1
|
Álvarez-Merz I, Muñoz MD, Hernández-Guijo JM, Solís JM. Identification of Non-excitatory Amino Acids and Transporters Mediating the Irreversible Synaptic Silencing After Hypoxia. Transl Stroke Res 2024; 15:1070-1087. [PMID: 37755645 DOI: 10.1007/s12975-023-01192-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
The contribution of excitatory amino acids (AA) to ischemic brain injury has been widely described. In addition, we reported that a mixture of non-excitatory AA at plasmatic concentrations turns irreversible the depression of synaptic transmission caused by hypoxia. Here, we describe that the presence of seven non-excitatory AA (L-alanine, L-glutamine, glycine, L-histidine, L-serine, taurine, and L-threonine) during hypoxia provokes an irreversible neuronal membrane depolarization, after an initial phase of hyperpolarization. The collapse of the membrane potential correlates with a great increase in fiber volley amplitude. Nevertheless, we show that the presence of all seven AA is not necessary to cause the irreversible loss of fEPSP after hypoxia and that the minimal combination of AA able to provoke a solid, replicable effect is the mixture of L-alanine, glycine, L-glutamine, and L-serine. Additionally, L-glutamine seems necessary but insufficient to induce these harmful effects. We also prove that the deleterious effects of the AA mixtures on field potentials during hypoxia depend on both the identity and concentration of the individual AA in the mixture. Furthermore, we find that the accumulation of AA in the whole slice does not determine the outcome caused by the AA mixtures on the synaptic transmission during hypoxia. Finally, results obtained using pharmacological inhibitors and specific substrates of AA transporters suggest that system N and the alanine-serine-cysteine transporter 2 (ASCT2) participate in the non-excitatory AA-mediated deleterious effects during hypoxia. Thus, these AA transporters might represent therapeutical targets for the treatment of brain ischemia.
Collapse
Affiliation(s)
- Iris Álvarez-Merz
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain
| | - María-Dolores Muñoz
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Jesús M Hernández-Guijo
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain.
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain.
| | - José M Solís
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain
| |
Collapse
|
2
|
Kim H, Choi S, Lee E, Koh W, Lee CJ. Tonic NMDA Receptor Currents in the Brain: Regulation and Cognitive Functions. Biol Psychiatry 2024; 96:164-175. [PMID: 38490367 DOI: 10.1016/j.biopsych.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Synaptically localized NMDA receptors (NMDARs) play a crucial role in important cognitive functions by mediating synaptic transmission and plasticity. In contrast, a tonic NMDAR current, thought to be mediated by extrasynaptic NMDARs, has a less clear function. This review provides a comprehensive overview of tonic NMDAR currents, focusing on their roles in synaptic transmission/plasticity and their impact on cognitive functions and psychiatric disorders. We discuss the roles of 3 endogenous ligands (i.e., glutamate, glycine, and D-serine) and receptors in mediating tonic NMDAR currents and explore the diverse mechanisms that regulate tonic NMDAR currents. In light of recent controversies surrounding the source of D-serine, we highlight the recent findings suggesting that astrocytes release D-serine to modulate tonic NMDAR currents and control cognitive flexibility. Furthermore, we propose distinct roles of neuronal and astrocytic D-serine in different locations and their implications for synaptic regulation and cognitive functions. The potential roles of tonic NMDAR currents in various psychiatric disorders, such as schizophrenia and autism spectrum disorder, are discussed in the context of the NMDAR hypofunction hypothesis. By presenting the mechanisms by which various cells, particularly astrocytes, regulate tonic NMDAR currents, we aim to stimulate future research in NMDAR hypofunction- or hyperfunction-related psychiatric disorders. This review not only provides a better understanding of the complex interplay between tonic NMDAR currents and cognitive functions but also sheds light on its potential therapeutic target for the treatment of various psychiatric disorders.
Collapse
Affiliation(s)
- Hayoung Kim
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea
| | - Sunyeong Choi
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea
| | - Euisun Lee
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea
| | - Wuhyun Koh
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea.
| |
Collapse
|
3
|
Drehmann P, Milanos S, Schaefer N, Kasaragod VB, Herterich S, Holzbach-Eberle U, Harvey RJ, Villmann C. Dual Role of Dysfunctional Asc-1 Transporter in Distinct Human Pathologies, Human Startle Disease, and Developmental Delay. eNeuro 2023; 10:ENEURO.0263-23.2023. [PMID: 37903619 PMCID: PMC10668224 DOI: 10.1523/eneuro.0263-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/11/2023] [Indexed: 11/01/2023] Open
Abstract
Human startle disease is associated with mutations in distinct genes encoding glycine receptors, transporters or interacting proteins at glycinergic synapses in spinal cord and brainstem. However, a significant number of diagnosed patients does not carry a mutation in the common genes GLRA1, GLRB, and SLC6A5 Recently, studies on solute carrier 7 subfamily 10 (SLC7A10; Asc-1, alanine-serine-cysteine transporter) knock-out (KO) mice displaying a startle disease-like phenotype hypothesized that this transporter might represent a novel candidate for human startle disease. Here, we screened 51 patients from our patient cohort negative for the common genes and found three exonic (one missense, two synonymous), seven intronic, and single nucleotide changes in the 5' and 3' untranslated regions (UTRs) in Asc-1. The identified missense mutation Asc-1G307R from a patient with startle disease and developmental delay was investigated in functional studies. At the molecular level, the mutation Asc-1G307R did not interfere with cell-surface expression, but disrupted glycine uptake. Substitution of glycine at position 307 to other amino acids, e.g., to alanine or tryptophan did not affect trafficking or glycine transport. By contrast, G307K disrupted glycine transport similar to the G307R mutation found in the patient. Structurally, the disrupted function in variants carrying positively charged residues can be explained by local structural rearrangements because of the large positively charged side chain. Thus, our data suggest that SLC7A10 may represent a rare but novel gene associated with human startle disease and developmental delay.
Collapse
Affiliation(s)
- Paul Drehmann
- Institute for Clinical Neurobiology, Julius Maximilians University of Würzburg, 97078 Würzburg, Germany
| | - Sinem Milanos
- Institute for Clinical Neurobiology, Julius Maximilians University of Würzburg, 97078 Würzburg, Germany
| | - Natascha Schaefer
- Institute for Clinical Neurobiology, Julius Maximilians University of Würzburg, 97078 Würzburg, Germany
| | - Vikram Babu Kasaragod
- Neurobiology Division, Medical Reserach Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Sarah Herterich
- Institute for Clinical Neurobiology, Julius Maximilians University of Würzburg, 97078 Würzburg, Germany
| | - Ulrike Holzbach-Eberle
- Center for Pediatrics and Adolescent Medicine, Pediatric Neurology, Social Pediatrics and Epileptology, University Hospital Gießen, 35392 Giessen, Germany
| | - Robert J Harvey
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD 4558, Australia
- Sunshine Coast Health Institute, Birtinya, QLD 4575, Australia
| | - Carmen Villmann
- Institute for Clinical Neurobiology, Julius Maximilians University of Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
4
|
Li Y, Wang Y, Ao Q, Li X, Huang Z, Dou X, Mu N, Pu X, Wang J, Chen T, Yin G, Feng H, Feng C. Unique Chirality Selection in Neural Cells for D-Matrix Enabling Specific Manipulation of Cell Behaviors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301435. [PMID: 37366043 DOI: 10.1002/adma.202301435] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Manipulating neural cell behaviors is a critical issue to various therapies for neurological diseases and damages, where matrix chirality has long been overlooked despite the proven adhesion and proliferation improvement of multiple non-neural cells by L-matrixes. Here, it is reported that the D-matrix chirality specifically enhances cell density, viability, proliferation, and survival in four different types of neural cells, contrasting its inhibition in non-neural cells. This universal impact on neural cells is defined as "chirality selection for D-matrix" and is achieved through the activation of JNK and p38/MAPK signaling pathways by the cellular tension relaxation resulting from the weak interaction between D-matrix and cytoskeleton proteins, particularly actin. Also, D-matrix promotes sciatic nerve repair effectively, both with or without non-neural stem cell implantation, by improving the population, function, and myelination of autologous Schwann cells. D-matrix chirality, as a simple, safe, and effective microenvironment cue to specifically and universally manipulate neural cell behaviors, holds extensive application potential in addressing neurological issues such as nerve regeneration, neurodegenerative disease treatment, neural tumor targeting, and neurodevelopment.
Collapse
Affiliation(s)
- Ya Li
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610065, China
| | - Yulin Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610065, China
| | - Qiang Ao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, 610065, China
| | - Xiaohui Li
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ning Mu
- Third Military Medical University Southwest Hospital, Chongqing, 400038, China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Tunan Chen
- Third Military Medical University Southwest Hospital, Chongqing, 400038, China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Hua Feng
- Third Military Medical University Southwest Hospital, Chongqing, 400038, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Chorghay Z, Li VJ, Schohl A, Ghosh A, Ruthazer ES. The effects of the NMDAR co-agonist D-serine on the structure and function of optic tectal neurons in the developing visual system. Sci Rep 2023; 13:13383. [PMID: 37591903 PMCID: PMC10435543 DOI: 10.1038/s41598-023-39951-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
The N-methyl-D-aspartate type glutamate receptor (NMDAR) is a molecular coincidence detector which converts correlated patterns of neuronal activity into cues for the structural and functional refinement of developing circuits in the brain. D-serine is an endogenous co-agonist of the NMDAR. We investigated the effects of potent enhancement of NMDAR-mediated currents by chronic administration of saturating levels of D-serine on the developing Xenopus retinotectal circuit. Chronic exposure to the NMDAR co-agonist D-serine resulted in structural and functional changes in the optic tectum. In immature tectal neurons, D-serine administration led to more compact and less dynamic tectal dendritic arbors, and increased synapse density. Calcium imaging to examine retinotopy of tectal neurons revealed that animals raised in D-serine had more compact visual receptive fields. These findings provide insight into how the availability of endogenous NMDAR co-agonists like D-serine at glutamatergic synapses can regulate the refinement of circuits in the developing brain.
Collapse
Affiliation(s)
- Zahraa Chorghay
- Montreal Neurological Institute-Hospital and Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montréal, QC, H3A 2B4, Canada
| | - Vanessa J Li
- Montreal Neurological Institute-Hospital and Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montréal, QC, H3A 2B4, Canada
| | - Anne Schohl
- Montreal Neurological Institute-Hospital and Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montréal, QC, H3A 2B4, Canada
| | - Arna Ghosh
- MILA, 6666 Rue St Urbain, Montréal, QC, H2S 3H1, Canada
| | - Edward S Ruthazer
- Montreal Neurological Institute-Hospital and Department of Neurology and Neurosurgery, McGill University, 3801 Rue University, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
6
|
Addendum to "Emerging evidence for astrocyte dysfunction in schizophrenia". Glia 2022; 70:2441-2442. [PMID: 36217806 PMCID: PMC10117557 DOI: 10.1002/glia.24275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 11/07/2022]
|
7
|
High throughput 3D gel-based neural organotypic model for cellular assays using fluorescence biosensors. Commun Biol 2022; 5:1236. [PMID: 36371462 PMCID: PMC9653447 DOI: 10.1038/s42003-022-04177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Three-dimensional (3D) organotypic models that capture native-like physiological features of tissues are being pursued as clinically predictive assays for therapeutics development. A range of these models are being developed to mimic brain morphology, physiology, and pathology of neurological diseases. Biofabrication of 3D gel-based cellular systems is emerging as a versatile technology to produce spatially and cell-type tailored, physiologically complex and native-like tissue models. Here we produce 3D fibrin gel-based functional neural co-culture models with human-iPSC differentiated dopaminergic or glutamatergic neurons and astrocytes. We further introduce genetically encoded fluorescence biosensors and optogenetics activation for real time functional measurements of intracellular calcium and levels of dopamine and glutamate neurotransmitters, in a high-throughput compatible plate format. We use pharmacological perturbations to demonstrate that the drug responses of 3D gel-based neural models are like those expected from in-vivo data, and in some cases, in contrast to those observed in the equivalent 2D neural models. Fibrin gel-based 3D co-culture models with human-iPSC differentiated dopaminergic or glutamatergic neurons and astrocytes are shown to be functional using biosensors and can be scaled up for high-throughput assays.
Collapse
|
8
|
Álvarez-Merz I, Fomitcheva IV, Sword J, Hernández-Guijo JM, Solís JM, Kirov SA. Novel mechanism of hypoxic neuronal injury mediated by non-excitatory amino acids and astroglial swelling. Glia 2022; 70:2108-2130. [PMID: 35802030 PMCID: PMC9474671 DOI: 10.1002/glia.24241] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022]
Abstract
In ischemic stroke and post-traumatic brain injury (TBI), blood-brain barrier disruption leads to leaking plasma amino acids (AA) into cerebral parenchyma. Bleeding in hemorrhagic stroke and TBI also release plasma AA. Although excitotoxic AA were extensively studied, little is known about non-excitatory AA during hypoxic injury. Hypoxia-induced synaptic depression in hippocampal slices becomes irreversible with non-excitatory AA, alongside their intracellular accumulation and increased tissue electrical resistance. Four non-excitatory AA (l-alanine, glycine, l-glutamine, l-serine: AGQS) at plasmatic concentrations were applied to slices from mice expressing EGFP in pyramidal neurons or astrocytes during normoxia or hypoxia. Two-photon imaging, light transmittance (LT) changes, and electrophysiological field recordings followed by electron microscopy in hippocampal CA1 st. radiatum were used to monitor synaptic function concurrently with cellular swelling and injury. During normoxia, AGQS-induced increase in LT was due to astroglial but not neuronal swelling. LT raise during hypoxia and AGQS manifested astroglial and neuronal swelling accompanied by a permanent loss of synaptic transmission and irreversible dendritic beading, signifying acute damage. Neuronal injury was not triggered by spreading depolarization which did not occur in our experiments. Hypoxia without AGQS did not cause cell swelling, leaving dendrites intact. Inhibition of NMDA receptors prevented neuronal damage and irreversible loss of synaptic function. Deleterious effects of AGQS during hypoxia were prevented by alanine-serine-cysteine transporters (ASCT2) and volume-regulated anion channels (VRAC) blockers. Our findings suggest that astroglial swelling induced by accumulation of non-excitatory AA and release of excitotoxins through antiporters and VRAC may exacerbate the hypoxia-induced neuronal injury.
Collapse
Affiliation(s)
- Iris Álvarez-Merz
- Dept. de Farmacología y Terapéutica, ITH, Facultad de Medicina, Universidad Autónoma de Madrid, IRYCIS, 28029 Madrid, Spain
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| | - Ioulia V. Fomitcheva
- Dept. of Neurosurgery, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| | - Jeremy Sword
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| | - Jesús M. Hernández-Guijo
- Dept. de Farmacología y Terapéutica, ITH, Facultad de Medicina, Universidad Autónoma de Madrid, IRYCIS, 28029 Madrid, Spain
| | - José M. Solís
- Servicio de Neurobiología-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain
| | - Sergei A. Kirov
- Dept. of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912, USA
| |
Collapse
|
9
|
Intson K, Geissah S, McCullumsmith RE, Ramsey AJ. A role for endothelial NMDA receptors in the pathophysiology of schizophrenia. Schizophr Res 2022; 249:63-73. [PMID: 33189520 PMCID: PMC11740474 DOI: 10.1016/j.schres.2020.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Numerous genetic and postmortem studies link N-methyl-d-aspartate receptor (NMDAR) dysfunction with schizophrenia, forming the basis of the popular glutamate hypothesis. Neuronal NMDAR abnormalities are consistently reported from both basic and clinical experiments, however, non-neuronal cells also contain NMDARs, and are rarely, if ever, considered in the discussion of glutamate action in schizophrenia. We offer an examination of recent discoveries elucidating the actions and consequences of NMDAR activation in the neuroendothelium. While there has been mixed literature regarding blood flow alterations in the schizophrenia brain, in this review, we posit that some common findings may be explained by neuroendothelial NMDAR dysfunction. In particular, we emphasize that endothelial NMDARs are key mediators of neurovascular coupling, where increased neuronal activity leads to increased blood flow. Based on the broad conclusions that hypoperfusion is a neuroanatomical finding in schizophrenia, we discuss potential mechanisms by which endothelial NMDARs contribute to this disorder. We propose that endothelial NMDAR dysfunction can be a primary cause of neurovascular abnormalities in schizophrenia. Importantly, functional MRI studies using BOLD signal as a proxy for neuron activity should be considered in a new light if neurovascular coupling is impaired in schizophrenia. This review is the first to propose that NMDARs in non-excitable cells play a role in schizophrenia.
Collapse
Affiliation(s)
- Katheron Intson
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Salma Geissah
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Amy J Ramsey
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Sherwood MW, Oliet SHR, Panatier A. NMDARs, Coincidence Detectors of Astrocytic and Neuronal Activities. Int J Mol Sci 2021; 22:7258. [PMID: 34298875 PMCID: PMC8307462 DOI: 10.3390/ijms22147258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
Synaptic plasticity is an extensively studied cellular correlate of learning and memory in which NMDARs play a starring role. One of the most interesting features of NMDARs is their ability to act as a co-incident detector. It is unique amongst neurotransmitter receptors in this respect. Co-incident detection is possible because the opening of NMDARs requires membrane depolarisation and the binding of glutamate. Opening of NMDARs also requires a co-agonist. Although the dynamic regulation of glutamate and membrane depolarization have been well studied in coincident detection, the role of the co-agonist site is unexplored. It turns out that non-neuronal glial cells, astrocytes, regulate co-agonist availability, giving them the ability to influence synaptic plasticity. The unique morphology and spatial arrangement of astrocytes at the synaptic level affords them the capacity to sample and integrate information originating from unrelated synapses, regardless of any pre-synaptic and post-synaptic commonality. As astrocytes are classically considered slow responders, their influence at the synapse is widely recognized as modulatory. The aim herein is to reconsider the potential of astrocytes to participate directly in ongoing synaptic NMDAR activity and co-incident detection.
Collapse
Affiliation(s)
- Mark W. Sherwood
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France;
| | | | - Aude Panatier
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France;
| |
Collapse
|
11
|
Ploux E, Bouet V, Radzishevsky I, Wolosker H, Freret T, Billard JM. Serine Racemase Deletion Affects the Excitatory/Inhibitory Balance of the Hippocampal CA1 Network. Int J Mol Sci 2020; 21:E9447. [PMID: 33322577 PMCID: PMC7763099 DOI: 10.3390/ijms21249447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
d-serine is the major co-agonist of N-methyl-D-aspartate receptors (NMDAR) at CA3/CA1 hippocampal synapses, the activation of which drives long-term potentiation (LTP). The use of mice with targeted deletion of the serine racemase (SR) enzyme has been an important tool to uncover the physiological and pathological roles of D-serine. To date, some uncertainties remain regarding the direction of LTP changes in SR-knockout (SR-KO) mice, possibly reflecting differences in inhibitory GABAergic tone in the experimental paradigms used in the different studies. On the one hand, our extracellular recordings in hippocampal slices show that neither isolated NMDAR synaptic potentials nor LTP were altered in SR-KO mice. This was associated with a compensatory increase in hippocampal levels of glycine, another physiologic NMDAR co-agonist. SR-KO mice displayed no deficits in spatial learning, reference memory and cognitive flexibility. On the other hand, SR-KO mice showed a weaker LTP and a lower increase in NMDAR potentials compared to controls when GABAA receptors were pharmacologically blocked. Our results indicate that depletion of endogenous D-serine caused a reduced inhibitory activity in CA1 hippocampal networks, altering the excitatory/inhibitory balance, which contributes to preserve functional plasticity at synapses and to maintain related cognitive abilities.
Collapse
Affiliation(s)
- Eva Ploux
- UNICAEN, INSERM, COMETE, Cyceron, CHU Caen, Normandie University, 14000 Caen, France; (E.P.); (V.B.); (T.F.)
| | - Valentine Bouet
- UNICAEN, INSERM, COMETE, Cyceron, CHU Caen, Normandie University, 14000 Caen, France; (E.P.); (V.B.); (T.F.)
| | - Inna Radzishevsky
- Department of Biochemistry, Technion-Israel Institute of Technology, Rappaport Faculty of Medicine, Haifa 31096, Israel; (I.R.); (H.W.)
| | - Herman Wolosker
- Department of Biochemistry, Technion-Israel Institute of Technology, Rappaport Faculty of Medicine, Haifa 31096, Israel; (I.R.); (H.W.)
| | - Thomas Freret
- UNICAEN, INSERM, COMETE, Cyceron, CHU Caen, Normandie University, 14000 Caen, France; (E.P.); (V.B.); (T.F.)
| | - Jean-Marie Billard
- UNICAEN, INSERM, COMETE, Cyceron, CHU Caen, Normandie University, 14000 Caen, France; (E.P.); (V.B.); (T.F.)
| |
Collapse
|
12
|
Murtas G, Marcone GL, Sacchi S, Pollegioni L. L-serine synthesis via the phosphorylated pathway in humans. Cell Mol Life Sci 2020; 77:5131-5148. [PMID: 32594192 PMCID: PMC11105101 DOI: 10.1007/s00018-020-03574-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
L-serine is a nonessential amino acid in eukaryotic cells, used for protein synthesis and in producing phosphoglycerides, glycerides, sphingolipids, phosphatidylserine, and methylenetetrahydrofolate. Moreover, L-serine is the precursor of two relevant coagonists of NMDA receptors: glycine (through the enzyme serine hydroxymethyltransferase), which preferentially acts on extrasynaptic receptors and D-serine (through the enzyme serine racemase), dominant at synaptic receptors. The cytosolic "phosphorylated pathway" regulates de novo biosynthesis of L-serine, employing 3-phosphoglycerate generated by glycolysis and the enzymes 3-phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase (the latter representing the irreversible step). In the human brain, L-serine is primarily found in glial cells and is supplied to neurons for D-serine synthesis. Serine-deficient patients show severe neurological symptoms, including congenital microcephaly, psychomotor retardation, and intractable seizures, thus highlighting the relevance of de novo production of this amino acid in brain development and morphogenesis. Indeed, the phosphorylated pathway is strictly linked to cancer. Moreover, L-serine has been suggested as a ready-to-use treatment, as also recently proposed for Alzheimer's disease. Here, we present our current state of knowledge concerning the three mammalian enzymes of the phosphorylated pathway and known mutations related to pathological conditions: although the structure of these enzymes has been solved, how enzyme activity is regulated remains largely unknown. We believe that an in-depth investigation of these enzymes is crucial to identify the molecular mechanisms involved in modulating concentrations of the serine enantiomers and for studying the interplay between glial and neuronal cells and also to determine the most suitable therapeutic approach for various diseases.
Collapse
Affiliation(s)
- Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Giorgia Letizia Marcone
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy.
| |
Collapse
|
13
|
Abstract
Opioids are the most powerful analgesics available to date. However, they may also induce adverse effects including paradoxical opioid-induced hyperalgesia. A mechanism that might underlie opioid-induced hyperalgesia is the amplification of synaptic strength at spinal C-fibre synapses after withdrawal from systemic opioids such as remifentanil ("opioid-withdrawal long-term potentiation [LTP]"). Here, we show that both the induction as well as the maintenance of opioid-withdrawal LTP were abolished by pharmacological blockade of spinal glial cells. By contrast, the blockade of TLR4 had no effect on the induction of opioid-withdrawal LTP. D-serine, which may be released upon glial cell activation, was necessary for withdrawal LTP. D-serine is the dominant coagonist for neuronal NMDA receptors, which are required for the amplification of synaptic strength on remifentanil withdrawal. Unexpectedly, opioid-withdrawal LTP was transferable through the cerebrospinal fluid between animals. This suggests that glial-cell-derived mediators accumulate in the extracellular space and reach the cerebrospinal fluid at biologically active concentrations, thereby creating a soluble memory trace that is transferable to another animal ("transfer LTP"). When we enzymatically degraded D-serine in the superfusate, LTP could no longer be transferred. Transfer LTP was insensitive to pharmacological blockade of glial cells in the recipient animal, thus representing a rare form of glial cell-independent LTP in the spinal cord.
Collapse
|
14
|
Characterization of a Cell Line Model for d-Serine Uptake. J Pharm Biomed Anal 2020; 187:113360. [PMID: 32447235 DOI: 10.1016/j.jpba.2020.113360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 01/12/2023]
Abstract
d-Serine is an important co-agonist of the N-methyl-d-aspartate (NMDA) receptors in the brain and its altered activity was identified in various pathological conditions. Modification of the extracellular d-serine level is suggested to be able to modulate the receptor function. Its transporters may thus serve as potential drug targets. The aim of this work was to find an easily available human cell line model appropriate for screening molecules affecting d-serine transporters. Characteristics of d-serine transport into SH-SY5Y human neuroblastoma cell line were studied and compared to those in cultured primary astrocytes. Uptake was followed by measuring intracellular d-serine concentration by capillary electrophoresis with laser induced fluorescence detection method. We found that SH-SY5Y cells express functional ASCT-1 and ASCT-2 neutral amino acid transporters and show similar d-serine uptake kinetics to cultured astrocytes. Neutral amino acids inhibited d-serine uptake similarly in both cell types. Complete inhibition was achieved by l-alanine and l-threonine alike, while the two-step inhibition curve of trans-hydroxy-l-proline, a selective inhibitor of ASCT-1 supported the presence of functioning ASCT-1 and ASCT-2 transporters. Its higher affinity step corresponding to inhibition of ASCT-1 was responsible for about 30% of the total d-serine uptake. Based on our results human SH-SY5Y cell line shows similar uptake characteristics to primary astrocytes and thus can serve as a suitable model system for testing of compounds for influencing d-serine uptake into astrocytes.
Collapse
|
15
|
D-Serine Signaling and NMDAR-Mediated Synaptic Plasticity Are Regulated by System A-Type of Glutamine/D-Serine Dual Transporters. J Neurosci 2020; 40:6489-6502. [PMID: 32661027 DOI: 10.1523/jneurosci.0801-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/22/2020] [Accepted: 06/25/2020] [Indexed: 02/03/2023] Open
Abstract
D-serine is a physiologic coagonist of NMDA receptors (NMDARs) required for synaptic plasticity, but mechanisms that terminate D-serine signaling are unclear. In particular, the identity of unidirectional plasma membrane transporters that mediate D-serine reuptake has remained elusive. We report that D-serine and glutamine share the same neuronal transport system, consisting of the classic system A transporters Slc38a1 and Slc38a2. We show that these transporters are not saturated with glutamine in vivo and regulate the extracellular levels of D-serine and NMDAR activity. Glutamine increased the NMDAR-dependent long-term potentiation and the isolated NMDAR potentials at the Schaffer collateral-CA1 synapses, but without affecting basal neurotransmission in male mice. Glutamine did not increase the NMDAR potentials in slices from serine racemase knock-out mice, which are devoid of D-serine, indicating that the effect of glutamine is caused by outcompeting D-serine for a dual glutamine-D-serine transport system. Inhibition of the system A reduced the uptake of D-serine in synaptosomes and neuronal cultures of mice of either sex, while increasing the extracellular D-serine concentration in slices and in vivo by microdialysis. When compared with Slc38a2, the Slc38a1 transporter displayed more favorable kinetics toward the D-enantiomer. Biochemical experiments with synaptosomes from Slc38a1 knock-down mice of either sex further support its role as a D-serine reuptake system. Our study identifies the first concentrative and electrogenic transporters mediating D-serine reuptake in vivo In addition to their classical role in the glutamine-glutamate cycle, system A transporters regulate the synaptic turnover of D-serine and its effects on NMDAR synaptic plasticity.SIGNIFICANCE STATEMENT Despite the plethora of roles attributed to D-serine, the regulation of its synaptic turnover is poorly understood. We identified the system A transporters Slc38a1 and Slc38a2 as the main pathway for neuronal reuptake of D-serine. These transporters are not saturated with glutamine in vivo and provide an unexpected link between the serine shuttle pathway, responsible for regulating D-serine synaptic turnover, and the glutamine-glutamate cycle. Our observations suggest that Slc38a1 and Slc38a2 have a dual role in regulating neurotransmission. In addition to their classical role as the glutamine providers, the system A transporters regulate extracellular D-serine and therefore affect NMDAR-dependent synaptic plasticity. Higher glutamine export from astrocytes would increase extracellular D-serine, providing a feedforward mechanism to increase synaptic NMDAR activation.
Collapse
|
16
|
Wolosker H, Balu DT. D-Serine as the gatekeeper of NMDA receptor activity: implications for the pharmacologic management of anxiety disorders. Transl Psychiatry 2020; 10:184. [PMID: 32518273 PMCID: PMC7283225 DOI: 10.1038/s41398-020-00870-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Fear, anxiety, and trauma-related disorders, including post-traumatic stress disorder (PTSD), are quite common and debilitating, with an estimated lifetime prevalence of ~28% in Western populations. They are associated with excessive fear reactions, often including an inability to extinguish learned fear, increased avoidance behavior, as well as altered cognition and mood. There is an extensive literature demonstrating the importance of N-methyl-D-aspartate receptor (NMDAR) function in regulating these behaviors. NMDARs require the binding of a co-agonist, D-serine or glycine, at the glycine modulatory site (GMS) to function. D-serine is now garnering attention as the primary NMDAR co-agonist in limbic brain regions implicated in neuropsychiatric disorders. L-serine is synthesized by astrocytes, which is then transported to neurons for conversion to D-serine by serine racemase (SR), a model we term the 'serine shuttle.' The neuronally-released D-serine is what regulates NMDAR activity. Our review discusses how the systems that regulate the synaptic availability of D-serine, a critical gatekeeper of NMDAR-dependent activation, could be targeted to improve the pharmacologic management of anxiety-related disorders where the desired outcomes are the facilitation of fear extinction, as well as mood and cognitive enhancement.
Collapse
Affiliation(s)
- Herman Wolosker
- grid.6451.60000000121102151Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096 Israel
| | - Darrick T. Balu
- grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA 02115 USA ,grid.240206.20000 0000 8795 072XTranslational Psychiatry Laboratory, McLean Hospital, Belmont, MA 02478 USA
| |
Collapse
|
17
|
D-Serine, the Shape-Shifting NMDA Receptor Co-agonist. Neurochem Res 2020; 45:1344-1353. [PMID: 32189130 DOI: 10.1007/s11064-020-03014-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/17/2022]
Abstract
Shape-shifting, a phenomenon wide-spread in folklore, refers to the ability to physically change from one identity to another, typically from an innocuous entity to a destructive one. The amino acid D-serine over the last 25 years has "shape-shifted" into several identities: a purported glial transmitter activating N-methyl-D-aspartate receptors (NMDARs), a co-transmitter concentrated in excitatory glutamatergic neurons, an autocrine that is released at dendritic spines to prime their post-synaptic NMDARs for an instantaneous response to glutamate and an excitotoxic moiety released from inflammatory (A1) astrocytes. This article will review evidence in support of these scenarios and the artifacts that misled investigators of the true identity of D-serine.
Collapse
|
18
|
D-Serine made by serine racemase in Drosophila intestine plays a physiological role in sleep. Nat Commun 2019; 10:1986. [PMID: 31064979 PMCID: PMC6504911 DOI: 10.1038/s41467-019-09544-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 03/14/2019] [Indexed: 12/21/2022] Open
Abstract
Natural D-serine (D-Ser) has been detected in animals more than two decades ago, but little is known about the physiological functions of D-Ser. Here we reveal sleep regulation by endogenous D-Ser. Sleep was decreased in mutants defective in D-Ser synthesis or its receptor the N-methyl-D-aspartic receptor 1 (NMDAR1), but increased in mutants defective in D-Ser degradation. D-Ser but not L-Ser rescued the phenotype of mutants lacking serine racemase (SR), the key enzyme for D-Ser synthesis. Pharmacological and triple gene knockout experiments indicate that D-Ser functions upstream of NMDAR1. Expression of SR was detected in both the nervous system and the intestines. Strikingly, reintroduction of SR into specific intestinal epithelial cells rescued the sleep phenotype of sr mutants. Our results have established a novel physiological function for endogenous D-Ser and a surprising role for intestinal cells. The physiological function of endogenous D-serine remains a mystery. Here the authors show that endogenous D-serine plays an important role in regulating sleep and that, while the D-serine synthesizing enzyme serine racemase (SR) is expressed both in the nervous system and the intestines, the SR in the intestine is shown to be functionally sufficient for sleep regulation.
Collapse
|
19
|
Role of astrocytes-derived d-serine in PFOS-induced neurotoxicity through NMDARs in the rat primary hippocampal neurons. Toxicology 2019; 422:14-24. [PMID: 31004706 DOI: 10.1016/j.tox.2019.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 03/05/2019] [Accepted: 04/16/2019] [Indexed: 12/30/2022]
Abstract
Perfluorooctane sulfonate (PFOS) is one of the perfluorinated compounds (PFCs), and has been used in industrial and consumer products. It has already been shown that PFOS could be detected in the environmental media and biological species including humans, due to its resistance to environmental degradation. PFOS is known to induce a series of adverse impacts on human health, e.g., as a potential neurotoxic substance. Recent studies suggest that astrocytes act as the mediator in PFOS-induced neurotoxicity; however, the underlying molecular mechanism needs further investigation. Under the physiological condition, astrocytes play an important role in maintaining brain functions through releasing and up-taking of neurotransmitters between astrocytes and neurons. In the present study, astrocytes-derived d-serine was shown to be involved in PFOS-induced apoptosis and death in the rat primary hippocampal neurons. Significant alterations in d-serine were found in astrocytes, mediated by the molecules in d-serine synthesis (serine racemase), metabolism (d-amino acid oxidase) and delivery (calcium, vacuolar type H+-ATPase, alanine-serine-cysteine transporter and connexin 43 hemichannels). Meanwhile, the N-methyl-d-aspartate receptor (NMDAR) subunits (NR1, NR2 A and NR2B) gene and protein expressions were significantly increased in the hippocampal neurons exposed to the PFOS-activated astrocytes-conditional medium (ACM). Further, the adverse effects of PFOS could be attenuated by the fluorocitrate (an inhibitor for d-serine up-taken by the glial cells) application. Our data indicated that astrocytes-derived d-serine was involved in PFOS-induced neurotoxicity through the NMDARs in the rat primary hippocampal neurons.
Collapse
|
20
|
Evans K, Wang X, Roper MG. Chiral micellar electrokinetic chromatographic separation for determination of L- and D-primary amines released from murine islets of Langerhans. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:1276-1283. [PMID: 31073338 PMCID: PMC6502259 DOI: 10.1039/c8ay02471e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
D-amino acids have been located in various tissues including the endocrine portion of the pancreas, the islets of Langerhans. D-Serine (D-Ser), is of particular interest since it is an agonist for the ionotropic N-methyl-D-aspartate receptors. To examine the potential release of D-Ser and other D-amino acids from islets, a chiral micellar electrokinetic chromatography method was developed by derivatizing primary amines with 2,3-naphthalenedicarboxaldehyde and to achieve resolution of the enantiomers, two surfactants were used in the separation, sodium dodecyl sulfate and sodium deoxycholate. With the optimized conditions, 7 of 13 enantiomeric pairs that were tested had greater than baseline resolution, while the resolution of numerous other L-amino acids and small molecules were maintained. For the 17 compounds that were fully resolved, limits of detection were less than 10 nM. The resulting optimized separation method produced high efficiency peaks, with an average of 300,000 theoretical plates per peak and a peak capacity of 120. The method was used to examine the release of small molecules from groups of 50 murine islets of Langerhans. A peak was detected from islets incubated with 20 mM glucose that co-migrated with a D-Ser standard, although its level was below the quantifiable limit.
Collapse
Affiliation(s)
- Kimberly Evans
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306
| | - Xue Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306
| | - Michael G. Roper
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306
| |
Collapse
|
21
|
Impact of Aging in Microglia-Mediated D-Serine Balance in the CNS. Mediators Inflamm 2018; 2018:7219732. [PMID: 30363571 PMCID: PMC6180939 DOI: 10.1155/2018/7219732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/19/2018] [Accepted: 08/30/2018] [Indexed: 01/12/2023] Open
Abstract
A mild chronic inflammatory state, like that observed in aged individuals, affects microglial function, inducing a dysfunctional phenotype that potentiates neuroinflammation and cytotoxicity instead of neuroprotection in response to additional challenges. Given that inflammatory activation of microglia promotes increased release of D-serine, we postulate that age-dependent inflammatory brain environment leads to microglia-mediated changes on the D-serine-regulated glutamatergic transmission. Furthermore, D-serine dysregulation, in addition to affecting synaptogenesis and synaptic plasticity, appears also to potentiate NMDAR-dependent excitotoxicity, promoting neurodegeneration and cognitive impairment. D-serine dysregulation promoted by microglia could have a role in age-related cognitive impairment and in the induction and progression of neurodegenerative processes like Alzheimer's disease.
Collapse
|
22
|
Sason H, Billard JM, Smith GP, Safory H, Neame S, Kaplan E, Rosenberg D, Zubedat S, Foltyn VN, Christoffersen CT, Bundgaard C, Thomsen C, Avital A, Christensen KV, Wolosker H. Asc-1 Transporter Regulation of Synaptic Activity via the Tonic Release of d-Serine in the Forebrain. Cereb Cortex 2018; 27:1573-1587. [PMID: 26796213 DOI: 10.1093/cercor/bhv350] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
d-Serine is a co-agonist of NMDA receptors (NMDARs) whose activity is potentially regulated by Asc-1 (SLC7A10), a transporter that displays high affinity for d-serine and glycine. Asc-1 operates as a facilitative transporter and as an antiporter, though the preferred direction of d-serine transport is uncertain. We developed a selective Asc-1 blocker, Lu AE00527, that blocks d-serine release mediated by all the transport modes of Asc-1 in primary cultures and neocortical slices. Furthermore, d-serine release is reduced in slices from Asc-1 knockout (KO) mice, indicating that d-serine efflux is the preferred direction of Asc-1. The selectivity of Lu AE00527 is assured by the lack of effect on slices from Asc-1-KO mice, and the lack of interaction with the co-agonist site of NMDARs. Moreover, in vivo injection of Lu AE00527 in P-glycoprotein-deficient mice recapitulates a hyperekplexia-like phenotype similar to that in Asc-1-KO mice. In slices, Lu AE00527 decreases the long-term potentiation at the Schaffer collateral-CA1 synapses, but does not affect the long-term depression. Lu AE00527 blocks NMDAR synaptic potentials when typical Asc-1 extracellular substrates are present, but it does not affect AMPAR transmission. Our data demonstrate that Asc-1 mediates tonic co-agonist release, which is required for optimal NMDAR activation and synaptic plasticity.
Collapse
Affiliation(s)
- Hagit Sason
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Jean Marie Billard
- UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Hazem Safory
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Samah Neame
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Eitan Kaplan
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Dina Rosenberg
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Salman Zubedat
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Veronika N Foltyn
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | - Christian Thomsen
- Drug Discovery Neuroscience, H. Lundbeck A/S, DK-2500 Valby, Denmark
| | - Avi Avital
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel.,Emek Medical Center, Afula, Israel
| | | | - Herman Wolosker
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
23
|
Guercio GD, Panizzutti R. Potential and Challenges for the Clinical Use of d-Serine As a Cognitive Enhancer. Front Psychiatry 2018; 9:14. [PMID: 29459833 PMCID: PMC5807334 DOI: 10.3389/fpsyt.2018.00014] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/17/2018] [Indexed: 12/16/2022] Open
Abstract
After 25 years of its discovery in the rat brain, d-serine is a recognized modulator of synaptic plasticity and cognitive processes through its actions on the NMDA-glutamate receptor. Importantly, cognitive impairment is a core feature of conditions, such as schizophrenia, Alzheimer's disease, depression, and aging, and is associated to disturbances in NMDA-glutamate receptors. The d-serine pathway has been associated with cognitive deficits and these conditions, and, for this reason, d-serine signaling is subject of intense research to probe its role in aiding diagnosis and therapy. Nevertheless, this has not resulted in new therapies being incorporated into clinical practice. Therefore, in this review we will address many questions that need to be solved by future studies, regarding d-serine pharmacokinetics, possible side effects, other strategies to modulate its levels, and combination with other therapies to increase its efficacy.
Collapse
Affiliation(s)
- Gerson D. Guercio
- Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rogerio Panizzutti
- Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
|
25
|
Beltrán-Castillo S, Olivares MJ, Contreras RA, Zúñiga G, Llona I, von Bernhardi R, Eugenín JL. D-serine released by astrocytes in brainstem regulates breathing response to CO 2 levels. Nat Commun 2017; 8:838. [PMID: 29018191 PMCID: PMC5635109 DOI: 10.1038/s41467-017-00960-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 08/09/2017] [Indexed: 11/17/2022] Open
Abstract
Central chemoreception is essential for adjusting breathing to physiological demands, and for maintaining CO2 and pH homeostasis in the brain. CO2-induced ATP release from brainstem astrocytes stimulates breathing. NMDA receptor (NMDAR) antagonism reduces the CO2-induced hyperventilation by unknown mechanisms. Here we show that astrocytes in the mouse caudal medullary brainstem can synthesize, store, and release d-serine, an agonist for the glycine-binding site of the NMDAR, in response to elevated CO2 levels. We show that systemic and raphe nucleus d-serine administration to awake, unrestrained mice increases the respiratory frequency. Application of d-serine to brainstem slices also increases respiratory frequency, which was prevented by NMDAR blockade. Inhibition of d-serine synthesis, enzymatic degradation of d-serine, or the sodium fluoroacetate-induced impairment of astrocyte functions decrease the basal respiratory frequency and the CO2-induced respiratory response in vivo and in vitro. Our findings suggest that astrocytic release of d-serine may account for the glutamatergic contribution to central chemoreception. Astrocytes are involved in chemoreception in brainstem areas that regulate breathing rhythm, and astrocytes are known to release d-serine. Here the authors show that astrocyte release of d-serine contributes to CO2 sensing and breathing in brainstem slices, and in vivo in awake unrestrained mice.
Collapse
Affiliation(s)
- S Beltrán-Castillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, 9170022, Chile
| | - M J Olivares
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, 9170022, Chile
| | - R A Contreras
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, 9170022, Chile
| | - G Zúñiga
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, 9170022, Chile
| | - I Llona
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, 9170022, Chile
| | - R von Bernhardi
- Departamento de Neurología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile.
| | - J L Eugenín
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, 9170022, Chile.
| |
Collapse
|
26
|
Ishiwata S, Umino A, Nishikawa T. Involvement of neuronal and glial activities in control of the extracellular d-serine concentrations by the AMPA glutamate receptor in the mouse medial prefrontal cortex. Neurochem Int 2017; 119:120-125. [PMID: 28966065 DOI: 10.1016/j.neuint.2017.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/03/2017] [Accepted: 09/13/2017] [Indexed: 11/30/2022]
Abstract
It has been well accepted that d-serine may be an exclusive endogenous coagonist for the N-methyl-d-aspartate (NMDA)-type glutamate receptor in mammalian forebrain regions. We have recently found by using an in vivo dialysis method that an intra-medial prefrontal cortex infusion of S-α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (S-AMPA), a selective AMPA-type glutamate receptor agonist, causes a reduction in the extracellular levels of d-serine in a calcium-permeable AMPA receptor antagonist-sensitive manner. The inhibitory influence by the AMPA receptor on the extracellular d-serine, however, contradicts the data obtained from in vitro experiments that the AMPA receptor stimulation leads to facilitation of the d-serine liberation. This discrepancy appears to be due to the different cell setups between the in vivo and in vitro preparations. From the viewpoints of the previous reports indicating (1) the neuronal presence of d-serine synthesizing enzyme, serine racemase, and d-serine-like immunoreactivity and (2) the same high tissue concentrations of d-serine in the glia-enriched white matter and in the neuron-enriched gray matter of the mammalian neocortex, we have now investigated in the mouse medial prefrontal cortex, the effects of attenuation of neuronal and glial activities, by tetrodotoxin or fluorocitrate, respectively, on the S-AMPA-induced downregulation of the extracellular d-serine contents. In vivo dialysis studies revealed that a local infusion of tetrodotoxin or fluorocitrate eliminated the ability of S-AMPA given intra-cortically to cause a significant decrease in the dialysate concentrations of d-serine without affecting the elevating effects of S-AMPA on those of glycine, another intrinsic coagonist for the NMDA receptor. These findings suggest that the control by the AMPA receptor of the extracellular d-serine levels could be modulated by the neuronal and glial activities in the prefrontal cortex. It cannot be excluded that fluorocitrate would indirectly alter the modulation by changing synaptic neurotransmission via glial activity attenuation as previously reported.
Collapse
Affiliation(s)
- Sayuri Ishiwata
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Asami Umino
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Toru Nishikawa
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
27
|
Papouin T, Henneberger C, Rusakov DA, Oliet SH. Astroglial versus Neuronal D-Serine: Fact Checking. Trends Neurosci 2017; 40:517-520. [DOI: 10.1016/j.tins.2017.05.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 02/02/2023]
|
28
|
Perez EJ, Tapanes SA, Loris ZB, Balu DT, Sick TJ, Coyle JT, Liebl DJ. Enhanced astrocytic d-serine underlies synaptic damage after traumatic brain injury. J Clin Invest 2017; 127:3114-3125. [PMID: 28714867 DOI: 10.1172/jci92300] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/26/2017] [Indexed: 01/09/2023] Open
Abstract
After traumatic brain injury (TBI), glial cells have both beneficial and deleterious roles in injury progression and recovery. However, few studies have examined the influence of reactive astrocytes in the tripartite synapse following TBI. Here, we have demonstrated that hippocampal synaptic damage caused by controlled cortical impact (CCI) injury in mice results in a switch from neuronal to astrocytic d-serine release. Under nonpathological conditions, d-serine functions as a neurotransmitter and coagonist for NMDA receptors and is involved in mediating synaptic plasticity. The phasic release of neuronal d-serine is important in maintaining synaptic function, and deficiencies lead to reductions in synaptic function and plasticity. Following CCI injury, hippocampal neurons downregulated d-serine levels, while astrocytes enhanced production and release of d-serine. We further determined that this switch in the cellular source of d-serine, together with the release of basal levels of glutamate, contributes to synaptic damage and dysfunction. Astrocyte-specific elimination of the astrocytic d-serine-synthesizing enzyme serine racemase after CCI injury improved synaptic plasticity, brain oscillations, and learning behavior. We conclude that the enhanced tonic release of d-serine from astrocytes after TBI underlies much of the synaptic damage associated with brain injury.
Collapse
Affiliation(s)
- Enmanuel J Perez
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stephen A Tapanes
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Zachary B Loris
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Darrick T Balu
- Translational Psychiatry Laboratory, McLean Hospital, Belmont, Massachusetts, USA
| | - Thomas J Sick
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joseph T Coyle
- Laboratory of Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, Massachusetts, USA
| | - Daniel J Liebl
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
29
|
Abstract
More than half a century ago researchers thought that D-amino acids had a minor function compared to L-enantiomers in biological processes. Many evidences have shown that D-amino acids are present in high concentration in microorganisms, plants, mammals and humans and fulfil specific biological functions. In the brain of mammals, D-serine (D-Ser) acts as a co-agonist of the N-methyl-D-aspartate (NMDA)-type glutamate receptors, responsible for learning, memory and behaviour. D-Ser metabolism is relevant for disorders associated with an altered function of the NMDA receptor, such as schizophrenia, ischemia, epilepsy and neurodegenerative disorders. On the other hand, D-aspartate (D-Asp) is one of the major regulators of adult neurogenesis and plays an important role in the development of endocrine function. D-Asp is present in the neuroendocrine and endocrine tissues and testes, and regulates the synthesis and secretion of hormones and spermatogenesis. Also food proteins contain D-amino acids that are naturally originated or processing-induced under conditions such as high temperatures, acid and alkali treatments and fermentation processes. The presence of D-amino acids in dairy products denotes thermal and alkaline treatments and microbial contamination. Two enzymes are involved in the metabolism of D-amino acids: amino acid racemase in the synthesis and D-amino acid oxidase in the degradation.
Collapse
|
30
|
Acton D, Miles GB. Differential regulation of NMDA receptors by d-serine and glycine in mammalian spinal locomotor networks. J Neurophysiol 2017; 117:1877-1893. [PMID: 28202572 PMCID: PMC5411468 DOI: 10.1152/jn.00810.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/11/2017] [Accepted: 02/11/2017] [Indexed: 12/11/2022] Open
Abstract
We provide evidence that NMDARs within murine spinal locomotor networks determine the frequency and amplitude of ongoing locomotor-related activity in vitro and that NMDARs are regulated by d-serine and glycine in a synapse-specific and activity-dependent manner. In addition, glycine transporter-1 is shown to be an important regulator of NMDARs during locomotor-related activity. These results show how excitatory transmission can be tuned to diversify the output repertoire of spinal locomotor networks in mammals. Activation of N-methyl-d-aspartate receptors (NMDARs) requires the binding of a coagonist, either d-serine or glycine, in addition to glutamate. Changes in occupancy of the coagonist binding site are proposed to modulate neural networks including those controlling swimming in frog tadpoles. Here, we characterize regulation of the NMDAR coagonist binding site in mammalian spinal locomotor networks. Blockade of NMDARs by d(−)-2-amino-5-phosphonopentanoic acid (d-APV) or 5,7-dichlorokynurenic acid reduced the frequency and amplitude of pharmacologically induced locomotor-related activity recorded from the ventral roots of spinal-cord preparations from neonatal mice. Furthermore, d-APV abolished synchronous activity induced by blockade of inhibitory transmission. These results demonstrate an important role for NMDARs in murine locomotor networks. Bath-applied d-serine enhanced the frequency of locomotor-related but not disinhibited bursting, indicating that coagonist binding sites are saturated during the latter but not the former mode of activity. Depletion of endogenous d-serine by d-amino acid oxidase or the serine-racemase inhibitor erythro-β-hydroxy-l-aspartic acid (HOAsp) increased the frequency of locomotor-related activity, whereas application of l-serine to enhance endogenous d-serine synthesis reduced burst frequency, suggesting a requirement for d-serine at a subset of synapses onto inhibitory interneurons. Consistent with this, HOAsp was ineffective during disinhibited activity. Bath-applied glycine (1–100 µM) failed to alter locomotor-related activity, whereas ALX 5407, a selective inhibitor of glycine transporter-1 (GlyT1), enhanced burst frequency, supporting a role for GlyT1 in NMDAR regulation. Together these findings indicate activity-dependent and synapse-specific regulation of the coagonist binding site within spinal locomotor networks, illustrating the importance of NMDAR regulation in shaping motor output. NEW & NOTEWORTHY We provide evidence that NMDARs within murine spinal locomotor networks determine the frequency and amplitude of ongoing locomotor-related activity in vitro and that NMDARs are regulated by d-serine and glycine in a synapse-specific and activity-dependent manner. In addition, glycine transporter-1 is shown to be an important regulator of NMDARs during locomotor-related activity. These results show how excitatory transmission can be tuned to diversify the output repertoire of spinal locomotor networks in mammals.
Collapse
Affiliation(s)
- David Acton
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Gareth B Miles
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife, United Kingdom
| |
Collapse
|
31
|
Lutter D, Ullrich F, Lueck JC, Kempa S, Jentsch TJ. Selective transport of neurotransmitters and modulators by distinct volume-regulated LRRC8 anion channels. J Cell Sci 2017; 130:1122-1133. [PMID: 28193731 DOI: 10.1242/jcs.196253] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/31/2017] [Indexed: 01/10/2023] Open
Abstract
In response to swelling, mammalian cells release chloride and organic osmolytes through volume-regulated anion channels (VRACs). VRACs are heteromers of LRRC8A and other LRRC8 isoforms (LRRC8B to LRRC8E), which are co-expressed in HEK293 and most other cells. The spectrum of VRAC substrates and its dependence on particular LRRC8 isoforms remains largely unknown. We show that, besides the osmolytes taurine and myo-inositol, LRRC8 channels transport the neurotransmitters glutamate, aspartate and γ-aminobutyric acid (GABA) and the co-activator D-serine. HEK293 cells engineered to express defined subsets of LRRC8 isoforms were used to elucidate the subunit-dependence of transport. Whereas LRRC8D was crucial for the translocation of overall neutral compounds like myo-inositol, taurine and GABA, and sustained the transport of positively charged lysine, flux of negatively charged aspartate was equally well supported by LRRC8E. Disruption of LRRC8B or LRRC8C failed to decrease the transport rates of all investigated substrates, but their inclusion into LRRC8 heteromers influenced the substrate preference of VRAC. This suggested that individual VRACs can contain three or more different LRRC8 subunits, a conclusion confirmed by sequential co-immunoprecipitations. Our work suggests a composition-dependent role of VRACs in extracellular signal transduction.
Collapse
Affiliation(s)
- Darius Lutter
- Leibniz-Institut für Molekulare Pharmakologie (FMP), D-13125 Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), D-13125 Berlin, Germany.,Graduate Program of the Freie Universität Berlin, D-14195 Berlin, Germany
| | - Florian Ullrich
- Leibniz-Institut für Molekulare Pharmakologie (FMP), D-13125 Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), D-13125 Berlin, Germany
| | - Jennifer C Lueck
- Leibniz-Institut für Molekulare Pharmakologie (FMP), D-13125 Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), D-13125 Berlin, Germany.,Graduate Program of the Freie Universität Berlin, D-14195 Berlin, Germany
| | - Stefan Kempa
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), D-13125 Berlin, Germany
| | - Thomas J Jentsch
- Leibniz-Institut für Molekulare Pharmakologie (FMP), D-13125 Berlin, Germany .,Max-Delbrück-Centrum für Molekulare Medizin (MDC), D-13125 Berlin, Germany.,Neurocure, Charité Universitätsmedizin, D-10117 Berlin, Germany
| |
Collapse
|
32
|
Real-Time Chiral Metabolic Monitoring of Single Cell Using Microchip Electrophoresis Coupled with Electrospray Ionization Mass Spectrometry. ChemistrySelect 2016. [DOI: 10.1002/slct.201600748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Wolosker H, Balu DT, Coyle JT. The Rise and Fall of the d-Serine-Mediated Gliotransmission Hypothesis. Trends Neurosci 2016; 39:712-721. [PMID: 27742076 DOI: 10.1016/j.tins.2016.09.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/26/2023]
Abstract
d-Serine modulates N-methyl d-aspartate receptors (NMDARs) and regulates synaptic plasticity, neurodevelopment, and learning and memory. However, the primary site of d-serine synthesis and release remains controversial, with some arguing that it is a gliotransmitter and others defining it as a neuronal cotransmitter. Results from several laboratories using different strategies now show that the biosynthetic enzyme of d-serine, serine racemase (SR), is expressed almost entirely by neurons, with few astrocytes appearing to contain d-serine. Cell-selective suppression of SR expression demonstrates that neuronal, rather than astrocytic d-serine, modulates synaptic plasticity. Here, we propose an alternative conceptualization whereby astrocytes affect d-serine levels by synthesizing l-serine that shuttles to neurons to fuel the neuronal synthesis of d-serine.
Collapse
Affiliation(s)
- Herman Wolosker
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| | - Darrick T Balu
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA 02478, USA.
| | - Joseph T Coyle
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Laboratory of Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, MA 02478, USA.
| |
Collapse
|
34
|
A micellar electrokinetic chromatography-mass spectrometry approach using in-capillary diastereomeric derivatization for fully automatized chiral analysis of amino acids. J Chromatogr A 2016; 1467:400-408. [PMID: 27554025 DOI: 10.1016/j.chroma.2016.08.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 11/20/2022]
Abstract
In the context of bioanalytical method development, process automatization is nowadays a necessity in order to save time, improve method reliability and reduce costs. For the first time, a fully automatized micellar electrokinetic chromatography-mass spectrometry (MEKC-MS) method with in-capillary derivatization was developed for the chiral analysis of d- and l-amino acids using (-)-1-(9-fluorenyl) ethyl chloroformate (FLEC) as labeling reagent. The derivatization procedure was optimized using an experimental design approach leading to the following conditions: sample and FLEC plugs in a 2:1 ratio (15s, 30mbar: 7.5s, 30mbar) followed by 15min of mixing using a voltage of 0.1kV. The formed diastereomers were then separated using a background electrolyte (BGE) consisting of 150mM ammonium perfluorooctanoate (APFO) (pH=9.5) and detected by mass spectrometry (MS). Complete chiral resolution was obtained for 8 amino acids, while partial separation was achieved for 6 other amino acid pairs. The method showed good reproducibility and linearity in the low micromolar concentration range. The applicability of the method to biological samples was tested by analyzing artificial cerebrospinal fluid (aCSF) samples.
Collapse
|
35
|
Ekova MR, Smirnov AV, Shmidt MV, Tyurenkov IN, Volotova EV, Kurkin DV, Grigorieva NV, Ermilov VV, Mednikov DS. Comparison of morphofunctional features of the ventral hippocampus in adult and old rats after combined stress. ADVANCES IN GERONTOLOGY 2016. [DOI: 10.1134/s2079057016030036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Sakimura K, Nakao K, Yoshikawa M, Suzuki M, Kimura H. A novel Na(+) -Independent alanine-serine-cysteine transporter 1 inhibitor inhibits both influx and efflux of D-Serine. J Neurosci Res 2016; 94:888-95. [PMID: 27302861 DOI: 10.1002/jnr.23772] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/15/2016] [Accepted: 05/06/2016] [Indexed: 01/28/2023]
Abstract
NMDA receptor dysfunctions are hypothesized to underlie the pathophysiology of schizophrenia, and treatment with D-serine (D-Ser), an NMDA receptor coagonist, may improve the clinical symptoms of schizophrenia. Thus, upregulating the synaptic D-Ser level is a novel strategy for schizophrenia treatment. Na(+) -independent alanine-serine-cysteine transporter 1 (asc-1) is a transporter responsible for regulating the extracellular D-Ser levels in the brain. In this study, we discovered a novel asc-1 inhibitor, (+)-amino(1-(3,5-dichlorophenyl)-3,5-dimethyl-1H-pyrazol-4-yl)acetic acid (ACPP), and assessed its pharmacological profile. ACPP inhibited the D-[(3) H]Ser uptake in human asc-1-expressing CHO cells and rat primary neurons with IC50 values of 0.72 ± 0.13 and 0.89 ± 0.30 μM, respectively. In accordance with the lower asc-1 expression levels in astrocytes, ACPP did not inhibit D-Ser uptake in rat primary astrocytes. In a microdialysis study, ACPP dose dependently decreased the extracellular D-Ser levels in the rat hippocampus under the same conditions in which the asc-1 inhibitor S-methyl-L-cysteine (SMLC) increased it. To obtain insights into this difference, we conducted a D-[(3) H]Ser efflux assay using asc-1-expressing CHO cells. ACPP inhibited D-[(3) H]Ser efflux, whereas SMLC increased it. These results suggest that ACPP is a novel inhibitor of asc-1. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katsuya Sakimura
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Kenji Nakao
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Masato Yoshikawa
- Inflammation Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Motohisa Suzuki
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Haruhide Kimura
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| |
Collapse
|
37
|
Petrelli F, Bezzi P. Novel insights into gliotransmitters. Curr Opin Pharmacol 2016; 26:138-45. [DOI: 10.1016/j.coph.2015.11.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/13/2022]
|
38
|
Role of Astrocytes in Central Respiratory Chemoreception. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:109-145. [PMID: 27714687 DOI: 10.1007/978-3-319-40764-7_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Astrocytes perform various homeostatic functions in the nervous system beyond that of a supportive or metabolic role for neurons. A growing body of evidence indicates that astrocytes are crucial for central respiratory chemoreception. This review presents a classical overview of respiratory central chemoreception and the new evidence for astrocytes as brainstem sensors in the respiratory response to hypercapnia. We review properties of astrocytes for chemosensory function and for modulation of the respiratory network. We propose that astrocytes not only mediate between CO2/H+ levels and motor responses, but they also allow for two emergent functions: (1) Amplifying the responses of intrinsic chemosensitive neurons through feedforward signaling via gliotransmitters and; (2) Recruiting non-intrinsically chemosensitive cells thanks to volume spreading of signals (calcium waves and gliotransmitters) to regions distant from the CO2/H+ sensitive domains. Thus, astrocytes may both increase the intensity of the neuron responses at the chemosensitive sites and recruit of a greater number of respiratory neurons to participate in the response to hypercapnia.
Collapse
|
39
|
Kumar A. NMDA Receptor Function During Senescence: Implication on Cognitive Performance. Front Neurosci 2015; 9:473. [PMID: 26732087 PMCID: PMC4679982 DOI: 10.3389/fnins.2015.00473] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors, a family of L-glutamate receptors, play an important role in learning and memory, and are critical for spatial memory. These receptors are tetrameric ion channels composed of a family of related subunits. One of the hallmarks of the aging human population is a decline in cognitive function; studies in the past couple of years have demonstrated deterioration in NMDA receptor subunit expression and function with advancing age. However, a direct relationship between impaired memory function and a decline in NMDA receptors is still ambiguous. Recent studies indicate a link between an age-associated NMDA receptor hypofunction and memory impairment and provide evidence that age-associated enhanced oxidative stress might be contributing to the alterations associated with senescence. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between age-associated impaired cognitive faculties and NMDA receptor hypofunction. The current review intends to present an overview of the research findings regarding changes in expression of various NMDA receptor subunits and deficits in NMDA receptor function during senescence and its implication in age-associated impaired hippocampal-dependent memory function.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, Evelyn F. and William L. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| |
Collapse
|
40
|
Kirischuk S, Héja L, Kardos J, Billups B. Astrocyte sodium signaling and the regulation of neurotransmission. Glia 2015; 64:1655-66. [DOI: 10.1002/glia.22943] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/28/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Sergei Kirischuk
- University Medical Center of the Johannes Gutenberg University Mainz, Institute of Physiology; Mainz Germany
| | - László Héja
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| | - Julianna Kardos
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| | - Brian Billups
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University; Acton ACT Australia
| |
Collapse
|
41
|
Kolodney G, Dumin E, Safory H, Rosenberg D, Mori H, Radzishevsky I, Radzishevisky I, Wolosker H. Nuclear Compartmentalization of Serine Racemase Regulates D-Serine Production: IMPLICATIONS FOR N-METHYL-D-ASPARTATE (NMDA) RECEPTOR ACTIVATION. J Biol Chem 2015; 290:31037-50. [PMID: 26553873 DOI: 10.1074/jbc.m115.699496] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 11/06/2022] Open
Abstract
D-Serine is a physiological co-agonist that activates N-methyl D-aspartate receptors (NMDARs) and is essential for neurotransmission, synaptic plasticity, and behavior. D-Serine may also trigger NMDAR-mediated neurotoxicity, and its dysregulation may play a role in neurodegeneration. D-Serine is synthesized by the enzyme serine racemase (SR), which directly converts L-serine to D-serine. However, many aspects concerning the regulation of D-serine production under physiological and pathological conditions remain to be elucidated. Here, we investigate possible mechanisms regulating the synthesis of D-serine by SR in paradigms relevant to neurotoxicity. We report that SR undergoes nucleocytoplasmic shuttling and that this process is dysregulated by several insults leading to neuronal death, typically by apoptotic stimuli. Cell death induction promotes nuclear accumulation of SR, in parallel with the nuclear translocation of GAPDH and Siah proteins at an early stage of the cell death process. Mutations in putative SR nuclear export signals (NESs) elicit SR nuclear accumulation and its depletion from the cytosol. Following apoptotic insult, SR associates with nuclear GAPDH along with other nuclear components, and this is accompanied by complete inactivation of the enzyme. As a result, extracellular D-serine concentration is reduced, even though extracellular glutamate concentration increases severalfold. Our observations imply that nuclear translocation of SR provides a fail-safe mechanism to prevent or limit secondary NMDAR-mediated toxicity in nearby synapses.
Collapse
Affiliation(s)
- Goren Kolodney
- From the Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology and
| | - Elena Dumin
- the Laboratory of Clinical Biochemistry, Metabolic Unit, Rambam Health Care Campus, Haifa 31096, Israel, and
| | - Hazem Safory
- From the Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology and
| | - Dina Rosenberg
- From the Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology and
| | - Hisashi Mori
- the Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Inna Radzishevsky
- From the Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology and
| | | | - Herman Wolosker
- From the Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology and
| |
Collapse
|
42
|
Perisynaptic astroglial processes: dynamic processors of neuronal information. Brain Struct Funct 2015; 221:2427-42. [PMID: 26026482 DOI: 10.1007/s00429-015-1070-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
Abstract
Neuroglial interactions are now recognized as essential to brain functions. Extensive research has sought to understand the modalities of such dialog by focusing on astrocytes, the most abundant glial cell type of the central nervous system. Neuron-astrocyte exchanges occur at multiple levels, at different cellular locations. With regard to information processing, regulations occurring around synapses are of particular interest as synaptic networks are thought to underlie higher brain functions. Astrocytes morphology is tremendously complex in that their processes exceedingly branch out to eventually form multitudinous fine leaflets. The latter extremities have been shown to surround many synapses, forming perisynaptic astrocytic processes, which although recognized as essential to synaptic functioning, are poorly defined elements due to their tiny size. The current review sums up the current knowledge on their molecular and structural properties as well as the functional characteristics making them good candidates for information processing units.
Collapse
|
43
|
Li X, McCullum C, Zhao S, Hu H, Liu YM. D-serine uptake and release in PC-12 cells measured by chiral microchip electrophoresis-mass spectrometry. ACS Chem Neurosci 2015; 6:582-7. [PMID: 25611520 DOI: 10.1021/cn5003122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Previous work has established that D-serine (D-Ser) plays important roles in certain neurological processes. Study on its uptake/storage and release by neuronal cells is highly significant for elucidating relevant mechanisms. In this work, PC-12 cells were incubated with racemic Ser (100 μM each enantiomer). After incubation, both intra- and extracellular levels of D-Ser and L-Ser were quantified by chiral microchip electrophoresis with mass spectrometric detection. It was found the cells preferably took up D-Ser over L-Ser. After 120 min incubation, D-Ser percentage ([D-Ser]/([D-Ser] + [L-Ser]) in the culture media changed from 50% to 9% while inside the cells it increased from 13% to 67%. Small neutral amino acids such as threonine impaired D-Ser uptake. Ser release was studied by using PC-12 cells preloaded with D-Ser. KCl, Glu, and Gly evoked Ser release. Interestingly, while depolarization by KCl evoked release of Ser as a D-Ser/L-Ser mixture of 1:1 ratio, the stereoisomeric composition of Ser released due to Glu exposure varied with the exposure time, ranging from 73% D-Ser (i.e., [D-Ser] > [L-Ser]) at 2 min to 44% (i.e., [D-Ser] < [L-Ser]) at 14 min, clearly indicating a stereochemical preference for D-Ser in Ser release from neuronal cells evoked by Glu-receptor activation.
Collapse
Affiliation(s)
- Xiangtang Li
- Department
of Chemistry and Biochemistry, Jackson State University, 1400 Lynch
Street, Jackson, Mississippi 39217, United States
| | - Cassandra McCullum
- Department
of Chemistry and Biochemistry, Jackson State University, 1400 Lynch
Street, Jackson, Mississippi 39217, United States
| | - Shulin Zhao
- Department
of Chemistry and Biochemistry, Jackson State University, 1400 Lynch
Street, Jackson, Mississippi 39217, United States
- College
of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, China
| | - Hankun Hu
- Department
of Chemistry and Biochemistry, Jackson State University, 1400 Lynch
Street, Jackson, Mississippi 39217, United States
- Zhongnan
Hospital, Wuhan University, Wuhan 430071, China
| | - Yi-Ming Liu
- Department
of Chemistry and Biochemistry, Jackson State University, 1400 Lynch
Street, Jackson, Mississippi 39217, United States
| |
Collapse
|
44
|
Verkhratsky A, Parpura V. Physiology of Astroglia: Channels, Receptors, Transporters, Ion Signaling and Gliotransmission. ACTA ACUST UNITED AC 2015. [DOI: 10.4199/c00123ed1v01y201501ngl004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Safory H, Neame S, Shulman Y, Zubedat S, Radzishevsky I, Rosenberg D, Sason H, Engelender S, Avital A, Hülsmann S, Schiller J, Wolosker H. The alanine-serine-cysteine-1 (Asc-1) transporter controls glycine levels in the brain and is required for glycinergic inhibitory transmission. EMBO Rep 2015; 16:590-8. [PMID: 25755256 DOI: 10.15252/embr.201439561] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/13/2015] [Indexed: 11/09/2022] Open
Abstract
Asc-1 (SLC7A10) is an amino acid transporter whose deletion causes neurological abnormalities and early postnatal death in mice. Using metabolomics and behavioral and electrophysiological methods, we demonstrate that Asc-1 knockout mice display a marked decrease in glycine levels in the brain and spinal cord along with impairment of glycinergic inhibitory transmission, and a hyperekplexia-like phenotype that is rescued by replenishing brain glycine. Asc-1 works as a glycine and L-serine transporter, and its transport activity is required for the subsequent conversion of L-serine into glycine in vivo. Asc-1 is a novel regulator of glycine metabolism and a candidate for hyperekplexia disorders.
Collapse
Affiliation(s)
- Hazem Safory
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Samah Neame
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yoav Shulman
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Salman Zubedat
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Inna Radzishevsky
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dina Rosenberg
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hagit Sason
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Simone Engelender
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Avi Avital
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel Emek Medical Center, Afula, Israel
| | - Swen Hülsmann
- Department of Anesthesiology, Emergency and Intensive Care Medicine and Center for Nanoscale Microscopy and Molecular Physiology of the Brain Georg-August-University, Göttingen, Germany
| | - Jackie Schiller
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Herman Wolosker
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
46
|
Zorec R, Verkhratsky A, Rodríguez JJ, Parpura V. Astrocytic vesicles and gliotransmitters: Slowness of vesicular release and synaptobrevin2-laden vesicle nanoarchitecture. Neuroscience 2015; 323:67-75. [PMID: 25727638 DOI: 10.1016/j.neuroscience.2015.02.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/01/2015] [Accepted: 02/18/2015] [Indexed: 12/30/2022]
Abstract
Neurotransmitters released at synapses activate neighboring astrocytes, which in turn, modulate neuronal activity by the release of diverse neuroactive substances that include classical neurotransmitters such as glutamate, GABA or ATP. Neuroactive substances are released from astrocytes through several distinct molecular mechanisms, for example, by diffusion through membrane channels, by translocation via plasmalemmal transporters or by vesicular exocytosis. Vesicular release regulated by a stimulus-mediated increase in cytosolic calcium involves soluble N-ethyl maleimide-sensitive fusion protein attachment protein receptor (SNARE)-dependent merger of the vesicle membrane with the plasmalemma. Up to 25 molecules of synaptobrevin 2 (Sb2), a SNARE complex protein, reside at a single astroglial vesicle; an individual neuronal, i.e. synaptic, vesicle contains ∼70 Sb2 molecules. It is proposed that this paucity of Sb2 molecules in astrocytic vesicles may determine the slow secretion. In the present essay we shall overview multiple aspects of vesicular architecture and types of vesicles based on their cargo and dynamics in astroglial cells.
Collapse
Affiliation(s)
- R Zorec
- University of Ljubljana, Institute of Pathophysiology, Laboratory of Neuroendocrinology and Molecular Cell Physiology, Zaloska cesta 4, SI-1000 Ljubljana, Slovenia; Celica, BIOMEDICAL, Technology Park 24, 1000 Ljubljana, Slovenia.
| | - A Verkhratsky
- University of Ljubljana, Institute of Pathophysiology, Laboratory of Neuroendocrinology and Molecular Cell Physiology, Zaloska cesta 4, SI-1000 Ljubljana, Slovenia; Celica, BIOMEDICAL, Technology Park 24, 1000 Ljubljana, Slovenia; Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, UK; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain; University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| | - J J Rodríguez
- Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain; University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| | - V Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories, 1719 6th Avenue South, CIRC 429, University of Alabama at Birmingham, Birmingham, AL 35294-0021, USA; Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| |
Collapse
|
47
|
Cappelletti P, Piubelli L, Murtas G, Caldinelli L, Valentino M, Molla G, Pollegioni L, Sacchi S. Structure-function relationships in human d-amino acid oxidase variants corresponding to known SNPs. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1150-9. [PMID: 25701391 DOI: 10.1016/j.bbapap.2015.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/05/2015] [Accepted: 02/07/2015] [Indexed: 12/11/2022]
Abstract
In the brain, d-amino acid oxidase plays a key role in modulating the N-methyl-d-aspartate receptor (NMDAR) activation state, catalyzing the stereospecific degradation of the coagonist d-serine. A relationship between d-serine signaling deregulation, NMDAR dysfunction, and CNS diseases is presumed. Notably, the R199W substitution in human DAAO (hDAAO) was associated with familial amyotrophic lateral sclerosis (ALS), and further coding substitutions, i.e., R199Q and W209R, were also deposited in the single nucleotide polymorphism database. Here, we investigated the biochemical properties of these different hDAAO variants. The W209R hDAAO variant shows an improved d-serine degradation ability (higher activity and affinity for the cofactor FAD) and produces a greater decrease in cellular d/(d+l) serine ratio than the wild-type counterpart when expressed in U87 cells. The production of H2O2 as result of excessive d-serine degradation by this hDAAO variant may represent the factor affecting cell viability after stable transfection. The R199W/Q substitution in hDAAO altered the protein conformation and enzymatic activity was lost under conditions resembling the cellular ones: this resulted in an abnormal increase in cellular d-serine levels. Altogether, these results indicate that substitutions that affect hDAAO functionality directly impact on d-serine cellular levels (at least in the model cell system used). The pathological effect of the expression of the R199W hDAAO, as observed in familial ALS, originates from both protein instability and a decrease in kinetic efficiency: the increase in synaptic d-serine may be mainly responsible for the neurotoxic effect. This information is expected to drive future targeted treatments.
Collapse
Affiliation(s)
- Pamela Cappelletti
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy; The Protein Factory, Politecnico di Milano, ICMR-CNR, Università degli Studi dell'Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Luciano Piubelli
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy; The Protein Factory, Politecnico di Milano, ICMR-CNR, Università degli Studi dell'Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Giulia Murtas
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Laura Caldinelli
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy; The Protein Factory, Politecnico di Milano, ICMR-CNR, Università degli Studi dell'Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Mattia Valentino
- The Protein Factory, Politecnico di Milano, ICMR-CNR, Università degli Studi dell'Insubria, via Mancinelli 7, 20131 Milano, Italy; CNR, Istituto di Chimica del Riconoscimento Molecolare, Sezione Adolfo Quilico, via M. Bianchi 9, 20131 Milano, Italy
| | - Gianluca Molla
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy; The Protein Factory, Politecnico di Milano, ICMR-CNR, Università degli Studi dell'Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy; The Protein Factory, Politecnico di Milano, ICMR-CNR, Università degli Studi dell'Insubria, via Mancinelli 7, 20131 Milano, Italy
| | - Silvia Sacchi
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy; The Protein Factory, Politecnico di Milano, ICMR-CNR, Università degli Studi dell'Insubria, via Mancinelli 7, 20131 Milano, Italy.
| |
Collapse
|
48
|
Welcome MO, Mastorakis NE, Pereverzev VA. Sweet taste receptor signaling network: possible implication for cognitive functioning. Neurol Res Int 2015; 2015:606479. [PMID: 25653876 PMCID: PMC4306214 DOI: 10.1155/2015/606479] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/20/2014] [Indexed: 01/01/2023] Open
Abstract
Sweet taste receptors are transmembrane protein network specialized in the transmission of information from special "sweet" molecules into the intracellular domain. These receptors can sense the taste of a range of molecules and transmit the information downstream to several acceptors, modulate cell specific functions and metabolism, and mediate cell-to-cell coupling through paracrine mechanism. Recent reports indicate that sweet taste receptors are widely distributed in the body and serves specific function relative to their localization. Due to their pleiotropic signaling properties and multisubstrate ligand affinity, sweet taste receptors are able to cooperatively bind multiple substances and mediate signaling by other receptors. Based on increasing evidence about the role of these receptors in the initiation and control of absorption and metabolism, and the pivotal role of metabolic (glucose) regulation in the central nervous system functioning, we propose a possible implication of sweet taste receptor signaling in modulating cognitive functioning.
Collapse
Affiliation(s)
- Menizibeya O. Welcome
- World Scientific and Engineering Academy and Society, Ag. Ioannou Theologou 17-23, Zografou, 15773 Athens, Greece
| | - Nikos E. Mastorakis
- World Scientific and Engineering Academy and Society, Ag. Ioannou Theologou 17-23, Zografou, 15773 Athens, Greece
- Department of Industrial Engineering, Technical University of Sofia, 8 Kl. Ohridski Boulevard, 1000 Sofia, Bulgaria
| | - Vladimir A. Pereverzev
- Department of Normal Physiology, Belarusian State Medical University, Dzerzhinsky Avenue 83, 220116 Minsk, Belarus
| |
Collapse
|
49
|
Abe T, Suzuki M, Sasabe J, Takahashi S, Unekawa M, Mashima K, Iizumi T, Hamase K, Konno R, Aiso S, Suzuki N. Cellular origin and regulation of D- and L-serine in in vitro and in vivo models of cerebral ischemia. J Cereb Blood Flow Metab 2014; 34:1928-35. [PMID: 25294127 PMCID: PMC4269747 DOI: 10.1038/jcbfm.2014.164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/19/2014] [Accepted: 08/31/2014] [Indexed: 01/24/2023]
Abstract
D-Serine is known to be essential for the activation of the N-methyl-D-aspartate (NMDA) receptor in the excitation of glutamatergic neurons, which have critical roles in long-term potentiation and memory formation. D-Serine is also thought to be involved in NMDA receptor-mediated neurotoxicity. The deletion of serine racemase (SRR), which synthesizes D-serine from L-serine, was recently reported to improve ischemic damage in mouse middle cerebral artery occlusion model. However, the cell type in which this phenomenon originates and the regulatory mechanism for D-/L-serine remain elusive. The D-/L-serine content in ischemic brain increased until 20 hours after recanalization and then leveled off gradually. The results of in vitro experiments using cultured cells suggested that D-serine is derived from neurons, while L-serine seems to be released from astroglia. Immunohistochemistry studies of brain tissue after cerebral ischemia showed that SRR is expressed in neurons, and 3-phosphoglycerate dehydrogenase (3-PGDH), which synthesizes L-serine from 3-phosphoglycerate, is located in astrocytes, supporting the results of the in vitro experiments. A western blot analysis showed that neither SRR nor 3-PGDH was upregulated after cerebral ischemia. Therefore, the increase in D-/L-serine was not related to an increase in SRR or 3-PGDH, but to an increase in the substrates of SRR and 3-PGDH.
Collapse
Affiliation(s)
- Takato Abe
- Department of Neurology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masataka Suzuki
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Jumpei Sasabe
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shinichi Takahashi
- Department of Neurology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Miyuki Unekawa
- Department of Neurology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kyoko Mashima
- Department of Neurology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takuya Iizumi
- Department of Neurology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Ryuichi Konno
- Department of Pharmacological Sciences, International University of Health and Welfare, Ohtawara, Tochigi, Japan
| | - Sadakazu Aiso
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Norihiro Suzuki
- Department of Neurology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
50
|
Dikopoltsev E, Foltyn VN, Zehl M, Jensen ON, Mori H, Radzishevsky I, Wolosker H. FBXO22 protein is required for optimal synthesis of the N-methyl-D-aspartate (NMDA) receptor coagonist D-serine. J Biol Chem 2014; 289:33904-15. [PMID: 25336657 DOI: 10.1074/jbc.m114.618405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
d-Serine is a physiological activator of NMDA receptors (NMDARs) in the nervous system that mediates several NMDAR-mediated processes ranging from normal neurotransmission to neurodegeneration. d-Serine is synthesized from l-serine by serine racemase (SR), a brain-enriched enzyme. However, little is known about the regulation of d-serine synthesis. We now demonstrate that the F-box only protein 22 (FBXO22) interacts with SR and is required for optimal d-serine synthesis in cells. Although FBXO22 is classically associated with the ubiquitin system and is recruited to the Skip1-Cul1-F-box E3 complex, SR interacts preferentially with free FBXO22 species. In vivo ubiquitination and SR half-life determination indicate that FBXO22 does not target SR to the proteasome system. FBXO22 primarily affects SR subcellular localization and seems to increase d-serine synthesis by preventing the association of SR to intracellular membranes. Our data highlight an atypical role of FBXO22 in enhancing d-serine synthesis that is unrelated to its classical effects as a component of the ubiquitin-proteasome degradation pathway.
Collapse
Affiliation(s)
- Elena Dikopoltsev
- From the Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Veronika N Foltyn
- From the Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Martin Zehl
- the Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
| | - Ole N Jensen
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark, and
| | - Hisashi Mori
- the Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Inna Radzishevsky
- From the Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Herman Wolosker
- From the Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel,
| |
Collapse
|