette-Dit-Martin M, Saez F, Coudy-Gandilhon C, Sauvanet P, Volle DH, Tournayre J, Bottari S, Carpentiero F, Martinez G, Muroňová J, Escoffier J, Bruhat A, Maurin AC, Averous J, Arnoult C, Fafournoux P, Jousse C. When idiopathic male infertility is rooted in maternal malnutrition during the perinatal period in mice. Biol Reprod 2021; 106:463-476. [PMID: 34875016 DOI: 10.1093/biolre/ioab222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 11/14/2022] Open
Abstract
Infertility represents a growing burden worldwide, with one in seven couples presenting difficulties conceiving. Amongst these, 10-15% of the men have idiopathic infertility that does not correlate with any defect in the classical sperm parameters measured. In the present study, we used a mouse model to investigate the effects of maternal undernutrition on fertility in male progeny. Our results indicate that mothers fed on a low protein diet during gestation and lactation produce male offspring with normal sperm morphology, concentration and motility but exhibiting an overall decrease of fertility when they reach adulthood. Particularly, in contrast to control, sperm from these offspring show a remarkable lower capacity to fertilize oocytes when copulation occurs early in the estrus cycle relative to ovulation, due to an altered sperm capacitation. Our data demonstrate for the first time that maternal nutritional stress can have long-term consequences on the reproductive health of male progeny by affecting sperm physiology, especially capacitation, with no observable impact on spermatogenesis and classical quantitative and qualitative sperm parameters. Moreover, our experimental model could be of major interest to study, explain, and ultimately treat certain categories of infertilities.
Collapse
Affiliation(s)
- Yuki Muranishi
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France.,Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Laurent Parry
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France
| | | | - Fabrice Saez
- GReD Institute, Université Clermont Auvergne, Inserm, CNRS, Clermont-Ferrand, France
| | - Cécile Coudy-Gandilhon
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France
| | - Pierre Sauvanet
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France.,Service de chirurgie et hépatobiliaire, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - David H Volle
- Inserm U1103, CNRS UMR6293-Université Clermont Auvergne, Institute Genetic, Reproduction and Development, Team "Environment, Metabolism, Spermatogenesis and Pathophysiology & Inheritance", Clermont-Ferrand, France
| | - Jérémy Tournayre
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France
| | | | - Francesca Carpentiero
- Université Grenoble Alpes, Grenoble, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Guillaume Martinez
- Université Grenoble Alpes, Grenoble, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, France.,Hôpital Couple-Enfant, Centre Hospitalier Universitaire de Grenoble, UM de Génétique Chromosomique, Grenoble, France
| | - Jana Muroňová
- Université Grenoble Alpes, Grenoble, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Jessica Escoffier
- Université Grenoble Alpes, Grenoble, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Alain Bruhat
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France
| | - Anne-Catherine Maurin
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France
| | - Julien Averous
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, France
| | - Pierre Fafournoux
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France
| | - Céline Jousse
- Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France
| |
Collapse
|
27
|
Fraser BA, Miller K, Trigg NA, Smith ND, Western PS, Nixon B, Aitken RJ. A novel approach to nonsurgical sterilization; application of menadione-modified gonocyte-targeting M13 bacteriophage for germ cell ablation in utero. Pharmacol Res Perspect 2021; 8:e00654. [PMID: 32930516 PMCID: PMC7507010 DOI: 10.1002/prp2.654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
There remains a compelling need for the development of nonsurgical sterilizing agents to expand the fertility management options for both domestic and feral animal species. We hypothesize that an efficacious sterilization approach would be to selectively ablate nonrenewable cell types that are essential for reproduction, such as the undifferentiated gonocytes within the embryonic gonad. Here, we report a novel strategy to achieve this goal centered on the use of a chemically modified M13 bacteriophage to effect the targeted delivery of menadione, a redox‐cycling naphthoquinone, to mouse gonocytes. Panning of the M13 random peptide ‘phage display library proved effective in the isolation of gonocyte‐specific targeting clones. One such clone was modified via N‐succinimidyl‐S‐acetylthioacetate (SATA) linkage to the N‐terminus of the major PVIII capsid protein. Subsequent deacetylation of the SATA was undertaken to expose a thiol group capable of reacting with menadione through Michael addition. This chemical modification was confirmed using UV spectrophotometry. In proof‐of‐concept experiments we applied the modified ‘phage to primary cultures of fetal germ cells and induced, an approximately, 60% reduction in the viability of the target cell population. These studies pave the way for in vivo application of chemically modified M13 bacteriophage in order to achieve the selective ablation of nonrenewable cell types in the reproductive system, thereby providing a novel nonsurgical approach the regulation of fertility in target species.
Collapse
Affiliation(s)
- Barbara A Fraser
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Kasey Miller
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Natalie A Trigg
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Nathan D Smith
- Analytical and Biomolecular Research Facility, The University of Newcastle, Callaghan, NSW, Australia
| | - Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Robert J Aitken
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
28
|
Sperm Oxidative Stress during In Vitro Manipulation and Its Effects on Sperm Function and Embryo Development. Antioxidants (Basel) 2021; 10:antiox10071025. [PMID: 34202126 PMCID: PMC8300781 DOI: 10.3390/antiox10071025] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
Reactive oxygen species (ROS) generated at low levels during mitochondrial respiration have key roles in several signaling pathways. Oxidative stress (OS) arises when the generation of ROS exceeds the cell's antioxidant scavenging ability and leads to cell damage. Physiological ROS production in spermatozoa regulates essential functional characteristics such as motility, capacitation, acrosome reaction, hyperactivation, and sperm-oocyte fusion. OS can have detrimental effects on sperm function through lipid peroxidation, protein damage, and DNA strand breakage, which can eventually affect the fertility of an individual. Substantial evidence in the literature indicates that spermatozoa experiencing OS during in vitro manipulation procedures in human- and animal-assisted reproduction are increasingly associated with iatrogenic ROS production and eventual impairment of sperm function. Although a direct association between sperm OS and human assisted reproductive techniques (ART) outcomes after in vitro fertilization (IVF) and/or intracytoplasmic sperm injection (ICSI) is still a matter of debate, studies in animal models provide enough evidence on the adverse effects of sperm OS in vitro and defective fertilization and embryo development. This review summarized the literature on sperm OS in vitro, its effects on functional ability and embryo development, and the approaches that have been proposed to reduce iatrogenic sperm damage and altered embryonic development.
Collapse
|
29
|
Flow-cytometric analysis of membrane integrity of stallion sperm in the face of agglutination: the "zombie sperm" dilemma. J Assist Reprod Genet 2021; 38:2465-2480. [PMID: 33991296 PMCID: PMC8490572 DOI: 10.1007/s10815-021-02134-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2020] [Accepted: 02/25/2021] [Indexed: 10/31/2022] Open
Abstract
PURPOSE To define the effect of sperm agglutination, associated with incubation under capacitating conditions, on accuracy of membrane assessment via flow cytometry and to develop methods to mitigate that effect. METHODS Sperm motility was measured by CASA. Sperm were stained with PI-PSA or a novel method, LD-PSA, using fixable live/dead stain and cell dissociation treatment, before flow-cytometric analysis. Using LD-PSA, acrosome reaction and plasma membrane status were determined in equine sperm treated with 10 μm A23187 for 10 min, followed by 0, 1, or 2 h incubation in capacitating conditions. RESULTS Using PI-PSA, measured membrane integrity (MI; live sperm) was dramatically lower than was total motility (TMOT), indicating spurious results ("zombie sperm"). Sperm aggregates were largely of motile sperm. Loss of motility after A23187 treatment was associated with disaggregation and increased MI. On disaggregation using LD-PSA, MI rose, and MI then corresponded with TMOT. In equine sperm incubated after A23187 treatment, as the percentage of live acrosome-reacted sperm increased, TMOT decreased to near 0. CONCLUSION Flow cytometry assesses only individualized sperm; thus, agglutination of viable sperm alters recorded membrane integrity. As viable sperm become immotile, they individualize; therefore, factors that decrease motility, such as A23187, result in increased measured MI. Disaggregation before assessment allows more accurate determination of sperm membrane status; in this case we documented a mismatch between motility and live acrosome-reacted equine sperm that may relate to the poor repeatability of A23187 treatment for equine IVF. These findings are of profound value to future studies on sperm capacitation.
Collapse
|
30
|
The association between testicular toxicity induced by Li2Co3 and protective effect of Ganoderma lucidum: Alteration of Bax & c-Kit genes expression. Tissue Cell 2021; 72:101552. [PMID: 33992978 DOI: 10.1016/j.tice.2021.101552] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
Ganoderma lucidum has received a lot of attention recently due to its medicinal potential activities. The aim of this designed experiment was to evaluate the beneficial effects of Ganoderma lucidum extract against lithium carbonate induced testicular toxicity and related lesions in mice testis. For this purpose, lithium carbonate at a dose of 30 mg/kg, followed by 75, 150 mg/kg Ganoderma lucidum extract orally were administered for 35 days. The results were obtained from Ganoderma lucidum extract analysis prove contained a large amount of polysaccharides, triterpenoids and poly phenols based on spectrophotometric assay. Also, DPPH assay for Ganoderma lucidum extract showed high level of radical scavenging activity. The hematoxylin & eosin cross section from lithium carbonate treated group exhibited significant alterations in seminiferous tubules. Moreover, lithium carbonate induced oxidative stress via lipid peroxidation and generate MDA (P < 0.001). In addition, lithium carbonate initiated germ cells apoptosis via increase Bax expression (p < 0.001) and reduce germ cells differentiation through down-regulation of c-Kit expression (p < 0.05). Results from CASA showed that sperm parameters like count, motility and viability significantly decreased in lithium treated group (p < 0.001). It is clear that lithium carbonate induce severe damage on male reproductive system and histopathological damages via generation oxidative stress but supplementation with Ganoderma lucidum extract exhibited prevention effects and repaired induced damages.
Collapse
|
31
|
Aitken RJ, Curry BJ, Shokri S, Pujianto DA, Gavriliouk D, Gibb Z, Whiting S, Connaughton HS, Nixon B, Salamonsen LA, Baker MA. Evidence that extrapancreatic insulin production is involved in the mediation of sperm survival. Mol Cell Endocrinol 2021; 526:111193. [PMID: 33610643 DOI: 10.1016/j.mce.2021.111193] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/18/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
Evidence is presented for expression of the insulin receptor on the surface of mammalian spermatozoa as well as transcripts for the receptor substrate adaptor proteins (IRS1-4) needed to mediate insulin action. Exposure to this hormone resulted in insulin receptor phosphorylation (pTyr972), activation of AKT (pSer473) and the stimulation of sperm motility. Intriguingly, the male germ line is also shown to be capable of generating insulin, possessing the relevant mRNA transcript and expressing strong immunocytochemical signals for both insulin and C-peptide. Insulin could be released from the spermatozoa by sonication in a concentration-dependent manner but was not secreted in response to glucose, fructose or stimulation with progesterone. However, insulin release could be induced by factors present in human uterine lavages. Furthermore, the endometrium was also shown to possess the machinery for insulin production and action (mRNA, insulin, C-peptide, proprotein convertase and insulin receptor), releasing insulin into the uterine lumen prior to ovulation. These studies emphasize the fundamental importance of extra-pancreatic insulin in regulating the reproductive process, particularly in the support of spermatozoa on their perilous voyage to the site of fertilization.
Collapse
Affiliation(s)
- R John Aitken
- Priority Research Centre for Reproductive Science, Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia, 2305.
| | - Benjamin J Curry
- Priority Research Centre for Reproductive Science, Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Said Shokri
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Dwi Ari Pujianto
- Department of Biology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Daniel Gavriliouk
- Family Fertility Centre, Ashford Specialist Centre, SA, 5035, Australia
| | - Zamira Gibb
- Priority Research Centre for Reproductive Science, Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Sara Whiting
- Priority Research Centre for Reproductive Science, Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Hayley S Connaughton
- Priority Research Centre for Reproductive Science, Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia, 2305
| | - Lois A Salamonsen
- Hudson Institute of Medical Research, Centre for Reproductive Health, Monash University, VIC, 3168, Australia
| | - Mark A Baker
- Priority Research Centre for Reproductive Science, Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia, 2305
| |
Collapse
|
32
|
Mendonça MAC, Nichi M, Teixeira RHF, Braga FR, Simões R, Losano JDDA, Jorge-Neto PN, Pizzutto CS. Spermatic profile of captive giant anteaters (Myrmecophaga tridactyla): Knowing more to preserve better. Zoo Biol 2021; 40:227-237. [PMID: 33739560 DOI: 10.1002/zoo.21602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2020] [Revised: 10/18/2020] [Accepted: 02/16/2021] [Indexed: 11/06/2022]
Abstract
The giant anteater (Myrmecophaga tridactyla) is being threatened by natural habitat destruction and fragmentation, illegal hunting and road kills. In this context, the generation of basic information on the reproductive parameters of this species is vital, aiming to improve reproductive management via, amongst others, assisted reproductive technologies. This study aimed to describe the morphological and functional features of semen collected from captive giant anteaters. Electroejaculation was performed in 13 animals housed in zoos located in São Paulo state, Brazil. Semen samples were collected from 13 animals in 16 procedures. Samples were evaluated for volume, motility, vigor, pH, concentration, sperm morphology, and functional tests. The following mean values were obtained: volume 1.28 ± 0.27 mL; motility 28.3 ± 6.2%; vigor 2.4 ± 0.25; concentration 129.4 ± 36.1 × 106 sperm/mL; pH 7.4 ± 0.2. Total acrosome, head, midpiece, and tail sperm abnormalities were 3.2 ± 0.8%, 25.4 ± 3.6%, 20.7 ± 3.2%, and 14.7 ± 2.6%, respectively. Intact acrosome was found in 83.7 ± 3.1% and intact membrane in 81.1 ± 4.0% of all samples collected. Mitochondrial activity was 66.4 ± 6.0% (Class I), 18.7 ± 2.9% (Class II), 8.0 ± 2.0% (Class III), 3.9 ± 1.0% (Class IV), and 3.0 ± 0.9% (Class V). Sperm DNA fragmentation rate was 13.2 ± 3.7%. These results indicated that electroejaculation is a feasible method for semen collection in giant anteaters, allowing a more detailed description of the semen in this species.
Collapse
Affiliation(s)
- Marco Antonio Carstens Mendonça
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Marcílio Nichi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Fabrício Rassy Braga
- Veterinary Division, Fundação Parque Zoológico de São Paulo, SP, São Paulo, Brazil
| | - Renata Simões
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - João Diego de Agostini Losano
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Pedro Nacib Jorge-Neto
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, SP, Brazil.,Research Division, Instituto Reprocon, Campo Grande, MS, Brazil
| | - Cristiane Schilbach Pizzutto
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, SP, Brazil.,Research Division, Instituto Reprocon, Campo Grande, MS, Brazil
| |
Collapse
|
33
|
Gualtieri R, Kalthur G, Barbato V, Di Nardo M, Adiga SK, Talevi R. Mitochondrial Dysfunction and Oxidative Stress Caused by Cryopreservation in Reproductive Cells. Antioxidants (Basel) 2021; 10:antiox10030337. [PMID: 33668300 PMCID: PMC7996228 DOI: 10.3390/antiox10030337] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/03/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria, fundamental organelles in cell metabolism, and ATP synthesis are responsible for generating reactive oxygen species (ROS), calcium homeostasis, and cell death. Mitochondria produce most ROS, and when levels exceed the antioxidant defenses, oxidative stress (OS) is generated. These changes may eventually impair the electron transport chain, resulting in decreased ATP synthesis, increased ROS production, altered mitochondrial membrane permeability, and disruption of calcium homeostasis. Mitochondria play a key role in the gamete competence to facilitate normal embryo development. However, iatrogenic factors in assisted reproductive technologies (ART) may affect their functional competence, leading to an abnormal reproductive outcome. Cryopreservation, a fundamental technology in ART, may compromise mitochondrial function leading to elevated intracellular OS that decreases sperm and oocytes' competence and the dynamics of fertilization and embryo development. This article aims to review the role played by mitochondria and ROS in sperm and oocyte function and the close, biunivocal relationships between mitochondrial damage and ROS generation during cryopreservation of gametes and gonadal tissues in different species. Based on current literature, we propose tentative hypothesis of mechanisms involved in cryopreservation-associated mitochondrial dysfunction in gametes, and discuss the role played by antioxidants and other agents to retain the competence of cryopreserved reproductive cells and tissues.
Collapse
Affiliation(s)
- Roberto Gualtieri
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.B.); (M.D.N.); (R.T.)
- Correspondence:
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576 104, India; (G.K.); (S.K.A.)
| | - Vincenza Barbato
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.B.); (M.D.N.); (R.T.)
| | - Maddalena Di Nardo
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.B.); (M.D.N.); (R.T.)
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576 104, India; (G.K.); (S.K.A.)
- Centre for Fertility Preservation, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Riccardo Talevi
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.B.); (M.D.N.); (R.T.)
| |
Collapse
|
34
|
Yen C, Curran SP. Incomplete proline catabolism drives premature sperm aging. Aging Cell 2021; 20:e13308. [PMID: 33480139 PMCID: PMC7884046 DOI: 10.1111/acel.13308] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/14/2020] [Revised: 11/19/2020] [Accepted: 12/27/2020] [Indexed: 12/20/2022] Open
Abstract
Infertility is an increasingly common health issue, with rising prevalence in advanced parental age. Environmental stress has established negative effects on reproductive health, however, the impact of altering cellular metabolism and its endogenous reactive oxygen species (ROS) on fertility remains unclear. Here, we demonstrate the loss of proline dehydrogenase, the first committed step in proline catabolism, is relatively benign. In contrast, disruption of alh-6, which facilitates the second step of proline catabolism by converting 1-pyrroline-5-carboxylate (P5C) to glutamate, results in premature reproductive senescence, specifically in males. The premature reproductive senescence in alh-6 mutant males is caused by aberrant ROS homeostasis, which can be countered by genetically limiting the first committed step of proline catabolism that functions upstream of ALH-6 or by pharmacological treatment with antioxidants. Taken together, our work uncovers proline metabolism as a critical component of normal sperm function that can alter the rate of aging in the male reproductive system.
Collapse
Affiliation(s)
- Chia‐An Yen
- Leonard Davis School of Gerontology University of Southern California Los Angeles CA USA
- Department of Molecular and Computation Biology Dornsife College of Letters, Arts, and Sciences University of Southern California Los Angeles CA USA
| | - Sean P. Curran
- Leonard Davis School of Gerontology University of Southern California Los Angeles CA USA
- Department of Molecular and Computation Biology Dornsife College of Letters, Arts, and Sciences University of Southern California Los Angeles CA USA
| |
Collapse
|
35
|
Gautam R, Priyadarshini E, Nirala J, Rajamani P. Impact of nonionizing electromagnetic radiation on male infertility: an assessment of the mechanism and consequences. Int J Radiat Biol 2021; 98:1063-1073. [PMID: 33264041 DOI: 10.1080/09553002.2020.1859154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/22/2022]
Abstract
PURPOSE Environment and lifestyle factors are being attributed toward increased instances of male infertility. Rapid technological advancement, results in emission of electromagnetic radiations of different frequency which impacts human both biologically as well as genetically. Devices like cell phone, power line and monitors emit electromagnetic radiation and are a major source of the exposure. Numerous studies describe the detrimental consequence of radiation on physiological parameters of male reproductive system including sperm parameters (morphology, motility, and viability), metabolism and genomic instability. While the thermal and nonthermal interaction of nonionizing radiations with biological tissues can't be ruled out, most studies emphasize the generation of reactive oxygen species. Oxidative stress alters redox equilibrium and disrupts morphology and normal functioning of sperms along with declination of total anti-oxidant capacity. CONCLUSION In this paper, we describe a detailed literature review with the intent of analyzing the impact of electromagnetic radiation and understand the consequence on male reproductive system. The underlying mechanism suggesting ROS generation and pathway of action has also been discussed. Additionally, the safety measures while using electronic gadgets and mobile phones has also been presented.
Collapse
Affiliation(s)
- Rohit Gautam
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - JayPrakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
36
|
Khaw SC, Wong ZZ, Anderson R, Martins da Silva S. l-carnitine and l-acetylcarnitine supplementation for idiopathic male infertility. REPRODUCTION AND FERTILITY 2020; 1:67-81. [PMID: 35128424 PMCID: PMC8812460 DOI: 10.1530/raf-20-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
Fifteen percent of couples are globally estimated to be infertile, with up to half of these cases attributed to male infertility. Reactive oxidative species (ROS) are known to damage sperm leading to impaired quantity and quality. Although not routinely assessed, oxidative stress is a common underlying pathology in infertile men. Antioxidants have been shown to improve semen analysis parameters by reducing ROS and facilitating repair of damage caused by oxidative stress, but it remains unclear whether they improve fertility. Carnitines are naturally occurring antioxidants in mammals and are normally abundant in the epididymal luminal fluid of men. We conducted a systematic review and meta-analysis to evaluate the safety and efficacy of carnitine supplementation for idiopathic male infertility. We searched ClinicalKey, ClinicalTrials.gov, Cochrane Central Register of Controlled Trials (CENTRAL), EMBASE, MEDLINE, PubMed and ScienceDirect for relevant studies published from 1 January 2000 to 30 April 2020. Of the articles retrieved, only eight randomised controlled trials were identified and included. Analysis showed that carnitines significantly improve total sperm motility, progressive sperm motility and sperm morphology, but without effect on sperm concentration. There was no demonstrable effect on clinical pregnancy rate in the five studies that included that outcome, although patient numbers were limited. Therefore, the use of carnitines in male infertility appears to improve some sperm parameters but without evidence of an increase in the chance of natural conception.
Collapse
Affiliation(s)
| | - Zhen Zhe Wong
- International Medical University (IMU), Bukit Jalil, Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Richard Anderson
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
| | - Sarah Martins da Silva
- Reproductive Medicine Research Group, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
37
|
Bravo A, Quilaqueo N, Jofré I, Villegas JV. Overtime expression of plasma membrane and mitochondrial function markers associated with cell death in human spermatozoa exposed to nonphysiological levels of reactive oxygen species. Andrologia 2020; 53:e13907. [PMID: 33263218 DOI: 10.1111/and.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2020] [Revised: 10/15/2020] [Accepted: 10/24/2020] [Indexed: 11/27/2022] Open
Abstract
In many cell types, the potential of reactive oxygen species to induce death processes has been largely demonstrated. Studies in spermatozoa have associated the imbalance of reactive oxygen species and phosphatidylserine externalisation as an apoptosis marker. However, the lack of consensus about time effect in the joint expression of these and other death markers has made it difficult to understand the set of mechanisms influenced beyond the concentration effect of reactive oxygen species to stimulate cell death. Here, the plasma membrane permeability and integrity, phosphatidylserine externalisation and mitochondrial membrane potential were jointly evaluated as death markers in human spermatozoa stimulated with H2 O2 . The results showed a profound and sustained effect of dissipation in the mitochondrial membrane potential and an increased phosphatidylserine externalisation in human spermatozoa exposed to 3 mmol-1 of H2 O2 at 30 min. This was followed by an increased membrane permeability after 45 min. The last observed event was the loss of cell membrane integrity at 60 min. In conclusion, mitochondria are rapidly affected in human spermatozoa exposed to reactive oxygen species, with the barely detectable mitochondrial membrane potential coexisting with the high phosphatidylserine externalisation in cells with normal membrane permeability.
Collapse
Affiliation(s)
- Anita Bravo
- Center of Reproductive Biotechnology - Scientific and Technological Bioresource Nucleus (CEBIOR - BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Nelson Quilaqueo
- Center of Reproductive Biotechnology - Scientific and Technological Bioresource Nucleus (CEBIOR - BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Ignacio Jofré
- Center of Reproductive Biotechnology - Scientific and Technological Bioresource Nucleus (CEBIOR - BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Juana V Villegas
- Center of Reproductive Biotechnology - Scientific and Technological Bioresource Nucleus (CEBIOR - BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
38
|
Hernández-Avilés C, Ramírez-Agámez L, Love CC, Friedrich M, Pearson M, Kelley DE, Beckham AMN, Teague SR, LaCaze KA, Brinsko SP, Varner DD. The effects of metabolic substrates glucose, pyruvate, and lactate added to a skim milk-based semen extender for cooled storage of stallion sperm. Theriogenology 2020; 161:83-97. [PMID: 33302166 DOI: 10.1016/j.theriogenology.2020.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022]
Abstract
Under in vitro conditions, stallion sperm might preferentially use energy substrates that primarily undergo mitochondrial metabolism. The present study sought to determine the effects of glucose, pyruvate, lactate, or their combinations on the quality of stallion sperm subjected to cooled storage at different temperatures, when using a skim milk-based semen extender. In Experiment 1, no substrate (Control), glucose (40 mM; Glu-40), pyruvate (2 mM, 19.8 mM; Pyr-2, Pyr-19), lactate (2 mM, 19.8 mM; Lac-2, Lac-19, respectively), or their combinations (G/P/L-2 or G/P/L-19, respectively) were added to a milk-based extender and their effects were determined on motion characteristics, viability/acrosomal intactness (VAI), lipid peroxidation status (VLPP), and DNA integrity (COMPα-t) of sperm incubated for 1 h at 37 °C, or sperm stored for 24 h at either 10 or 20 °C. At any period and temperature tested, Glu-40, G/P/L-2, and G/P-L-19 resulted in similar motion characteristics (P > 0.05) but were higher than that of other treatment groups (P < 0.05). Mean VAI was highest in Glu-40 (P < 0.05). Mean VLPP was highest in G/P/L-2 and G/P/L-19 groups (P < 0.05), and mean COMPα-t was lowest in Control, Glu-40, G/P/L-2 and G/P/L-19 groups (P < 0.05). All measures of sperm quality were higher in semen stored at 10 °C than 20 °C (P < 0.05). In Experiment 2, increasing concentrations of either pyruvate or lactate (Pyr-40, Lac-40 or Pyr-80, Lac-80) were added to the extender as energy substrates and compared to glucose (40 mM), following storage for 72 h at either 10 or 20 °C. Groups Glu-40 and Pyr-40 yielded similar sperm motion characteristics and VAI, while VLPP and COMPα-t were reduced in these treatment groups, as compared to Pyr-80, Lac-40, and Lac-80 (P < 0.05). All measures of sperm quality were higher in semen stored at 10 °C vs 20 °C (P < 0.05). This study demonstrates that at storage temperatures of 10 or 20 °C, stallion sperm quality is optimized by the presence of glucose in a skim milk-based semen extender. The addition of substrates that readily support oxidative phosphorylation (i.e., pyruvate or lactate) did not improve the quality of stallion sperm over that of glucose alone and resulted in deleterious effects on sperm quality over time. These effects appeared to be associated with oxidative stress. Use of pyruvate (40 mM) as an alternative energy substrate to glucose generally yielded similar results to that of glucose when sperm were stored at 10 °C only.
Collapse
Affiliation(s)
- Camilo Hernández-Avilés
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| | - Luisa Ramírez-Agámez
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Charles C Love
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Macy Friedrich
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Mariah Pearson
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Dale E Kelley
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Anne M N Beckham
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Sheila R Teague
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Katrina A LaCaze
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Steven P Brinsko
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Dickson D Varner
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
39
|
The Relationship of Mitochondrial Membrane Potential, Reactive Oxygen Species, Adenosine Triphosphate Content, Sperm Plasma Membrane Integrity, and Kinematic Properties in Warmblood Stallions. J Equine Vet Sci 2020; 94:103267. [PMID: 33077084 DOI: 10.1016/j.jevs.2020.103267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2020] [Revised: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 01/06/2023]
Abstract
Equine sperm possesses a unique physiology because its energy supply is mostly dependent on oxidative phosphorylation of mitochondria as an aerobic source of adenosine triphosphate (ATP) generation. The present study was, therefore, conducted to investigate the relationship between sperm kinematic and functional variables in stallions. Semen samples were collected from five warmblood stallions (three ejaculates from each stallion), diluted with INRA96 and transferred to the laboratory. Next, sperm motility, mitochondrial membrane potential (MMP), production of superoxide anion (as a reactive oxygen species; ROS), ATP content, and plasma membrane integrity were assessed. Motion and functional characteristics differed among investigated stallions (P < .05). In addition, it was revealed MMP was positively correlated with the level of ROS and ATP content and progressive motility (P < .05). The level of ROS was positively correlated with ATP content and negatively correlated with plasma membrane integrity and straightness (P < .05). Adenosine triphosphate content was positively correlated with progressive motility, curvilinear velocity, average path velocity, and beat cross frequency and reversely correlated with plasma membrane integrity and straightness (P < .05). Plasma membrane integrity was positively correlated with straight line velocity, linearity, and straightness and negatively correlated with curvilinear velocity (P < .01). In conclusion, the present study substantiated that kinematic and functional characteristics varied among various warmblood stallions. Furthermore, the present study implicated although higher mitochondrial activity increases ATP synthesis, it leads to elevated superoxide anion production, which could culminate in disintegration of the sperm plasma membrane, thereby altering motion characteristics and swimming pattern of sperm.
Collapse
|
40
|
Ortiz-Rodriguez JM, Martín-Cano FE, Ortega-Ferrusola C, Masot J, Redondo E, Gázquez A, Gil MC, Aparicio IM, Rojo-Domínguez P, Tapia JA, Rodriguez-Martínez H, Peña FJ. The incorporation of cystine by the soluble carrier family 7 member 11 (SLC7A11) is a component of the redox regulatory mechanism in stallion spermatozoa†. Biol Reprod 2020; 101:208-222. [PMID: 30998234 DOI: 10.1093/biolre/ioz069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2018] [Revised: 02/20/2019] [Accepted: 04/17/2019] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress is considered a major mechanism causing sperm damage during cryopreservation and storage, and underlies male factor infertility. Currently, oxidative stress is no longer believed to be caused only by the overproduction of reactive oxygen species, but rather by the deregulation of redox signaling and control mechanisms. With this concept in mind, here, we describe for the first time the presence of the soluble carrier family 7 member 11 (SLC7A11) antiporter, which exchanges extracellular cystine (Cyss) for intracellular glutamate, in stallion spermatozoa, as well as its impact on sperm function using the specific inhibitor sulfasalazine. Spermatozoa incubated with Cyss exhibited an increased intracellular GSH content compared with controls (P < 0.01): 50% in fresh extended stallion spermatozoa and 30% in frozen-thawed spermatozoa. This effect was prevented by the addition of sulfasalazine to the media. Cystine supplementation also reduced the oxidation-reduction potential of spermatozoa, with sulfasalazine only preventing this effect on fresh spermatozoa that were incubated for 3 h at 37°C, but not in frozen-thawed spermatozoa. While sulfasalazine reduced the motility of frozen-thawed spermatozoa, it increased motility in fresh samples. The present findings provide new and relevant data on the mechanism regulating the redox status of spermatozoa and suggest that a different redox regulatory mechanism exists in cryopreserved spermatozoa, thus providing new clues to improve current cryopreservation technologies and treat male factor infertility.
Collapse
Affiliation(s)
- José Manuel Ortiz-Rodriguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Javier Masot
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Eloy Redondo
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Antonio Gázquez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - María C Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Inés M Aparicio
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Patricia Rojo-Domínguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - José A Tapia
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Heriberto Rodriguez-Martínez
- Department of Clinical and Experimental Medicine, Faculty of Medicine & Health Sciences, Linköping University, Linköping, Sweden
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| |
Collapse
|
41
|
Gibb Z, Griffin RA, Aitken RJ, De Iuliis GN. Functions and effects of reactive oxygen species in male fertility. Anim Reprod Sci 2020; 220:106456. [DOI: 10.1016/j.anireprosci.2020.106456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
|
42
|
Ruiz-Díaz S, Oseguera-López I, De La Cuesta-Díaz D, García-López B, Serres C, Sanchez-Calabuig MJ, Gutiérrez-Adán A, Perez-Cerezales S. The Presence of D-Penicillamine during the In Vitro Capacitation of Stallion Spermatozoa Prolongs Hyperactive-Like Motility and Allows for Sperm Selection by Thermotaxis. Animals (Basel) 2020; 10:ani10091467. [PMID: 32825582 PMCID: PMC7552178 DOI: 10.3390/ani10091467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Assisted reproductive technologies (ARTs) in the horse still yield suboptimal results in terms of pregnancy rates. One of the reasons for this is the lack of optimal conditions for the sperm capacitation in vitro. This study assesses the use of synthetic human tubal fluid (HTF) supplemented with D-penicillamine (HTF + PEN) for the in vitro capacitation of frozen/thawed stallion spermatozoa by examining capacitation-related events over 180 min of incubation. Besides these events, we explored the in vitro capacity of the spermatozoa to migrate by thermotaxis and give rise to a population of high-quality spermatozoa. We found that HTF induced higher levels of hyperactive-like motility and protein tyrosine phosphorylation (PTP) compared to the use of a medium commonly used in this species (Whitten's). Also, HTF + PEN was able to maintain this hyperactive-like motility, otherwise lost in the absence of PEN, for 180 min, and also allowed for sperm selection by thermotaxis in vitro. Remarkably, the selected fraction was enriched in spermatozoa showing PTP along the whole flagellum and lower levels of DNA fragmentation when compared to the unselected fraction (38% ± 11% vs 4.4% ± 1.1% and 4.2% ± 0.4% vs 11% ± 2% respectively, t-test p < 0.003, n = 6). This procedure of in vitro capacitation of frozen/thawed stallion spermatozoa in HTF + PEN followed by in vitro sperm selection by thermotaxis represents a promising sperm preparation strategy for in vitro fertilization and intracytoplasmic sperm injection in this species.
Collapse
Affiliation(s)
- Sara Ruiz-Díaz
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040 Madrid, Spain; (S.R.-D.); (D.D.L.C.-D.); (B.G.-L.); (S.P.-C.)
- Mistral Fertility Clinics S.L., Clínica Tambre, 28002 Madrid, Spain
| | - Ivan Oseguera-López
- Unidad Iztapalapa, Universidad Autónoma Metropolitana, Ciudad de México 09340, Mexico;
| | - David De La Cuesta-Díaz
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040 Madrid, Spain; (S.R.-D.); (D.D.L.C.-D.); (B.G.-L.); (S.P.-C.)
| | - Belén García-López
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040 Madrid, Spain; (S.R.-D.); (D.D.L.C.-D.); (B.G.-L.); (S.P.-C.)
| | - Consuelo Serres
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (C.S.); (M.J.S.-C.)
| | - Maria José Sanchez-Calabuig
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (C.S.); (M.J.S.-C.)
| | - Alfonso Gutiérrez-Adán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040 Madrid, Spain; (S.R.-D.); (D.D.L.C.-D.); (B.G.-L.); (S.P.-C.)
- Correspondence:
| | - Serafin Perez-Cerezales
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040 Madrid, Spain; (S.R.-D.); (D.D.L.C.-D.); (B.G.-L.); (S.P.-C.)
| |
Collapse
|
43
|
Khisroon M, Khan A, Ayub A, Ullah I, Farooqi J, Ullah A. DNA damage analysis concerning GSTM1 and GSTT1 gene polymorphism in gold jewellery workers from Peshawar Pakistan. Biomarkers 2020; 25:483-489. [PMID: 32615823 DOI: 10.1080/1354750x.2020.1791253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To evaluate the genotoxic effects of gold jewellery fumes and its association with GSTM1 and GSTT1 genetic polymorphisms. MATERIALS AND METHODS We examined 94 subjects including 54 gold jewellery workers and 40 controls. The DNA damage was evaluated by alkaline comet assay and genotyping by PCR. RESULTS The mean total comet score (TCS) in gold jewellery workers was significantly higher as compared to the control subjects (128.0 ± 60.6 versus 47.7 ± 21.4; p = 0.0001). Duration of occupational exposure had positive correlation (r = 0.453, p < 0.01) with DNA damage. Age and tobacco use had significant effects on the TCS of the exposed group as compared to the control group (p < 0.05). The frequency of the GSTM1-null genotype in the exposed group was significant (p = 0.004) as compared to the control group. No significant association (p > 0.05) between the GSTM1 and GSTT1 genotypes and DNA damage was found. CONCLUSIONS Our results suggest that there is increased DNA damage in gold jewellery workers due to their occupational surroundings. Hence there is a strong need to educate the workers about the adverse health effects of potentially hazardous chemicals and highlight the importance of using protective measures.
Collapse
Affiliation(s)
| | - Ajmal Khan
- Department of Zoology, University of Peshawar, Peshawar, Pakistan
| | - Asma Ayub
- Department of Zoology, University of Peshawar, Peshawar, Pakistan
| | - Ihsan Ullah
- Department of Pharmacology, Poonch Medical College Rawalakot, Rawalakot, Pakistan
| | - Javeed Farooqi
- Department of Zoology, University of Peshawar, Peshawar, Pakistan
| | - Abid Ullah
- Department of Zoology, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
44
|
Albani E, Castellano S, Gurrieri B, Arruzzolo L, Negri L, Borroni EM, Levi-Setti PE. Male age: negative impact on sperm DNA fragmentation. Aging (Albany NY) 2020; 11:2749-2761. [PMID: 31085803 PMCID: PMC6535069 DOI: 10.18632/aging.101946] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2019] [Accepted: 04/29/2019] [Indexed: 12/26/2022]
Abstract
The main goal of semen processing in Assisted Reproductive Techniques (ART) is to select sperm with good viability and, at the same time, remove Reactive Oxygen Species (ROS) sources (such as leukocytes) and reduce the percentage of morphologically abnormal sperm for fertility treatment. We performed a comparative analysis on sperm DNA fragmentation after Density Gradient Centrifugation (DGC) using products sold by two competing companies. Our results showed comparable DNA Fragmentation Index (DFI) after treatment with both DGC products. However, in both cases, a comparable number of samples do not benefit from the treatment. Interestingly, increasing evidences indicated that male age has a negative impact on sperm DNA fragmentation, but the mechanisms underlying age-dependent patterns of sperm decline have not yet been fully understood. Thus, we performed a comparative analysis of DFI before and after treatment with DGC products in age-stratified sample populations. Our results showed a worsening of the baseline DFI in the eldest group and the benefits of DGC on sperm DNA were compromised. In conclusion, our work consolidates the current evidences suggesting that both paternal and maternal aging, critically affects reproductive success.
Collapse
Affiliation(s)
- Elena Albani
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Humanitas Fertility Center, Humanitas Research Hospital, 20089 Rozzano (Milan), Italy
| | - Stefano Castellano
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Humanitas Fertility Center, Humanitas Research Hospital, 20089 Rozzano (Milan), Italy
| | - Bruna Gurrieri
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Humanitas Fertility Center, Humanitas Research Hospital, 20089 Rozzano (Milan), Italy
| | - Luisa Arruzzolo
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Humanitas Fertility Center, Humanitas Research Hospital, 20089 Rozzano (Milan), Italy
| | - Luciano Negri
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Humanitas Fertility Center, Humanitas Research Hospital, 20089 Rozzano (Milan), Italy
| | - Elena M Borroni
- Humanitas Clinical and Research Center, 20089 Rozzano (Milan), Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate (Milan), Italy
| | - Paolo E Levi-Setti
- Division of Gynecology and Reproductive Medicine, Department of Gynecology, Humanitas Fertility Center, Humanitas Research Hospital, 20089 Rozzano (Milan), Italy
| |
Collapse
|
45
|
Biswas S, Kumar Mukhopadhyay P. Casein- and pea-enriched high-protein diet can take care of the reprotoxic effects of arsenic in male rats. Andrologia 2020; 52:e13560. [PMID: 32196711 DOI: 10.1111/and.13560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2019] [Revised: 01/15/2020] [Accepted: 02/11/2020] [Indexed: 01/01/2023] Open
Abstract
Arsenic toxicity is a significant health problem featured with several incidents of male reproductive dysfunctions. We studied the protective effects of a casein- and pea-enriched formulated high-protein diet (FHPD) on arsenic-mediated testicular dysfunctions in rats. Adult male rats sustained on either a benchmark diet (n = 8) or an isocaloric FHPD (n = 8) were gavaged with arsenic trioxide (3mg/kg body wt/rat/day) for 30 consecutive days. A vehicle-fed group (n = 8) maintained on the standard diet served as control. The arsenic-treated group continued on the standard diet had a significantly reduced testicular and accessory sex organs weights. They exhibited decreased count, motility, viability and disrupted plasma membrane integrity of caudal spermatozoa with a higher incidence of gross morphological anomalies and DNA damage. Attenuated steroidogenic enzyme activities and low serum testosterone level vouched for a compromised state of testicular steroidogenesis. An increased testicular malondialdehyde and protein carbonyl contents coupled with impaired activities of antioxidant enzymes and free radical scavengers mirrored a situation of exacerbated testicular oxidative imbalance and disrupted redox homeostasis. FHPD, by and large, countermanded testicular steroidogenesis and antioxidant defence system and revoked the ill effects of arsenic. We conclude that specific protein-enriched diet may serve as prospective weaponry in encountering the arsenic-threatened testicular functions.
Collapse
Affiliation(s)
- Sagnik Biswas
- Department of Life Sciences, Presidency University, Kolkata, India
| | | |
Collapse
|
46
|
Martín-Cano FE, Gaitskell-Phillips G, Ortiz-Rodríguez JM, Silva-Rodríguez A, Román Á, Rojo-Domínguez P, Alonso-Rodríguez E, Tapia JA, Gil MC, Ortega-Ferrusola C, Peña FJ. Proteomic profiling of stallion spermatozoa suggests changes in sperm metabolism and compromised redox regulation after cryopreservation. J Proteomics 2020; 221:103765. [PMID: 32247875 DOI: 10.1016/j.jprot.2020.103765] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023]
Abstract
Proteomic technologies allow the detection of thousands of proteins at the same time, being a powerful technique to reveal molecular regulatory mechanisms in spermatozoa and also sperm damage linked to low fertility or specific biotechnologies. Modifications induced by the cryopreservation in the stallion sperm proteome were studied using UHPLC/MS/MS. Ejaculates from fertile stallions were collected and split in two subsamples, one was investigated as fresh (control) samples, and the other aliquot frozen and thawed using standard procedures and investigated as frozen thawed subsamples. UHPLC/MS/MS was used to study the sperm proteome under these two distinct conditions and bioinformatic enrichment analysis conducted. Gene Ontology (GO) and pathway enrichment analysis were performed revealing dramatic changes as consequence of cryopreservation. The terms oxidative phosphorylation, mitochondrial ATP synthesis coupled electron transport and electron transport chain were significantly enriched in fresh samples (P = 5.50 × 10-12, 4.26 × 10-8 and 7.26 × 10-8, respectively), while were not significantly enriched in frozen thawed samples (P = 1). The GO terms oxidation reduction process and oxidoreductase activity were enriched in fresh samples and the enrichment was reduced in frozen thawed samples (1.40 × 10-8, 1.69 × 10-6 versus 1.13 × 10-2 and 2-86 × 10-2 respectively). Reactome pathways (using human orthologs) significantly enriched in fresh sperm were TCA cycle and respiratory electron transport (P = 1.867 × 10-8), Respiratory electron transport ATP synthesis by chemiosmosis coupling (P = 2.124 × 10-5), Citric acid cycle (TCA cycle)(P = 8.395 × 10-4) Pyruvate metabolism and TCA cycle (P = 3.380 × 10-3), Respiratory electron transport (P = 2.764 × 10-2) and Beta oxidation of laurolyl-CoA to decanoyl CoA-CoA (P = 1.854 × 10-2) none of these pathways were enriched in thawed samples (P = 1). We have provided the first detailed study on how the cryopreservation process impacts the stallion sperm proteome. Our findings identify the metabolic proteome and redoxome as the two key groups of proteins affected by the procedure. SIGNIFICANCE: In the present manuscript we investigated how the cryopreservation of stallion spermatozoa impacts the proteome of these cells. This procedure is routinely used in horse breeding and has a major impact in the industry, facilitating the trade of genetic material. This is still a suboptimal biotechnology, with numerous unresolved problems. The limited knowledge of the molecular insults occurring during cryopreservation is behind these problems. The application and development of proteomics to the spermatozoa, allow to obtain valuable information of the specific mechanisms affected by the procedure. In this paper, we report that cryopreservation impacts numerous proteins involved in metabolism regulation (mainly mitochondrial proteins involved in the TCA cycle, and oxidative phosphorylation) and also affects proteins with oxidoreductase activity. Moreover, specific proteins involved in the sperm-oocyte interaction are also affected by the procedure. The information gathered in this study, opens interesting questions and offer new lines of research for the improvement of the technology focusing the targets here identified, and the specific steps in the procedure (cooling, toxicity of antioxidants etc.) to be modified to reduce the damage.
Collapse
Affiliation(s)
- Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - José M Ortiz-Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Antonio Silva-Rodríguez
- Facility of Innovation and Analysis in Animal Source Foodstuffs, University of Extremadura, Cáceres, Spain
| | - Ángel Román
- Department of Biochemistry and Molecular Biology, University of Extremadura, Badajoz, Spain
| | | | | | - José A Tapia
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Maria C Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - C Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
47
|
Uribe P, Meriño J, Bravo A, Zambrano F, Schulz M, Villegas JV, Sánchez R. Antioxidant effects of penicillamine against in vitro-induced oxidative stress in human spermatozoa. Andrologia 2020; 52:e13553. [PMID: 32196709 DOI: 10.1111/and.13553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/02/2020] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress contributes importantly to the aetiology of male infertility, impairing sperm function. The protective effect of antioxidants on seminal parameters has been established, and the antioxidant penicillamine has shown beneficial effects; however, its protective effect on human spermatozoa exposed to oxidative stress has not been reported. The objective of this work was to evaluate the effect of penicillamine on human spermatozoa exposed in vitro to oxidative stress. First, the effect of penicillamine on spermatozoa from normozoospermic donors was evaluated. Then, the effect of penicillamine on spermatozoa exposed to oxidative stress induced separately by ionomycin and hydrogen peroxide (H2 O2 ) was analysed. An untreated control and a control treated only with the oxidative stress inducer were included. Reactive oxygen species (ROS) levels, viability, mitochondrial membrane potential (MMP) and motility were analysed. The results showed that penicillamine, added to the incubation medium, decreased the ROS levels induced by ionomycin and H2 O2 , and this effect was associated with better preservation of MMP, motility, and ATP levels. These results highlight the potential advantages of penicillamine supplementation of sperm culture medium, especially for semen samples with high ROS levels and also in circumstances where laboratory handling can cause an increase in ROS production.
Collapse
Affiliation(s)
- Pamela Uribe
- Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT - BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Juan Meriño
- Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT - BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Anita Bravo
- Center of Reproductive Biotechnology - Scientific and Technological Bioresource Nucleus (CEBIOR - BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Fabiola Zambrano
- Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT - BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Mabel Schulz
- Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT - BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Juana V Villegas
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Reproductive Biotechnology - Scientific and Technological Bioresource Nucleus (CEBIOR - BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Raúl Sánchez
- Center of Excellence in Translational Medicine - Scientific and Technological Bioresource Nucleus (CEMT - BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
48
|
Effects of glucose concentration in semen extender and storage temperature on stallion sperm quality following long-term cooled storage. Theriogenology 2020; 147:1-9. [PMID: 32070880 DOI: 10.1016/j.theriogenology.2020.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/22/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
In Experiment 1, the effects of glucose concentration in extender (0 mM, 67 mM, 147 mM, 270 mM; G0, G67, G147, and G270, respectively) and storage temperature of extended semen (5, 10, 15 and 20 °C) were evaluated after storage for up to 5 days (T0h to T120h). For all time points tested, mean total (TMOT) and progressive (PMOT) sperm motility were lower in G0 than all other treatment groups (P < 0.05). Mean curvilinear velocity (VCL) was lower in G0 than other treatment groups at all time points tested except T0h (P < 0.05). Mean percentage of plasma membrane/acrosome intact sperm (VAI) was similar among treatments at T0h, T72h, and T120h (P > 0.05). Mean TMOT and PMOT, were lower for semen stored at 20 °C than all lower storage temperatures (P < 0.05) at all time points. In Experiment 2, semen was stored at 10 °C in extender containing no added glucose (G0) or 147 mM glucose (G147). Following storage, semen was centrifuged and resuspended in extender containing no added glucose (G0 - G0 or G147 - G0, respectively) or 147 mM of glucose (G0 - G147 or G147 - G147, respectively). Mean TMOT, PMOT, and VCL were higher in G147 than G0 at all time periods tested (P < 0.05), whereas mean VAI was similar between these treatment groups throughout the experiment (P > 0.05). Mean TMOT and PMOT were higher in G0 - G147 than G0 - G0 at T72h and T120h (P < 0.05) and mean VCL was higher in G0 - G147 than G0 - G0 for all time periods. Mean TMOT, PMOT, and VCL were higher in G147 - G147 than G147 - G0 at all time points tested (P < 0.05), whereas mean VAI was similar between these two treatment groups for each of the time points (P > 0.05). In Experiment 3, the minimum concentration of glucose required to maintain sperm quality following long-term cooled storage (T120 h) was evaluated (G0, G5, G10, G20, G40, G67, G147 mM). At T120 h, mean TMOT was lowest in G0, G5, G10, and G20 (P < 0.05), whereas mean PMOT and VCL were lower in G0, G5, G10, and G20 than in G40, G67, and G147 (P < 0.05). Mean VAI was higher in G10 than G67, but similar among G10 and other treatment groups (P > 0.05). In conclusion, the absence of added glucose in extender reduced the motion characteristics of stallion sperm during long-term storage (5 days), but VAI was not affected. The use of temperatures between 5 and 15 °C for long-term storage (5 days) best maintained sperm motility and VAI. The threshold concentration of added glucose in extender required to optimize sperm motion characteristics was 40 mM.
Collapse
|
49
|
Aitken RJ, Drevet JR. The Importance of Oxidative Stress in Determining the Functionality of Mammalian Spermatozoa: A Two-Edged Sword. Antioxidants (Basel) 2020; 9:antiox9020111. [PMID: 32012712 PMCID: PMC7070991 DOI: 10.3390/antiox9020111] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2020] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
This article addresses the importance of oxidative processes in both the generation of functional gametes and the aetiology of defective sperm function. Functionally, sperm capacitation is recognized as a redox-regulated process, wherein a low level of reactive oxygen species (ROS) generation is intimately involved in driving such events as the stimulation of tyrosine phosphorylation, the facilitation of cholesterol efflux and the promotion of cAMP generation. However, the continuous generation of ROS ultimately creates problems for spermatozoa because their unique physical architecture and unusual biochemical composition means that they are vulnerable to oxidative stress. As a consequence, they are heavily dependent on the antioxidant protection afforded by the fluids in the male and female reproductive tracts and, during the precarious process of insemination, seminal plasma. If this antioxidant protection should be compromised for any reason, then the spermatozoa experience pathological oxidative damage. In addition, situations may prevail that cause the spermatozoa to become exposed to high levels of ROS emanating either from other cells in the immediate vicinity (particularly neutrophils) or from the spermatozoa themselves. The environmental and lifestyle factors that promote ROS generation by the spermatozoa are reviewed in this article, as are the techniques that might be used in a diagnostic context to identify patients whose reproductive capacity is under oxidative threat. Understanding the strengths and weaknesses of ROS-monitoring methodologies is critical if we are to effectively identify those patients for whom treatment with antioxidants might be considered a rational management strategy.
Collapse
Affiliation(s)
- Robert J. Aitken
- Priority Research Centre for Reproductive Sciences, Faculty of Science and Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- Correspondence:
| | - Joel R. Drevet
- GReD Institute, INSERM U1103—CNRS UMR6293—Université Clermont Auvergne, Faculty of Medicine, CRBC building, 28 place Henri Dunant, 63001 Clermont-Ferrand, France;
| |
Collapse
|
50
|
Netherton JK, Hetherington L, Ogle RA, Gavgani MM, Velkov T, Villaverde AIB, Tanphaichitr N, Baker MA. Mass Spectrometry Reveals New Insights into the Production of Superoxide Anions and 4-Hydroxynonenal Adducted Proteins in Human Sperm. Proteomics 2020; 20:e1900205. [PMID: 31846556 DOI: 10.1002/pmic.201900205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2019] [Revised: 09/10/2019] [Indexed: 01/09/2023]
Abstract
The free-radical theory of male infertility suggests that reactive oxygen species produced by the spermatozoa themselves are a leading cause of sperm dysfunction, including loss of sperm motility. However, the field is overshadowed on several fronts, primarily because: i) the probes used to measure reactive oxygen species (ROS) are imprecise; and ii) many reports suggesting that oxygen radicals are detrimental to sperm function add an exogenous source of ROS. Herein, a more reliable approach to measure superoxide anion production by human spermatozoa based on MS analysis is used. Furthermore, the formation of the lipid-peroxidation product 4-hydroxynonenal (4-HNE) during in vitro incubation using proteomics is also investigated. The data demonstrate that neither superoxide anion nor other free radicals that cause 4-HNE production are related to the loss of sperm motility during incubation. Interestingly, it appears that many of the 4-HNE adducted proteins, found within spermatozoa, originate from the prostate. A quantitative SWATH analysis demonstrate that these proteins transiently bind to sperm and are then shed during in vitro incubation. These proteomics-based findings propose a revised understanding of oxidative stress within the male reproductive tract.
Collapse
Affiliation(s)
| | - Louise Hetherington
- Department of Biological Science, University of Newcastle, Callaghan, 2308, Australia
| | - Rachel Anne Ogle
- Department of Biological Science, University of Newcastle, Callaghan, 2308, Australia
| | | | - Tony Velkov
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, 3010, Australia
| | | | - Nuch Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Department of Obstetrics and Gynaecology and, Department of Biochemistry, Microbiology, Immunology, University of Ottawa, Ottawa, Ontario, K1H 8L6, Canada
| | - Mark Andrew Baker
- Department of Biological Science, University of Newcastle, Callaghan, 2308, Australia
| |
Collapse
|