1
|
Klein OR, Ktena YP, Pierce E, Fu HH, Haile A, Liu C, Cooke KR. Defibrotide modulates pulmonary endothelial cell activation and protects against lung inflammation in pre-clinical models of LPS-induced lung injury and idiopathic pneumonia syndrome. Front Immunol 2023; 14:1186422. [PMID: 37441074 PMCID: PMC10335747 DOI: 10.3389/fimmu.2023.1186422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction A multiple organ dysfunction syndrome (MODS) workshop convened by the National Institute of Child Health and Human Development in 2015 identified acute respiratory distress syndrome (ARDS) and complications of allogeneic blood and marrow transplantation (allo-BMT) as contributors to MODS in pediatric patients. Pulmonary dysfunction also remains a significant complication of allo-BMT. Idiopathic pneumonia syndrome (IPS) defines non-infectious, acute, lung injury that occurs post-transplant. Injury and activation to endothelial cells (ECs) contribute to each form of lung inflammation. Methods Two murine models were employed. In an ARDS model, naïve B6 mice receive an intravenous (i.v.) injection of lipopolysaccharide (LPS). In the established model of IPS, naïve B6D2F1 mice receive lethal total body irradiation followed by BMT from either allogeneic (B6) or syngeneic (B6D2F1) donors. Lung inflammation was subsequently assessed in each scenario. Results Intravenous injection of LPS to B6 mice resulted in enhanced mRNA expression of TNFα, IL-6, Ang-2, E-, and P-selectin in whole lung homogenates. The expression of Ang-2 in this context is regulated in part by TNFα. Additionally, EC activation was associated with increased total protein and cellularity in broncho-alveolar lavage fluid (BALF). Similar findings were noted during the development of experimental IPS. We hypothesized that interventions maintaining EC integrity would reduce the severity of ARDS and IPS. Defibrotide (DF) is FDA approved for the treatment of BMT patients with sinusoidal obstruction syndrome and renal or pulmonary dysfunction. DF stabilizes activated ECs and protect them from further injury. Intravenous administration of DF before and after LPS injection significantly reduced mRNA expression of TNFα, IL6, Ang-2, E-, and P-selectin compared to controls. BALF showed decreased cellularity, reflecting less EC damage and leak. Allogeneic BMT mice were treated from day -1 through day 14 with DF intraperitoneally, and lungs were harvested at 3 weeks. Compared to controls, DF treatment reduced mRNA expression of TNFα, IL6, Ang-2, E-, and P- selectin, BALF cellularity, and lung histopathology. Conclusion The administration of DF modulates EC injury in models of ARDS and IPS. Cytokine inhibition in combination with agents that stabilize EC integrity may be an attractive strategy for patients in each setting.
Collapse
Affiliation(s)
- Orly R. Klein
- Department of Oncology, Pediatric Blood and Marrow Transplant Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Yiouli P. Ktena
- Department of Oncology, Pediatric Blood and Marrow Transplant Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Elizabeth Pierce
- Department of Pediatrics, Pediatric Blood and Marrow Transplant Program, Case Western Reserve University, School of Medicine, Cleveland, OH, United States
| | - Han-Hsuan Fu
- Department of Oncology, Pediatric Blood and Marrow Transplant Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Azeb Haile
- Department of Oncology, Pediatric Blood and Marrow Transplant Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Kenneth R. Cooke
- Department of Oncology, Pediatric Blood and Marrow Transplant Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| |
Collapse
|
2
|
Golomidov AV, Grigoriev EV, Moses VG, Moses KB. Pathogenesis, Prognosis and Outcomes of Multiple Organ Failure in Newborns (Review). GENERAL REANIMATOLOGY 2022; 18:37-49. [DOI: 10.15360/1813-9779-2022-6-37-49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Multiple organ failure (MOF) is the leading cause of neonatal mortality in intensive care units. The prevalence of MOF in newborns is currently unclear, since its incidence varies in asphyxia, sepsis, prematurity, and comorbidity, and depends on the level of development and funding of health care in different countries. Sepsis and acute respiratory distress syndrome prevail among the causes of MOF in this category of patients.Aim of the review. To summarize the available literature data on the pathogenesis, therapeutic strategies and outcomes of MOF in newborns.Material and methods. We searched PubMed, Scopus, Web of Science, and RSCI databases using the following keywords: «newborns, multiple organ failure, etiology, pathogenesis, premature, diagnosis, treatment, respiratory support, cardiotonic support», without language limitations. A total of 144 full-text sources were selected for analysis, 70% of which were published in the last five years and 50% were published in the last three years. Criteria for exclusion were low information value and outdated data.Results. The prevalence of MOF in neonates is currently unclear. This could be due to common association of neonatal MOF (as well as the adult one) with various diseases; thus, its incidence is not the same for asphyxia, sepsis, prematurity, and comorbidities. There is no precise data on neonatal mortality in MOF, but according to some reports, it may be as high as 13-50%.In newborns, MOF can be caused by two major causes, intrapartum/postnatal asphyxia and sepsis, but could also be influenced by other intranatal factors such as intrauterine infections and acute interruption of placental blood flow.The key element in the pathogenesis of neonate MOF is cytokinemia, which triggers universal critical pathways. Attempts to identify different clinical trajectories of critical illness in various categories of patients have led to the discovery of MOF phenotypes with specific patterns of systemic inflammatory response. This scientific trend is very promising for the creation of new classes of drugs and individual therapeutic pathways in neonates with MOF of various etiologies.The pSOFA scale is used to predict the outcome of neonatal MOF, however, the nSOFA scale has higher validity in premature infants with low birth weight.Central nervous system damage is the major MOF-associated adverse outcome in newborns, with gestational age and the timing of treatment initiation being key factors affecting risk of MOF development in both full-term and premature infants.Conclusion. The study of cellular messengers of inflammation, MOF phenotypes, mitochondrial insufficiency, and immunity in critically ill infants with MOF of various etiologies is a promising area of research. The pSOFA scale is suggested for predicting the outcome of MOF in full-term infants, while the nSOFA scale should be used in premature infants with low birth weight.
Collapse
Affiliation(s)
| | - E. V. Grigoriev
- Research Institute for Complex Problems of Cardiovascular Diseases
| | | | - K. B. Moses
- S.V. Belyaeva Kuzbass Regional Clinical Hospital
| |
Collapse
|
3
|
Weiss SL, Carcillo JA, Leclerc F, Leteurtre S, Schlapbach LJ, Tissieres P, Wynn JL, Lacroix J. Refining the Pediatric Multiple Organ Dysfunction Syndrome. Pediatrics 2022; 149:S13-S22. [PMID: 34970671 PMCID: PMC9084565 DOI: 10.1542/peds.2021-052888c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 01/05/2023] Open
Abstract
Since its introduction into the medical literature in the 1970s, the term multiple organ dysfunction syndrome (or some variant) has been applied broadly to any patient with >1 concurrent organ dysfunction. However, the epidemiology, mechanisms, time course, and outcomes among children with multiple organ dysfunction vary substantially. We posit that the term pediatric multiple organ dysfunction syndrome (or MODS) should be reserved for patients with a systemic pathologic state resulting from a common mechanism (or mechanisms) that affects numerous organ systems simultaneously. In contrast, children in whom organ injuries are attributable to distinct mechanisms should be considered to have additive organ system dysfunctions but not the syndrome of MODS. Although such differentiation may not always be possible with current scientific knowledge, we make the case for how attempts to differentiate multiple organ dysfunction from other states of additive organ dysfunctions can help to evolve clinical and research priorities in diagnosis, monitoring, and therapy from largely organ-specific to more holistic strategies.
Collapse
Affiliation(s)
- Scott L. Weiss
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Pennsylvania
| | | | - Francis Leclerc
- University of Lille, Centre Hospitalier Universitaire de Lille, ULR 2694–METRICS: Évaluation des technologies de santé et des pratiques médicales, Lille, France
| | - Stephane Leteurtre
- University of Lille, Centre Hospitalier Universitaire de Lille, ULR 2694–METRICS: Évaluation des technologies de santé et des pratiques médicales, Lille, France
| | - Luregn J. Schlapbach
- Paediatric ICU, Queensland Children ’s Hospital, Brisbane, Queensland, Australia,Pediatric and Neonatal Intensive Care Unit, Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Pierre Tissieres
- Pediatric Intensive Care, Assistance Publique–Hôpitaux de Paris–Saclay University, Le Kremlin-Bicêtre, France
| | - James L. Wynn
- Department of Pediatrics, University of Florida, Gainesville, Florida,Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Jacques Lacroix
- Division of Pediatric Critical Care Medicine, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Glaser N, Chu S, Hung B, Fernandez L, Wulff H, Tancredi D, ODonnell ME. Acute and chronic neuroinflammation is triggered by diabetic ketoacidosis in a rat model. BMJ Open Diabetes Res Care 2020; 8:e001793. [PMID: 33318070 PMCID: PMC7737057 DOI: 10.1136/bmjdrc-2020-001793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Cognitive decline is common in patients with type 1 diabetes and has been attributed to the effects of chronic hyperglycemia and severe hypoglycemia. Diabetic ketoacidosis (DKA) has only recently been suspected to be involved in causing cognitive decline. We hypothesized that DKA triggers both acute and chronic neuroinflammation, contributing to brain injury. RESEARCH METHODS AND DESIGN We measured concentrations of cytokines, chemokines and matrix metalloproteinases (MMP) in serum and brain tissue lysates in juvenile rats during and after DKA (during acute DKA, 24 hours and 7 days after DKA), and compared these to healthy controls and hyperglycemic controls. We also measured cytokine, chemokine and MMP concentrations in serum and brain tissue of adult rats (70 days) that had experienced DKA as juveniles and compared these measurements to those of adult diabetic rats without exposure to DKA. RESULTS During acute DKA in the juvenile rats, serum concentrations of CCL3, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and MMP-9 were significantly increased. Serum concentrations of IL-2 and IL-17A increased 7 days after DKA recovery. In brain tissue lysates, concentrations of CCL3, CCL5, interferon (IFN)-γ and MMP-9 were significantly elevated during acute DKA. In adult rats that had DKA as juveniles (28 days previously), serum concentrations of IL-1ß and brain concentrations of IL-10 and IL-12p70 were elevated in comparison to diabetic rats without prior DKA. Composite scores for highly correlated cytokines and chemokines (mean z-scores for IL-10, IL-1ß, TNF-α, IL-17A, IFN-γ, CXCL-1 and CCL5) were also significantly elevated in adult rats with prior DKA. CONCLUSIONS These data confirm that DKA causes acute systemic inflammation and neuroinflammation in a rat model. Importantly, the neuroinflammatory response triggered by DKA is long-lasting, suggesting the possibility that DKA-induced chronic neuroinflammation could contribute to long-term cognitive decline in individuals with diabetes.
Collapse
Affiliation(s)
- Nicole Glaser
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, USA
| | - Steven Chu
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, USA
| | - Benjamin Hung
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Sacramento, California, USA
| | - Luis Fernandez
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, USA
| | - Heike Wulff
- Department of Pharmacology, University of California Davis School of Medicine, Sacramento, California, USA
| | - Daniel Tancredi
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, California, USA
| | - Martha E ODonnell
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
5
|
Merbecks MB, Ziesenitz VC, Rubner T, Meier N, Klein B, Rauch H, Saur P, Ritz N, Loukanov T, Schmitt S, Gorenflo M. Intermediate monocytes exhibit higher levels of TLR2, TLR4 and CD64 early after congenital heart surgery. Cytokine 2020; 133:155153. [PMID: 32554157 DOI: 10.1016/j.cyto.2020.155153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/16/2020] [Accepted: 05/30/2020] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Congenital heart surgery with cardiopulmonary bypass (CPB) initiates an immune response which frequently leads to organ dysfunction and a systemic inflammatory response. Complications associated with exacerbated immune responses may severely impact the postoperative recovery. The objective was to describe the characteristics of monocyte subpopulations and neutrophils at the level of pattern recognition receptors (PRR) and the cytokine response after CPB in infants. METHODS An observational cohort study was conducted between June 2016 and June 2017 of infants < 2 years of age, electively admitted for surgical correction of acyanotic congenital heart defects using CPB. Fourteen blood samples were collected sequentially and processed immediately during and up to 48 h following cardiac surgery for each patient. Flow cytometry analysis comprised monocytic and granulocytic surface expression of CD14, CD16, CD64, TLR2, TLR4 and Dectin-1 (CLEC7A). Monocyte subpopulations were further defined as classical (CD14++/CD16-), intermediate (CD14++/CD16+) and nonclassical (CD14+/CD16++) monocytes. Plasma concentrations of 14 cytokines, including G-CSF, GM-CSF, IL-1β, IL-1RA, IL-4, IL-6, IL-8, IL-10, IL-12p40, IL-12p70, TNF-α, IFN-γ, MIP-1β (CCL4) and TGF-β1, were measured using multiplex immunoassay for seven points in time. RESULTS Samples from 21 infants (median age 7.4 months) were analyzed by flow cytometry and from 11 infants, cytokine concentrations were measured. Classical and intermediate monocytes showed first receptor upregulation with an increase in CD64 expression four hours post CPB. CD64-expression on intermediate monocytes almost tripled 48 h post CPB (p < 0.0001). TLR4 was only increased on intermediate monocytes, occurring 12 h post CPB (p = 0.0406) along with elevated TLR2 levels (p = 0.0002). TLR4 expression on intermediate monocytes correlated with vasoactive-inotropic score (rs = 0.642, p = 0.0017), duration of ventilation (rs = 0.485, p = 0.0259), highest serum creatinine (rs = 0.547, p = 0.0102), postsurgical transfusion (total volume per kg bodyweight) (rs = 0.469, p = 0.0321) and lowest mean arterial pressure (rs = -0.530, p = 0.0135). Concentrations of IL-10, MIP-1β, IL-8, G-CSF and IL-6 increased one hour post CPB. Methylprednisolone administration in six patients had no significant influence on the studied surface receptors but led to lower IL-8 and higher IL-10 plasma concentrations. CONCLUSIONS Congenital heart surgery with CPB induces a systemic inflammatory process including cytokine response and changes in PRR expression. Intermediate monocytes feature specific inflammatory characteristics in the 48 h after pediatric CPB and TLR4 correlates with poorer clinical course, which might provide a potential diagnostic or even therapeutic target.
Collapse
Affiliation(s)
- Moritz B Merbecks
- Department of Pediatric and Congenital Cardiology, University Hospital Heidelberg, Germany.
| | - Victoria C Ziesenitz
- Department of Pediatric and Congenital Cardiology, University Hospital Heidelberg, Germany.
| | - Tobias Rubner
- Flow Cytometry Service Unit, German Cancer Research Center, Heidelberg, Germany.
| | - Noëmi Meier
- Department of Paediatric Infectious Diseases and Vaccinology, University Hospital Basel, Switzerland
| | - Berthold Klein
- Department of Cardiovascular Perfusion, University Hospital Heidelberg, Germany.
| | - Helmut Rauch
- Division of Pediatric Cardiac Anesthesiology, Department of Anesthesiology, University Hospital Heidelberg, Germany.
| | - Patrick Saur
- Department of Pediatric and Congenital Cardiology, University Hospital Heidelberg, Germany.
| | - Nicole Ritz
- Department of Paediatric Infectious Diseases and Vaccinology, University Hospital Basel, Switzerland.
| | - Tsvetomir Loukanov
- Division of Pediatric Cardiac Surgery, Department of Cardiac Surgery, University Hospital Heidelberg, Germany.
| | - Steffen Schmitt
- Flow Cytometry Service Unit, German Cancer Research Center, Heidelberg, Germany.
| | - Matthias Gorenflo
- Department of Pediatric and Congenital Cardiology, University Hospital Heidelberg, Germany.
| |
Collapse
|
6
|
Shein SL, Rotta AT. Risk Factors and Etiologies of Pediatric Acute Respiratory Distress Syndrome. PEDIATRIC ACUTE RESPIRATORY DISTRESS SYNDROME 2020. [PMCID: PMC7121855 DOI: 10.1007/978-3-030-21840-9_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The risk factors for acute respiratory distress syndrome (ARDS) have been a focus for clinicians and researchers from the original description in 1967 to the most recent Pediatric Acute Lung Injury Consensus Conference (PALICC). Indeed, there are many comorbidities and risk factors that predispose a patient to develop pediatric ARDS (PARDS) including, but not limited to, immunodeficiency, weight extremes, genetics, and environmental factors. These are particularly important to investigators because accurate prediction of which patients are at greatest risk of PARDS – both the development of PARDS and worse clinical outcomes after PARDS has been established – is key to identifying the next generation of diagnostic techniques and preventative strategies. In addition to those risk factors, there are specific disease processes that lead to the development of PARDS, often divided into direct or pulmonary insults and indirect or extrapulmonary insults. Finally, beyond the clinically visible risk factors, researchers are attempting to identify novel biomarkers to uncover hidden phenotypes of PARDS and enrich the prognostication and prediction of patient outcomes. This chapter delves into each of these concepts.
Collapse
Affiliation(s)
- Steven L. Shein
- Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, OH USA
| | - Alexandre T. Rotta
- Duke University School of Medicine, Duke University Medical Center, Durham, NC USA
| |
Collapse
|
7
|
CAR-T Cell Therapy for Acute Lymphoblastic Leukemia: Transforming the Treatment of Relapsed and Refractory Disease. Curr Hematol Malig Rep 2018; 13:396-406. [DOI: 10.1007/s11899-018-0470-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Greenhalgh DG. Sepsis in the burn patient: a different problem than sepsis in the general population. BURNS & TRAUMA 2017; 5:23. [PMID: 28795054 PMCID: PMC5547526 DOI: 10.1186/s41038-017-0089-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/04/2017] [Indexed: 12/29/2022]
Abstract
Sepsis has recently been defined as "life-threatening organ dysfunction caused by a dysregulated host response to infection". A great amount of effort has been made to develop early treatments for sepsis through the Surviving Sepsis Campaign. There are similar but slightly different recommendations for the treatment of sepsis in the pediatric population. These international efforts have led to earlier diagnosis and treatments for sepsis that have led to improvements in survival. Sepsis is also the leading cause of death in the burn patient but most clinical sepsis studies have excluded burns. The reason for the exclusion is that the sepsis found in burn patients is different than that of the general population. The early treatment strategies, such as those directed by the Surviving Sepsis Campaign, focus on patients presenting to hospitals with recent signs of infection. Burn patients lose their primary barrier to infection, the skin, and thus the risk of infection persists as long as that barrier is absent. Efforts have been made to define sepsis, septic shock and infection in the burn population but there is constant need for revisions. One focus of this review is to discuss the differences in burn sepsis versus sepsis of the general population. Children often have profound responses to sepsis but can also make remarkable recoveries. This review will also explore problems specific to pediatric burns. The treatment of burns requires a continuous vigilance to watch for the subtle early signs of sepsis and then expeditious initiation of aggressive therapy. Strategies covering optimal management of pediatric burn sepsis will also be summarized.
Collapse
Affiliation(s)
- David G Greenhalgh
- Shriners Hospitals for Children Northern California, 2425 Stockton Blvd., Sacramento, CA 95817 USA.,Firefighters Regional Burn Center at University of California, Davis, USA.,Department of Surgery, University of California, Davis, USA
| |
Collapse
|
9
|
|