1
|
Maternal Infection in Pregnancy and Childhood Leukemia: A Systematic Review and Meta-analysis. J Pediatr 2020; 217:98-109.e8. [PMID: 31810630 PMCID: PMC7605597 DOI: 10.1016/j.jpeds.2019.10.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/13/2019] [Accepted: 10/17/2019] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To summarize the published evidence regarding the association between maternal infection during pregnancy and childhood leukemia. STUDY DESIGN In this systematic review and meta-analysis (PROSPERO number, CRD42018087289), we searched PubMed and Embase to identify relevant studies. We included human studies that reported associations of at least one measure of maternal infection during pregnancy with acute lymphoblastic leukemia (ALL) or all childhood leukemias in the offspring. One reviewer extracted the data first using a standardized form, and the second reviewer independently checked the data for accuracy. Two reviewers used the Newcastle-Ottawa Scale to assess the quality of included studies. We conducted random effects meta-analyses to pool the ORs of specific type of infection on ALL and childhood leukemia. RESULTS This review included 20 studies (ALL, n = 15; childhood leukemia, n = 14) reported in 32 articles. Most (>65%) included studies reported a positive association between infection variables and ALL or childhood leukemia. Among specific types of infection, we found that influenza during pregnancy was associated with higher risk of ALL (pooled OR, 3.64; 95% CI, 1.34-9.90) and childhood leukemia (pooled OR, 1.77; 95% CI, 1.01-3.11). Varicella (pooled OR, 10.19; 95% CI, 1.98-52.39) and rubella (pooled OR, 2.79; 95% CI, 1.16-6.71) infections were also associated with higher childhood leukemia risk. CONCLUSIONS Our findings suggest that maternal infection during pregnancy may be associated with a higher risk of childhood leukemia.
Collapse
|
2
|
Csoboz B, Rasheed K, Sveinbjørnsson B, Moens U. Merkel cell polyomavirus and non-Merkel cell carcinomas: guilty or circumstantial evidence? APMIS 2020; 128:104-120. [PMID: 31990105 DOI: 10.1111/apm.13019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
Abstract
Merkel cell polyomavirus (MCPyV) is the major causative factor of the rare but aggressive cancer, Merkel cell carcinoma (MCC). Two characteristics of MCPyV-positive MCCs are integration of the viral genome and expression of a truncated version of one of its oncogenic proteins, namely large T antigen. The strong association of MCPyV with MCC development has incited researchers to further investigate a possible role of this virus in other cancers. However, many of the examples displaying the presence of the virus in the various non-MCC cancers are not able to clearly demonstrate a direct connection between cellular transformation and the presence of the virus. The prevalence of the virus is significantly lower in non-MCC cancers compared to MCCs, with a lower level of viral load and sparse viral protein expression. Moreover, the state of the viral genome, and whether a truncated large T antigen is expressed, has rarely been investigated. Nonetheless, considering the strong oncogenic potential of MCPyV proteins in MCC, the plausible contribution of MCPyV to transformation and cancer growth in non-MCC tumors cannot be ruled out. Furthermore, the absence of MCPyV in cancers does not exclude a hit-and-run mechanism, or the oncoproteins of MCPyV may potentiate the neoplastic process mediated by co-infecting oncoviruses such as high-risk human papillomaviruses and Epstein-Barr virus. The current review is focusing on the available data describing the presence of MCPyV in non-MCC tumors, with an aim to provide a comprehensive overview of the corresponding literature and to discuss the potential contribution of MCPyV to non-MCC cancer in light of this.
Collapse
Affiliation(s)
- Balint Csoboz
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Kashif Rasheed
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Baldur Sveinbjørnsson
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Prado JCM, Monezi TA, Amorim AT, Lino V, Paladino A, Boccardo E. Human polyomaviruses and cancer: an overview. Clinics (Sao Paulo) 2018; 73:e558s. [PMID: 30328951 PMCID: PMC6157077 DOI: 10.6061/clinics/2018/e558s] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/15/2018] [Indexed: 12/27/2022] Open
Abstract
The name of the family Polyomaviridae, derives from the early observation that cells infected with murine polyomavirus induced multiple (poly) tumors (omas) in immunocompromised mice. Subsequent studies showed that many members of this family exhibit the capacity of mediating cell transformation and tumorigenesis in different experimental models. The transformation process mediated by these viruses is driven by viral pleiotropic regulatory proteins called T (tumor) antigens. Similar to other viral oncoproteins T antigens target cellular regulatory factors to favor cell proliferation, immune evasion and downregulation of apoptosis. The first two human polyomaviruses were isolated over 45 years ago. However, recent advances in the DNA sequencing technologies led to the rapid identification of additional twelve new polyomaviruses in different human samples. Many of these viruses establish chronic infections and have been associated with conditions in immunosuppressed individuals, particularly in organ transplant recipients. This has been associated to viral reactivation due to the immunosuppressant therapy applied to these patients. Four polyomaviruses namely, Merkel cell polyomavirus (MCPyV), Trichodysplasia spinulosa polyomavirus (TSPyV), John Cunningham Polyomavirus (JCPyV) and BK polyomavirus (BKPyV) have been associated with the development of specific malignant tumors. However, present evidence only supports the role of MCPyV as a carcinogen to humans. In the present review we present a summarized discussion on the current knowledge concerning the role of MCPyV, TSPyV, JCPyV and BKPyV in human cancers.
Collapse
Affiliation(s)
- José Carlos Mann Prado
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Telma Alves Monezi
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Aline Teixeira Amorim
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Vanesca Lino
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Andressa Paladino
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Enrique Boccardo
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
4
|
Virome characterisation from Guthrie cards in children who later developed acute lymphoblastic leukaemia. Br J Cancer 2016; 115:1008-1014. [PMID: 27552439 PMCID: PMC5061901 DOI: 10.1038/bjc.2016.261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/22/2016] [Accepted: 07/29/2016] [Indexed: 12/17/2022] Open
Abstract
Background: Some childhood acute lymphoblastic leukaemias (ALL) can be traced back to a prenatal origin, where a virus infection could be involved in the first pre-leukaemic clone development. The DNA virome of 95 children who later developed ALL was characterised from neonatal blood spots (NBS) using unbiased next-generation sequencing (NGS) and compared with the virome of 95 non-ALL controls. Methods: DNA was individually extracted from the ALL-patients and controls, pooled, randomly amplified and sequenced using the Illumina MiSeq Sequencing System. Results: Virus-like sequences identified in both groups mapped to human endogenous retroviruses and propionibacterium phage, considered a part of the normal microbial flora. Potential pathogens human herpesvirus type 6 (HHV-6) and parvovirus B19 were also identified, but only few samples in both ALL and controls tested positive by PCR follow-up. Conclusions: Unbiased NGS was employed to search for DNA from potential infectious agents in neonatal samples of children who later developed ALL. Although several viral candidates were identified in the NBS samples, further investigation by PCR suggested that these viruses did not have a major role in ALL development.
Collapse
|
5
|
Csoma E, Bidiga L, Méhes G, Gergely L. No Evidence of Human Polyomavirus 9, WU and KI DNA in Kidney and Urinary Bladder Tumour Tissue Samples. Pathobiology 2016; 83:252-7. [PMID: 27198658 DOI: 10.1159/000445120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/01/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The oncogenic potential of human polyomaviruses (HPyVs) has been proposed, but so far only Merkel cell carcinoma polyomavirus seems to be associated with a human tumour. The role of BK polyomavirus (BKPyV) in human tumourigenesis remains controversial. BKPyV establishes persistent infection in the urinary tract, and renal and bladder neoplasms have been studied extensively, but conflicting prevalence data are reported. KI, WU and HPyV9 were detected in urine samples suggesting that these viruses may also infect the urinary tract, but their presence in urinary tract tumours has not been studied. The aim of this work was to examine the prevalence of KIPyV, WUPyV, HPyV9 and BKPyV by PCR in renal and bladder neoplasms. METHODS A total of 190 formalin-fixed paraffin-embedded renal neoplasms, bladder cancer and kidney biopsy samples were analysed for the presence of BKPyV, KIPyV, WUPyV and HPyV9 DNA by real-time and nested PCR. RESULTS Amplifiable DNA was extracted from all the samples, but none of the studied viruses were detected in benign renal neoplasia (0/23), malignant renal tumours (0/89) or bladder cancer (0/76). CONCLUSION Our study did not find any evidence that BKPyV, KIPyV, WUPyV or HPyV9 are associated with bladder and renal tumours.
Collapse
Affiliation(s)
- Eszter Csoma
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | | | | |
Collapse
|
6
|
Kreis C, Grotzer M, Hengartner H, Spycher BD. Space-time clustering of childhood cancers in Switzerland: A nationwide study. Int J Cancer 2016; 138:2127-35. [PMID: 26650335 DOI: 10.1002/ijc.29955] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/11/2015] [Accepted: 11/23/2015] [Indexed: 11/09/2022]
Abstract
The aetiology of childhood cancers remains largely unknown. It has been hypothesized that infections may be involved and that mini-epidemics thereof could result in space-time clustering of incident cases. Most previous studies support spatio-temporal clustering for leukaemia, while results for other diagnostic groups remain mixed. Few studies have corrected for uneven regional population shifts which can lead to spurious detection of clustering. We examined whether there is space-time clustering of childhood cancers in Switzerland identifying cases diagnosed at age <16 years between 1985 and 2010 from the Swiss Childhood Cancer Registry. Knox tests were performed on geocoded residence at birth and diagnosis separately for leukaemia, acute lymphoid leukaemia (ALL), lymphomas, tumours of the central nervous system, neuroblastomas and soft tissue sarcomas. We used Baker's Max statistic to correct for multiple testing and randomly sampled time-, sex- and age-matched controls from the resident population to correct for uneven regional population shifts. We observed space-time clustering of childhood leukaemia at birth (Baker's Max p = 0.045) but not at diagnosis (p = 0.98). Clustering was strongest for a spatial lag of <1 km and a temporal lag of <2 years (Observed/expected close pairs: 124/98; p Knox test = 0.003). A similar clustering pattern was observed for ALL though overall evidence was weaker (Baker's Max p = 0.13). Little evidence of clustering was found for other diagnostic groups (p > 0.2). Our study suggests that childhood leukaemia tends to cluster in space-time due to an etiologic factor present in early life.
Collapse
Affiliation(s)
- Christian Kreis
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | | | - Heinz Hengartner
- Children's Hospital Eastern Switzerland, St. Gallen, Switzerland
| | - Ben Daniel Spycher
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
7
|
Burger-Calderon R, Webster-Cyriaque J. Human BK Polyomavirus-The Potential for Head and Neck Malignancy and Disease. Cancers (Basel) 2015; 7:1244-70. [PMID: 26184314 PMCID: PMC4586768 DOI: 10.3390/cancers7030835] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 12/22/2022] Open
Abstract
Members of the human Polyomaviridae family are ubiquitous and pathogenic among immune-compromised individuals. While only Merkel cell polyomavirus (MCPyV) has conclusively been linked to human cancer, all members of the polyomavirus (PyV) family encode the oncoprotein T antigen and may be potentially carcinogenic. Studies focusing on PyV pathogenesis in humans have become more abundant as the number of PyV family members and the list of associated diseases has expanded. BK polyomavirus (BKPyV) in particular has emerged as a new opportunistic pathogen among HIV positive individuals, carrying harmful implications. Increasing evidence links BKPyV to HIV-associated salivary gland disease (HIVSGD). HIVSGD is associated with elevated risk of lymphoma formation and its prevalence has increased among HIV/AIDS patients. Determining the relationship between BKPyV, disease and tumorigenesis among immunosuppressed individuals is necessary and will allow for expanding effective anti-viral treatment and prevention options in the future.
Collapse
Affiliation(s)
- Raquel Burger-Calderon
- Microbiology and Immunology Department, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jennifer Webster-Cyriaque
- Microbiology and Immunology Department, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
8
|
The role of Merkel cell polyomavirus and other human polyomaviruses in emerging hallmarks of cancer. Viruses 2015; 7:1871-901. [PMID: 25866902 PMCID: PMC4411681 DOI: 10.3390/v7041871] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 12/24/2022] Open
Abstract
Polyomaviruses are non-enveloped, dsDNA viruses that are common in mammals, including humans. All polyomaviruses encode the large T-antigen and small t-antigen proteins that share conserved functional domains, comprising binding motifs for the tumor suppressors pRb and p53, and for protein phosphatase 2A, respectively. At present, 13 different human polyomaviruses are known, and for some of them their large T-antigen and small t-antigen have been shown to possess oncogenic properties in cell culture and animal models, while similar functions are assumed for the large T- and small t-antigen of other human polyomaviruses. However, so far the Merkel cell polyomavirus seems to be the only human polyomavirus associated with cancer. The large T- and small t-antigen exert their tumorigenic effects through classical hallmarks of cancer: inhibiting tumor suppressors, activating tumor promoters, preventing apoptosis, inducing angiogenesis and stimulating metastasis. This review elaborates on the putative roles of human polyomaviruses in some of the emerging hallmarks of cancer. The reciprocal interactions between human polyomaviruses and the immune system response are discussed, a plausible role of polyomavirus-encoded and polyomavirus-induced microRNA in cancer is described, and the effect of polyomaviruses on energy homeostasis and exosomes is explored. Therapeutic strategies against these emerging hallmarks of cancer are also suggested.
Collapse
|
9
|
Merkel cell polyomavirus infection in childhood: current advances and perspectives. Arch Virol 2015; 160:887-92. [PMID: 25666196 DOI: 10.1007/s00705-015-2343-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/17/2015] [Indexed: 01/20/2023]
Abstract
Merkel cell polyomavirus (MCPyV) is a newly discovered human small, non-enveloped, double-stranded DNA virus, which was classified into the Polyomaviridae family. MCPyV is acquired in early childhood through close contact involving respiratory tract secretions and causes a widespread, previously unrecognised, asymptomatic infection in both immunocompetent children and adults. To date, several researchers have established that MCPyV is the potential causative agent of Merkel cell carcinoma, a relatively rare but life-threatening skin cancer of neuroendocrine origin. In our review, we present current data on the presence of MCPyV DNA in children and address the possible role that the respiratory tract plays in the route of viral transmission. Future studies are required to fully elucidate the potential implications of MCPyV infection in children.
Collapse
|
10
|
Porrovecchio R, Babakir-Mina M, Rapanotti MC, Arcese W, Perno CF, Ciotti M. Monitoring of KI and WU polyomaviruses in hematopoietic stem cell transplant patients. J Med Virol 2013; 85:1122-4. [DOI: 10.1002/jmv.23565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2013] [Indexed: 11/09/2022]
|
11
|
Spurgeon ME, Lambert PF. Merkel cell polyomavirus: a newly discovered human virus with oncogenic potential. Virology 2013; 435:118-30. [PMID: 23217622 DOI: 10.1016/j.virol.2012.09.029] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 12/24/2022]
Abstract
A marked escalation in the rate of discovery of new types of human polyomavirus has occurred over the last five years largely owing to recent technological advances in their detection. Among the newly discovered viruses, Merkel Cell Polyomavirus (MCPyV or MCV) has gained the most attention due to its link with a rare human cancer. Infection with MCPyV is common in the human population, and the virus is detected in several anatomical locations, but most frequently in skin. Study of MCPyV molecular virology has been complicated by the lack of straightforward cell culture models, but recent in vitro studies are making strides towards understanding the virus life cycle, its cellular tropism, and mode of transmission. While MCPyV shares several traditional traits with other human polyomaviruses, the burst of research since its discovery reveals insight into a virus with many unique genetic and mechanistic features. The evidence for a causal link between MCPyV and the rare neuroendocrine cancer, Merkel Cell Carcinoma (MCC), is compelling. A majority of MCCs contain clonally integrated viral DNA, express viral T antigen transcripts and protein, and exhibit an addiction to the viral large T and small t antigen oncoproteins. The MCPyV large T antigen contains MCC tumor-specific mutations that ablate its replication capacity but preserve its oncogenic functions, and the small t antigen promotes an environment favorable for cap-dependent translation. The mechanisms of MCPyV-induced transformation have not been fully elucidated, but the likely etiological role of this new polyomavirus in human cancer provides a strong opportunity to expand knowledge of virus-host interactions and viral oncology.
Collapse
Affiliation(s)
- Megan E Spurgeon
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | |
Collapse
|
12
|
Dalianis T, Hirsch HH. Human polyomaviruses in disease and cancer. Virology 2013; 437:63-72. [PMID: 23357733 DOI: 10.1016/j.virol.2012.12.015] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 12/24/2012] [Accepted: 12/28/2012] [Indexed: 12/16/2022]
Abstract
Today the human polyomavirus (HPyV) family consists of 10 members, BK virus (BKV) and JC virus (JCV) isolated 40 years ago and the more recently identified KI virus (KIPyV), WU virus (WUPyV), Merkel cell polyomavirus (MCPyV), HPyV6, HPyV7, trichodysplasia spinulosa virus (TSPyV), HPyV9 and MWPyV. Serological studies suggest that HPyVs subclinically infect the general population with rates ranging from 35% to 90%. However, significant disease is only observed in patients with impaired immune functions. Thus, BKV has been linked to hemorrhagic cystitis (HC) after allogeneic hematopoietic stem cell transplantation and PyV-associated nephropathy (PyVAN) after kidney transplantation; JCV to progressive multifocal leukoencephalopathy (PML) in HIV-AIDS, hematological diseases and in autoimmune diseases treated with certain lymphocyte-specific antibodies. KIPyV and WUPyV have been found in the respiratory tract, HPyV6 and 7 in the skin, and HPyV9 in serum and skin, and MWPyV in stools and skin, but so far none of these PyVs have been linked to any disease. TSPyV, on the other hand, was identified in trichodysplasia spinulosa, a rare skin disease characterized by virus-induced lytic as well as proliferative tumor-like features that is observed in immune-suppressed transplant patients. In contrast to all the other HPyVs so far, MCPyV is unique in its association with a cancer, Merkel cell carcinoma, which is a rare skin cancer arising in the elderly and chronically immunosuppressed individuals. The discovery of the new HPyVs has revived interest in the Polyomaviridae and their association to human disease and cancer. In this review, we summarize knowledge about this expanding family of human pathogens.
Collapse
Affiliation(s)
- Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska R8:01, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| | | |
Collapse
|
13
|
Sadeghi M, Aronen M, Chen T, Jartti L, Jartti T, Ruuskanen O, Söderlund-Venermo M, Hedman K. Merkel cell polyomavirus and trichodysplasia spinulosa-associated polyomavirus DNAs and antibodies in blood among the elderly. BMC Infect Dis 2012; 12:383. [PMID: 23270528 PMCID: PMC3560236 DOI: 10.1186/1471-2334-12-383] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/22/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Merkel cell polyomavirus (MCPyV) and trichodysplasia spinulosa-associated polyomavirus (TSPyV) are recently found pathogens causing two rare skin disorders, Merkel cell carcinoma (MCC) and trichodysplasia spinulosa (TS). MCC is proportionally common in the elderly and most often is associated with immunosuppression. TS is a folliculocentric infection seen in patients in an immunocompromised state. Little or no baseline information exists, however, on the prevalences of these two viruses among the elderly. Epidemiologic data on this population could help in understanding their natural biology. We wished to determine the occurrences and blood levels of MCPyV and TSPyV DNAs among the elderly and any association between the prevalences of their corresponding antiviral IgG antibodies. METHODS From 394 hospitalized elderly individuals (age ≥65 years) with respiratory symptoms, cardiovascular, and other diseases, we studied 621 serum samples by four different real-time quantitative (q) PCRs, two for the DNAs of MCPyV and two for TSPyV. The IgG antibodies for both viruses among 481 serum samples of 326 subjects were measured with enzyme immunoassays (EIAs), using as antigen recombinant virus-like particles (VLPs). RESULTS Of the 394 patients, 39 (9.9%) were positive at least once for MCPyV DNA by the LT PCR, and 33 (8.4%) by the VP1 PCR, while 6 (1.5%) were positive by both PCR assays. In general, the viral DNA copy numbers were low. In sharp contrast, no TSPyV DNA was detectable with qPCRs for the corresponding genomic regions. The IgG seroprevalence of MCPyV was 59.6% and of TSPyV, 67.3%. CONCLUSIONS MCPyV DNA, unlike TSPyV DNA, occurs in low copy number in serum samples from a notable proportion of aging individuals. Whether this reflects enhanced viral replication possibly due to waning immune surveillance, and is associated with increased MCC risk, deserves exploration.
Collapse
Affiliation(s)
- Mohammadreza Sadeghi
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|