1
|
Immler R, Nussbaumer K, Doerner A, El Bounkari O, Huber S, Abisch J, Napoli M, Schmidt S, Margraf A, Pruenster M, Rohwedder I, Lange-Sperandio B, Mall MA, de Jong R, Ohnmacht C, Bernhagen J, Voehringer D, Marth JD, Frommhold D, Sperandio M. CCR3-dependent eosinophil recruitment is regulated by sialyltransferase ST3Gal-IV. Proc Natl Acad Sci U S A 2024; 121:e2319057121. [PMID: 38687790 PMCID: PMC11087806 DOI: 10.1073/pnas.2319057121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Eosinophil recruitment is a pathological hallmark of many allergic and helminthic diseases. Here, we investigated chemokine receptor CCR3-induced eosinophil recruitment in sialyltransferase St3gal4-/- mice. We found a marked decrease in eosinophil extravasation into CCL11-stimulated cremaster muscles and into the inflamed peritoneal cavity of St3gal4-/- mice. Ex vivo flow chamber assays uncovered reduced adhesion of St3gal4-/- compared to wild type eosinophils. Using flow cytometry, we show reduced binding of CCL11 to St3gal4-/- eosinophils. Further, we noted reduced binding of CCL11 to its chemokine receptor CCR3 isolated from St3gal4-/- eosinophils. This was accompanied by almost absent CCR3 internalization of CCL11-stimulated St3gal4-/- eosinophils. Applying an ovalbumin-induced allergic airway disease model, we found a dramatic reduction in eosinophil numbers in bronchoalveolar lavage fluid following intratracheal challenge with ovalbumin in St3gal4-deficient mice. Finally, we also investigated tissue-resident eosinophils under homeostatic conditions and found reduced resident eosinophil numbers in the thymus and adipose tissue in the absence of ST3Gal-IV. Taken together, our results demonstrate an important role of ST3Gal-IV in CCR3-induced eosinophil recruitment in vivo rendering this enzyme an attractive target in reducing unwanted eosinophil infiltration in various disorders including allergic diseases.
Collapse
Affiliation(s)
- Roland Immler
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-UniversitätMünchen, PLanegg-Martinsried82152, Germany
| | - Katrin Nussbaumer
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-UniversitätMünchen, PLanegg-Martinsried82152, Germany
| | - Axel Doerner
- Department of Neonatology, University of Heidelberg, Heidelberg69120, Germany
| | - Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität, München81377, Germany
| | - Silke Huber
- Institute of Immunology, Ludwig-Maximilians-Universität München, München80336, Germany
| | - Janine Abisch
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-UniversitätMünchen, PLanegg-Martinsried82152, Germany
| | - Matteo Napoli
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-UniversitätMünchen, PLanegg-Martinsried82152, Germany
| | - Sarah Schmidt
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-UniversitätMünchen, PLanegg-Martinsried82152, Germany
| | - Andreas Margraf
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-UniversitätMünchen, PLanegg-Martinsried82152, Germany
| | - Monika Pruenster
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-UniversitätMünchen, PLanegg-Martinsried82152, Germany
| | - Ina Rohwedder
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-UniversitätMünchen, PLanegg-Martinsried82152, Germany
| | - Baerbel Lange-Sperandio
- von Haunersches Kinderspital, Klinikum der Universität München, Ludwig-Maximilians-Universität, München80336, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin13353, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin10117, Germany
- German Centre for Lung Research, Associated Partner Site, Berlin13353, Germany
| | - Renske de Jong
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, München80802, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, München80802, Germany
| | - Juergen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität, München81377, Germany
- Munich Cluster for Systems Neurology, München81377, Germany
- Munich Heart Alliance, München80336, Germany
| | - David Voehringer
- Institute of Immunology, Ludwig-Maximilians-Universität München, München80336, Germany
- Department of Infection Biology, University of Erlangen, Erlangen91054, Germany
| | - Jamey D. Marth
- Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Diseases, San Diego, CA92037
| | - David Frommhold
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-UniversitätMünchen, PLanegg-Martinsried82152, Germany
- Children’s Hospital Memmingen, Memmingen87700, Germany
| | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-UniversitätMünchen, PLanegg-Martinsried82152, Germany
| |
Collapse
|
2
|
Kukan EN, Fabiano GL, Cobb BA. Siglecs as modulators of macrophage phenotype and function. Semin Immunol 2024; 73:101887. [PMID: 39357273 DOI: 10.1016/j.smim.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
The sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of receptors expressed widely on cells of the hematopoietic system. Siglecs recognize terminal sialic acid residues on glycans and often initiate intracellular signaling upon ligation. Cells can express several Siglec family members concurrently with each showing differential specificities for sialic acid linkages to the underlying glycan as well as varied hydroxyl substitutions, allowing these receptors to fine tune downstream responses. Macrophages are among the many immune cells that express Siglec family members. Macrophages exhibit wide diversity in their phenotypes and functions, and this diversity is often mediated by signals from the local environment, including those from glycans. In this review, we detail the known expression of Siglecs in macrophages while focusing on their functional importance and potential clinical relevance.
Collapse
Affiliation(s)
- Emily N Kukan
- Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Gabrielle L Fabiano
- Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Brian A Cobb
- Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States.
| |
Collapse
|
3
|
Akkaya I, Oylumlu E, Ozel I, Uzel G, Durmus L, Ciraci C. NLRC4 Inflammasome-Mediated Regulation of Eosinophilic Functions. Immune Netw 2022; 21:e42. [PMID: 35036029 PMCID: PMC8733190 DOI: 10.4110/in.2021.21.e42] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/01/2022] Open
Abstract
Eosinophils play critical roles in the maintenance of homeostasis in innate and adaptive immunity. Although primarily known for their roles in parasitic infections and the development of Th2 cell responses, eosinophils also play complex roles in other immune responses ranging from anti-inflammation to defense against viral and bacterial infections. However, the contributions of pattern recognition receptors in general, and NOD-like receptors (NLRs) in particular, to eosinophil involvement in these immune responses remain relatively underappreciated. Our in vivo studies demonstrated that NLRC4 deficient mice had a decreased number of eosinophils and impaired Th2 responses after induction of an allergic airway disease model. Our in vitro data, utilizing human eosinophilic EoL-1 cells, suggested that TLR2 induction markedly induced pro-inflammatory responses and inflammasome forming NLRC4 and NLRP3. Moreover, activation by their specific ligands resulted in caspase-1 cleavage and mature IL-1β secretion. Interestingly, Th2 responses such as secretion of IL-5 and IL-13 decreased after transfection of EoL-1 cells with short interfering RNAs targeting human NLRC4. Specific induction of NLRC4 with PAM3CSK4 and flagellin upregulated the expression of IL-5 receptor and expression of Fc epsilon receptors (FcεR1α, FcεR2). Strikingly, activation of the NLRC4 inflammasome also promoted expression of the costimulatory receptor CD80 as well as expression of immunoregulatory receptors PD-L1 and Siglec-8. Concomitant with NLRC4 upregulation, we found an increase in expression and activation of matrix metalloproteinase (MMP)-9, but not MMP-2. Collectively, our results present new potential roles of NLRC4 in mediating a variety of eosinopilic functions.
Collapse
Affiliation(s)
- Ilgin Akkaya
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ece Oylumlu
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Irem Ozel
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Goksu Uzel
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Lubeyne Durmus
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ceren Ciraci
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey.,Inflammation Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Movsisyan LD, Macauley MS. Structural advances of Siglecs: insight into synthetic glycan ligands for immunomodulation. Org Biomol Chem 2020; 18:5784-5797. [PMID: 32756649 DOI: 10.1039/d0ob01116a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are transmembrane proteins of the immunoglobulin (Ig) superfamily predominantly expressed on the cells of our immune system. Siglecs recognize sialic acid via their terminal V-set domain. In mammals, sialic acid-terminated glycolipids and glycoproteins are the ligands of Siglecs, and the monomeric affinity of Siglecs for their sialic acid-containing ligands is weak. Significant efforts have been devoted toward the development of chemically modified sialoside ligands to target Siglecs with higher affinity and selectivity. In this review we discuss natural and synthetic sialoside ligands for each human Siglec, emphasizing the ligand binding determinants uncovered from recent advances in protein structural information. Potential therapeutic applications of these ligands are also discussed.
Collapse
Affiliation(s)
- Levon D Movsisyan
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Sajay-Asbaghi M, Sadeghi-Shabestrai M, Monfaredan A, Seyfizadeh N, Razavi A, Kazemi T. Promoter region single nucleotide polymorphism of siglec-8 gene associates with susceptibility to allergic asthma. Per Med 2020; 17:195-201. [PMID: 32077788 DOI: 10.2217/pme-2018-0080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Siglec-8 is exclusively expressed on mast cells, eosinophils and basophils. Possible association of six siglec-8 single nucleotide polymorphisms (SNPs) with susceptibility to allergic asthma in the Azeri population of Iran was investigated in this study. Materials & methods: A total of 194 patients and 190 normal subjects were enrolled. PCR single strand conformation polymorphism (PCR-SSCP) was used to determine the genotypes of the studied SNPs. Results: The rs36498 showed significant association with allergic asthma (odds ratio [OR]: 0.65; p = 0.022) and the T allele was found as a protective allele (OR: 0.61; p = 0.008). Also, eosinophil count in the CC genotype was significantly higher than that in the other genotypes (p = 0.026). Conclusion: The rs36498 is thought to influence the expression level of siglec-8. Siglec-8 could be a potential therapeutic target for allergic asthma.
Collapse
Affiliation(s)
- Mohammad Sajay-Asbaghi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amir Monfaredan
- Research Division of Tabriz International Hospital, Tabriz, Iran
| | - Narges Seyfizadeh
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Razavi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
O'Shea MK, Fletcher TE, Muller J, Tanner R, Matsumiya M, Bailey JW, Jones J, Smith SG, Koh G, Horsnell WG, Beeching NJ, Dunbar J, Wilson D, Cunningham AF, McShane H. Human Hookworm Infection Enhances Mycobacterial Growth Inhibition and Associates With Reduced Risk of Tuberculosis Infection. Front Immunol 2018; 9:2893. [PMID: 30619265 PMCID: PMC6302045 DOI: 10.3389/fimmu.2018.02893] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
Soil-transmitted helminths and Mycobacterium tuberculosis frequently coincide geographically and it is hypothesized that gastrointestinal helminth infection may exacerbate tuberculosis (TB) disease by suppression of Th1 and Th17 responses. However, few studies have focused on latent TB infection (LTBI), which predominates globally. We performed a large observational study of healthy adults migrating from Nepal to the UK (n = 645). Individuals were screened for LTBI and gastrointestinal parasite infections. A significant negative association between hookworm and LTBI-positivity was seen (OR = 0.221; p = 0.039). Hookworm infection treatment did not affect LTBI conversions. Blood from individuals with hookworm had a significantly greater ability to control virulent mycobacterial growth in vitro than from those without, which was lost following hookworm treatment. There was a significant negative relationship between mycobacterial growth and eosinophil counts. Eosinophil-associated differential gene expression characterized the whole blood transcriptome of hookworm infection and correlated with improved mycobacterial control. These data provide a potential alternative explanation for the reduced prevalence of LTBI among individuals with hookworm infection, and possibly an anti-mycobacterial role for helminth-induced eosinophils.
Collapse
Affiliation(s)
- Matthew K. O'Shea
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- Royal Centre for Defence Medicine, Joint Medical Command, Birmingham, United Kingdom
| | - Thomas E. Fletcher
- Royal Centre for Defence Medicine, Joint Medical Command, Birmingham, United Kingdom
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Julius Muller
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Rachel Tanner
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Magali Matsumiya
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - J. Wendi Bailey
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jayne Jones
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Steven G. Smith
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gavin Koh
- Department of Infectious Diseases, Northwick Park Hospital, London, United Kingdom
| | - William G. Horsnell
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Nicholas J. Beeching
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - James Dunbar
- Royal Centre for Defence Medicine, Joint Medical Command, Birmingham, United Kingdom
- Department of Infectious Diseases, The Friarage Hospital, Northallerton, United Kingdom
| | - Duncan Wilson
- Royal Centre for Defence Medicine, Joint Medical Command, Birmingham, United Kingdom
| | - Adam F. Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Helen McShane
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Lübbers J, Rodríguez E, van Kooyk Y. Modulation of Immune Tolerance via Siglec-Sialic Acid Interactions. Front Immunol 2018; 9:2807. [PMID: 30581432 PMCID: PMC6293876 DOI: 10.3389/fimmu.2018.02807] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
One of the key features of the immune system is its extraordinary capacity to discriminate between self and non-self and to respond accordingly. Several molecular interactions allow the induction of acquired immune responses when a foreign antigen is recognized, while others regulate the resolution of inflammation, or the induction of tolerance to self-antigens. Post-translational signatures, such as glycans that are part of proteins (glycoproteins) and lipids (glycolipids) of host cells or pathogens, are increasingly appreciated as key molecules in regulating immunity vs. tolerance. Glycans are sensed by glycan binding receptors expressed on immune cells, such as C-type lectin receptors (CLRs) and Sialic acid binding immunoglobulin type lectins (Siglecs), that respond to specific glycan signatures by triggering tolerogenic or immunogenic signaling pathways. Glycan signatures present on healthy tissue, inflamed and malignant tissue or pathogens provide signals for “self” or “non-self” recognition. In this review we will focus on sialic acids that serve as “self” molecular pattern ligands for Siglecs. We will emphasize on the function of Siglec-expressing mononuclear phagocytes as sensors for sialic acids in tissue homeostasis and describe how the sialic acid-Siglec axis is exploited by tumors and pathogens for the induction of immune tolerance. Furthermore, we highlight how the sialic acid-Siglec axis can be utilized for clinical applications to induce or inhibit immune tolerance.
Collapse
Affiliation(s)
- Joyce Lübbers
- Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Ernesto Rodríguez
- Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| |
Collapse
|
8
|
Wielgat P, Trofimiuk E, Czarnomysy R, Braszko JJ, Car H. Sialic acids as cellular markers of immunomodulatory action of dexamethasone on glioma cells of different immunogenicity. Mol Cell Biochem 2018; 455:147-157. [PMID: 30443853 PMCID: PMC6445812 DOI: 10.1007/s11010-018-3478-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/09/2018] [Indexed: 01/17/2023]
Abstract
Glucocorticosteroids, including dexamethasone (Dex), are commonly used to control tumor-induced edema in the brain tumor patients. There are increasing evidences that immunosuppressive action of Dex interferes with immune surveillance resulting in lower patients overall survival; however, the mechanisms underlying these actions remain unclear. Changes in the expression of sialic acids are critical features of many cancers that reduce their immunogenicity and increase viability. Sialoglycans can be recognized by CD33-related Siglecs that negatively regulate the immune response and thereby impair immune surveillance. In this study, we analysed the effect of Dex on cell surface sialylation pattern and recognition of these structures by Siglec-F receptor in poorly immunogenic GL261 and immunogenic SMA560 glioma cells. Relative amount of α2.3-, α2.6- and α2.8-linked sialic acids were detected by Western blot with MAA (Maackia amurensis) and SNA (Sambucus nigra) lectins, and flow cytometry using monoclonal antibody anti-PSA-NCAM. In response to Dex, α2.8 sialylation in both, GL261 and SMA560 was increased, whereas the level of α2.3-linked sialic acids remained unchanged. Moreover, we found the opposite effects of Dex on α2.6 sialylation in poorly immunogenic and immunogenic glioma cells. Furthermore, changes in sialylation pattern were accompanied by dose-dependent effects of Dex on Siglec-F binding to glioma cell membranes as well as decreased α-neuraminidase activity. These results suggest that glucocorticosteroid-induced alterations in cell surface sialylation and Siglecs recognition may dampen anti-tumor immunity, and participate in glioma-promoting process by immune cells. Our study gives new view on corticosteroid therapy in glioma patients.
Collapse
Affiliation(s)
- Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274, Bialystok, Poland.
| | - Emil Trofimiuk
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274, Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilińskiego 1, 15-089, Bialystok, Poland
| | - Jan J Braszko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274, Bialystok, Poland
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274, Bialystok, Poland
| |
Collapse
|
9
|
Bornhöfft KF, Goldammer T, Rebl A, Galuska SP. Siglecs: A journey through the evolution of sialic acid-binding immunoglobulin-type lectins. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:219-231. [PMID: 29751010 DOI: 10.1016/j.dci.2018.05.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 05/11/2023]
Abstract
Siglecs (sialic acid-binding immunoglobulin-type lectins) are a family of immune regulatory receptors predominantly found on the cells of the hematopoietic system. A V-set Ig-like domain mediates the recognition of different sialylated glycoconjugates, which can lead to the activation or inhibition of the immune response, depending on the involved Siglecs. Siglecs are categorized into two subgroups: one including all CD33-related Siglecs and the other consisting of Siglec-1 (Sialoadhesin), Siglec-2 (CD22), Siglec-4 (myelin-associated glycoprotein, MAG) and Siglec-15. In contrast to the members of the CD33-related Siglecs, which share ∼50-99% sequence identity, Siglecs of the other subgroup show quite low homology (approximately 25-30% sequence identity). Based on the published sequences and functions of Siglecs, we performed phylogenetic analyses and sequence alignments to reveal the conservation of Siglecs throughout evolution. Therefore, we focused on the presence of Siglecs in different classes of vertebrates (fishes, amphibians, birds, reptiles and mammals), offering a bridge between the presence of different Siglecs and the biological situations of the selected animals.
Collapse
Affiliation(s)
- Kim F Bornhöfft
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Tom Goldammer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Sebastian P Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
10
|
Kumagai T, Kiwamoto T, Brummet ME, Wu F, Aoki K, Zhu Z, Bochner BS, Tiemeyer M. Airway glycomic and allergic inflammatory consequences resulting from keratan sulfate galactose 6-O-sulfotransferase (CHST1) deficiency. Glycobiology 2018; 28:406-417. [PMID: 29659839 PMCID: PMC5967469 DOI: 10.1093/glycob/cwy025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 03/09/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023] Open
Abstract
Siglec-F is a pro-apoptotic receptor on mouse eosinophils that recognizes 6'-sulfated sialyl Lewis X and 6'-sulfated sialyl N-acetyl-lactosamine as well as multivalent sialyl N-acetyl-lactosamine structures on glycan arrays. We hypothesized that attenuation of the carbohydrate sulfotransferase 1 (CHST1) gene encoding keratan sulfate galactose 6-O-sulfotransferase, an enzyme likely required for 6'-sulfation of some of these putative Siglec-F glycan ligands, would result in decreased Siglec-F lung ligand levels and enhanced allergic eosinophilic airway inflammation. Tissue analysis detected CHST1 expression predominantly not only in parenchymal cells but not in airway epithelium, the latter being a location where Siglec-F ligands are located. Western blotting of lung extracts with Siglec-F-Fc fusion proteins detected ≈500 kDa and ≈200 kDa candidate Siglec-F ligands that were not appreciably altered in CHST1-/- lungs compared with normal mouse lungs. Characterization of the O-linked glycans of lung tissue and bronchoalveolar lavage fluid detected altered sialylation but minimal change in sulfation. Eosinophilic airway inflammation was induced in wild-type (WT) and CHST1-/- mice via sensitization to ovalbumin (OVA) and repeated airway challenge. After OVA sensitization and challenge, Siglec-F ligands on airway cells, and numbers of eosinophils and neutrophils accumulating in the airways, both increased to a similar degree in WT and CHST1-/- mouse lungs, while macrophages and lymphocytes increased significantly more in CHST1-/- mouse airway compared with normal mouse lungs. Therefore, keratan sulfate galactose 6-O-sulfotransferase does not contribute to the synthesis of glycan ligands for Siglec-F in the airways, although its absence results in exaggerated accumulation of airway macrophages and lymphocytes.
Collapse
Affiliation(s)
- Tadahiro Kumagai
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602
| | - Takumi Kiwamoto
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224
| | - Mary E Brummet
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224
| | - Fan Wu
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602
| | - Zhou Zhu
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224
- Department of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, 240 E. Huron Street, Room M-306, Chicago, IL 60611
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, B122 Life Sciences Building, Athens, GA 30602, USA
| |
Collapse
|
11
|
MicroRNA-9 and Cell Proliferation in Lipopolysaccharide and Dexamethasone-Treated Naïve and Desialylated A549 Cells Grown in Cigarette Smoke Conditioned Medium. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29492899 DOI: 10.1007/5584_2018_168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
In this study we assessed microRNA-9 (miR-9) levels (RT-PCR) and cell proliferation (flow cytometry) in naïve and desialylated human alveolar epithelial cells (A549 cells), grown for 24 h in cigarette smoke-conditioned medium. Cells were additionally treated with lipopolysaccharide (LPS) and/or dexamethasone. Proliferation positively correlated with miR-9 levels in both naïve and desialylated cells. Cigarette smoke decreased miR-9 levels in both cell types by about three-fold but there was no significant correlation between both parameters. Dexamethasone was without substantial effect on cigarette smoke-induced changes in proliferation of naïve cells, but some normalization was observed in desialylated cells. Dexamethasone increased miR-9 levels in both cell types grown in cigarette smoke-medium but the effect was stronger in desialylated cells. LPS increased cell proliferation and miR-9 by more than six-fold only in naïve cells, while correlation coefficient for both parameters in cigarette smoke-LPS group was 0.41. Herein we identify miR-9 as the cigarette smoke (decrease) and LPS-responsive but dexamethasone-unresponsive microRNA. It is possible that increased miR-9 levels in naïve A549 cells treated with LPS may be related to the activation of Toll-like receptor 4. Moreover, differences in cell response (both miR-9 and proliferation) to dexamethasone in naïve and desialylated cells may point to non-genomic dexamethasone effects.
Collapse
|
12
|
Geslewitz WE, Percopo CM, Rosenberg HF. FACS isolation of live mouse eosinophils at high purity via a protocol that does not target Siglec F. J Immunol Methods 2017; 454:27-31. [PMID: 29253503 DOI: 10.1016/j.jim.2017.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/21/2017] [Accepted: 12/07/2017] [Indexed: 01/01/2023]
Abstract
Flow cytometry protocols designed to identify mouse eosinophils typically target Siglec F, an α-2,3-sialic acid binding transmembrane protein expressed universally on cells of this lineage. While a convenient target, antibody-mediated ligation of Siglec F induces eosinophil apoptosis, which limits its usefulness for isolations that are to be followed by functional and/or gene expression studies. We present here a method for FACS isolation which does not target Siglec F and likewise utilizes no antibodies targeting IL5Rα (CD125) or CCR3. Single cell suspensions are prepared from lungs of mice that were sensitized and challenged with Aspergillus fumigatus antigens; eosinophils were identified and isolated by FACS as live SSChi/FSChi CD11c-Gr1-/loMHCII- cells. This strategy was also effective for eosinophil isolation from the lungs of IL5tg mice. Purity by visual inspection of stained cytospin preparations and by Siglec F-diagnostic flow cytometry was 98-99% and 97-99%, respectively. Eosinophils isolated by this method (yield, ~4×106/mouse) generated high-quality RNA suitable for gene expression analysis.
Collapse
Affiliation(s)
- Wendy E Geslewitz
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Caroline M Percopo
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Helene F Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Diny NL, Baldeviano GC, Talor MV, Barin JG, Ong S, Bedja D, Hays AG, Gilotra NA, Coppens I, Rose NR, Čiháková D. Eosinophil-derived IL-4 drives progression of myocarditis to inflammatory dilated cardiomyopathy. J Exp Med 2017; 214:943-957. [PMID: 28302646 PMCID: PMC5379983 DOI: 10.1084/jem.20161702] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 01/21/2023] Open
Abstract
Diny et al. report a pathogenic role for eosinophils in autoimmune myocarditis and dilated cardiomyopathy. Eosinophils are required for progression of myocarditis to dilated cardiomyopathy and drive severe disease when present in large numbers. Activated cardiac eosinophils mediate this process through IL-4. Inflammatory dilated cardiomyopathy (DCMi) is a major cause of heart failure in children and young adults. DCMi develops in up to 30% of myocarditis patients, but the mechanisms involved in disease progression are poorly understood. Patients with eosinophilia frequently develop cardiomyopathies. In this study, we used the experimental autoimmune myocarditis (EAM) model to determine the role of eosinophils in myocarditis and DCMi. Eosinophils were dispensable for myocarditis induction but were required for progression to DCMi. Eosinophil-deficient ΔdblGATA1 mice, in contrast to WT mice, showed no signs of heart failure by echocardiography. Induction of EAM in hypereosinophilic IL-5Tg mice resulted in eosinophilic myocarditis with severe ventricular and atrial inflammation, which progressed to severe DCMi. This was not a direct effect of IL-5, as IL-5TgΔdblGATA1 mice were protected from DCMi, whereas IL-5−/− mice exhibited DCMi comparable with WT mice. Eosinophils drove progression to DCMi through their production of IL-4. Our experiments showed eosinophils were the major IL-4–expressing cell type in the heart during EAM, IL-4−/− mice were protected from DCMi like ΔdblGATA1 mice, and eosinophil-specific IL-4 deletion resulted in improved heart function. In conclusion, eosinophils drive progression of myocarditis to DCMi, cause severe DCMi when present in large numbers, and mediate this process through IL-4.
Collapse
Affiliation(s)
- Nicola L Diny
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | - G Christian Baldeviano
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Monica V Talor
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Jobert G Barin
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - SuFey Ong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | - Djahida Bedja
- Department of Medicine, Division of Cardiology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Allison G Hays
- Department of Medicine, Division of Cardiology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Nisha A Gilotra
- Department of Medicine, Division of Cardiology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Isabelle Coppens
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | - Noel R Rose
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205.,Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Daniela Čiháková
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205 .,Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
14
|
Regulation of airway inflammation by Siglec-8 and Siglec-9 sialoglycan ligand expression. Curr Opin Allergy Clin Immunol 2016; 16:24-30. [PMID: 26694037 DOI: 10.1097/aci.0000000000000234] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Inflammatory cells involved in the allergic response, including eosinophils, mast cells, basophils, and neutrophils, express sialoglycan-binding proteins such as Siglec-8 and Siglec-9, which inhibit cell function and survival. The purpose of this review is to briefly discuss the biology of these siglecs and their ligands and consider their potential impact in pathology and treatment of chronic rhinosinusitis (CRS). RECENT FINDINGS Recent studies demonstrate the presence of ligands for Siglec-8 and Siglec-9 in sinonasal tissue from patients with CRS as well as healthy patients, suggesting that the immunoregulatory functions of siglecs may be triggered in sinus tissue in health and disease. SUMMARY Ligands for Siglec-8 and Siglec-9 may regulate the function of eosinophils, mast cells, neutrophils, and other cells in sinus mucosa. Therapeutic strategies that activate the anti-inflammatory effects of siglecs may dampen inflammation and disease in CRS patients.
Collapse
|
15
|
Structural basis for sulfation-dependent self-glycan recognition by the human immune-inhibitory receptor Siglec-8. Proc Natl Acad Sci U S A 2016; 113:E4170-9. [PMID: 27357658 DOI: 10.1073/pnas.1602214113] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Siglec-8 is a human immune-inhibitory receptor that, when engaged by specific self-glycans, triggers eosinophil apoptosis and inhibits mast cell degranulation, providing an endogenous mechanism to down-regulate immune responses of these central inflammatory effector cells. Here we used solution NMR spectroscopy to dissect the fine specificity of Siglec-8 toward different sialylated and sulfated carbohydrate ligands and determined the structure of the Siglec-8 lectin domain in complex with its prime glycan target 6'-sulfo sialyl Lewis(x) A canonical motif for sialic acid recognition, extended by a secondary motif formed by unique loop regions, recognizing 6-O-sulfated galactose dictates tight specificity distinct from other Siglec family members and any other endogenous glycan recognition receptors. Structure-guided mutagenesis revealed key contacts of both interfaces to be equally essential for binding. Our work provides critical structural and mechanistic insights into how Siglec-8 selectively recognizes its glycan target, rationalizes the functional impact of site-specific glycan sulfation in modulating this lectin-glycan interaction, and will enable the rational design of Siglec-8-targeted agonists to treat eosinophil- and mast cell-related allergic and inflammatory diseases, such as asthma.
Collapse
|
16
|
Zissler UM, Esser-von Bieren J, Jakwerth CA, Chaker AM, Schmidt-Weber CB. Current and future biomarkers in allergic asthma. Allergy 2016; 71:475-94. [PMID: 26706728 DOI: 10.1111/all.12828] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
Diagnosis early in life, sensitization, asthma endotypes, monitoring of disease and treatment progression are key motivations for the exploration of biomarkers for allergic rhinitis and allergic asthma. The number of genes related to allergic rhinitis and allergic asthma increases steadily; however, prognostic genes have not yet entered clinical application. We hypothesize that the combination of multiple genes may generate biomarkers with prognostic potential. The current review attempts to group more than 161 different potential biomarkers involved in respiratory inflammation to pave the way for future classifiers. The potential biomarkers are categorized into either epithelial or infiltrate-derived or mixed origin, epithelial biomarkers. Furthermore, surface markers were grouped into cell-type-specific categories. The current literature provides multiple biomarkers for potential asthma endotypes that are related to T-cell phenotypes such as Th1, Th2, Th9, Th17, Th22 and Tregs and their lead cytokines. Eosinophilic and neutrophilic asthma endotypes are also classified by epithelium-derived CCL-26 and osteopontin, respectively. There are currently about 20 epithelium-derived biomarkers exclusively derived from epithelium, which are likely to innovate biomarker panels as they are easy to sample. This article systematically reviews and categorizes genes and collects current evidence that may promote these biomarkers to become part of allergic rhinitis or allergic asthma classifiers with high prognostic value.
Collapse
Affiliation(s)
- U. M. Zissler
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - J. Esser-von Bieren
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - C. A. Jakwerth
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - A. M. Chaker
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery; Medical School; Technical University of Munich; Munich Germany
| | - C. B. Schmidt-Weber
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| |
Collapse
|
17
|
Brenner TA, Rice TA, Anderson ED, Percopo CM, Rosenberg HF. Immortalized MH-S cells lack defining features of primary alveolar macrophages and do not support mouse pneumovirus replication. Immunol Lett 2016; 172:106-12. [PMID: 26916143 DOI: 10.1016/j.imlet.2016.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 12/15/2022]
Abstract
The SV-40-transformed MH-S cell line maintains some, but not all, features of primary alveolar macrophages (AMs) from BALB/c mice. We show here that MH-S cells produce inflammatory cytokines IL-6 and CXCL10 in response to challenge with Gram-positive Lactobacillus reuteri, and to TLR2 and NOD2 ligands Pam3CSK4 and MDP, respectively. In contrast, although wild-type AMs are infected in vivo by pneumonia virus of mice (PVM), no virus replication was detected in MH-S cells. Interestingly, the surface immunophenotype of MH-S cells (CD11c(+)Siglec F(-)) differs from that of wild-type AMs (CD11c(+) Siglec F(+)) and is similar to that of immature AMs isolated from granulocyte macrophage-colony stimulating factor (GM-CSF) gene-deleted mice; AMs from GM-CSF(-/-) mice also support PVM replication. However, MH-S cells do not express the GM-CSF receptor alpha chain (CD116) and do not respond to GM-CSF. Due to these unusual features, MH-S cells should be used with caution as experimental models of AMs.
Collapse
Affiliation(s)
- Todd A Brenner
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Tyler A Rice
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Erik D Anderson
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Caroline M Percopo
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Helene F Rosenberg
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
18
|
Bochner BS. "Siglec"ting the allergic response for therapeutic targeting. Glycobiology 2016; 26:546-52. [PMID: 26911285 DOI: 10.1093/glycob/cww024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 01/09/2023] Open
Abstract
As a physician-scientist, I have pursued research related to translational immunology with the goal of improving our ability to diagnose and treat allergic, immunologic and other diseases involving eosinophils, basophils and mast cells. We have tried to delineate novel mechanisms of human disease, working whenever possible with primary human cells and tissues, attempting to identify targets that might be amenable to the development of new therapies. As a general strategy, we have compared eosinophils, basophils, mast cells and neutrophils to look for pathways in inflammation that were unique to distinct subsets of these cells. In doing so, the concepts of glycobiology did not enter my mind until we began noticing some intriguing functional differences involving selectins and their ligands among these cell types. One simple observation, that neutrophils were coated with a glycan that allowed them to interact with an endothelial adhesion molecule while eosinophils lacked this structure, pried open the glyco-door for me. Fruitful collaborations with card-carrying glycobiologists soon followed that have forever positively influenced our science, and have enhanced our hypotheses, experimental design, research opportunities and discoveries. Within a few years, we helped to discover Siglec-8, an I-type lectin expressed only on human eosinophils, basophils, mast cells. This receptor, together with its closest mouse counterpart Siglec-F, has been the primary focus of our work now for over a decade. If not for those in the fields of glycobiology and glycoimmunology, my lab would not have made much progress toward the goal of leveraging Siglec-8 for therapeutic purposes.
Collapse
Affiliation(s)
- Bruce S Bochner
- Department of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
19
|
Shen ZJ, Malter JS. Determinants of eosinophil survival and apoptotic cell death. Apoptosis 2015; 20:224-34. [PMID: 25563855 DOI: 10.1007/s10495-014-1072-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Eosinophils (Eos) are potent inflammatory cells and abundantly present in the sputum and lung of patients with allergic asthma. During both transit to and residence in the lung, Eos contact prosurvival cytokines, particularly IL-3, IL-5 and GM-CSF, that attenuate cell death. Cytokine signaling modulates the expression and function of a number of intracellular pro- and anti-apoptotic molecules. Both intrinsic mitochondrial and extrinsic receptor-mediated pathways are affected. This article discusses the fundamental role of the extracellular and intracellular molecules that initiate and control survival decisions by human Eos and highlights the role of the cis-trans isomerase, Pin1 in controlling these processes.
Collapse
Affiliation(s)
- Zhong-Jian Shen
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9072, USA,
| | | |
Collapse
|
20
|
Lee HJ, Lee EK, Seo YE, Shin YH, Kim HS, Chun YH, Yoon JS, Kim HH, Han MY, Kim CK, Kim KE, Koh YY, Kim JT. Roles of Bcl-2 and caspase-9 and -3 in CD30-induced human eosinophil apoptosis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2015; 50:145-152. [PMID: 26254825 DOI: 10.1016/j.jmii.2015.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/01/2015] [Accepted: 05/28/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND/PURPOSE Activation of cell surface CD30 by immobilized anti-CD30 monoclonal antibodies (mAb) induces strong apoptosis in human eosinophils. This anti-CD30 mAb-induced eosinophil apoptosis is inhibited by the addition of inhibitors of p38, ERK1/2 mitogen-activated protein kinases, and phosphatidylinositol 3-kinase. However, there is little data investigating the role of Bcl-2 and caspases in eosinophil apoptosis induced by anti-CD30 mAb. We sought to determine whether anti-CD30 mAb induces human eosinophil apoptosis via Bcl-2 and caspase pathways. METHODS Peripheral blood was drawn from 37 healthy volunteers. The CD30 expression on eosinophils was measured at various time points. Eosinophils were then cultured in plates precoated with anti-CD30 mAb (clone Ber-H8), isotype control immunoglobulin G1, interleukin (IL)-5, or dexamethasone. Western blot analysis was performed to determine the expression of Bcl-2, procaspase-8, -9, and -3, and caspase-8, -9, and -3 after cross-linking of CD30. Human eosinophils were also cultured in plates precoated with anti-CD30 mAb (clone Ber-H8) in the presence or absence of caspase-9 or -3 inhibitors. Eosinophil apoptosis was assessed using flow cytometry. RESULTS The addition of anti-CD30 mAb significantly increased eosinophil apoptosis compared with controls. In western blot analysis, the addition of anti-CD30 mAb significantly decreased the expression of Bcl-2 and procaspase-9 and -3 and increased the expression of caspase-9 and -3. The addition of caspase-9 or -3 inhibitors decreased anti-CD30 mAb-induced human eosinophil apoptosis. Procaspase-8 or caspase-8 expression was not changed in response to various stimuli. CONCLUSION Anti-CD30 mAb-induced human eosinophil apoptosis is likely to be mediated through Bcl-2 and caspase-9 and -3.
Collapse
Affiliation(s)
- Hye Jin Lee
- Department of Pediatrics, School of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun-Kyoung Lee
- Department of Pediatrics, School of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young Eun Seo
- Department of Pediatrics, School of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Youn Ho Shin
- Department of Medicine, The Graduate School, Yonsei University, Seoul, Republic of Korea; Department of Pediatrics, CHA University School of Medicine, Seoul, Republic of Korea
| | - Hwan Soo Kim
- Department of Pediatrics, School of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoon Hong Chun
- Department of Pediatrics, School of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong-Seo Yoon
- Department of Pediatrics, School of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Hee Kim
- Department of Pediatrics, School of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Man Yong Han
- Department of Pediatrics, CHA University School of Medicine, Seoul, Republic of Korea
| | - Chang-Keun Kim
- Asthma and Allergy Center, Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Kyu-Earn Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Yull Koh
- Department of Pediatrics, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Tack Kim
- Department of Pediatrics, School of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Kiwamoto T, Katoh T, Evans CM, Janssen WJ, Brummet ME, Hudson SA, Zhu Z, Tiemeyer M, Bochner BS. Endogenous airway mucins carry glycans that bind Siglec-F and induce eosinophil apoptosis. J Allergy Clin Immunol 2015; 135:1329-1340.e9. [PMID: 25497369 PMCID: PMC4433759 DOI: 10.1016/j.jaci.2014.10.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/17/2014] [Accepted: 10/22/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sialic acid-binding, immunoglobulin-like lectin (Siglec) F is a glycan-binding protein selectively expressed on mouse eosinophils. Its engagement induces apoptosis, suggesting a pathway for ameliorating eosinophilia in the setting of asthma and other eosinophil-associated diseases. Siglec-F recognizes sialylated sulfated glycans in glycan-binding assays, but the identities of endogenous sialoside ligands and their glycoprotein carriers in vivo are unknown. OBJECTIVES To use mouse lung-derived materials to isolate, biochemically identify, and biologically characterize naturally occurring endogenous glycan ligands for Siglec-F. METHODS Lungs from normal and mucin-deficient mice, as well as mouse tracheal epithelial cells, were investigated in vitro and in vivo for the expression of Siglec-F ligands. Western blotting and cytochemistry used Siglec-F-Fc as a probe for directed purification, followed by liquid chromatography-tandem mass spectrometry of recognized glycoproteins. Purified components were tested in mouse eosinophil-binding assays and flow cytometry-based cell death assays. RESULTS We detected mouse lung glycoproteins that bound to Siglec-F; binding was sialic acid dependent. Proteomic analysis of Siglec-F binding material identified Muc5b and Muc4. Cross-affinity enrichment and histochemical analysis of lungs from mucin-deficient mice assigned and validated the identity of Muc5b as one glycoprotein ligand for Siglec-F. Purified mucin preparations carried sialylated and sulfated glycans, bound to eosinophils and induced their death in vitro. Mice conditionally deficient in Muc5b displayed exaggerated eosinophilic inflammation in response to intratracheal installation of IL-13. CONCLUSIONS These data identify a previously unrecognized endogenous anti-inflammatory property of airway mucins by which their glycans can control lung eosinophilia through engagement of Siglec-F.
Collapse
Affiliation(s)
- Takumi Kiwamoto
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Toshihiko Katoh
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602
| | - Christopher M. Evans
- Department of Medicine, Division of Pulmonary Medicine, University of Colorado School of Medicine, Denver, CO 80045
| | - William J. Janssen
- Department of Medicine, Division of Pulmonary Medicine, University of Colorado School of Medicine, Denver, CO 80045
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, 80206
| | - Mary E. Brummet
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Sherry A. Hudson
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Zhou Zhu
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602
| | - Bruce S. Bochner
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| |
Collapse
|
22
|
Jia Y, Yu H, Fernandes SM, Wei Y, Gonzalez-Gil A, Motari MG, Vajn K, Stevens WW, Peters AT, Bochner BS, Kern RC, Schleimer RP, Schnaar RL. Expression of ligands for Siglec-8 and Siglec-9 in human airways and airway cells. J Allergy Clin Immunol 2015; 135:799-810.e7. [PMID: 25747723 PMCID: PMC4355580 DOI: 10.1016/j.jaci.2015.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/08/2015] [Accepted: 01/13/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Balanced activation and inhibition of the immune system ensures pathogen clearance while avoiding hyperinflammation. Siglecs, sialic acid-binding proteins found on subsets of immune cells, often inhibit inflammation: Siglec-8 on eosinophils and Siglec-9 on neutrophils engage sialoglycan ligands on airways to diminish ongoing inflammation. The identities of human siglec ligands and their expression during inflammation are largely unknown. OBJECTIVE The histologic distribution, expression, and molecular characteristics of siglec ligands were explored in healthy and inflamed human upper airways and in a cellular model of airway inflammation. METHODS Normal and chronically inflamed upper airway tissues were stained for siglec ligands. The ligands were extracted from normal and inflamed tissues and from human Calu-3 cells for quantitative analysis by means of siglec blotting and isolation by means of siglec capture. RESULTS Siglec-8 ligands were expressed on a subpopulation of submucosal gland cells of human inferior turbinate, whereas Siglec-9 ligands were expressed more broadly (submucosal glands, epithelium, and connective tissue); both were significantly upregulated in patients with chronic rhinosinusitis. Human airway (Calu-3) cells expressed Siglec-9 ligands on mucin 5B (MUC5B) under inflammatory control through the nuclear factor κB pathway, and MUC5B carried sialoglycan ligands of Siglec-9 on human upper airway tissue. CONCLUSION Inflammation results in upregulation of immune-inhibitory Siglec-8 and Siglec-9 sialoglycan ligands on human airways. Siglec-9 ligands are upregulated through the nuclear factor κB pathway, resulting in their enhanced expression on MUC5B. Siglec sialoglycan ligand expression in inflamed cells and tissues may contribute to the control of airway inflammation.
Collapse
Affiliation(s)
- Yi Jia
- Department of Pharmacology, Third Military Medical University, Chongqing, China; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Huifeng Yu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Steve M Fernandes
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Yadong Wei
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Anabel Gonzalez-Gil
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Mary G Motari
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Katarina Vajn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Whitney W Stevens
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Anju T Peters
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert C Kern
- Department of Otorhinolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
23
|
Bochner BS, Zimmermann N. Role of siglecs and related glycan-binding proteins in immune responses and immunoregulation. J Allergy Clin Immunol 2015; 135:598-608. [PMID: 25592986 DOI: 10.1016/j.jaci.2014.11.031] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/14/2014] [Accepted: 11/25/2014] [Indexed: 12/16/2022]
Abstract
Virtually all cells and extracellular material are heavily decorated by various glycans, yet our understanding of the structure and function of these moieties lags behind the understanding of nucleic acids, lipids, and proteins. Recent years have seen a tremendous acceleration of knowledge in the field of glycobiology, revealing many intricacies and functional contributions that were previously poorly appreciated or even unrecognized. This review highlights several topics relevant to glycoimmunology in which mammalian and pathogen-derived glycans displayed on glycoproteins and other scaffolds are recognized by specific glycan-binding proteins (GBPs), leading to a variety of proinflammatory and anti-inflammatory cellular responses. The focus for this review is mainly on 2 families of GBPs, sialic acid-binding immunoglobulin-like lectins (siglecs) and selectins, that are involved in multiple steps of the immune response, including distinguishing pathogens from self, cell trafficking to sites of inflammation, fine-tuning of immune responses leading to activation or tolerance, and regulation of cell survival. Importantly for the clinician, accelerated rates of discovery in the field of glycoimmunology are being translated into innovative medical approaches that harness the interaction of glycans and GBPs to the benefit of the host and might soon lead to novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Bruce S Bochner
- Department of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| | - Nives Zimmermann
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital Medical Center, and Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
24
|
Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 2014; 14:653-66. [PMID: 25234143 DOI: 10.1038/nri3737] [Citation(s) in RCA: 778] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
All mammalian cells display a diverse array of glycan structures that differ from those that are found on microbial pathogens. Siglecs are a family of sialic acid-binding immunoglobulin-like receptors that participate in the discrimination between self and non-self, and that regulate the function of cells in the innate and adaptive immune systems through the recognition of their glycan ligands. In this Review, we describe the recent advances in our understanding of the roles of Siglecs in the regulation of immune cell function in infectious diseases, inflammation, neurodegeneration, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Matthew S Macauley
- Departments of Cell and Molecular Biology, Immunology and Microbial Science, and Physiological Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Paul R Crocker
- Division of Cell Signalling and Immunology, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - James C Paulson
- Departments of Cell and Molecular Biology, Immunology and Microbial Science, and Physiological Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
25
|
McMillan SJ, Richards HE, Crocker PR. Siglec-F-dependent negative regulation of allergen-induced eosinophilia depends critically on the experimental model. Immunol Lett 2014; 160:11-16. [PMID: 24698729 PMCID: PMC4045373 DOI: 10.1016/j.imlet.2014.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/11/2014] [Accepted: 03/21/2014] [Indexed: 12/19/2022]
Abstract
Siglec-F-dependent negative regulation of eosinophilia depends on experimental model. Siglec-F-dependent suppression of lung eosinophilia may not depend on ligand-induced apoptosis. Implications for therapeutic approaches to treating human disease in which siglec-8, is targeted.
Siglec-8 and siglec-F are paralogous membrane proteins expressed on human and murine eosinophils respectively. They bind similar sialylated and sulphated glycans and mediate eosinophil apoptosis when cross-linked with antibodies or glycan ligands. In models of allergic eosinophilic airway inflammation, siglec-F was shown previously to be important for negatively regulating eosinophilia. It was proposed that this was due to siglec-F-dependent apoptosis, triggered via engagement with ligands that are upregulated on bronchial epithelium. Our aim was to further investigate the functions of siglec-F by comparing two commonly used models of ovalbumin-induced airway inflammation that differ in the dose and route of administration of ovalbumin. In confirmation of published results, siglec-F-deficient mice had enhanced lung tissue eosinophilia in response to intranasal ovalbumin delivered every other day. However, following aerosolised ovalbumin delivered daily, there was no influence of siglec-F deficiency on lung eosinophilia. Expression of siglec-F ligands in lung tissues was similar in both models of allergen induced inflammation. These data demonstrate that siglec-F-dependent regulation of eosinophilia is subtle and depends critically on the model used. The findings also indicate that mechanisms other than ligand-induced apoptosis may be important in siglec-F-dependent suppression of eosinophilia.
Collapse
Affiliation(s)
- Sarah J McMillan
- Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dundee, Scotland, UK, DD1 5EH
| | - Hannah E Richards
- Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dundee, Scotland, UK, DD1 5EH
| | - Paul R Crocker
- Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dundee, Scotland, UK, DD1 5EH.
| |
Collapse
|
26
|
Cummings RD, Pierce JM. The challenge and promise of glycomics. CHEMISTRY & BIOLOGY 2014; 21:1-15. [PMID: 24439204 PMCID: PMC3955176 DOI: 10.1016/j.chembiol.2013.12.010] [Citation(s) in RCA: 291] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 12/27/2013] [Accepted: 12/30/2013] [Indexed: 01/22/2023]
Abstract
Glycomics is a broad and emerging scientific discipline focused on defining the structures and functional roles of glycans in biological systems. The staggering complexity of the glycome, minimally defined as the repertoire of glycans expressed in a cell or organism, has resulted in many challenges that must be overcome; these are being addressed by new advances in mass spectrometry as well as by the expansion of genetic and cell biology studies. Conversely, identifying the specific glycan recognition determinants of glycan-binding proteins by employing the new technology of glycan microarrays is providing insights into how glycans function in recognition and signaling within an organism and with microbes and pathogens. The promises of a more complete knowledge of glycomes are immense in that glycan modifications of intracellular and extracellular proteins have critical functions in almost all biological pathways.
Collapse
Affiliation(s)
- Richard D Cummings
- Department of Biochemistry, Emory Glycomics Center, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA 30322, USA.
| | - J Michael Pierce
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.
| |
Collapse
|
27
|
Nycholat CM, Peng W, McBride R, Antonopoulos A, de Vries RP, Polonskaya Z, Finn MG, Dell A, Haslam SM, Paulson JC. Synthesis of biologically active N- and O-linked glycans with multisialylated poly-N-acetyllactosamine extensions using P. damsela α2-6 sialyltransferase. J Am Chem Soc 2013; 135:18280-18283. [PMID: 24256304 PMCID: PMC3901641 DOI: 10.1021/ja409781c] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sialosides on N- and O-linked glycoproteins play a fundamental role in many biological processes, and synthetic glycan probes have proven to be valuable tools for elucidating these functions. Though sialic acids are typically found α2-3- or α2-6-linked to a terminal nonreducing end galactose, poly-LacNAc extended core-3 O-linked glycans isolated from rat salivary glands and human colonic mucins have been reported to contain multiple internal Neu5Acα2-6Gal epitopes. Here, we have developed an efficient approach for the synthesis of a library of N- and O-linked glycans with multisialylated poly-LacNAc extensions, including naturally occurring multisialylated core-3 O-linked glycans. We have found that a recombinant α2-6 sialyltransferase from Photobacterium damsela (Pd2,6ST) exhibits unique regioselectivity and is able to sialylate internal galactose residues in poly-LacNAc extended glycans which was confirmed by MS/MS analysis. Using a glycan microarray displaying this library, we found that Neu5Acα2-6Gal specific influenza virus hemagglutinins, siglecs, and plant lectins are largely unaffected by adjacent internal sialylation, and in several cases the internal sialic acids are recognized as ligands. Polyclonal IgY antibodies specific for internal sialoside epitopes were elicited in inoculated chickens.
Collapse
Affiliation(s)
- Corwin M. Nycholat
- Department of Cell and Molecular Biology, and Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wenjie Peng
- Department of Cell and Molecular Biology, and Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan McBride
- Department of Cell and Molecular Biology, and Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Robert P. de Vries
- Department of Cell and Molecular Biology, and Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zinaida Polonskaya
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - M. G. Finn
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - James C. Paulson
- Department of Cell and Molecular Biology, and Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
28
|
Patnode ML, Cheng CW, Chou CC, Singer MS, Elin MS, Uchimura K, Crocker PR, Khoo KH, Rosen SD. Galactose 6-O-sulfotransferases are not required for the generation of Siglec-F ligands in leukocytes or lung tissue. J Biol Chem 2013; 288:26533-45. [PMID: 23880769 PMCID: PMC3772201 DOI: 10.1074/jbc.m113.485409] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/21/2013] [Indexed: 12/17/2022] Open
Abstract
Eosinophil accumulation is a characteristic feature of the immune response to parasitic worms and allergens. The cell surface carbohydrate-binding receptor Siglec-F is highly expressed on eosinophils and negatively regulates their accumulation during inflammation. Although endogenous ligands for Siglec-F have yet to be biochemically defined, binding studies using glycan arrays have implicated galactose 6-O-sulfate (Gal6S) as a partial recognition determinant for this receptor. Only two sulfotransferases are known to generate Gal6S, namely keratan sulfate galactose 6-O-sulfotransferase (KSGal6ST) and chondroitin 6-O-sulfotransferase 1 (C6ST-1). Here we use mice deficient in both KSGal6ST and C6ST-1 to determine whether these sulfotransferases are required for the generation of endogenous Siglec-F ligands. First, we characterize ligand expression on leukocyte populations and find that ligands are predominantly expressed on cell types also expressing Siglec-F, namely eosinophils, neutrophils, and alveolar macrophages. We also detect Siglec-F ligand activity in bronchoalveolar lavage fluid fractions containing polymeric secreted mucins, including MUC5B. Consistent with these observations, ligands in the lung increase dramatically during infection with the parasitic nematode, Nippostrongylus brasiliensis, which is known to induce eosinophil accumulation and mucus production. Surprisingly, Gal6S is undetectable in sialylated glycans from eosinophils and BAL fluid analyzed by mass spectrometry. Furthermore, none of the ligands we describe are diminished in mice lacking KSGal6ST and C6ST-1, indicating that neither of the known galactose 6-O-sulfotransferases is required for ligand synthesis. These results establish that ligands for Siglec-F are present on several cell types that are relevant during allergic lung inflammation and argue against the widely held view that Gal6S is critical for glycan recognition by this receptor.
Collapse
Affiliation(s)
- Michael L. Patnode
- From the Department of Anatomy and Program in Biomedical Sciences, University of California, San Francisco, California 94143-0452
| | - Chu-Wen Cheng
- the Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Chi Chou
- the Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Mark S. Singer
- From the Department of Anatomy and Program in Biomedical Sciences, University of California, San Francisco, California 94143-0452
| | - Matilda S. Elin
- From the Department of Anatomy and Program in Biomedical Sciences, University of California, San Francisco, California 94143-0452
| | - Kenji Uchimura
- the Department of Biochemistry, Nagoya University Graduate School of Medicine, Aichi 466-8550, Japan
| | - Paul R. Crocker
- the Division of Cell Signaling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom, and
| | - Kay-Hooi Khoo
- the Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Steven D. Rosen
- From the Department of Anatomy and Program in Biomedical Sciences, University of California, San Francisco, California 94143-0452
| |
Collapse
|
29
|
Kiwamoto T, Brummet ME, Wu F, Motari MG, Smith DF, Schnaar RL, Zhu Z, Bochner BS. Mice deficient in the St3gal3 gene product α2,3 sialyltransferase (ST3Gal-III) exhibit enhanced allergic eosinophilic airway inflammation. J Allergy Clin Immunol 2013; 133:240-7.e1-3. [PMID: 23830412 DOI: 10.1016/j.jaci.2013.05.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/23/2013] [Accepted: 05/16/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Sialic acid-binding immunoglobulin-like lectin (Siglec)-F is a proapoptotic receptor on mouse eosinophils, but little is known about its natural tissue ligand. OBJECTIVE We previously reported that the St3gal3 gene product α2,3 sialyltransferase (ST3Gal-III) is required for constitutive Siglec-F lung ligand synthesis. We therefore hypothesized that attenuation of ST3Gal-III will decrease Siglec-F ligand levels and enhance allergic eosinophilic airway inflammation. METHODS C57BL/6 wild-type mice and St3gal3 heterozygous or homozygous deficient (St3gal3(+/-) and St3gal3(-/-)) mice were used. Eosinophilic airway inflammation was induced through sensitization to ovalbumin (OVA) and repeated airway OVA challenge. Siglec-F human IgG1 fusion protein (Siglec-F-Fc) was used to detect Siglec-F ligands. Lung tissue and bronchoalveolar lavage fluid (BALF) were analyzed for inflammation, as well as various cytokines and chemokines. Serum was analyzed for allergen-specific immunoglobulin levels. RESULTS Western blotting with Siglec-F-Fc detected approximately 500-kDa and approximately 200-kDa candidate Siglec-F ligands that were less abundant in St3gal3(+/-) lung extracts and nearly absent in St3gal3(-/-) lung extracts. After OVA sensitization and challenge, Siglec-F ligands were increased in wild-type mouse lungs but less so in St3gal3 mutants, whereas peribronchial and BALF eosinophil numbers were greater in the mutants, with the following rank order: St3gal3(-/-) ≥ St3gal3(+/-) > wild-type mice. Levels of various cytokines and chemokines in BALF were not significantly different among these 3 types of mice, although OVA-specific serum IgG1 levels were increased in St3gal3(-/-) mice. CONCLUSIONS After OVA sensitization and challenge, St3gal3(+/-) and St3gal3(-/-) mice have more intense allergic eosinophilic airway inflammation and less sialylated Siglec-F ligands in their airways. One possible explanation for these findings is that levels of sialylated airway ligands for Siglec-F might be diminished in mice with attenuated levels of ST3Gal-III, resulting in a reduction in a natural proapoptotic pathway for controlling airway eosinophilia.
Collapse
Affiliation(s)
- Takumi Kiwamoto
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Mary E Brummet
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Fan Wu
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Mary G Motari
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - David F Smith
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Ga
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Zhou Zhu
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|