1
|
Meyer F, Buerger T, Halloul Z, Lippert H, König B, Tautenhahn J. Effects Of Gelatine-Coated Vascular Grafts On Human Neutrophils. POLISH JOURNAL OF SURGERY 2016; 87:443-52. [PMID: 26812839 DOI: 10.1515/pjs-2015-0086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Indexed: 11/15/2022]
Abstract
UNLABELLED The aim of the study was to investigate the immune-modulatory potential of commercially available PTFE and polyester vascular grafts with and without gelatine-coating. The biomaterial-cell-interaction was characterized by changes of established parameters such as PMN-related receptors/mediators, phagocytosis potential and capacity as well as the effect of an additional plasma-dependent modulation. MATERIAL AND METHODS By means of a standardized experimental in vitro model, various vascular graft material (PTFE/polyester/uncoated/gelatine-coated) was used for incubation with or without plasma and co-culturing with human neutrophile granulocytes (PMN) followed by analysis of representative receptors and mediators (CD62L, CD11b, CXCR2, fMLP-R, IL-8, Elastase, LTB4). Oxidative burst assessed phagocytosis capacity. RESULTS Comparing the vascular grafts, un-coated PTFE induced the lowest magnitude of cell stimulation whereas in case of gelatine-coating, cell response exceeded those of the other vascular grafts. This was also found comparing the polyester-based prosthetic material. Gelatine-coated polyester led to a more pronounced release of elastase than gelatine-coated PTFE and the uncoated materials. The results of oxidative burst indicated a reduced phagocytosis capacity in case of gelatine-coated polyester. Plasma incubation did also provide an impact on the cellular response. While in case of gelatine-coating, PMN-related receptor stimulation became lower, it increased by native polyester. The latter one did also induce more mediators such as IL-8 and LTB4 than gelatine-coated material. CONCLUSIONS There have been no extensive data on cell-cell interactions, cytokines and general histo-/hemocompatibility of human cells by the new generation of vascular grafts. It remains still open whether healing process and infectious resistance can be compromised by material-dependent over-stimulation or reduced phagocytosis potential of the immune cells of the primary unspecific immune response induced by gelatine-coated materials.
Collapse
|
2
|
Cao Z, Yende S, Kellum JA, Angus DC, Robinson RAS. Proteomics reveals age-related differences in the host immune response to sepsis. J Proteome Res 2013; 13:422-32. [PMID: 24266763 DOI: 10.1021/pr400814s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sepsis is commonly caused by community-acquired pneumonia (CAP) and may develop into severe sepsis, characterized by multiple organ failure. The risk of severe sepsis among CAP patients and subsequent mortality increases sharply after the age of 65. The molecular mechanisms associated with this age-related risk are not fully understood. To better understand factors involved with increased incidence and mortality of severe sepsis in the elderly, we used a nested case-control study of patients enrolled in a multicenter observational cohort of 2320 participants with CAP. We identified a total of 39 CAP patients 50-65 and 70-85 years old who did or did not develop severe sepsis. Plasma samples were obtained on presentation to the emergency department and prior to therapeutic interventions. A semiquantitative plasma proteomics workflow was applied which incorporated tandem immunoaffinity depletion, iTRAQ labeling, strong cation exchange fractionation, and nanoflow liquid chromatography coupled to high-resolution mass spectrometry. In total, 772 proteins were identified, of which 58 proteins exhibit statistically significant differences in expression levels among patients with severe sepsis as a function of age. Differentially expressed proteins are involved in pathways such as acute phase response, coagulation signaling, atherosclerosis signaling, lipid metabolism, and production of nitric oxide and reactive oxygen species. This study provides insight into factors that may explain age-related differences in incidence of severe sepsis in the elderly.
Collapse
Affiliation(s)
- Zhiyun Cao
- Department of Chemistry and ‡The Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Laboratory and Department of Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | | | | | | | | |
Collapse
|
3
|
McFarlane D, Wolf RF, McDaniel KA, White GL. The effect of season on inflammatory response in captive baboons. J Med Primatol 2012; 41:341-8. [PMID: 22905903 DOI: 10.1111/j.1600-0684.2012.00560.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2012] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Highly seasonal animals demonstrate predictable changes in immune function that coincide with changes in photoperiod. Little is known about the effect of season on immune response in baboons. The objective of this study was to determine the effect of season on inflammatory response in baboons. MATERIALS AND METHODS Peripheral blood mononuclear cell cytokine response following immune stimulation and serum markers of inflammation were assessed during each season in two groups of young male baboons: one housed under natural light and one in a controlled environment of 12 hours light:12 hours dark. RESULTS A seasonal immune rhythm was evident in both groups, with a greater TNF-α and IL-6 response to stimulation and serum CRP concentration in June and September compared with December. CONCLUSIONS Season is an important experimental confounder, and therefore, time of year should be controlled when designing studies and analyzing data from immune studies in baboons.
Collapse
Affiliation(s)
- Dianne McFarlane
- Department of Physiological Sciences, Center of Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| | | | | | | |
Collapse
|
4
|
Hannestad J, Gallezot JD, Schafbauer T, Lim K, Kloczynski T, Morris ED, Carson RE, Ding YS, Cosgrove KP. Endotoxin-induced systemic inflammation activates microglia: [¹¹C]PBR28 positron emission tomography in nonhuman primates. Neuroimage 2012; 63:232-9. [PMID: 22776451 DOI: 10.1016/j.neuroimage.2012.06.055] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/31/2012] [Accepted: 06/26/2012] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Microglia play an essential role in many brain diseases. Microglia are activated by local tissue damage or inflammation, but systemic inflammation can also activate microglia. An important clinical question is whether the effects of systemic inflammation on microglia mediate the deleterious effects of systemic inflammation in diseases such as Alzheimer's dementia, multiple sclerosis, and stroke. Positron Emission Tomography (PET) imaging with ligands that bind to Translocator Protein (TSPO) can be used to detect activated microglia. The aim of this study was to evaluate whether the effect of systemic inflammation on microglia could be measured with PET imaging in nonhuman primates, using the TSPO ligand [(11)C]PBR28. METHODS Six female baboons (Papio anubis) were scanned before and at 1h and/or 4h and/or 22 h after intravenous administration of E. coli lipopolysaccharide (LPS; 0.1mg/kg), which induces systemic inflammation. Regional time-activity data from regions of interest (ROIs) were fitted to the two-tissue compartmental model, using the metabolite-corrected arterial plasma curve as input function. Total volume of distribution (V(T)) of [(11)C]PBR28 was used as a measure of total ligand binding. The primary outcome was change in V(T) from baseline. Serum levels of tumor necrosis factor alpha (TNFα), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and interleukin-8 (IL-8) were used to assess correlations between systemic inflammation and microglial activation. In one baboon, immunohistochemistry was used to identify cells expressing TSPO. RESULTS LPS administration increased [(11)C]PBR28 binding (F(3,6)=5.1, p=.043) with a 29 ± 16% increase at 1h (n=4) and a 62 ± 34% increase at 4h (n=3) post-LPS. There was a positive correlation between serum IL-1β and IL-6 levels and the increase in [(11)C]PBR28 binding. TSPO immunoreactivity occurred almost exclusively in microglia and rarely in astrocytes. CONCLUSION In the nonhuman-primate brain, LPS-induced systemic inflammation produces a robust increase in the level of TSPO that is readily detected with [(11)C]PBR28 PET. The effect of LPS on [(11)C]PBR28 binding is likely mediated by inflammatory cytokines. Activation of microglia may be a mechanism through which systemic inflammatory processes influence the course of diseases such as Alzheimer's, multiple sclerosis, and possibly depression.
Collapse
Affiliation(s)
- Jonas Hannestad
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Redl HR, Martin U, Khadem A, Pelinka LE, van Griensven M. Anti-L-selectin antibody therapy does not worsen the postseptic course in a baboon model. Crit Care 2005; 9:R735-44. [PMID: 16356222 PMCID: PMC1414036 DOI: 10.1186/cc3825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 09/04/2005] [Accepted: 09/13/2005] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Anti-adhesion molecule therapy prevents leukocytes from extravasating. During exaggerated inflammation, this effect is wanted; however, during infection, blocking diapedesis may be detrimental. In this study, therefore, the potential risks of anti-L-selectin antibody therapy were evaluated in a primate model of sepsis. METHODS Sixteen baboons were anesthetized and randomized into two groups. The experimental group received 2 mg/kg of the anti-L-selectin antibody HuDREG-55 and the control group received Ringer's solution prior to the onset of a 2 h infusion of Escherichia coli (1-2 x 10(9) colony forming units (CFU)/kg body weight). Serial blood samples were drawn over a 72 h period for the measurement of tumour necrosis factor-alpha, IL-6 and polymorphonuclear elastase. In addition, blood gas analysis, hematology and routine clinical chemistry were determined to monitor cardiovascular status, tissue perfusion and organ function. RESULTS The three-day mortality rate and the mean survival time after E. coli-induced sepsis were similar in the two groups. The bacterial blood CFU levels were significantly higher in the placebo group than in the anti-L-selectin group. Other parameters measured throughout the 72 h experimental period, including the cardiovascular, immunologic, and hematologic responses as well as indicators of organ function and tissue perfusion, were similar in the two groups, with the exception of serum creatinine and mean arterial pressure at 32 h after E. coli challenge. CONCLUSION Anti-L-selectin therapy did not adversely affect survival, promote organ dysfunction or result in major side effects in the baboon sepsis model. Additionally, as anti-L-selectin therapy improved the bacterial clearance rate, it appears that this therapy is not detrimental during sepsis. This is in contrast to previous studies using the baboon model, in which antibody therapy used to block CD18 increased mortality.
Collapse
Affiliation(s)
- Heinz R Redl
- Professor, Director, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, A-1200 Vienna, Austria
| | - Ulrich Martin
- Managing director, La Merie S.L., Passatge Jordi Ferran, 20, E-08028 Barcelona, Spain
| | - Anna Khadem
- Senior technical assistant, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, A-1200 Vienna, Austria
| | - Linda E Pelinka
- Assistant professor, consultant anesthesiologist, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, A-1200 Vienna, Austria
| | - Martijn van Griensven
- Professor, associate director, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, A-1200 Vienna, Austria
| |
Collapse
|
6
|
Welty-Wolf KE, Carraway MS, Ortel TL, Ghio AJ, Idell S, Egan J, Zhu X, Jiao JA, Wong HC, Piantadosi CA. Blockade of tissue factor-factor X binding attenuates sepsis-induced respiratory and renal failure. Am J Physiol Lung Cell Mol Physiol 2005; 290:L21-31. [PMID: 16100288 DOI: 10.1152/ajplung.00155.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tissue factor expression in sepsis activates coagulation in the lung, which potentiates inflammation and leads to fibrin deposition. We hypothesized that blockade of factor X binding to the tissue factor-factor VIIa complex would prevent sepsis-induced damage to the lungs and other organs. Acute lung injury was produced in 15 adult baboons primed with killed Escherichia coli [1 x 10(9) colony-forming units (CFU)/kg], and then 12 h later, they were given 1 x 10(10) CFU/kg live E. coli by infusion. Two hours after live E. coli, animals received antibiotics with or without monoclonal antibody to tissue factor intravenously to block tissue factor-factor X binding. The animals were monitored physiologically for 34 h before being killed and their tissue harvested. The antibody treatment attenuated abnormalities in gas exchange and lung compliance, preserved renal function, and prevented tissue neutrophil influx and bowel edema relative to antibiotics alone (all P < 0.05). It also attenuated fibrinogen depletion (P < 0.01) and decreased proinflammatory cytokines, e.g., IL-6 and -8 (P < 0.01), in systemic and alveolar compartments. Similar protective effects of the antibody on IL-6 and -8 expression and permeability were found in lipopolysaccharide-stimulated endothelial cells. Blockade of factor X binding to the tissue factor-factor VIIa complex attenuates lung and organ injuries in established E. coli sepsis by attenuating the neutrophilic response and inflammatory pathways.
Collapse
Affiliation(s)
- Karen E Welty-Wolf
- Division of Pulmonary and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hildebrand F, Pape HC, Harwood P, Müller K, Hoevel P, Pütz C, Siemann A, Krettek C, van Griensven M. Role of adhesion molecule ICAM in the pathogenesis of polymicrobial sepsis. ACTA ACUST UNITED AC 2005; 56:281-90. [PMID: 15816357 DOI: 10.1016/j.etp.2004.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Intercellular adhesion molecule-1 (ICAM-1) is thought to be involved in polymorphonuclear leukocytes (PMNL) recruitment and secondary organ damage in response to infection and inflammation. The precise role of ICAM-1 in disease progression is unknown and remains a topic of controversy. The aim of this study was to investigate the effect of ICAM-1 on histological changes and cytokine synthesis in a murine model of polymicrobial sepsis. METHODS Polymicrobial sepsis was induced in experimental animals by caecal ligation and puncture (CLP). A control group was formed using sham laparotomy without CLP. In order to ascertain the role of ICAM-1 in the response, procedures were performed in both ICAM-1 knockout animals (ICAM-1-/-) and in C57BL/6 mice that were not genetically modified (wild type, WT). Clinical response was observed daily, morphological changes occurring in the lung and liver were studied using light microscopy and quantified using a scoring system. Plasma concentrations of various cytokines (TNF-alpha, IL-6, IL-10) were measured via ELISA. RESULTS In ICAM-1-/- mice a less severe clinical response to induced sepsis was observed with significantly less weight loss and hypothermia. A significantly lower mortality rate was observed in ICAM-1-/- mice (12.5% vs. WT: 45.5%) and no significant histological changes were apparent in pulmonary or hepatic tissue on light microscopy following CLP. In WT animals however, significant evidence of leukocyte infiltration and interstitial thickening in pulmonary tissue was observed. Similarly, hepatic tissue sinusoidal widening and hydropic degeneration was present. In addition, pro- and anti-inflammatory cytokine synthesis in ICAM-1-/- animals was significantly attenuated when compared to WT mice. (ICAM-1-/-: TNF-alpha: 67.7+/-12.1pg/microl; IL-6: 208.9+/-26.7pg/microl; IL-10: 34.6+/-5.8pg/microl; WT: TNF-alpha: 840.7+/-150.2pg/microl; IL-6: 3100.2+/-1052.3 pg/microl; IL-10: 1550.1+/-495.7 pg/microl). DISCUSSION This study suggests that ICAM-1 has an important pathophysiological role in the response to polymicrobial sepsis. It would appear that absence of this molecule impairs the ability of PMNL to migrate into organ tissues and reduces consequent secondary organ damage resulting in improved clinical status and overall survival. Further investigation into the effectiveness of ICAM-1 modulation in the treatment of sepsis is warranted.
Collapse
Affiliation(s)
- Frank Hildebrand
- Hannover Medical School, Experimental Trauma Surgery, Trauma Department, Carl-Neuberg-Strasse I Hannover, 30625 Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Welty-Wolf KE, Carraway MS, Miller DL, Ortel TL, Ezban M, Ghio AJ, Idell S, Piantadosi CA. Coagulation blockade prevents sepsis-induced respiratory and renal failure in baboons. Am J Respir Crit Care Med 2001; 164:1988-96. [PMID: 11734456 DOI: 10.1164/ajrccm.164.10.2105027] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sepsis-induced tissue factor (TF) expression activates coagulation in the lung and leads to a procoagulant environment, which results in fibrin deposition and potentiates inflammation. We hypothesized that preventing initiation of coagulation at TF-Factor VIIa (FVIIa) complex would block fibrin deposition and control inflammation in sepsis, thereby limiting acute lung injury (ALI) and other organ damage in baboons. A model of ALI was used in which adult baboons were primed with killed Escherichia coli (1 x 10(9) CFU/kg), and bacteremic sepsis was induced 12 h later by infusion of live E. coli at 1 x 10(10) CFU/kg. Animals in the treatment group were given a competitive inhibitor of TF, site-inactivated FVIIa (FVIIai), intravenously at the time of the infusion of live bacteria and monitored physiologically for another 36 h. FVIIai dramatically protected gas exchange and lung compliance, prevented lung edema and pulmonary hypertension, and preserved renal function relative to vehicle (all p < 0.05). Treatment attenuated sepsis-induced fibrinogen depletion (p < 0.01) and decreased systemic proinflammatory cytokine responses, for example, interleukin 6 (p < 0.01). The protective effects of TF blockade in sepsis-induced ALI were confirmed by using tissue factor pathway inhibitor. The results show that TF-FVIIa complex contributes to organ injury in septic primates in part through selective stimulation of proinflammatory cytokine release and fibrin deposition.
Collapse
Affiliation(s)
- K E Welty-Wolf
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Welty-Wolf KE, Carraway MS, Huang YC, Simonson SG, Kantrow SP, Kishimoto TK, Piantadosi CA. Antibody to intercellular adhesion molecule 1 (CD54) decreases survival and not lung injury in baboons with sepsis. Am J Respir Crit Care Med 2001; 163:665-73. [PMID: 11254521 DOI: 10.1164/ajrccm.163.3.2004191] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neutrophil influx into the lung is an important event in the pathogenesis of acute lung injury in gram-negative sepsis. We hypothesized that administration of a monoclonal antibody to intercellular adhesion molecule 1 (ICAM-1, CD54), a molecule mediating neutrophil adhesion to endothelial cells, would decrease neutrophil sequestration and transmigration in the lung and attenuate lung injury in Escherichia coli sepsis. Sepsis was induced in 12 baboons primed with heat-killed E. coli (1 x 10(9) CFU/kg) 12 h before infusion of live bacteria (1 x 10(10) CFU/kg). Six animals received monoclonal antibody to CD54 (1 mg/kg) intravenously at the time of live E. coli infusion. After 48 h or when blood pressure could not be maintained, tissues were harvested and bronchoalveolar lavage (BAL) samples were obtained. Median survival time was decreased in anti-CD54-treated animals. This group also had decreased mean arterial pressure, increased metabolic acidosis, and decreased urine output. Measures of lung injury including gas exchange, lung lavage protein and lactate dehydrogenase (LDH), lung thiobarbituric acid-reactive species, and lung histology, including alveolar neutrophil volumes, were unaffected by treatment. The effect of anti-CD54 on neutrophil influx into tissues as measured by myeloperoxidase was organ specific. These data show that monoclonal antibody to CD54 does not ameliorate acute lung injury in E. coli sepsis, and septic primates given anti-CD54 have worsened metabolic parameters and decreased survival.
Collapse
Affiliation(s)
- K E Welty-Wolf
- Department of Medicine, Durham VA Medical Center and Duke University Medical Center, Durham, North Carolina 27710,
| | | | | | | | | | | | | |
Collapse
|
10
|
Wagner JG. Deciphering the inflammatory signals in bovine respiratory disease: lessons from human studies. Vet J 2001; 161:8-9. [PMID: 11145826 DOI: 10.1053/tvjl.2000.0539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|