1
|
Liu S, Li W, Liang L, Zhou Y, Li Y. The regulatory relationship between transcription factor STAT3 and noncoding RNA. Cell Mol Biol Lett 2024; 29:4. [PMID: 38172648 PMCID: PMC10763091 DOI: 10.1186/s11658-023-00521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), as a key node in numerous carcinogenic signaling pathways, is activated in various tumor tissues and plays important roles in tumor formation, metastasis, and drug resistance. STAT3 is considered a potential subtarget for tumor therapy. Noncoding RNA (ncRNA) is a special type of RNA transcript. Transforming from "junk" transcripts into key molecules involved in cell apoptosis, growth, and functional regulation, ncRNA has been proven to be closely related to various epithelial-mesenchymal transition and drug resistance processes in tumor cells over the past few decades. Research on the relationship between transcription factor STAT3 and ncRNAs has attracted increased attention. To date, existing reviews have mainly focused on the regulation by ncRNAs on the transcription factor STAT3; there has been no review of the regulation by STAT3 on ncRNAs. However, understanding the regulation of ncRNAs by STAT3 and its mechanism is important to comprehensively understand the mutual regulatory relationship between STAT3 and ncRNAs. Therefore, in this review, we summarize the regulation by transcription factor STAT3 on long noncoding RNA, microRNA, and circular RNA and its possible mechanisms. In addition, we provide an update on research progress on the regulation of STAT3 by ncRNAs. This will provide a new perspective to comprehensively understand the regulatory relationship between transcription factor STAT3 and ncRNAs, as well as targeting STAT3 or ncRNAs to treat diseases such as tumors.
Collapse
Affiliation(s)
- Siyi Liu
- Department of Nuclear Medicine, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Wentao Li
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Lin Liang
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China.
| | - Yanling Li
- Department of Nuclear Medicine, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
2
|
Li J, Liu Y, Liu J. A review of research progress on mechanisms of peritoneal fibrosis related to peritoneal dialysis. Front Physiol 2023; 14:1220450. [PMID: 37817984 PMCID: PMC10560738 DOI: 10.3389/fphys.2023.1220450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Peritoneal dialysis (PD) is an effective alternative treatment for patients with end-stage renal disease (ESRD) and is increasingly being adopted and promoted worldwide. However, as the duration of peritoneal dialysis extends, it can expose problems with dialysis inadequacy and ultrafiltration failure. The exact mechanism and aetiology of ultrafiltration failure have been of great concern, with triggers such as biological incompatibility of peritoneal dialysis solutions, uraemia toxins, and recurrent intraperitoneal inflammation initiating multiple pathways that regulate the release of various cytokines, promote the transcription of fibrosis-related genes, and deposit extracellular matrix. As a result, peritoneal fibrosis occurs. Exploring the pathogenic factors and molecular mechanisms can help us prevent peritoneal fibrosis and prolong the duration of Peritoneal dialysis.
Collapse
Affiliation(s)
- Jin’e Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yinghong Liu
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Shao Q, Jiang C, Zhang Q, Liu J, Jin B, Zhao M, Xia Y. Knockdown of AK142426 suppresses M2 macrophage polarization and inflammation in peritoneal fibrosis via binding to c-Jun. J Gene Med 2023; 25:e3524. [PMID: 37194352 DOI: 10.1002/jgm.3524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Peritoneal fibrosis is a common complication of peritoneal dialysis, which may lead to ultrafiltration failure and ultimately treatment discontinuation. LncRNAs participate in many biological processes during tumorigenesis. We investigated the role of AK142426 in peritoneal fibrosis. METHODS The AK142426 level in peritoneal dialysis (PD) fluid was detected by quantitative real-time-PCR assay. The M2 macrophage distribution was determined by flow cytometry. The inflammatory cytokines of TNF-α and TGF-β1 were measured by ELISA assay. The direct interaction between AK142426 and c-Jun was evaluated by RNA pull-down assay. In addition, the c-Jun and fibrosis related proteins were assessed by western blot analysis. RESULTS The PD-induced peritoneal fibrosis mouse model was successfully established. More importantly, PD treatment induced M2 macrophage polarization and the inflammation in PD fluid, which might be associated with exosome transmission. Fortunately, AK142426 was observed to be upregulated in PD fluid. Mechanically, knockdown of AK142426 suppressed M2 macrophage polarization and inflammation. Furthermore, AK142426 could upregulate c-Jun through binding c-Jun protein. In rescue experiments, overexpression of c-Jun could partially abolish the inhibitory effect of sh-AK142426 on the activation of M2 macrophages and inflammation. Consistently, knockdown of AK142426 alleviated peritoneal fibrosis in vivo. CONCLUSIONS This study demonstrated that knockdown of AK142426 suppressed M2 macrophage polarization and inflammation in peritoneal fibrosis via binding to c-Jun, suggesting that AK142426 might be a promising therapeutic target for patients of peritoneal fibrosis.
Collapse
Affiliation(s)
- Qiuyuan Shao
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chunming Jiang
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Qingyan Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jing Liu
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Bo Jin
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Min Zhao
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yangyang Xia
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Jiao T, Huang Y, Sun H, Yang L. Exosomal lnc-CDHR derived from human umbilical cord mesenchymal stem cells attenuates peritoneal epithelial-mesenchymal transition through AKT/FOXO pathway. Aging (Albany NY) 2023; 15:6921-6932. [PMID: 37466443 PMCID: PMC10415546 DOI: 10.18632/aging.v15i14 10.18632/aging.204883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/23/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE Chronic stimulation of peritoneal dialysis (PD) fluid leads to the epithelial-mesenchymal transformation (EMT) of mesothelial cells, peritoneal fibrosis (PF), and ultimately ultrafiltration failure. Some studies have proposed that mesenchymal stem cells (MSCs) can alleviate PF. This study aimed to investigate whether the exosomes from human umbilical cord MSCs (hUMSCs) could alleviate peritoneal EMT. METHODS Human peritoneal mesothelial cell line (HMrSV5) were treated with high glucose (HG) for 48 hours to induce the peritoneal EMT model. An inverted fluorescence microscope was used to observe the internalization of exosomes derived from hUMSCs (hUMSC-Exos). Western blot and real-time PCR were used to evaluate the expression of α-SMA, Vimentin, E-cadherin, PTEN, and AKT/FOXO3a. The relationships of lncRNA CDHR and miR-3149, miR-3149 and PTEN were detected by dual luciferase reporter gene assay. RESULTS Compared with HG-induced HMrSV5, E-cadherin and PTEN levels significantly increased whereas α-SMA and Vimentin levels significantly decreased after treatment of hUMSC-CM and hUMSC-Exos (P < 0.05). An inverted fluorescence microscope showed HMrSV5 can absorb exosomes to alleviate EMT. Furthermore, exosomes extracted from lnc-CDHR siRNA-transfected hUMSCs can't ameliorate HMrSV5 EMT. Moreover, both CDHR overexpressed and miR-3149 inhibitor in HG-induced HMrSV5 alleviated the expression of α-SMA, and Vimentin, and increased the expression of E-cadherin and PTEN, and AKT/FOXO3a. A rescue experiment showed that CDHR overexpressed expression was repressed by miR-3149 in the HG-induced peritoneal EMT model. CONCLUSIONS Exosomal lnc-CDHR derived from hUMSCs may competitively bind to miR-3149 to regulate suppression on target PTEN genes and alleviate EMT of HMrSV5 through AKT/FOXO pathway.
Collapse
Affiliation(s)
- Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Yuling Huang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Haiyan Sun
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Lina Yang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
- Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| |
Collapse
|
5
|
Jiao T, Huang Y, Sun H, Yang L. Exosomal lnc-CDHR derived from human umbilical cord mesenchymal stem cells attenuates peritoneal epithelial-mesenchymal transition through AKT/FOXO pathway. Aging (Albany NY) 2023; 15:6921-6932. [PMID: 37466443 PMCID: PMC10415546 DOI: 10.18632/aging.204883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
OBJECTIVE Chronic stimulation of peritoneal dialysis (PD) fluid leads to the epithelial-mesenchymal transformation (EMT) of mesothelial cells, peritoneal fibrosis (PF), and ultimately ultrafiltration failure. Some studies have proposed that mesenchymal stem cells (MSCs) can alleviate PF. This study aimed to investigate whether the exosomes from human umbilical cord MSCs (hUMSCs) could alleviate peritoneal EMT. METHODS Human peritoneal mesothelial cell line (HMrSV5) were treated with high glucose (HG) for 48 hours to induce the peritoneal EMT model. An inverted fluorescence microscope was used to observe the internalization of exosomes derived from hUMSCs (hUMSC-Exos). Western blot and real-time PCR were used to evaluate the expression of α-SMA, Vimentin, E-cadherin, PTEN, and AKT/FOXO3a. The relationships of lncRNA CDHR and miR-3149, miR-3149 and PTEN were detected by dual luciferase reporter gene assay. RESULTS Compared with HG-induced HMrSV5, E-cadherin and PTEN levels significantly increased whereas α-SMA and Vimentin levels significantly decreased after treatment of hUMSC-CM and hUMSC-Exos (P < 0.05). An inverted fluorescence microscope showed HMrSV5 can absorb exosomes to alleviate EMT. Furthermore, exosomes extracted from lnc-CDHR siRNA-transfected hUMSCs can't ameliorate HMrSV5 EMT. Moreover, both CDHR overexpressed and miR-3149 inhibitor in HG-induced HMrSV5 alleviated the expression of α-SMA, and Vimentin, and increased the expression of E-cadherin and PTEN, and AKT/FOXO3a. A rescue experiment showed that CDHR overexpressed expression was repressed by miR-3149 in the HG-induced peritoneal EMT model. CONCLUSIONS Exosomal lnc-CDHR derived from hUMSCs may competitively bind to miR-3149 to regulate suppression on target PTEN genes and alleviate EMT of HMrSV5 through AKT/FOXO pathway.
Collapse
Affiliation(s)
- Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Yuling Huang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Haiyan Sun
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Lina Yang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
- Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| |
Collapse
|
6
|
Trionfetti F, Marchant V, González-Mateo GT, Kawka E, Márquez-Expósito L, Ortiz A, López-Cabrera M, Ruiz-Ortega M, Strippoli R. Novel Aspects of the Immune Response Involved in the Peritoneal Damage in Chronic Kidney Disease Patients under Dialysis. Int J Mol Sci 2023; 24:5763. [PMID: 36982834 PMCID: PMC10059714 DOI: 10.3390/ijms24065763] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Chronic kidney disease (CKD) incidence is growing worldwide, with a significant percentage of CKD patients reaching end-stage renal disease (ESRD) and requiring kidney replacement therapies (KRT). Peritoneal dialysis (PD) is a convenient KRT presenting benefices as home therapy. In PD patients, the peritoneum is chronically exposed to PD fluids containing supraphysiologic concentrations of glucose or other osmotic agents, leading to the activation of cellular and molecular processes of damage, including inflammation and fibrosis. Importantly, peritonitis episodes enhance peritoneum inflammation status and accelerate peritoneal injury. Here, we review the role of immune cells in the damage of the peritoneal membrane (PM) by repeated exposure to PD fluids during KRT as well as by bacterial or viral infections. We also discuss the anti-inflammatory properties of current clinical treatments of CKD patients in KRT and their potential effect on preserving PM integrity. Finally, given the current importance of coronavirus disease 2019 (COVID-19) disease, we also analyze here the implications of this disease in CKD and KRT.
Collapse
Affiliation(s)
- Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Guadalupe T. González-Mateo
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
- Premium Research, S.L., 19005 Guadalajara, Spain
| | - Edyta Kawka
- Department of Pathophysiology, Poznan University of Medical Sciences, 10 Fredry St., 61-701 Poznan, Poland
| | - Laura Márquez-Expósito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Manuel López-Cabrera
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| |
Collapse
|
7
|
Wang ZH, Ye LL, Xiang X, Wei XS, Niu YR, Peng WB, Zhang SY, Zhang P, Xue QQ, Wang HL, Du YH, Liu Y, Ai JQ, Zhou Q. Circular RNA circFBXO7 attenuates non-small cell lung cancer tumorigenesis by sponging miR-296-3p to facilitate KLF15-mediated transcriptional activation of CDKN1A. Transl Oncol 2023; 30:101635. [PMID: 36774884 PMCID: PMC9945757 DOI: 10.1016/j.tranon.2023.101635] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/04/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Accumulating evidence indicates that circular RNAs (circRNAs) play important roles in various cancers. Hsa_circ_0008832 (circFBXO7) is a circRNA generated from the second exon of the human F-box only protein 7 (FBXO7). Mouse circFbxo7 is a circRNA generated from the second exon of mouse F-box only protein 7 (Fbxo7). The role of human circFBXO7 and mouse circFbxo7 in non-small cell lung cancer (NSCLC) has not been reported. METHODS The expression of circFBXO7 was measured by quantitative real-time PCR. Survival analysis was performed to explore the association between the expression of circFBXO7 and the prognosis of patients with NSCLC. Lung cancer cell lines were transfected with plasmids. Cell proliferation, cell cycle, and tumorigenesis were evaluated to assess the effects of circFBXO7. Fluorescence in situ hybridization assay was used to identify the location of circFBXO7 and circFbxo7 in human and mouse lung cancer cells. Luciferase reporter assay was conducted to confirm the relationship between circFBXO7 and microRNA. RESULTS In this study, we found that circFBXO7 was downregulated in NSCLC tissues and cell lines. NSCLC patients with high circFBXO7 expression had prolonged overall survival. Overexpression of circFBXO7 inhibited cell proliferation both in vitro and in vivo. Mechanistically, we demonstrated that circFBXO7 upregulated the expression of miR-296-3p target gene Krüppel-like factor 15 (KLF15) and KLF15 transactivated the expression of CDKN1A. CONCLUSIONS CircFBXO7 acts as a tumor suppressor by a novel circFBXO7/miR-296-3p/KLF15/CDKN1A axis, which may serve as a potential biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Zi-Hao Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin-Lin Ye
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Shan Wei
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Ran Niu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Bei Peng
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Yu Zhang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Zhang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian-Qian Xue
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao-Lei Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Heng Du
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Qi Ai
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Sun P, Li R, Meng Y, Xi S, Wang Q, Yang X, Peng X, Cai J. Introduction to DOK2 and its potential role in cancer. Physiol Res 2021; 70:671-685. [PMID: 34505522 DOI: 10.33549/physiolres.934710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cancer is a complex, multifactorial disease that modern medicine ultimately aims to overcome. Downstream of tyrosine kinase 2 (DOK2) is a well-known tumor suppressor gene, and a member of the downstream protein DOK family of tyrosine kinases. Through a search of original literature indexed in PubMed and other databases, the present review aims to extricate the mechanisms by which DOK2 acts on cancer, thereby identifying more reliable and effective therapeutic targets to promote enhanced methods of cancer prevention and treatment. The review focuses on the role of DOK2 in multiple tumor types in the lungs, intestines, liver, and breast. Additionally, we discuss the potential mechanisms of action of DOK2 and the downstream consequences via the Ras/MPAK/ERK or PI3K/AKT/mTOR signaling pathways.
Collapse
Affiliation(s)
- P Sun
- Department of Pharmacology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China. or Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China. or Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Mehrotra R, Stanaway IB, Jarvik GP, Lambie M, Morelle J, Perl J, Himmelfarb J, Heimburger O, Johnson DW, Imam TH, Robinson B, Stenvinkel P, Devuyst O, Davies SJ. A genome-wide association study suggests correlations of common genetic variants with peritoneal solute transfer rates in patients with kidney failure receiving peritoneal dialysis. Kidney Int 2021; 100:1101-1111. [PMID: 34197840 PMCID: PMC8545920 DOI: 10.1016/j.kint.2021.05.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/17/2022]
Abstract
Movement of solutes across the peritoneum allows for the use of peritoneal dialysis to treat kidney failure. However, there is a large inter-individual variability in the peritoneal solute transfer rate (PSTR). Here, we tested the hypothesis that common genetic variants are associated with variability in PSTR. Of the 3561 participants from 69 centers in six countries, 2850 with complete data were included in a genome-wide association study. PSTR was defined as the four-hour dialysate/plasma creatinine ratio from the first peritoneal equilibration test after starting PD. Heritability of PSTR was estimated using genomic-restricted maximum-likelihood analysis, and the association of PSTR with a genome-wide polygenic risk score was also tested. The mean four-hour dialysate/plasma creatinine ratio in participants was 0.70. In 2212 participants of European ancestry, no signal reached genome-wide significance but 23 single nucleotide variants at four loci demonstrated suggestive associations with PSTR. Meta-analysis of ancestry-stratified regressions in 2850 participants revealed five single-nucleotide variants at four loci with suggestive correlations with PSTR. Association across ancestry strata was consistent for rs28644184 at the KDM2B locus. The estimated heritability of PSTR was 19%, and a permuted model polygenic risk score was significantly associated with PSTR. Thus, this genome-wide association study of patients receiving peritoneal dialysis bolsters evidence for a genetic contribution to inter-individual variability in PSTR.
Collapse
Affiliation(s)
- Rajnish Mehrotra
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA.
| | - Ian B Stanaway
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Gail P Jarvik
- Department of Medicine (Medical Genetics), University of Washington, Seattle, Washington, USA; Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Mark Lambie
- School of Medicine, Faculty of Medicine and Health Sciences, Keele University, Keele, UK
| | - Johann Morelle
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Experimentale et Clinique, UClouvain, Brussels, Belgium
| | - Jeffrey Perl
- Division of Nephrology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Himmelfarb
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Olof Heimburger
- Division of Renal Medicine, Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Stockholm, Sweden
| | - David W Johnson
- Australasian Trials Network, University of Queensland, Brisbane, Australia
| | - Talha H Imam
- Department of Nephrology, Kaiser Permanente, Fontana, California, USA
| | - Bruce Robinson
- Arbor Research Collaborative for Health, Ann Arbor, Michigan, USA
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Stockholm, Sweden
| | - Olivier Devuyst
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Institut de Recherche Experimentale et Clinique, UClouvain, Brussels, Belgium
| | - Simon J Davies
- School of Medicine, Faculty of Medicine and Health Sciences, Keele University, Keele, UK
| |
Collapse
|
10
|
Fan Y, Zhao X, Ma J, Yang L. LncRNA GAS5 Competitively Combined With miR-21 Regulates PTEN and Influences EMT of Peritoneal Mesothelial Cells via Wnt/β-Catenin Signaling Pathway. Front Physiol 2021; 12:654951. [PMID: 34526907 PMCID: PMC8435904 DOI: 10.3389/fphys.2021.654951] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
Objective Epithelial-mesenchymal transition (EMT) is an important factor leading to peritoneal fibrosis (PF) in end-stage renal disease (ESRD) patients. The current research aimed to evaluate the effect of long non-coding RNA growth arrest-specific 5 (lncRNA GAS5) in human peritoneal mesothelial cells (HPMCs) EMT and explore the potential molecular mechanisms. Materials and Methods HPMCs were cultured under control conditions or with high glucose (HG). The cells were then treated with lncRNA GAS5, lncRNA GAS5 siRNA, with or without miR-21 inhibitor and PTEN transfection. Expression of lncRNA GAS5, miR-21, α-SMA, Vimentin, E-cadherin, phosphatase and tensin homolog deleted on chromosome ten (PTEN), Wnt3a, and β-catenin were measured by real time PCR and Western blotting. Bioinformatics analyses were used to test the specific binding sites between the 3' UTR of the PTEN gene, miR-21, and lncRNA GAS5. Rescue experiments were performed to confirm the lncRNA GAS5/miR-21/PTEN axis in HPMC EMT. Results We found that HG-induced EMT decreased lncRNA GAS5 and that overexpression of lncRNA GAS5 can attenuate EMT in HPMCs. In addition, lncRNA GAS5 regulated HG-induced EMT through miR-21/PTEN. Cotransfection of miR-21 inhibitors remarkably increased PTEN expression and attenuated EMT in lncRNA GAS5 knockdown HPMCs. Moreover, rescue experiments showed that overexpression of PTEN attenuated the EMT effects of lncRNA GAS5 siRNA in HPMCs. We also confirmed that the Wnt/β-catenin pathway was stimulated in lncRNA GAS5/miR-21/PTEN-mediated EMT. Conclusion Our research showed that lncRNA GAS5 competitively combined with miR-21 to regulate PTEN expression and influence EMT of HPMCs via the Wnt/β-catenin signaling pathway. This study provides novel evidence that lncRNA GAS5 may be a potential therapeutic target for HPMC EMT.
Collapse
Affiliation(s)
- Yi Fan
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xingxu Zhao
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jianfei Ma
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lina Yang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Yang X, Bao M, Fang Y, Yu X, Ji J, Ding X. STAT3/HIF-1α signaling activation mediates peritoneal fibrosis induced by high glucose. J Transl Med 2021; 19:283. [PMID: 34193173 PMCID: PMC8246671 DOI: 10.1186/s12967-021-02946-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) of mesothelial cells is a key step in the peritoneal fibrosis (PF). Recent evidence indicates that signal transducer and activator of transcription 3 (STAT3) might mediate the process of renal fibrosis, which could induce the expression of hypoxia-inducible factor-1α (HIF-1α). Here, we investigated the effect of STAT3 activation on HIF-1α expression and the EMT of mesothelial cells, furthermore the role of pharmacological blockade of STAT3 in the process of PF during peritoneal dialysis (PD) treatment. METHODS Firstly, we investigated the STAT3 signaling in human peritoneal mesothelial cells (HPMCs) from drained PD effluent. Secondly, we explored the effect of STAT3 signaling activation on the EMT and the expression of HIF-1α in human mesothelial cells (Met-5A) induced by high glucose. Finally, peritoneal fibrosis was induced by daily intraperitoneal injection with peritoneal dialysis fluid (PDF) so as to explore the role of pharmacological blockade of STAT3 in this process. RESULTS Compared with the new PD patient, the level of phosphorylated STAT3 was up-regulated in peritoneal mesothelial cells from long-term PD patients. High glucose (60 mmol/L) induced over-expression of Collagen I, Fibronectin, α-SMA and reduced the expression of E-cadherin in Met-5A cells, which could be abrogated by STAT3 inhibitor S3I-201 pretreatment as well as by siRNA for STAT3. Furthermore, high glucose-mediated STAT3 activation in mesothelial cells induced the expression of HIF-1α and the profibrotic effect of STAT3 signaling was alleviated by siRNA for HIF-1α. Daily intraperitoneal injection of high-glucose based dialysis fluid (HG-PDF) induced peritoneal fibrosis in the mice, accompanied by the phosphorylation of STAT3. Immunostaining showed that phosphorylated STAT3 was expressed mostly in α-SMA positive cells in the peritoneal membrane induced by HG-PDF. Administration of S3I-201 prevented the progression of peritoneal fibrosis, angiogenesis, macrophage infiltration as well as the expression of HIF-1α in the peritoneal membrane induced by high glucose. CONCLUSIONS Taken together, these findings identified a novel mechanism linking STAT3/HIF-1α signaling to peritoneal fibrosis during long-term PD treatment. It provided the first evidence that pharmacological inhibition of STAT3 signaling attenuated high glucose-mediated mesothelial cells EMT as well as peritoneal fibrosis.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Manchen Bao
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jun Ji
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China. .,Shanghai Medical Center of Kidney, Shanghai, China. .,Shanghai Institute of Kidney and Dialysis, Shanghai, China. .,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China. .,Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China. .,Shanghai Medical Center of Kidney, Shanghai, China. .,Shanghai Institute of Kidney and Dialysis, Shanghai, China. .,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China. .,Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| |
Collapse
|
12
|
Chu J, Tao L, Yao T, Chen Z, Lu X, Gao L, Fang L, Chen J, He G, Shen S, Zhang D. Circular RNA circRUNX1 promotes papillary thyroid cancer progression and metastasis by sponging MiR-296-3p and regulating DDHD2 expression. Cell Death Dis 2021; 12:112. [PMID: 33479208 PMCID: PMC7819993 DOI: 10.1038/s41419-020-03350-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022]
Abstract
Papillary thyroid cancer (PTC) has a continuously increasing incidence and imposes a heavy medical burden to individuals and society due to its high proportion of lymph node metastasis and recurrence in recent years. Circular RNAs, a class of noncoding RNAs, participate in the progression of many cancers, but the role of circRNAs in PTC is still rarely reported. In this study, circRNA deep sequencing was performed to identify differentially expressed circRNAs in PTC. CircRUNX1 was selected for its high expression in PTC, and circRUNX1 silencing was directly associated with the week potential for migration, invasion and proliferation of PTC in vivo and in vitro. Fluorescence in situ hybridization (FISH) was further used to confirm the cytoplasmic localization of circRUNX1, indicating the possible function of circRUNX1 as a ceRNAs in PTC progression through miRNA binding. MiR-296-3p was then confirmed to be regulated by circRUNX1 and to target DDHD domain containing 2 (DDHD2) by luciferase reporter assays. The strong antitumor effect of miR-296-3p and the tumor-promoting effect of DDHD2 were further investigated in PTC, indicating that circRUNX1 modulates PTC progression through the miR-296-3p/DDHD2 pathway. Overall, circRUNX1 plays an oncogenic role in PTC and provides a potentially effective therapeutic strategy for PTC progression.
Collapse
Affiliation(s)
- Junjie Chu
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Li Tao
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 east Qingchun road, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Zizheng Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 east Qingchun road, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Xiaoxiao Lu
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Li Gao
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Liang Fang
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian Chen
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Gaofei He
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, 3 east Qingchun road, Hangzhou, Zhejiang Province, 310016, People's Republic of China.
| | - Deguang Zhang
- Department of Head and Neck Surgery, Institute of Micro-Invasive Surgery of Zhejiang University, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
13
|
Wang Y, Shi Y, Tao M, Zhuang S, Liu N. Peritoneal fibrosis and epigenetic modulation. Perit Dial Int 2020; 41:168-178. [PMID: 32662737 DOI: 10.1177/0896860820938239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Peritoneal dialysis (PD) is an effective treatment for patients with end-stage renal disease. However, peritoneal fibrosis (PF) is a common complication that ultimately leads to ultrafiltration failure and discontinuation of PD after long-term PD therapy. There is currently no effective therapy to prevent or delay this pathologic process. Recent studies have reported epigenetic modifications involved in PF, and accumulating evidence suggests that epigenetic therapies may have the potential to prevent and treat PF clinically. The major epigenetic modifications in PF include DNA methylation, histone modification, and noncoding RNAs. The mechanisms of epigenetic regulation in PF are complex, predominantly involving modification of signaling molecules, transcriptional factors, and genes. This review will describe the mechanisms of epigenetic modulation in PF and discuss the possibility of targeting them to prevent and treat this complication.
Collapse
Affiliation(s)
- Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| |
Collapse
|
14
|
Guo Y, Wang L, Gou R, Tang L, Liu P. Noncoding RNAs in peritoneal fibrosis: Background, Mechanism, and Therapeutic Approach. Biomed Pharmacother 2020; 129:110385. [PMID: 32768932 DOI: 10.1016/j.biopha.2020.110385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/31/2020] [Accepted: 06/07/2020] [Indexed: 12/14/2022] Open
Abstract
Peritoneal fibrosis (PF) is the main reason for patients to withdraw from peritoneal dialysis, while the mechanism underlying PF remains unclear. Increasing evidence has demonstrated the regulatory roles of different classes of noncoding RNAs (ncRNAs) in PF. MicroRNAs (miRNAs), which belong to a distinct class of ncRNAs, play crucial roles in the post-transcriptional regulation of gene expression. Studies have suggested that miRNAs play important roles in the pathogenesis of PF and have the potential to be used as diagnostic markers and therapeutic targets for PF in the future. Long noncoding RNAs (lncRNAs) have raised much attention in the recent years, which are involved in the pathophysiological processes of many diseases, including tumors, heart diseases and so on. Recently, some researchers have begun to notice the roles of lncRNAs in PF, and found that lncRNAs play certain roles in the pathogenesis of PF. Circular RNAs (circRNAs) have been proven to be participated in the pathogenesis of many diseases, including tumor metastasis, organ fibrosis and so on. However, studies on the correlation of circRNAs and PF are rather poor compared with miRNAs and lncRNAs. In this review, we will focus on the findings of ncRNAs in peritoneal dialysis therapy and discuss the rising interests in ncRNAs as diagnostic and therapeutic targets of PF.
Collapse
Affiliation(s)
- Yanhong Guo
- Department of Nephropathy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Liuwei Wang
- Department of Nephropathy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Rong Gou
- Department of Nephropathy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Lin Tang
- Department of Nephropathy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China.
| | - Peipei Liu
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China.
| |
Collapse
|
15
|
Wang J, Zhang S, Li X, Gong M. LncRNA SNHG7 promotes cardiac remodeling by upregulating ROCK1 via sponging miR-34-5p. Aging (Albany NY) 2020; 12:10441-10456. [PMID: 32507765 PMCID: PMC7346013 DOI: 10.18632/aging.103269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Previous studies have shown that lncRNA small nuclear RNA host gene 7 (lncRNA SNHG7) played an important role in cancer progression. However, the role of lncRNA SNHG7 in cardiac fibrosis is still poorly understood. In this study, the results of quantitative real time polymerase chain reaction (qRT-PCR) analysis showed that lncRNA SNHG7 was over expressed in the infarcted and peri-infarcted area in the left ventricle after MI in mice. Western blot analysis showed that knockdown of SNHG7 decreased the expression of collagen type 1 (Col1)and α-smooth muscle actin (α-SMA). Echocardiographic study suggested that inhibition of SNHG7 improved cardiac function after MI in mice. Luciferase assay indicated SNHG7 could act as a competing endogenous RNA (ceRNA) by sponging miR-34-5p. The MTT cell proliferation assay and 5-ethynyl-2’-deoxyuridine (EdU) labelling assay revealed that co-transfection of SNHG7 and miR-34-5p inhibited cell viability and proliferation of cardiac fibroblasts (CF). All the results indicated that lncRNA SNHG7 could promote cardiac fibrosis via targeting miR-34-5p through acting as a ceRNA in mice after MI. Silencing of SNHG7 could attenuate deposition of collagens and improve cardiac function. miR-34-5p could suppress the fibrogenesis of CF by targeting ROCK1 and abolish SNHG7-induced CF proliferation and fibroblast-to-myofibroblast transition.
Collapse
Affiliation(s)
- Jie Wang
- Department of Cardiac Intervention, Linyi People's Hospital, Linyi 276000, Shandong, China
| | - Shouwen Zhang
- Department of Critical Care Medicine, Aerospace Center Hospital, Haidian, 100049, Beijing, China
| | - Xinhua Li
- Department of Critical Care Medicine, Aerospace Center Hospital, Haidian, 100049, Beijing, China
| | - Maolei Gong
- Department of Critical Medicine, Aerospace Center Hospital, Peking University School of Clinical Medicine, Beijing 100049, China
| |
Collapse
|
16
|
Yang X, Yan H, Jiang N, Yu Z, Yuan J, Ni Z, Fang W. IL-6 trans-signaling drives a STAT3-dependent pathway that leads to structural alterations of the peritoneal membrane. Am J Physiol Renal Physiol 2019; 318:F338-F353. [PMID: 31841386 DOI: 10.1152/ajprenal.00319.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IL-6 is a vital inflammatory factor in the peritoneal cavity of patients undergoing peritoneal dialysis (PD). The present study examined the effect of IL-6 trans-signaling on structural alterations of the peritoneal membrane. We investigated whether the epithelial-to-mesenchymal transition (EMT) process of human peritoneal mesothelial cells (HPMCs) and the production of proangiogenic factors were controlled by IL-6 trans-signaling. Its role in the peritoneal alterations was detected in a mouse model. The morphology of HPMCs and levels of cytokines in PD effluent were also explored. Stimulation of HPMCs with the IL-6 and soluble IL-6 receptor complex (IL-6/S) promoted the EMT process of HPMCs depending on the STAT3 pathway. In a coculture system of HPMCs and human umbilical vein endothelial cells, IL-6/S mediated the production of VEGF and angiopoietins so as to downregulate the expression of endothelial junction molecules and finally affect vascular permeability. Daily intraperitoneal injection of high glucose-based dialysis fluid induced peritoneal fibrosis, angiogenesis, and macrophage infiltration in a mouse model, accompanied by phosphorylation of STAT3. Blockade of IL-6 trans-signaling prevented these peritoneum alterations. The fibroblast-like appearance of HPMCs ex vivo was upregulated in patients undergoing prevalent PD accompanied by increasing levels of IL-6, VEGF, and angiopoietin-2 in the PD effluent. Taken together, these findings identified a critical link between IL-6 trans-signaling and structural alterations of the peritoneal membrane, and it might be a potential target for the treatment of patients undergoing PD who have developed peritoneal alterations.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Hao Yan
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Na Jiang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Zanzhe Yu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Jiangzi Yuan
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| | - Wei Fang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Center for Peritoneal Dialysis Research, Shanghai, China
| |
Collapse
|