1
|
Tan W, Liu J, Yu R, Zhao P, Liu Y, Lu Q, Wang K, Ding H, Liu Y, Lai X, Cao J. Trim72 is a major host factor protecting against lethal Candida albicans infection. PLoS Pathog 2024; 20:e1012747. [PMID: 39585917 PMCID: PMC11627414 DOI: 10.1371/journal.ppat.1012747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/09/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
Candida albicans is the most common aetiologic pathogen of fungal infections associated with high mortality in immunocompromised patients. There is an urgent need to develop new antifungal therapies owing to the poor efficacy and resistance of current antifungals. Here, we report that Trim72 positively regulates antifungal immunity during lethal fungal infection. Trim72 levels are significantly increased after Candida albicans infection. In vivo, Trim72 knockout significantly increases mortality, organ fungal burden and kidney damage in mice after lethal Candida albicans infection. Whereas recombinant Trim72 protein treatment protects mice against invasive candidiasis. Mechanistically, Trim72 facilitates macrophage infiltration and CCL2 production, which mediates Trim72-elicited protection against lethal Candida albicans infection. Furthermore, Trim72 may enhance macrophage migration and CCL2 production via NF-κB and ERK1/2 signaling. Inhibition of NF-κB and ERK1/2 signaling abrogates Trim72-mediated protection against lethal Candida albicans infection. Therefore, these data imply that Trim72 may be developed as a host-directed therapy for treating severe systemic candidiasis.
Collapse
Affiliation(s)
- Wang Tan
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayu Liu
- Department of Laboratory Medicine, The Seventh People’s Hospital of Chongqing, Central Hospital Affiliated to Chongqing University of Technology, Chongqing, China
| | - Renlin Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuhan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Ding
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Liu
- Department of Surgery, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Xiaofei Lai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Piorunek M, Kubisiak-Rzepczyk H, Trafas T, Piorunek T. Superficial Zoonotic Mycoses in Humans Associated with Cattle. Pathogens 2024; 13:848. [PMID: 39452720 PMCID: PMC11510394 DOI: 10.3390/pathogens13100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Dermatophytosis in cattle is most often caused by infection with Trichophyton verrucosum (T. verrucosum), but also with Trichophyton rubrum (T. rubrum), Trichophyton mentagrophytes (T. mentagrophytes) and others, regardless of the geographical zone. The infection is transmitted through direct contact between animals as well as infected environmental elements. The human-to-human transmission of fungal infection is also possible.. This retrospective study was conducted based on a detailed analysis of the results of the mycological examination and medical documentation of 40 patients from Greater Poland, diagnosed with cattle-to-human dermatophytoses from March 2017 to November 2023. T. verrucosum accounted for 97.5% of infections and T. mentagrophytes for 2.5%; no other species of dermatophytes from cattle were found. Superficial skin mycosis in humans associated with cattle was more often diagnosed in small children and men directly engaged in cattle breeding. The dominant etiological factor of the superficial fungal skin infection was T. verrucosum, which mainly affected the scalp in children and upper limbs in adult men. In relation to the cattle population in Greater Poland, the number of cases of superficial skin mycoses among cattle breeders and their family members over the period of more than six and a half years of observation does not seem to be high.
Collapse
Affiliation(s)
- Marcin Piorunek
- Veterinary Practice Marcin Piorunek, 60-185 Skórzewo, Poland
| | - Honorata Kubisiak-Rzepczyk
- Department of Dermatology, Poznan University of Medical Sciences, 60-355 Poznan, Poland;
- Department of Medicine and Health Sciences Calisia University, 62-800 Kalisz, Poland
| | - Tomasz Trafas
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (T.T.); (T.P.)
| | - Tomasz Piorunek
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznan University of Medical Sciences, 60-569 Poznan, Poland; (T.T.); (T.P.)
| |
Collapse
|
3
|
Lai J, Shah S, Martinez-Orengo N, Knight R, Alemu E, Turner ML, Wang B, Lyndaker A, Shi J, Basuli F, Hammoud DA. PET imaging of Aspergillus infection using Zirconium-89 labeled anti-β-glucan antibody fragments. Eur J Nucl Med Mol Imaging 2024; 51:3223-3234. [PMID: 38787397 PMCID: PMC11368974 DOI: 10.1007/s00259-024-06760-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Invasive fungal diseases, such as pulmonary aspergillosis, are common life-threatening infections in immunocompromised patients and effective treatment is often hampered by delays in timely and specific diagnosis. Fungal-specific molecular imaging ligands can provide non-invasive readouts of deep-seated fungal pathologies. In this study, the utility of antibodies and antibody fragments (Fab) targeting β-glucans in the fungal cell wall to detect Aspergillus infections was evaluated both in vitro and in preclinical mouse models. METHODS The binding characteristics of two commercially available β-glucan antibody clones and their respective antigen-binding Fabs were tested using biolayer interferometry (BLI) assays and immunofluorescence staining. In vivo binding of the Zirconium-89 labeled antibodies/Fabs to fungal pathogens was then evaluated using PET/CT imaging in mouse models of fungal infection, bacterial infection and sterile inflammation. RESULTS One of the evaluated antibodies (HA-βG-Ab) and its Fab (HA-βG-Fab) bound to β-glucans with high affinity (KD = 0.056 & 21.5 nM respectively). Binding to the fungal cell wall was validated by immunofluorescence staining and in vitro binding assays. ImmunoPET imaging with intact antibodies however showed slow clearance and high background signal as well as nonspecific accumulation in sites of infection/inflammation. Conversely, specific binding of [89Zr]Zr-DFO-HA-βG-Fab to sites of fungal infection was observed when compared to the isotype control Fab and was significantly higher in fungal infection than in bacterial infection or sterile inflammation. CONCLUSIONS [89Zr]Zr-DFO-HA-βG-Fab can be used to detect fungal infections in vivo. Targeting distinct components of the fungal cell wall is a viable approach to developing fungal-specific PET tracers.
Collapse
Affiliation(s)
- Jianhao Lai
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), 10 Center Drive, Room 1C368, Bethesda, MD, 20892, USA
| | - Swati Shah
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), 10 Center Drive, Room 1C368, Bethesda, MD, 20892, USA
| | - Neysha Martinez-Orengo
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), 10 Center Drive, Room 1C368, Bethesda, MD, 20892, USA
| | - Rekeya Knight
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), 10 Center Drive, Room 1C368, Bethesda, MD, 20892, USA
| | - Eyob Alemu
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), 10 Center Drive, Room 1C368, Bethesda, MD, 20892, USA
| | - Mitchell L Turner
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), 10 Center Drive, Room 1C368, Bethesda, MD, 20892, USA
| | - Benjamin Wang
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), 10 Center Drive, Room 1C368, Bethesda, MD, 20892, USA
| | - Anna Lyndaker
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), 10 Center Drive, Room 1C368, Bethesda, MD, 20892, USA
| | - Jianfeng Shi
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute (NHLBI), NIH, Rockville, MD, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute (NHLBI), NIH, Rockville, MD, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health (NIH), 10 Center Drive, Room 1C368, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Murante D, Hogan DA. Drivers of diversification in fungal pathogen populations. PLoS Pathog 2024; 20:e1012430. [PMID: 39264909 PMCID: PMC11392411 DOI: 10.1371/journal.ppat.1012430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
To manage and treat chronic fungal diseases effectively, we require an improved understanding of their complexity. There is an increasing appreciation that chronic infection populations are often heterogeneous due to diversification and drift, even within a single microbial species. Genetically diverse populations can contribute to persistence and resistance to treatment by maintaining cells with different phenotypes capable of thriving in these dynamic environments. In chronic infections, fungal pathogens undergo prolonged challenges that can drive trait selection to convergent adapted states through restricted access to critical nutrients, assault by immune effectors, competition with other species, and antifungal drugs. This review first highlights the various genetic and epigenetic mechanisms that promote diversity in pathogenic fungal populations and provide an additional barrier to assessing the actual heterogeneity of fungal infections. We then review existing studies of evolution and genetic heterogeneity in fungal populations from lung infections associated with the genetic disease cystic fibrosis. We conclude with a discussion of open research questions that, once answered, may aid in diagnosing and treating chronic fungal infections.
Collapse
Affiliation(s)
- Daniel Murante
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Deborah Ann Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
5
|
Cinicola BL, Uva A, Duse M, Zicari AM, Buonsenso D. Mucocutaneous Candidiasis: Insights Into the Diagnosis and Treatment. Pediatr Infect Dis J 2024; 43:694-703. [PMID: 38502882 PMCID: PMC11191067 DOI: 10.1097/inf.0000000000004321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Abstract
Recent progress in the methods of genetic diagnosis of inborn errors of immunity has contributed to a better understanding of the pathogenesis of chronic mucocutaneous candidiasis (CMC) and potential therapeutic options. This review describes the latest advances in the understanding of the pathophysiology, diagnostic strategies, and management of chronic mucocutaneous candidiasis.
Collapse
Affiliation(s)
- Bianca Laura Cinicola
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Uva
- Pediatrics and Neonatology Unit, Maternal-Child Department, Santa Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Marzia Duse
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Anna Maria Zicari
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Center for Global Health Research and Studies, Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
6
|
Yu S, He YQ, Liu Y, Ji S, Wang Y, Sun B. Construction and Activity Evaluation of Novel Bifunctional Inhibitors and a COF Carrier Based on a Fungal Infection Microenvironment. J Med Chem 2024; 67:8420-8444. [PMID: 38718180 DOI: 10.1021/acs.jmedchem.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Faced with increasingly serious fungal infections and drug resistance issues, three different series of novel dual-target (programmed death ligand 1/14 α-demethylase) compounds were constructed through the fragment combination pathway in the study. Their chemical structures were synthesized, characterized, and evaluated. Among them, preferred compounds 10c-1, 17b-1, and 18b-2 could efficiently exert their antifungal and antidrug-resistant fungal ability through blocking ergosterol biosynthesis, inducing the upregulation of reactive oxygen species level, and triggering apoptosis. Especially, compound 18b-2 exhibited the synergistic function of fungal inhibition and immune activation. Moreover, the covalent organic framework carrier was also generated based on the acidic microenvironment of fungal infection to improve the bioavailability and targeting of preferred compounds; this finally accelerated the body's recovery rate.
Collapse
Affiliation(s)
- Shuai Yu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Yan-Qin He
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Yating Liu
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Shilei Ji
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Yajing Wang
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| | - Bin Sun
- Institute of BioPharmaceutical Research, Liaocheng University, 1 Hunan Road, Liaocheng 252000, PR China
| |
Collapse
|
7
|
Belmokhtar Z, Djaroud S, Matmour D, Merad Y. Atypical and Unpredictable Superficial Mycosis Presentations: A Narrative Review. J Fungi (Basel) 2024; 10:295. [PMID: 38667966 PMCID: PMC11051100 DOI: 10.3390/jof10040295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/07/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
While typically exhibiting characteristic features, fungal infections can sometimes present in an unusual context, having improbable localization (eyelid, face, or joint); mimicking other skin diseases such as eczema, psoriasis, or mycosis fungoides; and appearing with unexpected color, shape, or distribution. The emergence of such a challenging clinical picture is attributed to the complex interplay of host characteristics (hygiene and aging population), environment (climate change), advances in medical procedures, and agent factors (fungal resistance and species emergence). We aim to provide a better understanding of unusual epidemiological contexts and atypical manifestations of fungal superficial diseases, knowing that there is no pre-established clinical guide for these conditions. Thus, a literature examination was performed to provide a comprehensive analysis on rare and atypical superficial mycosis as well as an update on certain fungal clinical manifestations and their significance. The research and standard data extraction were performed using PubMed, Medline, Scopus, and EMBASE databases, and a total of 222 articles were identified. This review covers published research findings for the past six months.
Collapse
Affiliation(s)
- Zoubir Belmokhtar
- Department of Environmental Sciences, Faculty of Natural Sciences, Djilali Liabes University of Sidi-Bel-Abbes, Sidi Bel Abbes 22000, Algeria;
- Laboratory of Plant and Microbial Valorization (LP2VM), University of Science and Technology of Oran, Mohamed Boudiaf (USTOMB), Oran 31000, Algeria
| | - Samira Djaroud
- Department of Chemistry, Djilali Liabes University of Sidi-Bel-Abbes, Sidi Bel Abbes 22000, Algeria
| | - Derouicha Matmour
- Central Laboratory, Djilali Liabes University of Medicine of Sidi-Bel-Abbes, Sidi Bel Abbes 22000, Algeria
| | - Yassine Merad
- Central Laboratory, Djilali Liabes University of Medicine of Sidi-Bel-Abbes, Sidi Bel Abbes 22000, Algeria
| |
Collapse
|
8
|
Asano T, Noma K, Mizoguchi Y, Karakawa S, Okada S. Human STAT1 gain of function with chronic mucocutaneous candidiasis: A comprehensive review for strengthening the connection between bedside observations and laboratory research. Immunol Rev 2024; 322:81-97. [PMID: 38084635 DOI: 10.1111/imr.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 03/20/2024]
Abstract
Germline human heterozygous STAT1 gain-of-function (GOF) variants were first discovered a common cause of chronic mucocutaneous candidiasis (CMC) in 2011. Since then, numerous STAT1 GOF variants have been identified. A variety of clinical phenotypes, including fungal, viral, and bacterial infections, endocrine disorders, autoimmunity, malignancy, and aneurysms, have recently been revealed for STAT1 GOF variants, which has led to the expansion of the clinical spectrum associated with STAT1 GOF. Among this broad range of complications, it has been determined that invasive infections, aneurysms, and malignancies are poor prognostic factors for STAT1 GOF. The effectiveness of JAK inhibitors as a therapeutic option has been established, although further investigation of their long-term utility and side effects is needed. In contrast to the advancements in treatment options, the precise molecular mechanism underlying STAT1 GOF remains undetermined. Two primary hypotheses for this mechanism involve impaired STAT1 dephosphorylation and increased STAT1 protein levels, both of which are still controversial. A precise understanding of the molecular mechanism is essential for not only advancing diagnostics but also developing therapeutic interventions. Here, we provide a comprehensive review of STAT1 GOF with the aim of establishing a stronger connection between bedside observations and laboratory research.
Collapse
Affiliation(s)
- Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kosuke Noma
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| |
Collapse
|
9
|
Borghesi A. Life-threatening infections in human newborns: Reconciling age-specific vulnerability and interindividual variability. Cell Immunol 2024; 397-398:104807. [PMID: 38232634 DOI: 10.1016/j.cellimm.2024.104807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
In humans, the interindividual variability of clinical outcome following exposure to a microorganism is immense, ranging from silent infection to life-threatening disease. Age-specific immune responses partially account for the high incidence of infection during the first 28 days of life and the related high mortality at population level. However, the occurrence of life-threatening disease in individual newborns remains unexplained. By contrast, inborn errors of immunity and their immune phenocopies are increasingly being discovered in children and adults with life-threatening viral, bacterial, mycobacterial and fungal infections. There is a need for convergence between the fields of neonatal immunology, with its in-depth population-wide characterization of newborn-specific immune responses, and clinical immunology, with its investigations of infections in patients at the cellular and molecular levels, to facilitate identification of the mechanisms of susceptibility to infection in individual newborns and the design of novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Alessandro Borghesi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, EU, Italy; School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland.
| |
Collapse
|
10
|
Jimbo-Zapata A, Sevillano G, Rodríguez P, Ramírez-Iglesias JR, Navarro JC. First report of fatal fungemia due Fusarium oxysporum in a patient with COVID-19 in Ecuador. Med Mycol Case Rep 2024; 43:100622. [PMID: 38225951 PMCID: PMC10788292 DOI: 10.1016/j.mmcr.2023.100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024] Open
Abstract
Filamentous fungal infections are an important cause of systemic infections in immunocompromised patients. Fusarium genus members potentially cause disseminated infections, especially in patients with catheters, due to the ability to adhere to these devices. We describe a case of fatal fungemia due to Fusarium oxysporum in a patient with COVID-19 in Ecuador. The genus identification was carried out with conventional techniques and species identification by molecular and phylogenetic techniques through sequencing of the ITS region.
Collapse
Affiliation(s)
- Alexander Jimbo-Zapata
- Universidad Internacional SEK, Facultad de Ciencias de la Salud, Grupo de Investigación en Enfermedades Emergentes, Desatendidas, Ecoepidemiología y Biodiversidad, Quito, Ecuador
- Universidad Internacional SEK, Maestría en Biomedicina, Facultad de Ciencias de la Salud, Quito, Ecuador
- Área de Micología y Tuberculosis, Unidad Técnica de Patología Clínica, Hospital de Especialidades Carlos Andrade Marín, Quito, Ecuador
| | - Gabriela Sevillano
- Universidad Internacional SEK, Facultad de Ciencias de la Salud, Grupo de Investigación en Enfermedades Emergentes, Desatendidas, Ecoepidemiología y Biodiversidad, Quito, Ecuador
- Universidad Internacional SEK, Maestría en Biomedicina, Facultad de Ciencias de la Salud, Quito, Ecuador
- Unidad de Investigaciones en Biomedicina, Zurita & Zurita Laboratorios, Quito, Ecuador
| | - Pilar Rodríguez
- Área de Micología y Tuberculosis, Unidad Técnica de Patología Clínica, Hospital de Especialidades Carlos Andrade Marín, Quito, Ecuador
| | - José Rubén Ramírez-Iglesias
- Universidad Internacional SEK, Facultad de Ciencias de la Salud, Grupo de Investigación en Enfermedades Emergentes, Desatendidas, Ecoepidemiología y Biodiversidad, Quito, Ecuador
| | - Juan-Carlos Navarro
- Universidad Internacional SEK, Facultad de Ciencias de la Salud, Grupo de Investigación en Enfermedades Emergentes, Desatendidas, Ecoepidemiología y Biodiversidad, Quito, Ecuador
| |
Collapse
|
11
|
Gounari E, Elfeky R, Ghataore L, Muhi-Iddin N, Buchanan CR, Arya VB. A well child with prolonged oral thrush: an unexpected diagnostic journey. Arch Dis Child Educ Pract Ed 2024; 109:47-54. [PMID: 37985017 DOI: 10.1136/archdischild-2023-325497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Oral thrush is a familiar presentation in both general practice and paediatrics, and is usually responsive to treatment in the community. Here, we present the diagnostic journey of a previously well boy aged 3 years who presented with treatment-resistant thrush and describe how 'unexpected' results led to eventual diagnosis and management. This intriguing case was managed jointly by district hospital general paediatric team and tertiary hospital specialist teams.
Collapse
Affiliation(s)
- Eleni Gounari
- Department of Paediatrics, East Sussex Hospitals NHS Trust, St Leonards-on-Sea, UK
| | - Reem Elfeky
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Immunity and Transplantation, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Lea Ghataore
- Department of Clinical Biochemistry (Viapath), King's College Hospital, London, UK
| | - Nadia Muhi-Iddin
- Department of Paediatrics, East Sussex Hospitals NHS Trust, St Leonards-on-Sea, UK
| | - Charles R Buchanan
- Department of Child Health, King's College Hospital NHS Foundation Trust, London, UK
| | - Ved Bhushan Arya
- Department of Child Health, King's College Hospital NHS Foundation Trust, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
12
|
Zheng M, Chen H, Li X, Chen S, Shi Y, Hu H. Discovery of a novel antifungal agent: All-hydrocarbon stapling modification of peptide Aurein1.2. J Pept Sci 2024; 30:e3533. [PMID: 37431279 DOI: 10.1002/psc.3533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
Aurein1.2 is secreted by the Australian tree frog Litoria aurea and is active against a broad range of infectious microbes including bacteria, fungi, and viruses. Its antifungal potency has garnered considerable interest in developing novel classes of natural antifungal agents to fight pathogenic infection by fungi. However, serious pharmacological hurdles remain, hindering its clinical translation. To alleviate its susceptibility to proteolytic degradation and improve its antifungal activity, six conformationally locked peptides were synthesized through hydrocarbon stapling modification and evaluated for their physicochemical and antifungal parameters. Among them, SAU2-4 exhibited significant improvement in helicity levels, protease resistance, and antifungal activity compared to the template linear peptide Aurein1.2. These results confirmed the prominent role of hydrocarbon stapling modification in the manipulation of peptide pharmacological properties and enhanced the application potential of Aurein1.2 in the field of antifungal agent development.
Collapse
Affiliation(s)
- Mengjun Zheng
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Huixuan Chen
- School of Medicine, Shanghai University, Shanghai, China
| | - Xiang Li
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai, China
| | - Yejiao Shi
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Honggang Hu
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
13
|
Yazdi M, Behnaminia N, Nafari A, Sepahvand A. Genetic Susceptibility to Fungal Infections. Adv Biomed Res 2023; 12:248. [PMID: 38192892 PMCID: PMC10772798 DOI: 10.4103/abr.abr_259_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 01/10/2024] Open
Abstract
Reports of fungal infections have increased over the past decades, making them a major threat to human health. In this study, we review the effects of genetic defects on susceptibility to fungal diseases. To identify all relevant literature, we searched Google Scholar, PubMed, and Scopus and profiled studies published between 2008 and 2021. The results of several studies conducted on this subject have shown the significant effects of genetic variations such as hyper-IgE syndrome, Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy syndrome, dectin-1 deficiency, CARD9 mutations, STAT1 mutations, and IL17 mutationson the host immune system's response, which has an important impact on susceptibility to fungal infections. The underlying immune system-related genetic profile affects the susceptibility of individuals to different fungal infections; therefore, this subject should be further studied for better treatment of fungal diseases.
Collapse
Affiliation(s)
- Mohammad Yazdi
- Department of Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Nima Behnaminia
- Student Research Committee, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Nafari
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Asghar Sepahvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
14
|
Ahmed MAEGES, Abbas HS, Kotakonda M. Fungal Diseases Caused by Serious Contamination of Pharmaceuticals and Medical Devices, and Rapid Fungal Detection Using Nano-Diagnostic Tools: A Critical Review. Curr Microbiol 2023; 81:10. [PMID: 37978091 PMCID: PMC10656328 DOI: 10.1007/s00284-023-03506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/27/2023] [Indexed: 11/19/2023]
Abstract
Fungal-contaminated compounded pharmaceuticals and medical devices pose a public health problem. This review aimed to provide an organized overview of the literature on that critical issue. Firstly, it was found that compounding pharmacies can produce drugs that are contaminated with fungi, leading to outbreaks of severe fungal diseases. Secondly, inadequate sterile compounding techniques or storage conditions, or exceeding the limit of a fungal count, can result in fungal contamination. Lastly, nanotools can be used to rapidly detect fungi, thus improving fungal diagnostic procedures. To achieve this goal, we have reviewed the published data on PubMed, the CDC, and FDA Web sites, and a literature search was undertaken to identify severe fungal infections associated with compounding pharmacies outside of hospitals, limited by the dates 2003 to 2021. The "Preferred Reporting Items for Critical Reviews" were followed in searching, including, and excluding papers. Fungal outbreaks have been documented due to contaminated pharmaceuticals and medical devices. In 2013, 55 people died from fungal meningitis caused by contaminated steroid injections containing methylprednisolone acetate. Additionally, in 2021, Aspergillus penicillioides contamination was reported in ChloraPrep drugs, which was attributed to the storage conditions that were conducive to the growth of this fungus. These incidents have resulted in severe infectious diseases, such as invasive mycoses, cornea infections, Endophthalmitis, and intestinal and gastric mycosis. By implementing preventive measures and policies, it is possible to avoid these outbreaks. Creating Nano-diagnostics presents a major challenge, where promptly diagnosing fungal infections is required to determine the proper corrective and preventive measures.
Collapse
Affiliation(s)
- Mohamed Abd El-Gawad El-Sayed Ahmed
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, Cairo, 6th of October City, Egypt
| | - Heba S Abbas
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, Cairo, 6th of October City, Egypt.
- Microbiology Department, Egyptian Drug Authority, Previously National Organization for Drug Control and Research, Giza, Egypt.
| | - Muddukrishnaiah Kotakonda
- Department of Pharmaceutics, Jamia Salafiya Pharmacy College, Pulikkal, Malappuram District, Kerala, India
| |
Collapse
|
15
|
Yeoh DK, McMullan BJ, Clark JE, Slavin MA, Haeusler GM, Blyth CC. The Challenge of Diagnosing Invasive Pulmonary Aspergillosis in Children: A Review of Existing and Emerging Tools. Mycopathologia 2023; 188:731-743. [PMID: 37040020 PMCID: PMC10564821 DOI: 10.1007/s11046-023-00714-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 04/12/2023]
Abstract
Invasive pulmonary aspergillosis remains a major cause of morbidity and mortality for immunocompromised children, particularly for patients with acute leukaemia and those undergoing haematopoietic stem cell transplantation. Timely diagnosis, using a combination of computed tomography (CT) imaging and microbiological testing, is key to improve prognosis, yet there are inherent challenges in this process. For CT imaging, changes in children are generally less specific than those reported in adults and recent data are limited. Respiratory sampling by either bronchoalveolar lavage or lung biopsy is recommended but is not always feasible in children, and serum biomarkers, including galactomannan, have important limitations. In this review we summarise the current paediatric data on available diagnostic tests for IPA and highlight key emerging diagnostic modalities with potential for future use.
Collapse
Affiliation(s)
- Daniel K Yeoh
- Department of Infectious Diseases, Perth Children's Hospital, 15 Hospital Avenue, Perth, WA, 6009, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Murdoch Children's Research Institute, Parkville, VIC, Australia.
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.
| | - Brendan J McMullan
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Randwick, NSW, Australia
- School of Women's and Children's Health, UNSW, Sydney, NSW, Australia
| | - Julia E Clark
- Infection Management Service, Queensland Children's Hospital, Brisbane, QLD, Australia
- School of Clinical Medicine, Children's Health Queensland Clinical Unit, The University of Queensland, Brisbane, QLD, Australia
| | - Monica A Slavin
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Gabrielle M Haeusler
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Infectious Diseases, Royal Children's Hospital, Parkville, VIC, Australia
- The Paediatric Integrated Cancer Service, Melbourne, VIC, Australia
| | - Christopher C Blyth
- Department of Infectious Diseases, Perth Children's Hospital, 15 Hospital Avenue, Perth, WA, 6009, Australia
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Department of Microbiology, PathWest Laboratory Medicine WA, Nedlands, WA, Australia
- School of Medicine, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
16
|
Kumar R, Srivastava V. Application of anti-fungal vaccines as a tool against emerging anti-fungal resistance. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1241539. [PMID: 37746132 PMCID: PMC10512234 DOI: 10.3389/ffunb.2023.1241539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/31/2023] [Indexed: 09/26/2023]
Abstract
After viruses and bacteria, fungal infections remain a serious threat to the survival and well-being of society. The continuous emergence of resistance against commonly used anti-fungal drugs is a serious concern. The eukaryotic nature of fungal cells makes the identification of novel anti-fungal agents slow and difficult. Increasing global temperature and a humid environment conducive to fungal growth may lead to a fungal endemic or a pandemic. The continuous increase in the population of immunocompromised individuals and falling immunity forced pharmaceutical companies to look for alternative strategies for better managing the global fungal burden. Prevention of infectious diseases by vaccines can be the right choice. Recent success and safe application of mRNA-based vaccines can play a crucial role in our quest to overcome anti-fungal resistance. Expressing fungal cell surface proteins in human subjects using mRNA technology may be sufficient to raise immune response to protect against future fungal infection. The success of mRNA-based anti-fungal vaccines will heavily depend on the identification of fungal surface proteins which are highly immunogenic and have no or least side effects in human subjects. The present review discusses why it is essential to look for anti-fungal vaccines and how vaccines, in general, and mRNA-based vaccines, in particular, can be the right choice in tackling the problem of rising anti-fungal resistance.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Pathology, Collage of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
17
|
Rapala-Kozik M, Surowiec M, Juszczak M, Wronowska E, Kulig K, Bednarek A, Gonzalez-Gonzalez M, Karkowska-Kuleta J, Zawrotniak M, Satała D, Kozik A. Living together: The role of Candida albicans in the formation of polymicrobial biofilms in the oral cavity. Yeast 2023; 40:303-317. [PMID: 37190878 DOI: 10.1002/yea.3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
The oral cavity of humans is colonized by diversity of microbial community, although dominated by bacteria, it is also constituted by a low number of fungi, often represented by Candida albicans. Although in the vast minority, this usually commensal fungus under certain conditions of the host (e.g., immunosuppression or antibiotic therapy), can transform into an invasive pathogen that adheres to mucous membranes and also to medical or dental devices, causing mucosal infections. This transformation is correlated with changes in cell morphology from yeast-like cells to hyphae and is supported by numerous virulence factors exposed by C. albicans cells at the site of infection, such as multifunctional adhesins, degradative enzymes, or toxin. All of them affect the surrounding host cells or proteins, leading to their destruction. However, at the site of infection, C. albicans can interact with different bacterial species and in its filamentous form may produce biofilms-the elaborated consortia of microorganisms, that present increased ability to host colonization and resistance to antimicrobial agents. In this review, we highlight the modification of the infectious potential of C. albicans in contact with different bacterial species, and also consider the mutual bacterial-fungal relationships, involving cooperation, competition, or antagonism, that lead to an increase in the propagation of oral infection. The mycofilm of C. albicans is an excellent hiding place for bacteria, especially those that prefer low oxygen availability, where microbial cells during mutual co-existence can avoid host recognition or elimination by antimicrobial action. However, these microbial relationships, identified mainly in in vitro studies, are modified depending on the complexity of host conditions and microbial dominance in vivo.
Collapse
Affiliation(s)
- Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Magdalena Surowiec
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Magdalena Juszczak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Aneta Bednarek
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Miriam Gonzalez-Gonzalez
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Dorota Satała
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
18
|
Yakıcı N, Oskay Halaçlı S, Tan Ç, Gür Çetinkaya P, Akar HT, Çavdarlı B, Özbek B, Çağdaş D, Tezcan İ. A Novel Interleukin 17 Receptor A Mutation in a Child with Chronic Mucocutaneous Candidiasis and Staphylococcal Skin Infections. Turk Arch Pediatr 2023; 58:442-447. [PMID: 37317577 PMCID: PMC10441147 DOI: 10.5152/turkarchpediatr.2023.22311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/16/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Chronic mucocutaneous candidiasis leads to persistent or recurrent fungal infections of the nail, skin, oral, and genital mucosa. Impaired interleukin 17-mediated immunity is a cause of chronic mucocutaneous candidiasis. We aimed to show the pathogenicity of a novel interleukin 17 receptor A mutation through functional studies. MATERIALS AND METHODS After next-generation sequencing analysis showed the interleukin 17 receptor A variant, we confirmed the variant by Sanger sequencing and functional validation of the variant by flow cytometry. RESULTS We present the case of a 6-year-old male patient who presented with recurrent oral and genital Candida infections and eczema. He had staphylococcal skin lesions, fungal susceptibility, and eczema. The patient carried a novel homozygous nonsense [(c.787C> T) (p.Arg263Ter)] mutation in the interleukin 17 receptor A gene. Sanger sequencing confirmed the variant and revealed the segregation of the variant in the family. We used flow cytometry to detect interleukin 17 receptor A protein expression in peripheral blood mononuclear cells from patients and measured Th17 cell percentage. We observed low interleukin 17 receptor A protein expression in patient peripheral blood mononuclear cells, decreased CD4+ interleukin 17+ cell percentage, and decreased interleukin 17F expression in CD4+ cells compared to healthy controls. CONCLUSIONS Innate immune defects may lead to chronic recurrent fungal and bacterial infections of the skin, mucosa, and nails. Generally, genetic and functional analysis is needed in addition to basic immunological tests.
Collapse
Affiliation(s)
- Nalan Yakıcı
- Department of Pediatric Immunology and Allergy, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Sevil Oskay Halaçlı
- Department of Pediatric Immunology, Hacettepe University Faculty of Medicine, İhsan Doğramacı Children's Hospital, Ankara, Turkey
| | - Çağman Tan
- Department of Pediatric Immunology, Hacettepe University Faculty of Medicine, İhsan Doğramacı Children's Hospital, Ankara, Turkey
| | - Pınar Gür Çetinkaya
- Department of Pediatric Immunology, Hacettepe University Faculty of Medicine, İhsan Doğramacı Children's Hospital, Ankara, Turkey
| | - Halil T. Akar
- Department of Pediatric Immunology, Hacettepe University Faculty of Medicine, İhsan Doğramacı Children's Hospital, Ankara, Turkey
| | - Büşra Çavdarlı
- Department of Medical Genetics, Ankara City Hospital, Ankara, Turkey
| | - Begüm Özbek
- Department of Pediatric Immunology, Hacettepe University Faculty of Medicine, İhsan Doğramacı Children's Hospital, Ankara, Turkey
| | - Deniz Çağdaş
- Department of Pediatric Immunology, Hacettepe University Faculty of Medicine, İhsan Doğramacı Children's Hospital, Ankara, Turkey
| | - İlhan Tezcan
- Department of Pediatric Immunology, Hacettepe University Faculty of Medicine, İhsan Doğramacı Children's Hospital, Ankara, Turkey
| |
Collapse
|
19
|
Michel S, Kirchhoff L, Rath PM, Schwab J, Schmidt K, Brenner T, Dubler S. Targeting the Granulocytic Defense against A. fumigatus in Healthy Volunteers and Septic Patients. Int J Mol Sci 2023; 24:9911. [PMID: 37373061 DOI: 10.3390/ijms24129911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Neutrophil granulocytes (NGs) are among the key players in the defense against Aspergillus fumigatus (A. fumigatus). To better elucidate a pathophysiological understanding of their role and functions, we applied a human cell model using NGs from healthy participants and septic patients to evaluate their inhibitory effects on the growth of A. fumigatus ex vivo. Conidia of A. fumigatus (ATCC® 204305) were co-incubated with NGs from healthy volunteers or septic patients for 16 h. A. fumigatus growth was measured by XTT assays with a plate reader. The inhibitory effect of NGs on 18 healthy volunteers revealed great heterogeneity. Additionally, growth inhibition was significantly stronger in the afternoon than the morning, due to potentially different cortisol levels. It is particularly interesting that the inhibitory effect of NGs was reduced in patients with sepsis compared to healthy controls. In addition, the magnitude of the NG-driven defense against A. fumigatus was highly variable among healthy volunteers. Moreover, daytime and corresponding cortisol levels also seem to have a strong influence. Most interestingly, preliminary experiments with NGs from septic patients point to a strongly diminished granulocytic defense against Aspergillus spp.
Collapse
Affiliation(s)
- Stefanie Michel
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital Essen, Hufelandstraße 55, D-45147 Essen, Germany
- Institute of Medical Microbiology, University Hospital Essen, Excellence Center for Medical Mycology (ECMM), Hufelandstraße 55, D-45147 Essen, Germany
| | - Peter-Michael Rath
- Institute of Medical Microbiology, University Hospital Essen, Hufelandstraße 55, D-45147 Essen, Germany
- Institute of Medical Microbiology, University Hospital Essen, Excellence Center for Medical Mycology (ECMM), Hufelandstraße 55, D-45147 Essen, Germany
| | - Jansje Schwab
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Karsten Schmidt
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Simon Dubler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| |
Collapse
|
20
|
Oliveira M, Oliveira D, Lisboa C, Boechat JL, Delgado L. Clinical Manifestations of Human Exposure to Fungi. J Fungi (Basel) 2023; 9:jof9030381. [PMID: 36983549 PMCID: PMC10052331 DOI: 10.3390/jof9030381] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Biological particles, along with inorganic gaseous and particulate pollutants, constitute an ever-present component of the atmosphere and surfaces. Among these particles are fungal species colonizing almost all ecosystems, including the human body. Although inoffensive to most people, fungi can be responsible for several health problems, such as allergic fungal diseases and fungal infections. Worldwide fungal disease incidence is increasing, with new emerging fungal diseases appearing yearly. Reasons for this increase are the expansion of life expectancy, the number of immunocompromised patients (immunosuppressive treatments for transplantation, autoimmune diseases, and immunodeficiency diseases), the number of uncontrolled underlying conditions (e.g., diabetes mellitus), and the misusage of medication (e.g., corticosteroids and broad-spectrum antibiotics). Managing fungal diseases is challenging; only four classes of antifungal drugs are available, resistance to these drugs is increasing, and no vaccines have been approved. The present work reviews the implications of fungal particles in human health from allergic diseases (i.e., allergic bronchopulmonary aspergillosis, severe asthma with fungal sensitization, thunderstorm asthma, allergic fungal rhinosinusitis, and occupational lung diseases) to infections (i.e., superficial, subcutaneous, and systemic infections). Topics such as the etiological agent, risk factors, clinical manifestations, diagnosis, and treatment will be revised to improve the knowledge of this growing health concern.
Collapse
Affiliation(s)
- Manuela Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Ipatimup-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Diana Oliveira
- CRN-Unidade de Reabilitação AVC, Centro de Reabilitação do Norte, Centro Hospitalar de Vila Nova de Gaia/Espinho, Avenida dos Sanatórios 127, 4405-565 Vila Nova de Gaia, Portugal
| | - Carmen Lisboa
- Serviço de Microbiologia, Departamento de Patologia, Faculdade de Medicina do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Serviço de Dermatologia, Centro Hospitalar Universitário de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- CINTESIS@RISE-Centro de Investigação em Tecnologias e Serviços de Saúde, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - José Laerte Boechat
- CINTESIS@RISE-Centro de Investigação em Tecnologias e Serviços de Saúde, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Luís Delgado
- CINTESIS@RISE-Centro de Investigação em Tecnologias e Serviços de Saúde, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Laboratório de Imunologia, Serviço de Patologia Clínica, Centro Hospitalar e Universitário de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
21
|
Hatinguais R, Willment JA, Brown GD. C-type lectin receptors in antifungal immunity: Current knowledge and future developments. Parasite Immunol 2023; 45:e12951. [PMID: 36114607 PMCID: PMC10078331 DOI: 10.1111/pim.12951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 01/31/2023]
Abstract
C-type lectin receptors (CLRs) constitute a category of innate immune receptors that play an essential role in the antifungal immune response. For over two decades, scientists have uncovered what are the fungal ligands recognized by CLRs and how these receptors initiate the immune response. Such studies have allowed the identification of genetic polymorphisms in genes encoding for CLRs or for proteins involved in the signalisation cascade they trigger. Nevertheless, our understanding of how these receptors functions and the full extent of their function during the antifungal immune response is still at its infancy. In this review, we summarize some of the main findings about CLRs in antifungal immunity and discuss what the future might hold for the field.
Collapse
Affiliation(s)
- Remi Hatinguais
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Janet A Willment
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Gordon D Brown
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
22
|
Gago S, Mandarano M, Floridi C, Zelante T. Host, pathogenic fungi and the microbiome: A genetic triangle in infection. Front Immunol 2023; 13:1078014. [PMID: 36733397 PMCID: PMC9887327 DOI: 10.3389/fimmu.2022.1078014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Sara Gago
- Manchester Fungal Infection Group, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Martina Mandarano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudia Floridi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy,*Correspondence: Teresa Zelante,
| |
Collapse
|
23
|
Autier B, Gottstein B, Millon L, Ramharter M, Gruener B, Bresson-Hadni S, Dion S, Robert-Gangneux F. Alveolar echinococcosis in immunocompromised hosts. Clin Microbiol Infect 2022; 29:593-599. [PMID: 36528295 DOI: 10.1016/j.cmi.2022.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Alveolar echinococcosis (AE) results of an infection with the larval stage of Echinococcus multilocularis. It has been increasingly described in individuals with impaired immune responsiveness. OBJECTIVES This narrative review aims at describing the presentation of AE according to the type of immune impairment, based on retrospective cohorts and case reports. Implications for patient management and future research are proposed accordingly. SOURCES Targeted search was conducted in PubMed using ((alveolar echinococcosis) OR (multilocularis)) AND ((immunosuppressive) OR (immunodeficiency) OR (AIDS) OR (solid organ transplant) OR (autoimmunity) OR (immune deficiency)). Only publications in English were considered. CONTENT Seventeen publications were found, including 13 reports of 55 AE in immunocompromised patients (AE/IS) and 4 retrospective studies of 755 AE immunocompetent patients and 115 AE/IS (13%). The cohorts included 9 (1%) solid organ transplantation (SOT) recipients, 2 (0.2%) HIV patients, 41 (4.7%) with chronic inflammatory/autoimmune diseases (I/AID) and 72 (8.3%) with malignancies. SOT, I/AID and malignancies, but not HIV infection, were significantly associated with AE (odds ratios of 10.8, 1.6, 5.9, and 1.3, respectively). Compared to AE immunocompetent patients, AE/IS was associated with earlier diagnosis (PNM stages I-II: 49/85 (58%) vs. 137/348 (39%), p < 0.001), high rate of atypical imaging (24/50 (48%) vs. 106/375 (28%), p < 0.01), and low sensitivity of serology (19/77 (25%) vs. 265/329 (81%), p < 0.001). Unusually extensive or disseminated infections were described in SOT and I/AID patients. IMPLICATIONS Patients who live in endemic areas should benefit from serology before onset of a long-term immunosuppressive therapy, even if the cost-benefit ratio has to be evaluated. Physicians should explain AE to immunocompromised patients and think about AE when finding a liver lesion. Further research should address gaps in knowledge of AE/IS. Especially, extensive and accurate records of AE cases have to be collected by multinational registries.
Collapse
Affiliation(s)
- Brice Autier
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes, France.
| | - Bruno Gottstein
- Institute of Infectious Diseases, Faculty of Medicine, University of Bern, CH-3012, Bern, Switzerland
| | - Laurence Millon
- Department of Parasitology-Mycology, National Reference Centre for Echinococcoses, University Hospital of Besançon, France; UMR CNRS 6249 Laboratoire Chrono-environnement, Université Bourgogne-Franche-Comté, Besançon, France; European Study Group of Clinical Parasitology, ESCMID, Basel, Switzerland
| | - Michael Ramharter
- European Study Group of Clinical Parasitology, ESCMID, Basel, Switzerland; Center for Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I Dept. of Medicine University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Beate Gruener
- Division of Infectious Diseases, Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Solange Bresson-Hadni
- Department of Parasitology-Mycology, National Reference Centre for Echinococcoses, University Hospital of Besançon, France; Division of Tropical and Humanitarian Medicine and Gastroenterology and Hepatology Unit, Faculty of Medicine, University Hospitals of Geneva, Switzerland
| | - Sarah Dion
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Florence Robert-Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes, France; European Study Group of Clinical Parasitology, ESCMID, Basel, Switzerland
| |
Collapse
|
24
|
Aggor FE, Bertolini M, Zhou C, Taylor TC, Abbott DA, Musgrove J, Bruno VM, Hand TW, Gaffen SL. A gut-oral microbiome-driven axis controls oropharyngeal candidiasis through retinoic acid. JCI Insight 2022; 7:e160348. [PMID: 36134659 PMCID: PMC9675558 DOI: 10.1172/jci.insight.160348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/11/2022] [Indexed: 01/28/2023] Open
Abstract
A side effect of antibiotics is outgrowth of the opportunistic fungus Candida albicans in the oropharynx (oropharyngeal candidiasis, OPC). IL-17 signaling is vital for immunity to OPC, but how the microbiome impacts antifungal immunity is not well understood. Mice in standard specific pathogen-free (SPF) conditions are resistant to OPC, whereas we show that germ-free (GF) or antibiotic-treated mice are susceptible. Oral type 17 cells and IL-17-dependent responses were impaired in antibiotic-treated and GF mice. Susceptibility could be rescued in GF mice by mono-colonization with segmented filamentous bacterium (SFB), an intestine-specific constituent of the microbiota. SFB protection was accompanied by restoration of oral IL-17+CD4+ T cells and gene signatures characteristic of IL-17 signaling. Additionally, RNA-Seq revealed induction of genes in the retinoic acid (RA) and RA receptor-α (RARα) pathway. Administration of RA rescued immunity to OPC in microbiome-depleted or GF mice, while RAR inhibition caused susceptibility in immunocompetent animals. Surprisingly, immunity to OPC was independent of serum amyloids. Moreover, RAR inhibition did not alter oral type 17 cytokine levels. Thus, mono-colonization with a component of the intestinal microflora confers protection against OPC by type 17 and RA/RARα, which act in parallel to promote antifungal immunity. In principle, manipulation of the microbiome could be harnessed to maintain antifungal immunity.
Collapse
Affiliation(s)
- Felix E.Y. Aggor
- Division of Rheumatology & Clinical Immunology, Department of Medicine, and
| | - Martinna Bertolini
- Division of Rheumatology & Clinical Immunology, Department of Medicine, and
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chunsheng Zhou
- Division of Rheumatology & Clinical Immunology, Department of Medicine, and
| | - Tiffany C. Taylor
- Division of Rheumatology & Clinical Immunology, Department of Medicine, and
| | - Darryl A. Abbott
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Javonn Musgrove
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vincent M. Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Timothy W. Hand
- Richard King Mellon Foundation Institute for Pediatric Research, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah L. Gaffen
- Division of Rheumatology & Clinical Immunology, Department of Medicine, and
| |
Collapse
|
25
|
Yadav R, Pradhan M, Yadav K, Mahalvar A, Yadav H. Present scenarios and future prospects of herbal nanomedicine for antifungal therapy. J Drug Deliv Sci Technol 2022; 74:103430. [PMID: 35582019 PMCID: PMC9101776 DOI: 10.1016/j.jddst.2022.103430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022]
Abstract
The current COVID-19 epidemic is a sobering reminder that human susceptibility to infectious diseases remains even in our modern civilization. After all, infectious diseases are still the major reason of death globally. Healthcare authorities have often underestimated and ignored the threat posed by "microbial dangers," although they put millions of lives at risk every year. Overlooked developing diseases including fungal infections (FIs) contribute to roughly 1.7 million fatalities per year. As many as 150 million cases of severe and potentially life-threatening FIs are reported each year. In the last few years, the number of instances has steadily increased. Most of them are invasive fungal infections that require specialized treatment and hospital care. In recent years herbal antifungal compounds have been explored to acquire effective and safe therapy against fungal infections. However, potential therapeutic effects are hampered by the poor solubility, stability, and bioavailability of these important chemicals as well as the gastric degradation that occurs in the gastrointestinal tract. To get around this issue, researchers have turned to novel drug delivery systems such as nanoemulsions, ethosomes, metallic nanoparticles, liposomes, lipid nanoparticles, transferosomes, etc by improving their limits, nanocarriers can enhance the medicinal effects of herbal oils and extracts. The present review article focuses on the available antifungal agents and their characteristics, mechanism of antifungal drugs resistance, herbal oils and extract as antifungal agents, challenges in the delivery of herbal drugs, and application of nano-drug delivery systems for effective delivery of antifungal herbal compounds.
Collapse
Affiliation(s)
- Rahul Yadav
- ISBM University, Nawapara, Gariyaband, Chhattisgarh, 493996, India
| | - Madhulika Pradhan
- Rungta College of Pharmaceutical Education and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
- Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh, 492010, India
| | - Anand Mahalvar
- ISBM University, Nawapara, Gariyaband, Chhattisgarh, 493996, India
| | - Homesh Yadav
- ISBM University, Nawapara, Gariyaband, Chhattisgarh, 493996, India
| |
Collapse
|
26
|
A Fun-Guide to Innate Immune Responses to Fungal Infections. J Fungi (Basel) 2022; 8:jof8080805. [PMID: 36012793 PMCID: PMC9409918 DOI: 10.3390/jof8080805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Immunocompromised individuals are at high risk of developing severe fungal infections with high mortality rates, while fungal pathogens pose little risk to most healthy people. Poor therapeutic outcomes and growing antifungal resistance pose further challenges for treatments. Identifying specific immunomodulatory mechanisms exploited by fungal pathogens is critical for our understanding of fungal diseases and development of new therapies. A gap currently exists between the large body of literature concerning the innate immune response to fungal infections and the potential manipulation of host immune responses to aid clearance of infection. This review considers the innate immune mechanisms the host deploys to prevent fungal infection and how these mechanisms fail in immunocompromised hosts. Three clinically relevant fungal pathogens (Candida albicans, Cryptococcus spp. and Aspergillus spp.) will be explored. This review will also examine potential mechanisms of targeting the host therapeutically to improve outcomes of fungal infection.
Collapse
|
27
|
Le Bars P, Kouadio AA, Bandiaky ON, Le Guéhennec L, de La Cochetière MF. Host's Immunity and Candida Species Associated with Denture Stomatitis: A Narrative Review. Microorganisms 2022; 10:microorganisms10071437. [PMID: 35889156 PMCID: PMC9323190 DOI: 10.3390/microorganisms10071437] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Denture-related Candida stomatitis, which has been described clinically in the literature, is either localized or generalized inflammation of the oral mucosa in connection with a removable prosthesis. During this inflammatory process, the mycobacterial biofilm and the host’s immune response play an essential role. Among microorganisms of this mixed biofilm, the Candida species proliferates easily and changes from a commensal to an opportunistic pathogen. In this situation, the relationship between the Candida spp. and the host is influenced by the presence of the denture and conditioned both by the immune response and the oral microbiota. Specifically, this fungus is able to hijack the innate immune system of its host to cause infection. Additionally, older edentulous wearers of dentures may experience an imbalanced and decreased oral microbiome diversity. Under these conditions, the immune deficiency of these aging patients often promotes the spread of commensals and pathogens. The present narrative review aimed to analyze the innate and adaptive immune responses of patients with denture stomatitis and more particularly the involvement of Candida albicans sp. associated with this pathology.
Collapse
Affiliation(s)
- Pierre Le Bars
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, 44042 Nantes, France; (A.A.K.); (O.N.B.); (L.L.G.)
- Correspondence: authors:
| | - Alain Ayepa Kouadio
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, 44042 Nantes, France; (A.A.K.); (O.N.B.); (L.L.G.)
- Department of Prosthetic Dentistry, Faculty of Dentistry, CHU, Abidjan P.O. Box 612, Côte d’Ivoire
| | - Octave Nadile Bandiaky
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, 44042 Nantes, France; (A.A.K.); (O.N.B.); (L.L.G.)
| | - Laurent Le Guéhennec
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, 44042 Nantes, France; (A.A.K.); (O.N.B.); (L.L.G.)
| | - Marie-France de La Cochetière
- EA 3826 Thérapeutiques Cliniques Et expérimentales des Infections, Faculté de Médecine, CHU Hôtel-Dieu, Université de Nantes, 1, rue G. Veil, 44000 Nantes, France;
| |
Collapse
|
28
|
Barantsevich N, Barantsevich E. Diagnosis and Treatment of Invasive Candidiasis. Antibiotics (Basel) 2022; 11:antibiotics11060718. [PMID: 35740125 PMCID: PMC9219674 DOI: 10.3390/antibiotics11060718] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Candida species, belonging to commensal microbial communities in humans, cause opportunistic infections in individuals with impaired immunity. Pathogens encountered in more than 90% cases of invasive candidiasis include C. albicans, C. glabrata, C. krusei, C. tropicalis, and C. parapsilosis. The most frequently diagnosed invasive infection is candidemia. About 50% of candidemia cases result in deep-seated infection due to hematogenous spread. The sensitivity of blood cultures in autopsy-proven invasive candidiasis ranges from 21% to 71%. Non-cultural methods (beta-D-glucan, T2Candida assays), especially beta-D-glucan in combination with procalcitonin, appear promising in the exclusion of invasive candidiasis with high sensitivity (98%) and negative predictive value (95%). There is currently a clear deficiency in approved sensitive and precise diagnostic techniques. Omics technologies seem promising, though require further development and study. Therapeutic options for invasive candidiasis are generally limited to four classes of systemic antifungals (polyenes, antimetabolite 5-fluorocytosine, azoles, echinocandins) with the two latter being highly effective and well-tolerated and hence the most widely used. Principles and methods of treatment are discussed in this review. The emergence of pan-drug-resistant C. auris strains indicates an insufficient choice of available medications. Further surveillance, alongside the development of diagnostic and therapeutic methods, is essential.
Collapse
|
29
|
Dimo J, Hall J, Parran K, Mitchell M, Zhu F. Double Take on Double Vision: Invasive Rhinosinusitis From Blastomyces dermatitidis in an Adolescent With Well-Controlled Diabetes. J Pediatric Infect Dis Soc 2022; 11:81-84. [PMID: 34888690 DOI: 10.1093/jpids/piab115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/11/2021] [Indexed: 11/14/2022]
Abstract
Blastomyces dermatitidis is a fungus endemic to the Ohio and Mississippi river valley region and great lakes region. Exposure is typically associated with outdoor activities near streams, rivers, or moist soil. Pulmonary disease is the main manifestation, whereas dissemination is more frequently observed in immunosuppressed individuals. We herein report an uncommon case of B. dermatitidis causing invasive fungal sinusitis in a patient with well-controlled type 2 diabetes mellitus in the absence of conventional higher-risk environmental exposures. This case highlights the importance of a broad differential for invasive fungal infections in patients with diabetes, including those in endemic areas without classical exposures.
Collapse
Affiliation(s)
- Joana Dimo
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jaimee Hall
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Pediatrics, Division of Infectious Diseases, Washington University in St Louis, St Louis, Missouri, USA
| | - Krista Parran
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michelle Mitchell
- Department of Pediatrics, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Frank Zhu
- Department of Pediatrics, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
30
|
Ashraf S, Biglow L, Dotson J, Tirona MT. Pneumonitis and cellular immunodeficiency triggered by the CDK 4/6 inhibitor Abemaciclib. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2022; 3:9. [PMID: 38751535 PMCID: PMC11093102 DOI: 10.21037/tbcr-21-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/08/2021] [Indexed: 05/18/2024]
Abstract
Breast cancer is the second most common cancer amongst women in the United States following non-melanoma skin cancer. There were an estimated 276,480 new cases and 42,170 deaths in 2020. The lifetime risk for developing breast cancer in females is about 13%. In the United States this year approximately 284,200 people out of which 281,550 women and 2,650 men, will be diagnosed with invasive breast cancer. In recent years, treatment options with novel mechanisms have emerged. Cyclin dependent kinase (CDK) 4/6 inhibitors, namely palbociclib, ribociclib and abemaciclib, are relatively new targeted therapies for treating breast cancers express estrogen receptors (ER) and/or progesterone receptors (PR). CDKs are important regulatory enzymes in cell cycle transitions and cell division. Selective inhibition of CDK4/6 causes cell cycle to arrest in the G1 phase, resulting in reduced cell viability and tumor response. Abemaciclib is the only one approved as monotherapy. Palbociclib and ribociclib must be used as adjunctive therapy to endocrine therapy such as tamoxifen, aromatase inhibitors or fulvestrant. Common side effects include neutropenia, thrombocytopenia, fatigue, nausea, and vomiting. A black box warning for all CDK inhibitors is a rare but possibly fatal severe inflammation of the lungs, called pneumonitis. We present a fatal case of severe pneumonitis with superimposed fungal respiratory infection in the setting of hypogammaglobulinemia in a 65-year-old female with metastatic ER and PR positive, human epidermal growth factor receptor 2 (HER-2) negative breast cancer who received abemaciclib.
Collapse
Affiliation(s)
- Sara Ashraf
- Department of Hematology-Oncology, Joan C Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Layana Biglow
- Department of Internal Medicine, Joan C Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Jennifer Dotson
- Department of Hematology-Oncology, Joan C Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Maria Tria Tirona
- Department of Hematology-Oncology, Joan C Edwards School of Medicine at Marshall University, Huntington, WV, USA
| |
Collapse
|
31
|
Garcia-Solis B, Van Den Rym A, Pérez-Caraballo JJ, Al-Ayoubi A, Alazami AM, Lorenzo L, Cubillos-Zapata C, López-Collazo E, Pérez-Martínez A, Allende LM, Markle J, Fernández-Arquero M, Sánchez-Ramón S, Recio MJ, Casanova JL, Mohammed R, Martinez-Barricarte R, Pérez de Diego R. Clinical and Immunological Features of Human BCL10 Deficiency. Front Immunol 2021; 12:786572. [PMID: 34868072 PMCID: PMC8633570 DOI: 10.3389/fimmu.2021.786572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022] Open
Abstract
The CARD-BCL10-MALT1 (CBM) complex is critical for the proper assembly of human immune responses. The clinical and immunological consequences of deficiencies in some of its components such as CARD9, CARD11, and MALT1 have been elucidated in detail. However, the scarcity of BCL10 deficient patients has prevented gaining detailed knowledge about this genetic disease. Only two patients with BCL10 deficiency have been reported to date. Here we provide an in-depth description of an additional patient with autosomal recessive complete BCL10 deficiency caused by a nonsense mutation that leads to a loss of expression (K63X). Using mass cytometry coupled with unsupervised clustering and machine learning computational methods, we obtained a thorough characterization of the consequences of BCL10 deficiency in different populations of leukocytes. We showed that in addition to the near absence of memory B and T cells previously reported, this patient displays a reduction in NK, γδT, Tregs, and TFH cells. The patient had recurrent respiratory infections since early childhood, and showed a family history of lethal severe infectious diseases. Fortunately, hematopoietic stem-cell transplantation (HSCT) cured her. Overall, this report highlights the importance of early genetic diagnosis for the management of BCL10 deficient patients and HSCT as the recommended treatment to cure this disease.
Collapse
Affiliation(s)
- Blanca Garcia-Solis
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Ana Van Den Rym
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Jareb J Pérez-Caraballo
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, United States.,Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Abdulwahab Al-Ayoubi
- Department of Pediatrics, King Saud Medical City Children's Hospital, Riyadh, Saudi Arabia
| | - Anas M Alazami
- Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Carolina Cubillos-Zapata
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Center for Biomedical Research Network, CIBEres, Madrid, Spain
| | - Eduardo López-Collazo
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Paediatric Oncology, Haematopoietic Stem Cell Transplantation, Cell Therapy, Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, La Paz University Hospital, Madrid, Spain.,Department of Paediatric Haemato-Oncology and Stem Cell Transplantation, La Paz University Hospital, Madrid, Spain
| | - Luis M Allende
- Department of Immunology, 12 de Octubre Hospital, Research Insitute imas12, Complutense University, Madrid, Spain
| | - Janet Markle
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States.,Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Miguel Fernández-Arquero
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain.,Clinical Immunology Department, San Carlos Clinical Hospital, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain.,Clinical Immunology Department, San Carlos Clinical Hospital, Madrid, Spain
| | - Maria J Recio
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain.,Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States.,Imagine Institute, University Paris Descartes, Paris, France.,Howard Hughes Medical Institute, New York, NY, United States
| | - Reem Mohammed
- Department of Pediatrics, Division of Allergy & Immunology King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Rubén Martinez-Barricarte
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, United States.,Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain.,Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| |
Collapse
|
32
|
Identification of discriminative gene-level and protein-level features associated with pathogenic gain-of-function and loss-of-function variants. Am J Hum Genet 2021; 108:2301-2318. [PMID: 34762822 DOI: 10.1016/j.ajhg.2021.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Identifying whether a given genetic mutation results in a gene product with increased (gain-of-function; GOF) or diminished (loss-of-function; LOF) activity is an important step toward understanding disease mechanisms because they may result in markedly different clinical phenotypes. Here, we generated an extensive database of documented germline GOF and LOF pathogenic variants by employing natural language processing (NLP) on the available abstracts in the Human Gene Mutation Database. We then investigated various gene- and protein-level features of GOF and LOF variants and applied machine learning and statistical analyses to identify discriminative features. We found that GOF variants were enriched in essential genes, for autosomal-dominant inheritance, and in protein binding and interaction domains, whereas LOF variants were enriched in singleton genes, for protein-truncating variants, and in protein core regions. We developed a user-friendly web-based interface that enables the extraction of selected subsets from the GOF/LOF database by a broad set of annotated features and downloading of up-to-date versions. These results improve our understanding of how variants affect gene/protein function and may ultimately guide future treatment options.
Collapse
|
33
|
|
34
|
Naik B, Ahmed SMQ, Laha S, Das SP. Genetic Susceptibility to Fungal Infections and Links to Human Ancestry. Front Genet 2021; 12:709315. [PMID: 34490039 PMCID: PMC8417537 DOI: 10.3389/fgene.2021.709315] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Over the ages, fungi have associated with different parts of the human body and established symbiotic associations with their host. They are mostly commensal unless there are certain not so well-defined factors that trigger the conversion to a pathogenic state. Some of the factors that induce such transition can be dependent on the fungal species, environment, immunological status of the individual, and most importantly host genetics. In this review, we discuss the different aspects of how host genetics play a role in fungal infection since mutations in several genes make hosts susceptible to such infections. We evaluate how mutations modulate the key recognition between the pathogen associated molecular patterns (PAMP) and the host pattern recognition receptor (PRR) molecules. We discuss the polymorphisms in the genes of the immune system, the way it contributes toward some common fungal infections, and highlight how the immunological status of the host determines fungal recognition and cross-reactivity of some fungal antigens against human proteins that mimic them. We highlight the importance of single nucleotide polymorphisms (SNPs) that are associated with several of the receptor coding genes and discuss how it affects the signaling cascade post-infection, immune evasion, and autoimmune disorders. As part of personalized medicine, we need the application of next-generation techniques as a feasible option to incorporate an individual’s susceptibility toward invasive fungal infections based on predisposing factors. Finally, we discuss the importance of studying genomic ancestry and reveal how genetic differences between the human race are linked to variation in fungal disease susceptibility.
Collapse
Affiliation(s)
- Bharati Naik
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sumayyah M Q Ahmed
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Suparna Laha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
35
|
TRIM31 facilitates K27-linked polyubiquitination of SYK to regulate antifungal immunity. Signal Transduct Target Ther 2021; 6:298. [PMID: 34362877 PMCID: PMC8342987 DOI: 10.1038/s41392-021-00711-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/03/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase, which plays an essential role in both innate and adaptive immunity. However, the key molecular mechanisms that regulate SYK activity are poorly understood. Here we identified the E3 ligase TRIM31 as a crucial regulator of SYK activation. We found that TRIM31 interacted with SYK and catalyzed K27-linked polyubiquitination at Lys375 and Lys517 of SYK. This K27-linked polyubiquitination of SYK promoted its plasma membrane translocation and binding with the C-type lectin receptors (CLRs), and also prevented the interaction with the phosphatase SHP-1. Therefore, deficiency of Trim31 in bone marrow-derived dendritic cells (BMDCs) and macrophages (BMDMs) dampened SYK-mediated signaling and inhibited the secretion of proinflammatory cytokines and chemokines against the fungal pathogen Candida albicans infection. Trim31-/- mice were also more sensitive to C. albicans systemic infection than Trim31+/+ mice and exhibited reduced Th1 and Th17 responses. Overall, our study uncovered the pivotal role of TRIM31-mediated K27-linked polyubiquitination on SYK activation and highlighted the significance of TRIM31 in anti-C. albicans immunity.
Collapse
|
36
|
Challenges and Opportunities in Understanding Genetics of Fungal Diseases: Towards a Functional Genomics Approach. Infect Immun 2021; 89:e0000521. [PMID: 34031131 DOI: 10.1128/iai.00005-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Infectious diseases are a leading cause of morbidity and mortality worldwide, and human pathogens have long been recognized as one of the main sources of evolutionary pressure, resulting in a high variable genetic background in immune-related genes. The study of the genetic contribution to infectious diseases has undergone tremendous advances over the last decades. Here, focusing on genetic predisposition to fungal diseases, we provide an overview of the available approaches for studying human genetic susceptibility to infections, reviewing current methodological and practical limitations. We describe how the classical methods available, such as family-based studies and candidate gene studies, have contributed to the discovery of crucial susceptibility factors for fungal infections. We will also discuss the contribution of novel unbiased approaches to the field, highlighting their success but also their limitations for the fungal immunology field. Finally, we show how a systems genomics approach can overcome those limitations and can lead to efficient prioritization and identification of genes and pathways with a critical role in susceptibility to fungal diseases. This knowledge will help to stratify at-risk patient groups and, subsequently, develop early appropriate prophylactic and treatment strategies.
Collapse
|
37
|
Ba H, Peng H, Cheng L, Lin Y, Li X, He X, Li S, Wang H, Qin Y. Case Report: Talaromyces marneffei Infection in a Chinese Child With a Complex Heterozygous CARD9 Mutation. Front Immunol 2021; 12:685546. [PMID: 34234782 PMCID: PMC8255793 DOI: 10.3389/fimmu.2021.685546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022] Open
Abstract
Talaromyces marneffei (TM) infection is rarely seen in clinical practice, and its pathogenesis may be related to deficiency in antifungal immune function. Human caspase recruitment domain-containing protein 9 (CARD9) is a key molecule in fungal immune surveillance. There have been no previous case reports of TM infection in individuals with CARD9 gene mutations. Herein, we report the case of a 7-month-old Chinese boy who was admitted to our hospital with recurring cough and fever with a papular rash. A blood culture produced TM growth, which was confirmed by metagenomic next-generation sequencing. One of the patient’s sisters had died of TM septicaemia at 9 months of age. Whole exome sequencing revealed that the patient had a complex heterozygous CARD9 gene mutation with a c.1118G>C p.R373P variation in exon 8 and a c.610C>T p.R204C variation in exon 4. Based on the culture results, voriconazole antifungal therapy was administered. On the third day of antifungal administration, his temperature dropped to within normal range, the rash gradually subsided, and the enlargement of his lymph nodes, liver, and spleen improved. Two months after discharge, he returned to the hospital for a follow-up examination. His general condition was good, and no specific abnormalities were detected. Oral voriconazole treatment was continued. Unexplained TM infection in HIV-negative individuals warrants investigation for immune deficiencies.
Collapse
Affiliation(s)
- Hongjun Ba
- Department of Paediatric Cardiology, Heart Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Huimin Peng
- Department of Paediatric Cardiology, Heart Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liangping Cheng
- Department of Paediatric Cardiology, Heart Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuese Lin
- Department of Paediatric Cardiology, Heart Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuandi Li
- Department of Paediatric Cardiology, Heart Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiufang He
- Department of Paediatric Cardiology, Heart Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shujuan Li
- Department of Paediatric Cardiology, Heart Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huishen Wang
- Department of Paediatric Cardiology, Heart Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Youzhen Qin
- Department of Paediatric Cardiology, Heart Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| |
Collapse
|
38
|
Baghad B, Bousfiha AA, Chiheb S, Ailal F. [Genetic predisposition to mucocutaneous fungal infections]. Rev Med Interne 2021; 42:566-570. [PMID: 34052048 DOI: 10.1016/j.revmed.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/29/2021] [Accepted: 05/09/2021] [Indexed: 11/15/2022]
Abstract
Mucocutaneous fungal infections are common and usually occur in the presence of certain risk factors. However, these infections can occur in patients with no known risk factors. This indicates the presence of an underlying genetic susceptibility to fungi reflecting an innate or adaptive immune deficiency. In this review, we highlight genetic factors that predispose to mucocutaneous fungal infections specially candidiasis and dermatophytosis.
Collapse
Affiliation(s)
- B Baghad
- Service de dermatologie vénéréologie, CHU de Casablanca, Hassan II University of Casablanca, Maroc; Laboratoire d'immunologie clinique, inflammation et allergie, Faculté de médecine et de pharmacie de Casablanca, Hassan II University of Casablanca, Maroc.
| | - A A Bousfiha
- Laboratoire d'immunologie clinique, inflammation et allergie, Faculté de médecine et de pharmacie de Casablanca, Hassan II University of Casablanca, Maroc; Unité d'immunologie clinique, service de pédiatrie infectieuse, CHU Harrouchi, Hassan II University of Casablanca, Maroc
| | - S Chiheb
- Service de dermatologie vénéréologie, CHU de Casablanca, Hassan II University of Casablanca, Maroc
| | - F Ailal
- Laboratoire d'immunologie clinique, inflammation et allergie, Faculté de médecine et de pharmacie de Casablanca, Hassan II University of Casablanca, Maroc; Unité d'immunologie clinique, service de pédiatrie infectieuse, CHU Harrouchi, Hassan II University of Casablanca, Maroc
| |
Collapse
|
39
|
Knight V, Heimall JR, Chong H, Nandiwada SL, Chen K, Lawrence MG, Sadighi Akha AA, Kumánovics A, Jyonouchi S, Ngo SY, Vinh DC, Hagin D, Forbes Satter LR, Marsh RA, Chiang SCC, Willrich MAV, Frazer-Abel AA, Rider NL. A Toolkit and Framework for Optimal Laboratory Evaluation of Individuals with Suspected Primary Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3293-3307.e6. [PMID: 34033983 DOI: 10.1016/j.jaip.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022]
Abstract
Knowledge related to the biology of inborn errors of immunity and associated laboratory testing methods continues to expand at a tremendous rate. Despite this, many patients with inborn errors of immunity suffer for prolonged periods of time before identification of their underlying condition, thereby delaying appropriate care. Understanding that test selection and optimal evaluation for patients with recurrent infections or unusual patterns of inflammation can be unclear, we present a document that distills relevant clinical features of immunologic disease due to inborn errors of immunity and related appropriate and available test options. This document is intended to serve the practicing clinical immunologist and, in turn, patients by describing best available test options for initial and expanded immunologic evaluations across the disease spectrum. Our goal is to demystify the process of evaluating patients with suspected immune dysfunction and to enable more rapid and accurate diagnosis of such individuals.
Collapse
Affiliation(s)
- Vijaya Knight
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, Colo
| | - Jennifer R Heimall
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Perlman School of Medicine at University of Pennsylvania, Philadelphia, Pa
| | - Hey Chong
- Division of Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pa
| | - Sarada L Nandiwada
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex
| | - Karin Chen
- Department of Immunology, University of Washington and Seattle Children's Hospital, Seattle, Wash
| | - Monica G Lawrence
- Division of Asthma, Allergy and Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Attila Kumánovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Soma Jyonouchi
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Perlman School of Medicine at University of Pennsylvania, Philadelphia, Pa
| | - Suzanne Y Ngo
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, Colo
| | - Donald C Vinh
- Division of Infectious Diseases, Allergy & Clinical Immunology, Department of Medical Microbiology and Human Genetics, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - David Hagin
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lisa R Forbes Satter
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Samuel C C Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Maria A V Willrich
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Ashley A Frazer-Abel
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo
| | - Nicholas L Rider
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex.
| |
Collapse
|
40
|
d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D, Valentine M, Xie Z, Emritloll Y, Warn PA, Bequet F, Bougnoux ME, Bornes S, Gresnigt MS, Hube B, Jacobsen ID, Legrand M, Leibundgut-Landmann S, Manichanh C, Munro CA, Netea MG, Queiroz K, Roget K, Thomas V, Thoral C, Van den Abbeele P, Walker AW, Brown AJP. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev 2021; 45:fuaa060. [PMID: 33232448 PMCID: PMC8100220 DOI: 10.1093/femsre/fuaa060] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Ann-Kristin Kaune
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Leovigildo-Rey Alaban
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sayoni Chakraborty
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Nathaniel Cole
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Daria Kosmala
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Benoît Marsaux
- ProDigest BV, Technologiepark 94, B-9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 9000 Ghent, Belgium
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Moran Morelli
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Marisa Valentine
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Yoan Emritloll
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Peter A Warn
- Magic Bullet Consulting, Biddlecombe House, Ugbrook, Chudleigh Devon, TQ130AD, UK
| | - Frédéric Bequet
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Stephanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF0545, 20 Côte de Reyne, 15000 Aurillac, France
| | - Mark S Gresnigt
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Salomé Leibundgut-Landmann
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Karla Queiroz
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Karine Roget
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | - Vincent Thomas
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Thoral
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Alan W Walker
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
41
|
Chear CT, Nallusamy R, Chan KC, Mohd Tap R, Baharin MF, Syed Yahya SNH, Krishnan PB, Mohamad SB, Ripen AM. Atypical Presentation of Severe Fungal Necrotizing Fasciitis in a Patient with X-Linked Agammaglobulinemia. J Clin Immunol 2021; 41:1178-1186. [PMID: 33713249 DOI: 10.1007/s10875-021-01017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
X-linked agammaglobulinemia is a rare primary immunodeficiency due to a BTK mutation. The patients are characteristically deficient in peripheral B cells and serum immunoglobulins. While they are susceptible to infections caused by bacteria, enteroviruses, and parasites, fungal infections are uncommon in XLA patients. Here, we report a boy of Malay ethnicity who suffered from recurrent upper respiratory tract infections and severe progressive necrotizing fasciitis caused by Saksenaea erythrospora. Immunological tests showed a B cell deficiency and hypogammaglobulinemia. Whole-exome sequencing identified a dinucleotide deletion (c.1580_1581del) in BTK, confirmed by Sanger sequencing and predicted to be disease causing by in silico functional prediction tools (Varsome and MutationTaster2) but was absent in the gnomAD database. This mutation resulted in a frameshift and premature termination (p.C527fs), which disrupted the protein structure. The mother was heterozygous at the mutation site, confirming her carrier status. Flow cytometric analysis of monocyte BTK expression showed it to be absent in the patient and bimodal in the mother. This study describes a novel BTK mutation in a defined hotspot and an atypical fungal phenotype in XLA. Further studies are required to understand the pathogenesis of fungal infection in XLA.
Collapse
Affiliation(s)
- Chai Teng Chear
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Selangor, Malaysia
| | - Revathy Nallusamy
- Pediatric Department, Penang General Hospital, Ministry of Health, Penang, Malaysia
| | - Kwai Cheng Chan
- Pediatric Department, Penang General Hospital, Ministry of Health, Penang, Malaysia
| | - Ratna Mohd Tap
- Medical Mycology Laboratory, Infectious Diseases Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Selangor, Malaysia
| | - Mohd Farid Baharin
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Selangor, Malaysia
| | - Sharifah Nurul Husna Syed Yahya
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Selangor, Malaysia
| | - Prasobhan Bala Krishnan
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Selangor, Malaysia
| | - Saharuddin Bin Mohamad
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Centre of Research in Systems Biology, Structural Bioinformatics and Human Digital Imaging (CRYSTAL), University of Malaya, Kuala Lumpur, Malaysia
| | - Adiratna Mat Ripen
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Selangor, Malaysia.
| |
Collapse
|
42
|
Kirchner FR, LeibundGut-Landmann S. Tissue-resident memory Th17 cells maintain stable fungal commensalism in the oral mucosa. Mucosal Immunol 2021; 14:455-467. [PMID: 32719409 PMCID: PMC7946631 DOI: 10.1038/s41385-020-0327-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/06/2020] [Indexed: 02/04/2023]
Abstract
Keeping a stable equilibrium between the host and commensal microbes to which we are constantly exposed, poses a major challenge for the immune system. The host mechanisms that regulate homeostasis of the microbiota to prevent infection and inflammatory disorders are not fully understood. Here, we provide evidence that CD4+ tissue-resident memory T (TRM) cells act as central players in this process. Using a murine model of C. albicans commensalism we show that IL-17 producing CD69+CD103+CD4+ memory T cells persist in the colonized tissue long-term and independently of circulatory supplies. Consistent with the requirement of Th17 cells for limiting fungal growth, IL-17-producing TRM cells in the mucosa were sufficient to maintain prolonged colonization, while circulatory T cells were dispensable. Although TRM cells were first proposed to protect from pathogens causing recurrent acute infections, our results support a central function of TRM cells in the maintenance of commensalism.
Collapse
Affiliation(s)
- Florian R Kirchner
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 266a, CH-8057, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 266a, CH-8057, Zürich, Switzerland.
- Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
43
|
Olbrich P, Ferreras-Antolin L. STAT Immunodeficiency Disorders and Fungal Infection Susceptibility. CURRENT FUNGAL INFECTION REPORTS 2021. [DOI: 10.1007/s12281-021-00413-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Dendrimers against fungi - A state of the art review. J Control Release 2020; 330:599-617. [PMID: 33347941 DOI: 10.1016/j.jconrel.2020.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022]
Abstract
Fungal based diseases currently affect nearly a quarter of the population around the world, which diseases are usually limited to superficial infections. Perversely, along with the development of modern medicine, cases of life-threatening systemic fungi are more and more often encountered. Compared to antibacterial drugs, significantly fewer fungicides are tested and introduced to clinical practice. At the same time, the drug resistance of pathological fungi is constantly growing. In addition to obtaining new derivatives of already-established classes of drugs, such as azoles, there is a growing interest in new compounds with potentially new mechanisms and application possibilities. Polymers are included in the flow of these studies, and among them - dendrimers. Dendrimers are a special type of polymers with a strictly defined structure and a plethora of functionalization possibilities. This allows them to not only be used as effective antifungal drug carriers but also enables them to exhibit antifungal activity per se. In this review, we have introduced to the epidemiology of fungal infections and summarized the aspects related to their control and therapy. Various polymers and dendrimers with antifungal activity were presented. In the subsequent sections antifungal acting dendrimers were discussed within three subchapters, based on their chemical structure: (i) amino acid-based dendrimers, (ii) amino based dendrimers, and (iii) other, which do not share similarities in structure. We have gathered and summarized the reports regarding the direct action of dendrimers on infectious fungi, as well as their effect when used as solubilizers, carriers or adjuvants with currently used antifungals. Use of dendrimers for the sensing of fungi or their metabolites are also considered. Special attention was also paid to the applications of dendrimers together with photosensitizers in antimicrobial photodynamic therapy.
Collapse
|
45
|
Williams TJ, Harvey S, Armstrong-James D. Immunotherapeutic approaches for fungal infections. Curr Opin Microbiol 2020; 58:130-137. [PMID: 33147544 DOI: 10.1016/j.mib.2020.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/25/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022]
Abstract
Despite the availability of antifungal treatments, fungal infections are still causing morbidity all around the globe with unacceptably high mortality rates. A major driver for the rising incidence of serious fungal infections is due to a substantial increase in immunocompromised individuals with autoimmune diseases, cancers and transplants. Because of growing resistance in fungus to frontline triazole antifungals and the association of fungal disease with the immunocompromised host, adjunctive host-directed therapy is seen as a promising choice to improve patient outcomes. Immunotherapeutic treatments being explored as adjunct therapies to existing antifungal treatments include cytokine therapy, monoclonal antibodies and cellular immunotherapy. In this review, we give a brief overview of potential immunotherapies and recent developments in the field, which are needed to tackle the growing problem of fungal diseases.
Collapse
Affiliation(s)
- Thomas J Williams
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, 14 Armstrong Rd, South Kensington, London SW7 2DD, United Kingdom
| | - Sunshine Harvey
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, 14 Armstrong Rd, South Kensington, London SW7 2DD, United Kingdom
| | - Darius Armstrong-James
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, 14 Armstrong Rd, South Kensington, London SW7 2DD, United Kingdom.
| |
Collapse
|
46
|
Obar JJ. Sensing the threat posed by Aspergillus infection. Curr Opin Microbiol 2020; 58:47-55. [PMID: 32898768 DOI: 10.1016/j.mib.2020.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 12/22/2022]
Abstract
The mammalian immune system can tune its inflammatory response to the threat level posed by an invading pathogen. It is well established that the host utilizes numerous 'patterns of pathogenicity', such as microbial growth, invasion, and viability, to achieve this tuning during bacterial infections. This review discusses how this notion fits during fungal infection, particularly regarding Aspergillus fumigatus infection. Moreover, how the environmental niches filled by A. fumigatus may drive the evolution of the fungal traits responsible for inducing the strain-specific inflammatory responses that have been experimentally observed will be discussed. Moving forward understanding the mechanisms of the fungal strain-specific inflammatory response due to the initial interactions with the host innate immune system will be essential for enhancing our therapeutic options for the treatment of invasive fungal infections.
Collapse
Affiliation(s)
- Joshua J Obar
- Geisel School of Medicine at Dartmouth, Department of Microbiology & Immunology, Hinman Box 7556, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| |
Collapse
|
47
|
Saxon Lead Author GDGC, Edwards A, Rautemaa-Richardson R, Owen C, Nathan B, Palmer B, Wood C, Ahmed H, Ahmad Patient Representatives S, FitzGerald Ceg Editor M. British Association for Sexual Health and HIV national guideline for the management of vulvovaginal candidiasis (2019). Int J STD AIDS 2020; 31:1124-1144. [PMID: 32883171 DOI: 10.1177/0956462420943034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Guideline Development Group Cara Saxon Lead Author
- Clinical Effectiveness Group (CEG), British Association for Sexual Health and HIV (552485BASHH).,WRITING GROUP AFFILIATIONS.,Cara Saxon (Lead Author): Consultant Physician in Genitourinary Medicine, Withington Clinic, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Anne Edwards: Consultant Physician in Genitourinary Medicine, 6397Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Riina Rautemaa-Richardson: Consultant in Medical Mycology, Wythenshawe Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Caroline Owen: Consultant Dermatologist, 8943East Lancashire Hospitals NHS Trust, Blackburn, UK.,Bavithra Nathan: Consultant Physician in Genitourinary Medicine, 4262Kingston Hospital NHS Foundation Trust, Kingston-upon-Thames, UK.,Bret Palmer: Specialty Trainee in Genitourinary Medicine, 14157Oxford Deanery, UK.,Clare Wood: Specialty Trainee in Genitourinary Medicine, 71404North Western Deanery, UK.,Humera Ahmed: Clinical Pharmacist, Manchester, UK.,Sameena Ahmad: Consultant Physician in Genitourinary Medicine, Withington Clinic, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Patient Representatives (see acknowledgments).,Mark FitzGerald: Clinical Effectiveness Group Editor.,MEMBERSHIP OF THE 552485BASHH CLINICAL EFFECTIVENESS GROUP.,Dr Keith Radcliffe (Chair), Dr Mark FitzGerald, Dr Deepa Grover, Dr Steve Higgins, Dr Margaret Kingston, Dr Michael Rayment, Dr Darren Cousins, Dr Ann Sullivan, Dr Helen Fifer, Dr Craig Tipple, Dr Sarah Flew, Dr Cara Saxon
| | - Anne Edwards
- Clinical Effectiveness Group (CEG), British Association for Sexual Health and HIV (552485BASHH).,WRITING GROUP AFFILIATIONS.,Cara Saxon (Lead Author): Consultant Physician in Genitourinary Medicine, Withington Clinic, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Anne Edwards: Consultant Physician in Genitourinary Medicine, 6397Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Riina Rautemaa-Richardson: Consultant in Medical Mycology, Wythenshawe Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Caroline Owen: Consultant Dermatologist, 8943East Lancashire Hospitals NHS Trust, Blackburn, UK.,Bavithra Nathan: Consultant Physician in Genitourinary Medicine, 4262Kingston Hospital NHS Foundation Trust, Kingston-upon-Thames, UK.,Bret Palmer: Specialty Trainee in Genitourinary Medicine, 14157Oxford Deanery, UK.,Clare Wood: Specialty Trainee in Genitourinary Medicine, 71404North Western Deanery, UK.,Humera Ahmed: Clinical Pharmacist, Manchester, UK.,Sameena Ahmad: Consultant Physician in Genitourinary Medicine, Withington Clinic, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Patient Representatives (see acknowledgments).,Mark FitzGerald: Clinical Effectiveness Group Editor.,MEMBERSHIP OF THE 552485BASHH CLINICAL EFFECTIVENESS GROUP.,Dr Keith Radcliffe (Chair), Dr Mark FitzGerald, Dr Deepa Grover, Dr Steve Higgins, Dr Margaret Kingston, Dr Michael Rayment, Dr Darren Cousins, Dr Ann Sullivan, Dr Helen Fifer, Dr Craig Tipple, Dr Sarah Flew, Dr Cara Saxon
| | - Riina Rautemaa-Richardson
- Clinical Effectiveness Group (CEG), British Association for Sexual Health and HIV (552485BASHH).,WRITING GROUP AFFILIATIONS.,Cara Saxon (Lead Author): Consultant Physician in Genitourinary Medicine, Withington Clinic, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Anne Edwards: Consultant Physician in Genitourinary Medicine, 6397Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Riina Rautemaa-Richardson: Consultant in Medical Mycology, Wythenshawe Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Caroline Owen: Consultant Dermatologist, 8943East Lancashire Hospitals NHS Trust, Blackburn, UK.,Bavithra Nathan: Consultant Physician in Genitourinary Medicine, 4262Kingston Hospital NHS Foundation Trust, Kingston-upon-Thames, UK.,Bret Palmer: Specialty Trainee in Genitourinary Medicine, 14157Oxford Deanery, UK.,Clare Wood: Specialty Trainee in Genitourinary Medicine, 71404North Western Deanery, UK.,Humera Ahmed: Clinical Pharmacist, Manchester, UK.,Sameena Ahmad: Consultant Physician in Genitourinary Medicine, Withington Clinic, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Patient Representatives (see acknowledgments).,Mark FitzGerald: Clinical Effectiveness Group Editor.,MEMBERSHIP OF THE 552485BASHH CLINICAL EFFECTIVENESS GROUP.,Dr Keith Radcliffe (Chair), Dr Mark FitzGerald, Dr Deepa Grover, Dr Steve Higgins, Dr Margaret Kingston, Dr Michael Rayment, Dr Darren Cousins, Dr Ann Sullivan, Dr Helen Fifer, Dr Craig Tipple, Dr Sarah Flew, Dr Cara Saxon
| | - Caroline Owen
- Clinical Effectiveness Group (CEG), British Association for Sexual Health and HIV (552485BASHH).,WRITING GROUP AFFILIATIONS.,Cara Saxon (Lead Author): Consultant Physician in Genitourinary Medicine, Withington Clinic, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Anne Edwards: Consultant Physician in Genitourinary Medicine, 6397Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Riina Rautemaa-Richardson: Consultant in Medical Mycology, Wythenshawe Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Caroline Owen: Consultant Dermatologist, 8943East Lancashire Hospitals NHS Trust, Blackburn, UK.,Bavithra Nathan: Consultant Physician in Genitourinary Medicine, 4262Kingston Hospital NHS Foundation Trust, Kingston-upon-Thames, UK.,Bret Palmer: Specialty Trainee in Genitourinary Medicine, 14157Oxford Deanery, UK.,Clare Wood: Specialty Trainee in Genitourinary Medicine, 71404North Western Deanery, UK.,Humera Ahmed: Clinical Pharmacist, Manchester, UK.,Sameena Ahmad: Consultant Physician in Genitourinary Medicine, Withington Clinic, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Patient Representatives (see acknowledgments).,Mark FitzGerald: Clinical Effectiveness Group Editor.,MEMBERSHIP OF THE 552485BASHH CLINICAL EFFECTIVENESS GROUP.,Dr Keith Radcliffe (Chair), Dr Mark FitzGerald, Dr Deepa Grover, Dr Steve Higgins, Dr Margaret Kingston, Dr Michael Rayment, Dr Darren Cousins, Dr Ann Sullivan, Dr Helen Fifer, Dr Craig Tipple, Dr Sarah Flew, Dr Cara Saxon
| | - Bavithra Nathan
- Clinical Effectiveness Group (CEG), British Association for Sexual Health and HIV (552485BASHH).,WRITING GROUP AFFILIATIONS.,Cara Saxon (Lead Author): Consultant Physician in Genitourinary Medicine, Withington Clinic, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Anne Edwards: Consultant Physician in Genitourinary Medicine, 6397Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Riina Rautemaa-Richardson: Consultant in Medical Mycology, Wythenshawe Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Caroline Owen: Consultant Dermatologist, 8943East Lancashire Hospitals NHS Trust, Blackburn, UK.,Bavithra Nathan: Consultant Physician in Genitourinary Medicine, 4262Kingston Hospital NHS Foundation Trust, Kingston-upon-Thames, UK.,Bret Palmer: Specialty Trainee in Genitourinary Medicine, 14157Oxford Deanery, UK.,Clare Wood: Specialty Trainee in Genitourinary Medicine, 71404North Western Deanery, UK.,Humera Ahmed: Clinical Pharmacist, Manchester, UK.,Sameena Ahmad: Consultant Physician in Genitourinary Medicine, Withington Clinic, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Patient Representatives (see acknowledgments).,Mark FitzGerald: Clinical Effectiveness Group Editor.,MEMBERSHIP OF THE 552485BASHH CLINICAL EFFECTIVENESS GROUP.,Dr Keith Radcliffe (Chair), Dr Mark FitzGerald, Dr Deepa Grover, Dr Steve Higgins, Dr Margaret Kingston, Dr Michael Rayment, Dr Darren Cousins, Dr Ann Sullivan, Dr Helen Fifer, Dr Craig Tipple, Dr Sarah Flew, Dr Cara Saxon
| | - Bret Palmer
- Clinical Effectiveness Group (CEG), British Association for Sexual Health and HIV (552485BASHH).,WRITING GROUP AFFILIATIONS.,Cara Saxon (Lead Author): Consultant Physician in Genitourinary Medicine, Withington Clinic, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Anne Edwards: Consultant Physician in Genitourinary Medicine, 6397Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Riina Rautemaa-Richardson: Consultant in Medical Mycology, Wythenshawe Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Caroline Owen: Consultant Dermatologist, 8943East Lancashire Hospitals NHS Trust, Blackburn, UK.,Bavithra Nathan: Consultant Physician in Genitourinary Medicine, 4262Kingston Hospital NHS Foundation Trust, Kingston-upon-Thames, UK.,Bret Palmer: Specialty Trainee in Genitourinary Medicine, 14157Oxford Deanery, UK.,Clare Wood: Specialty Trainee in Genitourinary Medicine, 71404North Western Deanery, UK.,Humera Ahmed: Clinical Pharmacist, Manchester, UK.,Sameena Ahmad: Consultant Physician in Genitourinary Medicine, Withington Clinic, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Patient Representatives (see acknowledgments).,Mark FitzGerald: Clinical Effectiveness Group Editor.,MEMBERSHIP OF THE 552485BASHH CLINICAL EFFECTIVENESS GROUP.,Dr Keith Radcliffe (Chair), Dr Mark FitzGerald, Dr Deepa Grover, Dr Steve Higgins, Dr Margaret Kingston, Dr Michael Rayment, Dr Darren Cousins, Dr Ann Sullivan, Dr Helen Fifer, Dr Craig Tipple, Dr Sarah Flew, Dr Cara Saxon
| | - Clare Wood
- Clinical Effectiveness Group (CEG), British Association for Sexual Health and HIV (552485BASHH).,WRITING GROUP AFFILIATIONS.,Cara Saxon (Lead Author): Consultant Physician in Genitourinary Medicine, Withington Clinic, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Anne Edwards: Consultant Physician in Genitourinary Medicine, 6397Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Riina Rautemaa-Richardson: Consultant in Medical Mycology, Wythenshawe Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Caroline Owen: Consultant Dermatologist, 8943East Lancashire Hospitals NHS Trust, Blackburn, UK.,Bavithra Nathan: Consultant Physician in Genitourinary Medicine, 4262Kingston Hospital NHS Foundation Trust, Kingston-upon-Thames, UK.,Bret Palmer: Specialty Trainee in Genitourinary Medicine, 14157Oxford Deanery, UK.,Clare Wood: Specialty Trainee in Genitourinary Medicine, 71404North Western Deanery, UK.,Humera Ahmed: Clinical Pharmacist, Manchester, UK.,Sameena Ahmad: Consultant Physician in Genitourinary Medicine, Withington Clinic, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Patient Representatives (see acknowledgments).,Mark FitzGerald: Clinical Effectiveness Group Editor.,MEMBERSHIP OF THE 552485BASHH CLINICAL EFFECTIVENESS GROUP.,Dr Keith Radcliffe (Chair), Dr Mark FitzGerald, Dr Deepa Grover, Dr Steve Higgins, Dr Margaret Kingston, Dr Michael Rayment, Dr Darren Cousins, Dr Ann Sullivan, Dr Helen Fifer, Dr Craig Tipple, Dr Sarah Flew, Dr Cara Saxon
| | - Humera Ahmed
- Clinical Effectiveness Group (CEG), British Association for Sexual Health and HIV (552485BASHH).,WRITING GROUP AFFILIATIONS.,Cara Saxon (Lead Author): Consultant Physician in Genitourinary Medicine, Withington Clinic, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Anne Edwards: Consultant Physician in Genitourinary Medicine, 6397Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Riina Rautemaa-Richardson: Consultant in Medical Mycology, Wythenshawe Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Caroline Owen: Consultant Dermatologist, 8943East Lancashire Hospitals NHS Trust, Blackburn, UK.,Bavithra Nathan: Consultant Physician in Genitourinary Medicine, 4262Kingston Hospital NHS Foundation Trust, Kingston-upon-Thames, UK.,Bret Palmer: Specialty Trainee in Genitourinary Medicine, 14157Oxford Deanery, UK.,Clare Wood: Specialty Trainee in Genitourinary Medicine, 71404North Western Deanery, UK.,Humera Ahmed: Clinical Pharmacist, Manchester, UK.,Sameena Ahmad: Consultant Physician in Genitourinary Medicine, Withington Clinic, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Patient Representatives (see acknowledgments).,Mark FitzGerald: Clinical Effectiveness Group Editor.,MEMBERSHIP OF THE 552485BASHH CLINICAL EFFECTIVENESS GROUP.,Dr Keith Radcliffe (Chair), Dr Mark FitzGerald, Dr Deepa Grover, Dr Steve Higgins, Dr Margaret Kingston, Dr Michael Rayment, Dr Darren Cousins, Dr Ann Sullivan, Dr Helen Fifer, Dr Craig Tipple, Dr Sarah Flew, Dr Cara Saxon
| | - Sameena Ahmad Patient Representatives
- Clinical Effectiveness Group (CEG), British Association for Sexual Health and HIV (552485BASHH).,WRITING GROUP AFFILIATIONS.,Cara Saxon (Lead Author): Consultant Physician in Genitourinary Medicine, Withington Clinic, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Anne Edwards: Consultant Physician in Genitourinary Medicine, 6397Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Riina Rautemaa-Richardson: Consultant in Medical Mycology, Wythenshawe Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Caroline Owen: Consultant Dermatologist, 8943East Lancashire Hospitals NHS Trust, Blackburn, UK.,Bavithra Nathan: Consultant Physician in Genitourinary Medicine, 4262Kingston Hospital NHS Foundation Trust, Kingston-upon-Thames, UK.,Bret Palmer: Specialty Trainee in Genitourinary Medicine, 14157Oxford Deanery, UK.,Clare Wood: Specialty Trainee in Genitourinary Medicine, 71404North Western Deanery, UK.,Humera Ahmed: Clinical Pharmacist, Manchester, UK.,Sameena Ahmad: Consultant Physician in Genitourinary Medicine, Withington Clinic, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Patient Representatives (see acknowledgments).,Mark FitzGerald: Clinical Effectiveness Group Editor.,MEMBERSHIP OF THE 552485BASHH CLINICAL EFFECTIVENESS GROUP.,Dr Keith Radcliffe (Chair), Dr Mark FitzGerald, Dr Deepa Grover, Dr Steve Higgins, Dr Margaret Kingston, Dr Michael Rayment, Dr Darren Cousins, Dr Ann Sullivan, Dr Helen Fifer, Dr Craig Tipple, Dr Sarah Flew, Dr Cara Saxon
| | - Mark FitzGerald Ceg Editor
- Clinical Effectiveness Group (CEG), British Association for Sexual Health and HIV (552485BASHH).,WRITING GROUP AFFILIATIONS.,Cara Saxon (Lead Author): Consultant Physician in Genitourinary Medicine, Withington Clinic, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Anne Edwards: Consultant Physician in Genitourinary Medicine, 6397Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Riina Rautemaa-Richardson: Consultant in Medical Mycology, Wythenshawe Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Caroline Owen: Consultant Dermatologist, 8943East Lancashire Hospitals NHS Trust, Blackburn, UK.,Bavithra Nathan: Consultant Physician in Genitourinary Medicine, 4262Kingston Hospital NHS Foundation Trust, Kingston-upon-Thames, UK.,Bret Palmer: Specialty Trainee in Genitourinary Medicine, 14157Oxford Deanery, UK.,Clare Wood: Specialty Trainee in Genitourinary Medicine, 71404North Western Deanery, UK.,Humera Ahmed: Clinical Pharmacist, Manchester, UK.,Sameena Ahmad: Consultant Physician in Genitourinary Medicine, Withington Clinic, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Patient Representatives (see acknowledgments).,Mark FitzGerald: Clinical Effectiveness Group Editor.,MEMBERSHIP OF THE 552485BASHH CLINICAL EFFECTIVENESS GROUP.,Dr Keith Radcliffe (Chair), Dr Mark FitzGerald, Dr Deepa Grover, Dr Steve Higgins, Dr Margaret Kingston, Dr Michael Rayment, Dr Darren Cousins, Dr Ann Sullivan, Dr Helen Fifer, Dr Craig Tipple, Dr Sarah Flew, Dr Cara Saxon
| |
Collapse
|
48
|
Okada S, Asano T, Moriya K, Boisson-Dupuis S, Kobayashi M, Casanova JL, Puel A. Human STAT1 Gain-of-Function Heterozygous Mutations: Chronic Mucocutaneous Candidiasis and Type I Interferonopathy. J Clin Immunol 2020; 40:1065-1081. [PMID: 32852681 DOI: 10.1007/s10875-020-00847-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Heterozygous gain-of-function (GOF) mutations in STAT1 in patients with chronic mucocutaneous candidiasis (CMC) and hypothyroidism were discovered in 2011. CMC is the recurrent or persistent mucocutaneous infection by Candida fungi, and hypothyroidism results from autoimmune thyroiditis. Patients with these diseases develop other infectious diseases, including viral, bacterial, and fungal diseases, and other autoimmune manifestations, including enterocolitis, immune cytopenia, endocrinopathies, and systemic lupus erythematosus. STAT1-GOF mutations are highly penetrant with a median age at onset of 1 year and often underlie an autosomal dominant trait. As many as 105 mutations at 72 residues, including 65 recurrent mutations, have already been reported in more than 400 patients worldwide. The GOF mechanism involves impaired dephosphorylation of STAT1 in the nucleus. Patient cells show enhanced STAT1-dependent responses to type I and II interferons (IFNs) and IL-27. This impairs Th17 cell development, which accounts for CMC. The pathogenesis of autoimmunity likely involves enhanced type I IFN responses, as in other type I interferonopathies. The pathogenesis of other infections, especially those caused by intramacrophagic bacteria and fungi, which are otherwise seen in patients with diminished type II IFN immunity, has remained mysterious. The cumulative survival rates of patients with and without severe disease (invasive infection, cancer, and/or symptomatic aneurysm) at 60 years of age are 31% and 87%, respectively. Severe autoimmunity also worsens the prognosis. The treatment of patients with STAT1-GOF mutations who suffer from severe infectious and autoimmune manifestations relies on hematopoietic stem cell transplantation and/or oral JAK inhibitors.
Collapse
Affiliation(s)
- Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Kunihiko Moriya
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Stephanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.
- Imagine Institute, University of Paris, Paris, France.
| |
Collapse
|
49
|
Garcia-Hermoso D, Hamane S, Fekkar A, Jabet A, Denis B, Siguier M, Galeazzi G, Haddad E, Brun S, Vidal V, Nevez G, Le Berre R, Gits-Muselli M, Lanternier F, Bretagne S. Invasive Infections with Nannizziopsis obscura Species Complex in 9 Patients from West Africa, France, 2004-2020 1. Emerg Infect Dis 2020; 26. [PMID: 32819454 PMCID: PMC7454062 DOI: 10.3201/eid2609.200276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nine new human invasive infections caused by the keratinophilic fungi Nannizziopsis obscura have been reported in France since 2004. The patients had variable clinical manifestations, had frequent dissemination, were mainly T-cell immunocompromised, and all originated from sub-Saharan West Africa. Before collection of the isolates, the etiologies of these infections were often misidentified, underscoring the extent of microscopic and cultural polymorphisms. All isolates but 1 had low MICs for the 8 antifungal drugs tested. When treated, patients received mainly azole therapy. Two of 7 patients with a known outcome died. We performed multilocus sequence analysis of N. obscura clinical strains and several strains of Nannizziopsis spp. isolated from reptiles. The human strains were clearly differentiated from the animal strains. N. obscura might be endemic to West Africa and responsible for undetected infections, which might become reactivated when immunosuppression occurs. N. obscura infection is probably underestimated because only sequencing enables proper identification.
Collapse
|
50
|
Paterson MJ, Caldera JR, Nguyen C, Sharma P, Castro AM, Kolar SL, Tsai CM, Limon JJ, Becker CA, Martins GA, Liu GY, Underhill DM. Harnessing antifungal immunity in pursuit of a Staphylococcus aureus vaccine strategy. PLoS Pathog 2020; 16:e1008733. [PMID: 32817694 PMCID: PMC7446838 DOI: 10.1371/journal.ppat.1008733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/22/2020] [Indexed: 02/03/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the most common bacterial infections worldwide, and antibiotic resistant strains such as Methicillin-Resistant S. aureus (MRSA) are a major threat and burden to public health. MRSA not only infects immunocompromised patients but also healthy individuals and has rapidly spread from the healthcare setting to the outside community. However, all vaccines tested in clinical trials to date have failed. Immunocompromised individuals such as patients with HIV or decreased levels of CD4+ T cells are highly susceptible to S. aureus infections, and they are also at increased risk of developing fungal infections. We therefore wondered whether stimulation of antifungal immunity might promote the type of immune responses needed for effective host defense against S. aureus. Here we show that vaccination of mice with a fungal β-glucan particle (GP) loaded with S. aureus antigens provides protective immunity to S. aureus. We generated glucan particles loaded with the four S. aureus proteins ClfA, IsdA, MntC, and SdrE, creating the 4X-SA-GP vaccine. Vaccination of mice with three doses of 4X-SA-GP promoted protection in a systemic model of S. aureus infection with a significant reduction in the bacterial burden in the spleen and kidneys. 4X-SA-GP vaccination induced antigen-specific Th1 and Th17 CD4+ T cell and antibody responses and provided long-term protection. This work suggests that the GP vaccine system has potential as a novel approach to developing vaccines for S. aureus.
Collapse
Affiliation(s)
- Marissa J. Paterson
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - JR Caldera
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Division of Infectious Diseases, Department of Pediatics, UCSD, San Diego, California, United States of America
| | - Christopher Nguyen
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Purnima Sharma
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Anthony M. Castro
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Stacey L. Kolar
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Chih-Ming Tsai
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Division of Infectious Diseases, Department of Pediatics, UCSD, San Diego, California, United States of America
| | - Jose J. Limon
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Courtney A. Becker
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Gislâine A. Martins
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Medicine, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - George Y. Liu
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Division of Infectious Diseases, Department of Pediatics, UCSD, San Diego, California, United States of America
| | - David M. Underhill
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Medicine, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| |
Collapse
|