1
|
Miyashita N, Onozawa M, Kasahara K, Matsukawa T, Onodera Y, Suzuki K, Takaku T, Teshima T, Kondo T. CML With Mutant ASXL1 Showed Decreased Sensitivity to TKI Treatment via Upregulation of the ALOX5-BLTR Signaling Pathway. Cancer Sci 2025; 116:1115-1125. [PMID: 39905783 PMCID: PMC11967257 DOI: 10.1111/cas.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/11/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
In this study, the mechanisms of tyrosine kinase inhibitor (TKI) resistance in chronic myeloid leukemia (CML) were investigated focusing additional sex combs-like 1 (ASXL1) gene mutations and their downstream effects. While TKIs have improved the prognosis of CML, some patients have shown resistant to therapy. Cases with mutations in epigenome-related genes such as ASXL1 are known to have a poor prognosis, but the underlying mechanisms of the poor prognosis are unclear. We showed that mutated ASXL1 reduces TKI sensitivity in CML cell lines, and RNA microarray analysis revealed that arachidonate 5-lipoxygenase (ALOX5) is a significantly upregulated gene under the conditional expression of mutated ASXL1. Enforced ALOX5 expression induced TKI resistance, while ALOX5 knockout increased TKI sensitivity. ALOX5 downstream signal inhibition by LY293111, a leukotriene B4 receptor (BLTR) antagonist, suppressed AKT phosphorylation and enhanced TKI sensitivity. This study revealed that TKI resistance in CML with ASXL1 mutation was induced via ALOX5 overexpression. ASXL1 mutations may confer a clonal advantage through activation of the AKT pathway following ALOX5 overexpression. While combined use of LY293111 with TKIs and asciminib showed synergistic effects against CML cells, the ALOX5-BLTR signaling pathway is novel therapeutic target for CML patients with mutated ASXL1.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Arachidonate 5-Lipoxygenase/genetics
- Arachidonate 5-Lipoxygenase/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Drug Resistance, Neoplasm/genetics
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Mutation
- Cell Line, Tumor
- Receptors, Leukotriene B4/metabolism
- Receptors, Leukotriene B4/genetics
- Up-Regulation
- Proto-Oncogene Proteins c-akt/metabolism
Collapse
Affiliation(s)
- Naoki Miyashita
- Department of HematologyHokkaido University Faculty of Medicine, Graduate School of MedicineSapporoJapan
| | - Masahiro Onozawa
- Department of HematologyHokkaido University Faculty of Medicine, Graduate School of MedicineSapporoJapan
| | - Kohei Kasahara
- Department of HematologyHokkaido University Faculty of Medicine, Graduate School of MedicineSapporoJapan
| | - Toshihiro Matsukawa
- Department of HematologyHokkaido University Faculty of Medicine, Graduate School of MedicineSapporoJapan
| | - Yasuhito Onodera
- Department of Molecular BiologyHokkaido University Graduate School of MedicineSapporoJapan
| | - Kohjin Suzuki
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Tomoiku Takaku
- Department of HematologySaitama Medical UniversitySaitamaJapan
| | - Takanori Teshima
- Department of HematologyHokkaido University Faculty of Medicine, Graduate School of MedicineSapporoJapan
| | | |
Collapse
|
2
|
Haggstrom L, Chan WY, Nagrial A, Chantrill LA, Sim HW, Yip D, Chin V. Chemotherapy and radiotherapy for advanced pancreatic cancer. Cochrane Database Syst Rev 2024; 12:CD011044. [PMID: 39635901 PMCID: PMC11619003 DOI: 10.1002/14651858.cd011044.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BACKGROUND Pancreatic cancer (PC) is a lethal disease with few effective treatment options. Many anti-cancer therapies have been tested in the locally advanced and metastatic setting, with mixed results. This review synthesises all the randomised data available to help better inform patient and clinician decision-making. It updates the previous version of the review, published in 2018. OBJECTIVES To assess the effects of chemotherapy, radiotherapy, or both on overall survival, severe or life-threatening adverse events, and quality of life in people undergoing first-line treatment of advanced pancreatic cancer. SEARCH METHODS We searched for published and unpublished studies in CENTRAL, MEDLINE, Embase, and CANCERLIT, and handsearched various sources for additional studies. The latest search dates were in March and July 2023. SELECTION CRITERIA We included randomised controlled trials comparing chemotherapy, radiotherapy, or both with another intervention or best supportive care. Participants were required to have locally advanced, unresectable pancreatic cancer or metastatic pancreatic cancer not amenable to curative intent treatment. Histological confirmation was required. Trials were required to report overall survival. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included 75 studies in the review and 51 in the meta-analysis (11,333 participants). We divided the studies into seven categories: any anti-cancer treatment versus best supportive care; various chemotherapy types versus gemcitabine; gemcitabine-based combinations versus gemcitabine alone; various chemotherapy combinations versus gemcitabine plus nab-paclitaxel; fluoropyrimidine-based studies; miscellaneous studies; and radiotherapy studies. In general, the included studies were at low risk for random sequence generation, detection bias, attrition bias, and reporting bias, at unclear risk for allocation concealment, and high risk for performance bias. Compared to best supportive care, chemotherapy likely results in little to no difference in overall survival (OS) (hazard ratio (HR) 1.08, 95% confidence interval (CI) 0.88 to 1.33; absolute risk of death at 12 months of 971 per 1000 versus 962 per 1000; 4 studies, 298 participants; moderate-certainty evidence). The adverse effects of chemotherapy and impacts on quality of life (QoL) were uncertain. Many of the chemotherapy regimens were outdated. Eight studies compared non-gemcitabine-based chemotherapy regimens to gemcitabine. These showed that 5-fluorouracil (5FU) likely reduces OS (HR 1.69, 95% CI 1.26 to 2.27; risk of death at 12 months of 914 per 1000 versus 767 per 1000; 1 study, 126 participants; moderate certainty), and grade 3/4 adverse events (QoL not reported). Fixed dose rate gemcitabine likely improves OS (HR 0.79, 95% CI 0.66 to 0.94; risk of death at 12 months of 683 per 1000 versus 767 per 1000; 2 studies, 644 participants; moderate certainty), and likely increase grade 3/4 adverse events (QoL not reported). FOLFIRINOX improves OS (HR 0.51, 95% CI 0.43 to 0.60; risk of death at 12 months of 524 per 1000 versus 767 per 1000; P < 0.001; 2 studies, 652 participants; high certainty), and delays deterioration in QoL, but increases grade 3/4 adverse events. Twenty-eight studies compared gemcitabine-based combinations to gemcitabine. Gemcitabine plus platinum may result in little to no difference in OS (HR 0.94, 95% CI 0.81 to 1.08; risk of death at 12 months of 745 per 1000 versus 767 per 1000; 6 studies, 1140 participants; low certainty), may increase grade 3/4 adverse events, and likely worsens QoL. Gemcitabine plus fluoropyrimidine improves OS (HR 0.88, 95% CI 0.81 to 0.95; risk of death at 12 months of 722 per 1000 versus 767 per 1000; 10 studies, 2718 participants; high certainty), likely increases grade 3/4 adverse events, and likely improves QoL. Gemcitabine plus topoisomerase inhibitors result in little to no difference in OS (HR 1.01, 95% CI 0.87 to 1.16; risk of death at 12 months of 770 per 1000 versus 767 per 1000; 3 studies, 839 participants; high certainty), likely increases grade 3/4 adverse events, and likely does not alter QoL. Gemcitabine plus taxane result in a large improvement in OS (HR 0.71, 95% CI 0.62 to 0.81; risk of death at 12 months of 644 per 1000 versus 767 per 1000; 2 studies, 986 participants; high certainty), and likely increases grade 3/4 adverse events and improves QoL. Nine studies compared chemotherapy combinations to gemcitabine plus nab-paclitaxel. Fluoropyrimidine-based combination regimens improve OS (HR 0.79, 95% CI 0.70 to 0.89; risk of death at 12 months of 542 per 1000 versus 628 per 1000; 6 studies, 1285 participants; high certainty). The treatment arms had distinct toxicity profiles, and there was little to no difference in QoL. Alternative schedules of gemcitabine plus nab-paclitaxel likely result in little to no difference in OS (HR 1.10, 95% CI 0.82 to 1.47; risk of death at 12 months of 663 per 1000 versus 628 per 1000; 2 studies, 367 participants; moderate certainty) or QoL, but may increase grade 3/4 adverse events. Four studies compared fluoropyrimidine-based combinations to fluoropyrimidines alone, with poor quality evidence. Fluoropyrimidine-based combinations are likely to result in little to no impact on OS (HR 0.84, 95% CI 0.61 to 1.15; risk of death at 12 months of 765 per 1000 versus 704 per 1000; P = 0.27; 4 studies, 491 participants; moderate certainty) versus fluoropyrimidines alone. The evidence suggests that there was little to no difference in grade 3/4 adverse events or QoL between the two groups. We included only one radiotherapy (iodine-125 brachytherapy) study with 165 participants. The evidence is very uncertain about the effect of radiotherapy on outcomes. AUTHORS' CONCLUSIONS Combination chemotherapy remains standard of care for metastatic pancreatic cancer. Both FOLFIRINOX and gemcitabine plus a taxane improve OS compared to gemcitabine alone. Furthermore, the evidence suggests that fluoropyrimidine-based combination chemotherapy regimens improve OS compared to gemcitabine plus nab-paclitaxel. The effects of radiotherapy were uncertain as only one low-quality trial was included. Selection of the most appropriate chemotherapy for individuals still remains unpersonalised, with clinicopathological stratification remaining elusive. Biomarker development is essential to assist in rationalising treatment selection for patients.
Collapse
Affiliation(s)
- Lucy Haggstrom
- Medical Oncology, The Kinghorn Cancer Care Centre, St Vincent's Hospital, Sydney, Australia
- Medical Oncology, Illawarra Shoalhaven Local Health District, Wollongong, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Wei Yen Chan
- Medical Oncology, The Kinghorn Cancer Care Centre, St Vincent's Hospital, Sydney, Australia
- Medical Oncology, Chris O'Brien Lifehouse, Sydney, Australia
| | - Adnan Nagrial
- The Crown Princess Mary Cancer Centre, Westmead, Australia
- Medical School, The University of Sydney, Sydney, Australia
| | - Lorraine A Chantrill
- Medical Oncology, Illawarra Shoalhaven Local Health District, Wollongong, Australia
- University of Wollongong, Wollongong, Australia
| | - Hao-Wen Sim
- Medical Oncology, The Kinghorn Cancer Care Centre, St Vincent's Hospital, Sydney, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Desmond Yip
- Department of Medical Oncology, The Canberra Hospital, Garran, Australia
- ANU Medical School, Australian National University, Acton, Australia
| | - Venessa Chin
- Medical Oncology, The Kinghorn Cancer Care Centre, St Vincent's Hospital, Sydney, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
- Medical Oncology, Garvan Institute of Medical Research, Sydney, Australia
| |
Collapse
|
3
|
Yokomizo T, Shimizu T. The leukotriene B 4 receptors BLT1 and BLT2 as potential therapeutic targets. Immunol Rev 2023; 317:30-41. [PMID: 36908237 DOI: 10.1111/imr.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Leukotriene B4 (LTB4 ) was recognized as an arachidonate-derived chemotactic factor for inflammatory cells and an important drug target even before the molecular identification of its receptors. We cloned the high- and low-affinity LTB4 receptors, BLT1 and BLT2, respectively, and examined their functions by generating and studying gene-targeted mice. BLT1 is involved in the pathogenesis of various inflammatory and immune diseases, including asthma, psoriasis, contact dermatitis, allergic conjunctivitis, age-related macular degeneration, and immune complex-mediated glomerulonephritis. Meanwhile, BLT2 is a high-affinity receptor for 12-hydroxyheptadecatrienoic acid, which is involved in the maintenance of dermal and intestinal barrier function, and the acceleration of skin and corneal wound healing. Thus, BLT1 antagonists and BLT2 agonists are promising candidates in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Takao Shimizu
- Institute of Microbial Chemistry, Tokyo, Japan
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Salem ME, Mahrous EM, Ragab EA, Nafie MS, Dawood KM. Synthesis of novel mono- and bis-pyrazolylthiazole derivatives as anti-liver cancer agents through EGFR/HER2 target inhibition. BMC Chem 2023; 17:51. [PMID: 37291635 DOI: 10.1186/s13065-023-00921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/23/2023] [Indexed: 06/10/2023] Open
Abstract
3-Bromoacetyl-4-(2-naphthoyl)-1-phenyl-1H-pyrazole (6) was synthesized from 2-acetylnaphthalene and was used as a new key building block for constructing the title targets. Thus, the reaction of 6 with the thiosemicarbazones 7a-d and 9-11 afforded the corresponding simple naphthoyl-(3-pyrazolyl)thiazole hybrids 8a-d and 12 ~ 14. The symmetric bis-(2-naphthoyl-pyrazol-3-yl)thiazol-2-yl)hydrazono)methyl)phenoxy)alkanes 18a-c and 21a-c were similarly synthesized from reaction of 6 with the appropriate bis-thiosemicarbazones 17a-c and 19a-c, respectively. The synthesized two series of simple and symmetrical bis-molecular hybrid merging naphthalene, thiazole, and pyrazole were evaluated for their cytotoxicity. Compounds 18b,c and 21a showed the most potent cytotoxicity (IC50 = 0.97-3.57 µM) compared to Lapatinib (IC50 = 7.45 µM). Additionally, they were safe (non-cytotoxic) against the THLE2 cells with higher IC50 values. Compounds 18c exhibited promising EGFR and HER-2 inhibitory activities with IC50 = 4.98 and 9.85 nM, respectively, compared to Lapatinib (IC50 = 6.1 and 17.2 nM). Apoptosis investigation revealed that 18c significantly activated apoptotic cell death in HepG2 cells, increasing the death rate by 63.6-fold and arresting cell proliferation at the S-phase. Compound 18c upregulated P53 by 8.6-fold, Bax by 8.9-fold, caspase-3,8,9 by 9, 2.3, and 7.6-fold, while it inhibited the Bcl-2 expression by 0.34-fold. Thereby, compound 18c exhibited promising cytotoxicity against EGFR/HER2 inhibition against liver cancer.
Collapse
Affiliation(s)
- Mostafa E Salem
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Esraa M Mahrous
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Eman A Ragab
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed S Nafie
- Department of Chemistry (Biochemistry program), Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
5
|
Göbel T, Goebel B, Hyprath M, Lamminger I, Weisser H, Angioni C, Mathes M, Thomas D, Kahnt AS. Three-dimensional growth reveals fine-tuning of 5-lipoxygenase by proliferative pathways in cancer. Life Sci Alliance 2023; 6:e202201804. [PMID: 36849252 PMCID: PMC9971161 DOI: 10.26508/lsa.202201804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
The leukotriene (LT) pathway is positively correlated with the progression of solid malignancies, but the factors that control the expression of 5-lipoxygenase (5-LO), the central enzyme in LT biosynthesis, in tumors are poorly understood. Here, we report that 5-LO along with other members of the LT pathway is up-regulated in multicellular colon tumor spheroids. This up-regulation was inversely correlated with cell proliferation and activation of PI3K/mTORC-2- and MEK-1/ERK-dependent pathways. Furthermore, we found that E2F1 and its target gene MYBL2 were involved in the repression of 5-LO during cell proliferation. Importantly, we found that this PI3K/mTORC-2- and MEK-1/ERK-dependent suppression of 5-LO is also existent in tumor cells from other origins, suggesting that this mechanism is widely applicable to other tumor entities. Our data show that tumor cells fine-tune 5-LO and LT biosynthesis in response to environmental changes repressing the enzyme during proliferation while making use of the enzyme under cell stress conditions, implying that tumor-derived 5-LO plays a role in the manipulation of the tumor stroma to quickly restore cell proliferation.
Collapse
Affiliation(s)
- Tamara Göbel
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Bjarne Goebel
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Marius Hyprath
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Ira Lamminger
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Hannah Weisser
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Carlo Angioni
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, ZAFES, Goethe University, Frankfurt, Germany
| | - Marius Mathes
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, ZAFES, Goethe University, Frankfurt, Germany
- Fraunhofer Institute of Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Astrid S Kahnt
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| |
Collapse
|
6
|
Saier L, Peyruchaud O. Emerging role of cysteinyl LTs in cancer. Br J Pharmacol 2021; 179:5036-5055. [PMID: 33527344 DOI: 10.1111/bph.15402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/28/2020] [Accepted: 01/23/2021] [Indexed: 01/31/2023] Open
Abstract
Cysteinyl leukotrienes (CysLTs) are inflammatory lipid mediators that play a central role in the pathophysiology of several inflammatory diseases. Recently, there has been an increased interest in determining how these lipid mediators orchestrate tumour development and metastasis through promoting a pro-tumour micro-environment. Up-regulation of CysLTs receptors and CysLTs production is found in a number of cancers and has been associated with increased tumorigenesis. Understanding the molecular mechanisms underlying the role of CysLTs and their receptors in cancer progression will help investigate the potential of targeting CysLTs signalling for anti-cancer therapy. This review gives an overview of the biological effects of CysLTs and their receptors, along with current knowledge of their regulation and expression. It also provides a recent update on the molecular mechanisms that have been postulated to explain their role in tumorigenesis and on the potential of anti-CysLTs in the treatment of cancer.
Collapse
Affiliation(s)
- Lou Saier
- INSERM, Unit 1033, LYOS, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France
| | - Olivier Peyruchaud
- INSERM, Unit 1033, LYOS, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
7
|
Yeh C, Bates SE. Two decades of research toward the treatment of locally advanced and metastatic pancreatic cancer: Remarkable effort and limited gain. Semin Oncol 2021; 48:34-46. [PMID: 33712267 DOI: 10.1053/j.seminoncol.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/20/2021] [Indexed: 01/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy that is diagnosed at the locally advanced or metastatic stage in approximately 80% of cases. Relative to other tumor types, progress in the treatment of this disease has been painfully slow. While agents targeting DNA repair have proven successful in a subset of patients, the majority of PDACs do not exhibit validated molecular targets. Hence, conventional chemotherapy remains at the forefront of therapy for this disease. In this review, we study two decades of efforts to improve upon the gemcitabine backbone - 67 phase II and III trials enrolling 16,446 patients - that culminated in the approvals of gemcitabine/nab-paclitaxel (Gem/NabP) and FOLFIRINOX. Today, these remain gold standards for the first-line treatment of locally advanced unresectable and metastatic PDAC, while ongoing efforts focus on improving upon the Gem/NabP backbone. Because real world data often do not reflect the data of randomized controlled trials (RCTs), we also summarize the retrospective evidence comparing the efficacy of Gem/NabP and FOLFIRINOX in the first-line setting - 29 studies reporting a median overall survival of 10.7 and 9.1 months for FOLFIRINOX and Gem/NabP, respectively. These values are surprisingly comparable to those reported by the pivotal RCTs at 11.1 and 8.5 months. Finally, there is a paucity of RCT data regarding the efficacy of second-line therapy. Hence, we conclude this review by summarizing the data that ultimately demonstrate a small but significant survival benefit of second-line therapy with Gem/NabP or FOLFIRINOX. Collectively, these studies describe the long journey, the steady effort, and the myriad lessons to be learned from 20 years of PDAC trials to inform strategies for success in clinical trials moving forward.
Collapse
Affiliation(s)
- Celine Yeh
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Susan E Bates
- James J. Peters VA Medical Center, Bronx, NY; Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY.
| |
Collapse
|
8
|
Smith CL, Thomas Z, Enas N, Thorn K, Lahn M, Benhadji K, Cleverly A. Leveraging historical data into oncology development programs: Two case studies of phase 2 Bayesian augmented control trial designs. Pharm Stat 2020; 19:276-290. [PMID: 31903699 DOI: 10.1002/pst.1990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 11/05/2022]
Abstract
Leveraging historical data into the design and analysis of phase 2 randomized controlled trials can improve efficiency of drug development programs. Such approaches can reduce sample size without loss of power. Potential issues arise when the current control arm is inconsistent with historical data, which may lead to biased estimates of treatment efficacy, loss of power, or inflated type 1 error. Consideration as to how to borrow historical information is important, and in particular, adjustment for prognostic factors should be considered. This paper will illustrate two motivating case studies of oncology Bayesian augmented control (BAC) trials. In the first example, a glioblastoma study, an informative prior was used for the control arm hazard rate. Sample size savings were 15% to 20% by using a BAC design. In the second example, a pancreatic cancer study, a hierarchical model borrowing method was used, which enabled the extent of borrowing to be determined by consistency of observed study data with historical studies. Supporting Bayesian analyses also adjusted for prognostic factors. Incorporating historical data via Bayesian trial design can provide sample size savings, reduce study duration, and enable a more scientific approach to development of novel therapies by avoiding excess recruitment to a control arm. Various sensitivity analyses are necessary to interpret results. Current industry efforts for data transparency have meaningful implications for access to patient-level historical data, which, while not critical, is helpful to adjust for potential imbalances in prognostic factors.
Collapse
|
9
|
Mrowka P, Glodkowska-Mrowka E. PPARγ Agonists in Combination Cancer Therapies. Curr Cancer Drug Targets 2019; 20:197-215. [PMID: 31814555 DOI: 10.2174/1568009619666191209102015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/03/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear receptor acting as a transcription factor involved in the regulation of energy metabolism, cell cycle, cell differentiation, and apoptosis. These unique properties constitute a strong therapeutic potential that place PPARγ agonists as one of the most interesting and widely studied anticancer molecules. Although PPARγ agonists exert significant, antiproliferative and tumoricidal activity in vitro, their anticancer efficacy in animal models is ambiguous, and their effectiveness in clinical trials in monotherapy is unsatisfactory. However, due to pleiotropic effects of PPARγ activation in normal and tumor cells, PPARγ ligands interact with many antitumor treatment modalities and synergistically potentiate their effectiveness. The most spectacular example is a combination of PPARγ ligands with tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML). In this setting, PPARγ activation sensitizes leukemic stem cells, resistant to any previous form of treatment, to targeted therapy. Thus, this combination is believed to be the first pharmacological therapy able to cure CML patients. Within the last decade, a significant body of data confirming the benefits of the addition of PPARγ ligands to various antitumor therapies, including chemotherapy, hormonotherapy, targeted therapy, and immunotherapy, has been published. Although the majority of these studies have been carried out in vitro or animal tumor models, a few successful attempts to introduce PPARγ ligands into anticancer therapy in humans have been recently made. In this review, we aim to summarize shines and shadows of targeting PPARγ in antitumor therapies.
Collapse
Affiliation(s)
- Piotr Mrowka
- Department of Biophysics and Human Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Eliza Glodkowska-Mrowka
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland.,Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| |
Collapse
|
10
|
Abstract
OBJECTIVES We evaluated how well phase II trials in locally advanced and metastatic pancreatic cancer (LAMPC) meet current recommendations for trial design. METHODS We conducted a systematic review of phase II first-line treatment trial for LAMPC. We assessed baseline characteristics, type of comparison, and primary end point to examine adherence to the National Cancer Institute recommendations for trial design. RESULTS We identified 148 studies (180 treatment arms, 7505 participants). Forty-seven (32%) studies adhered to none of the 5 evaluated National Cancer Institute recommendations, 62 (42%) followed 1, 31 (21%) followed 2, and 8 (5%) followed 3 recommendations. Studies varied with respect to the proportion of patients with good performance status (range, 0%-80%) and locally advanced disease (range, 14%-100%). Eighty-two (55%) studies concluded that investigational agents should progress to phase III testing; of these, 24 (16%) had documented phase III trials. Three (8%) phase III trials demonstrated clinically meaningful improvements for investigational agents. One of 38 phase II trials that investigated biological investigational agents was enriched for a biomarker. CONCLUSIONS Phase II trials do not conform well to current recommendations for trial design in LAMPC.
Collapse
|
11
|
Khan AQ, Kuttikrishnan S, Siveen KS, Prabhu KS, Shanmugakonar M, Al-Naemi HA, Haris M, Dermime S, Uddin S. RAS-mediated oncogenic signaling pathways in human malignancies. Semin Cancer Biol 2019; 54:1-13. [PMID: 29524560 DOI: 10.1016/j.semcancer.2018.03.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/06/2018] [Indexed: 02/07/2023]
Abstract
Abnormally activated RAS proteins are the main oncogenic driver that governs the functioning of major signaling pathways involved in the initiation and development of human malignancies. Mutations in RAS genes and or its regulators, most frequent in human cancers, are the main force for incessant RAS activation and associated pathological conditions including cancer. In general, RAS is the main upstream regulator of the highly conserved signaling mechanisms associated with a plethora of important cellular activities vital for normal homeostasis. Mutated or the oncogenic RAS aberrantly activates a web of interconnected signaling pathways including RAF-MEK (mitogen-activated protein kinase kinase)-ERK (extracellular signal-regulated kinase), phosphoinositide-3 kinase (PI3K)/AKT (protein kinase B), protein kinase C (PKC) and ral guanine nucleotide dissociation stimulator (RALGDS), etc., leading to uncontrolled transcriptional expression and reprogramming in the functioning of a range of nuclear and cytosolic effectors critically associated with the hallmarks of carcinogenesis. This review highlights the recent literature on how oncogenic RAS negatively use its signaling web in deregulating the expression and functioning of various effector molecules in the pathogenesis of human malignancies.
Collapse
Affiliation(s)
- Abdul Q Khan
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Shilpa Kuttikrishnan
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Kodappully S Siveen
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Kirti S Prabhu
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Hamda A Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Mohammad Haris
- Translational Medicine Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
12
|
Archambault AS, Poirier S, Lefebvre JS, Robichaud PP, Larose MC, Turcotte C, Martin C, Provost V, Boudreau LH, McDonald PP, Laviolette M, Surette ME, Flamand N. 20-Hydroxy- and 20-carboxy-leukotriene (LT) B4
downregulate LTB4
-mediated responses of human neutrophils and eosinophils. J Leukoc Biol 2019; 105:1131-1142. [DOI: 10.1002/jlb.ma0718-306r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/30/2018] [Accepted: 12/15/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Anne-Sophie Archambault
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval; Département de médecine; Faculté de médecine; Université Laval; Québec City QC G1V 4G5 Canada
| | - Samuel Poirier
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval; Département de médecine; Faculté de médecine; Université Laval; Québec City QC G1V 4G5 Canada
- Département de chimie et de biochimie; Université de Moncton; Moncton NB E1A 3E9 Canada
| | - Julie-S Lefebvre
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval; Département de médecine; Faculté de médecine; Université Laval; Québec City QC G1V 4G5 Canada
| | | | - Marie-Chantal Larose
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval; Département de médecine; Faculté de médecine; Université Laval; Québec City QC G1V 4G5 Canada
| | - Caroline Turcotte
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval; Département de médecine; Faculté de médecine; Université Laval; Québec City QC G1V 4G5 Canada
| | - Cyril Martin
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval; Département de médecine; Faculté de médecine; Université Laval; Québec City QC G1V 4G5 Canada
| | - Véronique Provost
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval; Département de médecine; Faculté de médecine; Université Laval; Québec City QC G1V 4G5 Canada
| | - Luc H. Boudreau
- Département de chimie et de biochimie; Université de Moncton; Moncton NB E1A 3E9 Canada
| | - Patrick P. McDonald
- Centre de recherche du CHUS et Faculté de Médecine; Université de Sherbrooke; Sherbrooke QC J1H 5N4 Canada
| | - Michel Laviolette
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval; Département de médecine; Faculté de médecine; Université Laval; Québec City QC G1V 4G5 Canada
| | - Marc E. Surette
- Département de chimie et de biochimie; Université de Moncton; Moncton NB E1A 3E9 Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval; Département de médecine; Faculté de médecine; Université Laval; Québec City QC G1V 4G5 Canada
| |
Collapse
|
13
|
|
14
|
Zhang S, Xie W, Zou Y, Xie S, Zhang J, Yuan W, Ma J, Zhao J, Zheng C, Chen Y, Wang C. First-line chemotherapy regimens for locally advanced and metastatic pancreatic adenocarcinoma: a Bayesian analysis. Cancer Manag Res 2018; 10:5965-5978. [PMID: 30538546 PMCID: PMC6254987 DOI: 10.2147/cmar.s162980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background Systemic chemotherapy is the standard treatment for locally advanced and metastatic pancreatic cancer, but there is no consensus on the optimum regimen. We aimed to compare and rank the locally advanced and metastatic pancreatic adenocarcinoma chemotherapy regimens evaluated in randomized controlled trials (RCTs) in the past 15 years. Materials and methods PubMed, Embase, Cochrane Collaboration database, and ClinicalTrials.gov were searched for RCTs comparing chemotherapy regimens as first-line treatment for locally advanced and metastatic pancreatic adenocarcinomas. By using Bayesian network meta-analysis, we compared and ranked all included chemotherapy regimens in terms of overall survival, progression-free survival, response rate, and hematological toxicity. Results The analysis included 68 RCTs, with 14,908 patients and 63 treatment strategies. For overall survival, NSC-631570 (hazard ratio [HR] vs gemcitabine monotherapy 0.44, 95% credible interval: 0.24–0.76) and gemcitabine+NSC-631570 (HR 0.45, 0.24–0.86) were the two top-ranked chemotherapy regimens. For progression-free survival, PEFG (cisplatin + epirubicin + fluorouracil + gemcitabine) ranked first (HR 0.51, 0.34–0.77). PG (gemcitabine + pemetrexed) (odds ratio [OR] 4.68, 2.24–9.64) and FLEC (fluorouracil + leucovorin + epirubicin + carboplatin) (OR 4.52, 1.14–24.00) were ranked the most hematologically toxic, with gastrazole having the least toxicity (OR 0.03, 0.00–0.46). Conclusion The chemotherapy regimens NSC-631570 and gemcitabine+NSC-631570 were ranked the most efficacious for locally advanced and metastatic pancreatic adenocarcinomas in terms of overall survival, which warrants further confirmation in large-scale RCTs.
Collapse
Affiliation(s)
- Shuisheng Zhang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, ; .,Department of General Surgery, Peking University Third Hospital
| | - Weimin Xie
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital
| | - Yinghua Zou
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital
| | - Shuanghua Xie
- Department of Cancer Epidemiology and Health Statistics
| | - Jianwei Zhang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, ;
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College.,Clinical Immunology Center, Chinese Academy of Medical Science
| | - Jie Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College.,Clinical Immunology Center, Chinese Academy of Medical Science.,Department of Biotherapy, Beijing Hospital, National Center of Gerontology, Beijing
| | - Jiuda Zhao
- Department of Medical Oncology, Affiliated Hospital of Qinghai University, Xining
| | - Cuiling Zheng
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingtai Chen
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, ;
| | - Chengfeng Wang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, ;
| |
Collapse
|
15
|
Golan T, Geva R, Richards D, Madhusudan S, Lin BK, Wang HT, Walgren RA, Stemmer SM. LY2495655, an antimyostatin antibody, in pancreatic cancer: a randomized, phase 2 trial. J Cachexia Sarcopenia Muscle 2018; 9:871-879. [PMID: 30051975 PMCID: PMC6204586 DOI: 10.1002/jcsm.12331] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 06/10/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cachexia is a formidable clinical challenge in pancreatic cancer. We assessed LY2495655 (antimyostatin antibody) plus standard-of-care chemotherapy in pancreatic cancer using cachexia status as a stratifier. METHODS In this randomized, phase 2 trial, patients with stage II-IV pancreatic cancer were randomized to 300 mg LY2495655, 100 mg LY2495655, or placebo, plus physician-choice chemotherapy from a prespecified list of standard-of-care regimens for first and later lines of care. Investigational treatment was continued during second-line treatment. The primary endpoint was overall survival. RESULTS Overall, 125 patients were randomized. In August 2014, 300 mg LY2495655 was terminated due to imbalance in death rates between the treatment arms; in January 2015, 100 mg LY2495655 treatment was terminated due to futility. LY2495655 did not improve overall survival: the hazard ratio was 1.70 (90% confidence interval, 1.1-2.7) for 300 mg vs. placebo and 1.3 (0.82-2.1) for 100 mg vs. placebo (recommended doses). Progression-free survival results were consistent with the overall survival results. A numerically higher hazard ratio was observed in patients with weight loss (WL) of ≥5% (cachexia) than with <5% WL within 6 months before randomization. Subgroup analyses for patients stratified by WL in the 6 months preceding enrollment suggested that functional responses to LY2495655 (either dose) may have been superior in patients with <5% WL vs. patients with ≥5% WL. Among possibly drug-related adverse events, fatigue, diarrhoea, and anorexia were more common in LY2495655-treated than in placebo-treated patients. CONCLUSIONS In the intention-to-treat analysis, LY2495655 did not confer clinical benefit in pancreatic cancer. Our data highlight the importance of assessing survival when investigating therapeutic management of cachexia and support the use of WL as a stratifier (independent of performance status).
Collapse
Affiliation(s)
| | - Ravit Geva
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Srinivasan Madhusudan
- Academic Oncology, University of Nottingham, School of Medicine, Nottingham University Hospitals, City Hospital Campus, Nottingham, UK
| | | | | | | | - Salomon M Stemmer
- Rabin Medical Center, Petach Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Merchant N, Bhaskar LVKS, Momin S, Sujatha P, Reddy ABM, Nagaraju GP. 5-Lipoxygenase: Its involvement in gastrointestinal malignancies. Crit Rev Oncol Hematol 2018; 127:50-55. [PMID: 29891111 DOI: 10.1016/j.critrevonc.2018.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/16/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Lipoxygenases (LOXs) are dioxygenases that catalyze the peroxidation of linoleic acid (LA) or arachidonic acid (AA), in the presence of molecular oxygen. The existence of inflammatory component in the tumor microenvironment intimately links the LOXs to gastrointestinal (GI) cancer progression. Amongst the six-different human LOX-isoforms, 5-LOX is the most vital enzyme for leukotriene (LT) biosynthesis, which is the main inflammation intermediaries. As recent investigations have shown the association of 5-LOX with tumor metastasis, there has also been significant progress in discovering the function of 5-LOX pathway in GI cancer. Studies on GI cancer cells using the pharmacological drugs targeting 5-LOX pathway have shown antiproliferative and proapoptotic effects. Pharmacogenetic discoveries in other diseases have revealed strong heritable basis for the leukotriene pathway, which helps in exploring the mechanistic source of genetic alteration within the leukotriene pathway and offer insights into GI cancer pathogenesis and future prospects for treatment and prevention. This review recapitulates the current research status of 5-LOX activity in GI malignancies.
Collapse
Affiliation(s)
- Neha Merchant
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | | | - Saimila Momin
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Peela Sujatha
- Department of Biotechnology, Dr. B.R. Ambedkar University, Etcherla, Srikakulam, Andhra Pradesh, 532410, India
| | - Aramati B M Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
17
|
Abstract
INTRODUCTION Pancreatic cancer continues to have high mortality despite the development of many chemotherapeutic agents. The 5-year relative survival for stage IV patients is less than 3%. This urgent unmet need warrants the development of novel and active therapeutic agents, which focus both on targeting cancer cells and modifying the microenvironment of cancer cells. Areas covered: In this article, the authors review the development of masitinib, a novel tyrosine kinase inhibitor of numerous targets, including c-Kit, PDGFR and FGFR. This review covers its development from the bench to clinical trials assessing its potential in pancreatic cancer. Expert opinion: While masitinib has not shown an increase in overall survival (OS) or progression free survival (PFS) compared to the current standard of care in patients with pancreatic adenocarcinoma, masitinib may have a role in decreasing inflammation related to those patients with increased pain scores with pancreatic adenocarcinoma. If we have the tools to identify accurate subgroups of patients who may benefit from particular therapies, this agent may be of benefit to these patients. Indeed, if more sophisticated biomarkers and the identification of patient subgroups are better explained, the authors believe that masitinib will become part of the armamentarium against pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Anem Waheed
- a Division of Hematology and Oncology , Tufts University School of Medicine , Boston , MA , USA
| | - Sneha Purvey
- a Division of Hematology and Oncology , Tufts University School of Medicine , Boston , MA , USA
| | - Muhammad Wasif Saif
- a Division of Hematology and Oncology , Tufts University School of Medicine , Boston , MA , USA
| |
Collapse
|
18
|
Chin V, Nagrial A, Sjoquist K, O'Connor CA, Chantrill L, Biankin AV, Scholten RJPM, Yip D, Cochrane Upper GI and Pancreatic Diseases Group. Chemotherapy and radiotherapy for advanced pancreatic cancer. Cochrane Database Syst Rev 2018; 3:CD011044. [PMID: 29557103 PMCID: PMC6494171 DOI: 10.1002/14651858.cd011044.pub2] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) is a highly lethal disease with few effective treatment options. Over the past few decades, many anti-cancer therapies have been tested in the locally advanced and metastatic setting, with mixed results. This review attempts to synthesise all the randomised data available to help better inform patient and clinician decision-making when dealing with this difficult disease. OBJECTIVES To assess the effect of chemotherapy, radiotherapy or both for first-line treatment of advanced pancreatic cancer. Our primary outcome was overall survival, while secondary outcomes include progression-free survival, grade 3/4 adverse events, therapy response and quality of life. SEARCH METHODS We searched for published and unpublished studies in CENTRAL (searched 14 June 2017), Embase (1980 to 14 June 2017), MEDLINE (1946 to 14 June 2017) and CANCERLIT (1999 to 2002) databases. We also handsearched all relevant conference abstracts published up until 14 June 2017. SELECTION CRITERIA All randomised studies assessing overall survival outcomes in patients with advanced pancreatic ductal adenocarcinoma. Chemotherapy and radiotherapy, alone or in combination, were the eligible treatments. DATA COLLECTION AND ANALYSIS Two review authors independently analysed studies, and a third settled any disputes. We extracted data on overall survival (OS), progression-free survival (PFS), response rates, adverse events (AEs) and quality of life (QoL), and we assessed risk of bias for each study. MAIN RESULTS We included 42 studies addressing chemotherapy in 9463 patients with advanced pancreatic cancer. We did not identify any eligible studies on radiotherapy.We did not find any benefit for chemotherapy over best supportive care. However, two identified studies did not have sufficient data to be included in the analysis, and many of the chemotherapy regimens studied were outdated.Compared to gemcitabine alone, participants receiving 5FU had worse OS (HR 1.69, 95% CI 1.26 to 2.27, moderate-quality evidence), PFS (HR 1.47, 95% CI 1.12 to 1.92) and QoL. On the other hand, two studies showed FOLFIRINOX was better than gemcitabine for OS (HR 0.51 95% CI 0.43 to 0.60, moderate-quality evidence), PFS (HR 0.46, 95% CI 0.38 to 0.57) and response rates (RR 3.38, 95% CI 2.01 to 5.65), but it increased the rate of side effects. The studies evaluating CO-101, ZD9331 and exatecan did not show benefit or harm when compared with gemcitabine alone.Giving gemcitabine at a fixed dose rate improved OS (HR 0.79, 95% CI 0.66 to 0.94, high-quality evidence) but increased the rate of side effects when compared with bolus dosing.When comparing gemcitabine combinations to gemcitabine alone, gemcitabine plus platinum improved PFS (HR 0.80, 95% CI 0.68 to 0.95) and response rates (RR 1.48, 95% CI 1.11 to 1.98) but not OS (HR 0.94, 95% CI 0.81 to 1.08, low-quality evidence). The rate of side effects increased. Gemcitabine plus fluoropyrimidine improved OS (HR 0.88, 95% CI 0.81 to 0.95), PFS (HR 0.79, 95% CI 0.72 to 0.87) and response rates (RR 1.78, 95% CI 1.29 to 2.47, high-quality evidence), but it also increased side effects. Gemcitabine plus topoisomerase inhibitor did not improve survival outcomes but did increase toxicity. One study demonstrated that gemcitabine plus nab-paclitaxel improved OS (HR 0.72, 95% CI 0.62 to 0.84, high-quality evidence), PFS (HR 0.69, 95% CI 0.58 to 0.82) and response rates (RR 3.29, 95% CI 2.24 to 4.84) but increased side effects. Gemcitabine-containing multi-drug combinations (GEMOXEL or cisplatin/epirubicin/5FU/gemcitabine) improved OS (HR 0.55, 95% CI 0.39 to 0.79, low-quality evidence), PFS (HR 0.43, 95% CI 0.30 to 0.62) and QOL.We did not find any survival advantages when comparing 5FU combinations to 5FU alone. AUTHORS' CONCLUSIONS Combination chemotherapy has recently overtaken the long-standing gemcitabine as the standard of care. FOLFIRINOX and gemcitabine plus nab-paclitaxel are highly efficacious, but our analysis shows that other combination regimens also offer a benefit. Selection of the most appropriate chemotherapy for individual patients still remains difficult, with clinicopathological stratification remaining elusive. Biomarker development is essential to help rationalise treatment selection for patients.
Collapse
Affiliation(s)
- Venessa Chin
- Garvan Institute of Medical ResearchThe Kinghorn Cancer Centre384 Victoria Street DarlinghurstSydneyNSWAustralia2010
- St Vincent's HospitalSydneyNSWAustralia
| | - Adnan Nagrial
- Garvan Institute of Medical ResearchThe Kinghorn Cancer Centre384 Victoria Street DarlinghurstSydneyNSWAustralia2010
- The Crown Princess Mary Cancer CentreDarcy RoadWestmeadNSWAustralia2145
| | - Katrin Sjoquist
- University of SydneyNHMRC Clinical Trials CentreK25 ‐ Medical Foundation BuildingSydneyNSWAustralia2006
- Cancer Care Centre, St George HospitalMedical OncologySt George Hospital, Gray StKogarahAustraliaNSW 2217
| | - Chelsie A O'Connor
- St Vincent's HospitalSydneyNSWAustralia
- Genesis Cancer CareSydneyNSWAustralia
- Macquarie University HospitalSydneyAustralia
| | - Lorraine Chantrill
- The Kinghorn Cancer Centre, Garvan Institute of Medical ResearchDepartment of Pancreatic Cancer382 Victoria Street DarlinghurstSydneyNSWAustralia2010
| | - Andrew V Biankin
- University of GlasgowInstitute of Cancer SciencesWolfson Wohl Cancer Research CentreGarscube Estate, Switchback RoadGlasgowUKG61 1QH
- University of New South WalesSouth Western Sydney Clinical School, Faculty of MedicineLiverpoolNSWAustralia2170
- West of Scotland Pancreatic Unit and Glasgow Royal InfirmaryGlasgowUK
| | - Rob JPM Scholten
- Julius Center for Health Sciences and Primary Care / University Medical Center UtrechtCochrane NetherlandsRoom Str. 6.126P.O. Box 85500UtrechtNetherlands3508 GA
| | - Desmond Yip
- The Canberra HospitalDepartment of Medical OncologyYamba DriveGarranACTAustralia2605
- Australian National UniversityANU Medical SchoolActonACTAustralia0200
| | | |
Collapse
|
19
|
Lee EKS, Gillrie MR, Li L, Arnason JW, Kim JH, Babes L, Lou Y, Sanati-Nezhad A, Kyei SK, Kelly MM, Mody CH, Ho M, Yipp BG. Leukotriene B4-Mediated Neutrophil Recruitment Causes Pulmonary Capillaritis during Lethal Fungal Sepsis. Cell Host Microbe 2017; 23:121-133.e4. [PMID: 29290576 DOI: 10.1016/j.chom.2017.11.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/12/2017] [Accepted: 11/27/2017] [Indexed: 11/24/2022]
Abstract
Candida albicans bloodstream infection causes fungal septicaemia and death in over half of afflicted patients. Polymorphonuclear leukocytes (PMN) mediate defense against invasive candidiasis, but their role in protection versus tissue injury and sepsis is unclear. We observe PMN intravascular swarming and subsequent clustering in response to C. albicans yeast in a lethal septic mouse and human pulmonary circulation model. Live C. albicans sequester to the endothelium and are immediately captured by complement-dependent PMN chemotaxis, which is required for host survival. However, complement activation also leads to Leukotriene B4 (LTB4)-mediated intravascular PMN clustering and occlusion, resulting in capillaritis with pulmonary hemorrhage and hypoxemia. This clustering is unique to fungi and triggered by fungal cell wall components. PMN clustering is absent in mice lacking LTB4-receptor, and capillaritis is attenuated upon pharmacological LTB4 blockade without affecting phagocytosis. Therefore, therapeutically disrupting infection-induced capillaritis may limit organ injury without impairing host defense during fungal sepsis.
Collapse
Affiliation(s)
- Esther K S Lee
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark R Gillrie
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Medicine, Division of Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lu Li
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jason W Arnason
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jung Hwan Kim
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Liane Babes
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yuefei Lou
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Amir Sanati-Nezhad
- Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory, Center for BioEngineering Research and Education, University of Calgary, Calgary, AB, Canada
| | - Stephen K Kyei
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Margaret M Kelly
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christopher H Mody
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - May Ho
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan G Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
20
|
Bhatt L, Roinestad K, Van T, Springman E. Recent advances in clinical development of leukotriene B4 pathway drugs. Semin Immunol 2017; 33:65-73. [DOI: 10.1016/j.smim.2017.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/04/2017] [Accepted: 08/08/2017] [Indexed: 12/23/2022]
|
21
|
Hamada T, Nakai Y, Isayama H, Yasunaga H, Matsui H, Takahara N, Mizuno S, Kogure H, Matsubara S, Yamamoto N, Tada M, Koike K. Progression-free survival as a surrogate for overall survival in first-line chemotherapy for advanced pancreatic cancer. Eur J Cancer 2016; 65:11-20. [PMID: 27451020 DOI: 10.1016/j.ejca.2016.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/24/2016] [Accepted: 05/15/2016] [Indexed: 02/09/2023]
Abstract
BACKGROUND Overall survival (OS), as the primary end-point in first-line chemotherapy trials, requires a prolonged follow-up time and may be confounded by subsequent regimens. This study aimed to evaluate the correlation between OS and surrogate end-points (progression-free survival [PFS], response rate and disease control rate), and to identify a potential surrogate for OS in advanced pancreatic cancer. METHODS Based on an electronic search, we identified randomized controlled phase II and III trials of first-line chemotherapy for advanced pancreatic cancer. Correlation analyses were performed between surrogate end-points and OS, and between improvements in surrogates and those in OS. RESULTS Fifty trials (II/II-III/III, 17/2/31) with 111 treatment arms were identified, and 15,906 patients were analysed. PFS was most strongly correlated with OS (correlation coefficient, 0.76). Weighted linear regression models revealed the greatest determinant coefficient of 0.84 between the hazard ratio (HR) of the experimental arms compared with the control arms of PFS and that of OS. The approximate equation was log HROS = 0.01 + 0.77 × log HRPFS, indicating that risk reduction of OS via chemotherapy would translate into a 77% risk reduction of PFS. The surrogacy of PFS for OS was robust throughout our subgroup analyses: e.g., biologic versus non-biologic regimens, locally advanced versus metastatic disease. CONCLUSIONS The surrogacy of PFS for OS in pancreatic cancer was validated. Therefore, the use of PFS as the primary end-point in clinical trials could facilitate the early introduction of new effective chemotherapy regimens into clinical practice.
Collapse
Affiliation(s)
- Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Hiroyuki Isayama
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Hideo Yasunaga
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan.
| | - Hiroki Matsui
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan.
| | - Naminatsu Takahara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Suguru Mizuno
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Hirofumi Kogure
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Saburo Matsubara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Natsuyo Yamamoto
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Minoru Tada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
22
|
Venerito M, Helmke C, Jechorek D, Wex T, Rosania R, Antweiler K, Weigt J, Malfertheiner P. Leukotriene receptor expression in esophageal squamous cell cancer and non-transformed esophageal epithelium: a matched case control study. BMC Gastroenterol 2016; 16:85. [PMID: 27475906 PMCID: PMC4967508 DOI: 10.1186/s12876-016-0499-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/21/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Leukotriene B4 (LTB4R and LTB4R2) and cysteinyl leukotriene receptors (CYSLTR1 and CYSLTR2) contribute to malignant cell transformation. We aimed to investigate the expression of LTB4R, LTB4R2, CYSLTR1 and CYSLTR2 in esophageal squamous cell carcinoma and adjacent non-transformed squamous epithelium of the esophagus, as well as in control biopsy samples from esophageal squamous epithelium of patients with functional dyspepsia. METHODS Expression of LTB4R, LTB4R2, CYSLTR1 and CYSLTR2 was analyzed by immunohistochemistry (IHC) and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in biopsy samples of 19 patients with esophageal squamous cell cancer and 9 sex- and age-matched patients with functional dyspepsia. RESULTS LTB4R, LTB4R2, CYSLTR1 and CYSLTR2 were expressed in all biopsy samples. Major findings were: 1) protein levels of all leukotriene receptors were significantly increased in esophageal squamous cell cancer compared to control mucosa (p < 0.05); 2) CYSLTR1 and CYSLTR2 gene expression was decreased in cancer tissue compared to control at 0.26-fold and 0.23-fold respectively; 3) an up-regulation of LTB4R (mRNA and protein expression) and a down-regulation of CYSLTR2 (mRNA expression) in non-transformed epithelium of cancer patients compared to control (p < 0.05) was observed. CONCLUSIONS The expression of leukotriene receptors was deregulated in esophageal squamous cell cancer. Up-regulation of LTB4R and down-regulation of CYSLTR2 gene expression may occur already in normal squamous esophageal epithelium of patients with esophageal cancer suggesting a potential role of these receptors in early steps of esophageal carcinogenesis. Larger studies are warranted to confirm these observations.
Collapse
Affiliation(s)
- M Venerito
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - C Helmke
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - D Jechorek
- Institute of Pathology, Otto-von-Guericke University Hospital, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - T Wex
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - R Rosania
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - K Antweiler
- Department of Biometrics and Medical Informatics, Otto-von-Guericke University Hospital, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - J Weigt
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - P Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Leipziger Str. 44, 39120, Magdeburg, Germany.
| |
Collapse
|
23
|
Mao YH, Yu CZ. Current situation and predicament of multidisciplinary treatment of pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2015; 23:5750-5759. [DOI: 10.11569/wcjd.v23.i36.5750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic adenocarcinoma is one of the deadliest solid malignancies. As the anatomy position of the pancreas is deep, most patients are difficult to diagnose in the early stage. Approximately 40% of patients are diagnosed with locally advanced or metastatic disease at the time of diagnosis, which severely limits the number of patients who can undergo surgical resection. There is an urgent need to explore new treatments or comprehensive treatment for pancreatic cancer, in order to improve the long-term survival rate and quality of life. Recent therapeutic advances for advanced pancreatic cancer have improved overall survival, but the prognosis remains grim. This article reviews both the major therapeutic strategies and their predicaments for pancreatic adenocarcinoma, including currently ongoing clinical trials about use of the new agents and technologies.
Collapse
|
24
|
Poczobutt JM, Nguyen TT, Hanson D, Li H, Sippel TR, Weiser-Evans MCM, Gijon M, Murphy RC, Nemenoff RA. Deletion of 5-Lipoxygenase in the Tumor Microenvironment Promotes Lung Cancer Progression and Metastasis through Regulating T Cell Recruitment. THE JOURNAL OF IMMUNOLOGY 2015; 196:891-901. [PMID: 26663781 DOI: 10.4049/jimmunol.1501648] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022]
Abstract
Eicosanoids, including PGs, produced by cyclooxygenases (COX), and leukotrienes, produced by 5-lipoxygenase (5-LO) have been implicated in cancer progression. These molecules are produced by both cancer cells and the tumor microenvironment (TME). We previously reported that both COX and 5-LO metabolites increase during progression in an orthotopic immunocompetent model of lung cancer. Although PGs in the TME have been well studied, less is known regarding 5-LO products produced by the TME. We examined the role of 5-LO in the TME using a model in which Lewis lung carcinoma cells are directly implanted into the lungs of syngeneic WT mice or mice globally deficient in 5-LO (5-LO-KO). Unexpectedly, primary tumor volume and liver metastases were increased in 5-LO-KO mice. This was associated with an ablation of leukotriene (LT) production, consistent with production mainly mediated by the microenvironment. Increased tumor progression was partially reproduced in global LTC4 synthase KO or mice transplanted with LTA4 hydrolase-deficient bone marrow. Tumor-bearing lungs of 5-LO-KO had decreased numbers of CD4 and CD8 T cells compared with WT controls, as well as fewer dendritic cells. This was associated with lower levels of CCL20 and CXL9, which have been implicated in dendritic and T cell recruitment. Depletion of CD8 cells increased tumor growth and eliminated the differences between WT and 5-LO mice. These data reveal an antitumorigenic role for 5-LO products in the microenvironment during lung cancer progression through regulation of T cells and suggest that caution should be used in targeting this pathway in lung cancer.
Collapse
Affiliation(s)
| | - Teresa T Nguyen
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045
| | - Dwight Hanson
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045
| | - Howard Li
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045; Veterans Affairs Medical Center, Denver, CO 80220; and
| | - Trisha R Sippel
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045
| | - Mary C M Weiser-Evans
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045; Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045
| | - Miguel Gijon
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045
| | - Raphael A Nemenoff
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045; Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045
| |
Collapse
|
25
|
Kim EJ, Semrad TJ, Bold RJ. Phase II clinical trials on investigational drugs for the treatment of pancreatic cancers. Expert Opin Investig Drugs 2015; 24:781-94. [PMID: 25809274 PMCID: PMC4684166 DOI: 10.1517/13543784.2015.1026963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Despite some recent advances in treatment options, pancreatic cancer remains a devastating disease with poor outcomes. In a trend contrary to most malignancies, both incidence and mortality continue to rise due to pancreatic cancer. The majority of patients present with advanced disease and there are no treatment options for this stage that have demonstrated a median survival > 1 year. As the penultimate step prior to Phase III studies involving hundreds of patients, Phase II clinical trials provide an early opportunity to evaluate the efficacy of new treatments that are desperately needed for this disease. AREAS COVERED This review covers the results of published Phase II clinical trials in advanced pancreatic adenocarcinoma published within the past 5 years. The treatment results are framed in the context of the current standards of care and the historic challenge of predicting Phase III success from Phase II trial results. EXPERT OPINION Promising therapies remain elusive in pancreatic cancer based on recent Phase II clinical trial results. Optimization and standardization of clinical trial design in the Phase II setting, with consistent incorporation of biomarkers, is needed to more accurately identify promising therapies that warrant Phase III evaluation.
Collapse
Affiliation(s)
- Edward J. Kim
- Division of Hematology and Oncology, UC Davis Cancer Center, Sacramento, CA 95817, USA
| | - Thomas J. Semrad
- Division of Hematology and Oncology, UC Davis Cancer Center, Sacramento, CA 95817, USA
| | - Richard J. Bold
- Division of Surgical Oncology, UC Davis Cancer Center, Sacramento, CA 95817, USA
| |
Collapse
|
26
|
Teague A, Lim KH, Wang-Gillam A. Advanced pancreatic adenocarcinoma: a review of current treatment strategies and developing therapies. Ther Adv Med Oncol 2015; 7:68-84. [PMID: 25755680 DOI: 10.1177/1758834014564775] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pancreatic adenocarcinoma is one of the deadliest solid malignancies. A large proportion of patients are diagnosed with locally advanced or metastatic disease at the time of presentation and, unfortunately, this severely limits the number of patients who can undergo surgical resection, which offers the only chance for cure. Recent therapeutic advances for patients with advanced pancreatic cancer have extended overall survival, but prognosis still remains grim. Given that traditional chemotherapy is ineffective in curing advanced pancreatic adenocarcinoma, current research is taking a multidirectional approach in the hopes of developing more effective treatments. This article reviews the major clinical trial data that is the basis for the current chemotherapy regimens used as first- and second-line treatments for advanced pancreatic adenocarcinoma. We also review the current ongoing clinical trials, which include the use of agents targeting the oncogenic network signaling of K-Ras, agents targeting the extracellular matrix, and immune therapies.
Collapse
Affiliation(s)
- Andrea Teague
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea Wang-Gillam
- Division of Oncology, Department of Medicine, Campus Box 8056, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
27
|
Polvani S, Tarocchi M, Tempesti S, Galli A. Nuclear receptors and pathogenesis of pancreatic cancer. World J Gastroenterol 2014; 20:12062-12081. [PMID: 25232244 PMCID: PMC4161795 DOI: 10.3748/wjg.v20.i34.12062] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a median overall survival time of 5 mo and the five years survival less than 5%, a rate essentially unchanged over the course of the years. A well defined progression model of accumulation of genetic alterations ranging from single point mutations to gross chromosomal abnormalities has been introduced to describe the origin of this disease. However, due to the its subtle nature and concurring events PDAC cure remains elusive. Nuclear receptors (NR) are members of a large superfamily of evolutionarily conserved ligand-regulated DNA-binding transcription factors functionally involved in important cellular functions ranging from regulation of metabolism, to growth and development. Given the nature of their ligands, NR are very tempting drug targets and their pharmacological modulation has been widely exploited for the treatment of metabolic and inflammatory diseases. There are now clear evidences that both classical ligand-activated and orphan NR are involved in the pathogenesis of PDAC from its very early stages; nonetheless many aspects of their role are not fully understood. The purpose of this review is to highlight the striking connections that link peroxisome proliferator activated receptors, retinoic acid receptors, retinoid X receptor, androgen receptor, estrogen receptors and the orphan NR Nur, chicken ovalbumin upstream promoter transcription factor II and the liver receptor homologue-1 receptor to PDAC development, connections that could lead to the identification of novel therapies for this disease.
Collapse
|
28
|
Knab LM, Grippo PJ, Bentrem DJ. Involvement of eicosanoids in the pathogenesis of pancreatic cancer: The roles of cyclooxygenase-2 and 5-lipoxygenase. World J Gastroenterol 2014; 20:10729-10739. [PMID: 25152576 PMCID: PMC4138453 DOI: 10.3748/wjg.v20.i31.10729] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/30/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
The interplay between inflammation and cancer progression is a growing area of research. A combination of clinical, epidemiological, and basic science investigations indicate that there is a relationship between inflammatory changes in the pancreas and neoplastic progression. Diets high in ω-6 polyunsaturated fatty acids provide increased substrate for arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) to form eicosanoids. These eicosanoids directly contribute to pancreatic cancer cell proliferation. Both COX-2 and 5-LOX are upregulated in multiple cancer types, including pancreatic cancer. In vitro studies using pancreatic cancer cell lines have demonstrated upregulation of COX-2 and 5-LOX at both the mRNA and protein levels. When COX-2 and 5-LOX are blocked via a variety of mechanisms, cancer cell proliferation is abrogated both in vitro and in vivo. The mechanism of COX-2 has been shown to include effects on apoptosis as well as angiogenesis. 5-LOX has been implicated in apoptosis. The use of COX-2 and 5-LOX inhibitors in clinical studies in patients with pancreatic cancer has been limited. Patient enrollment has been restricted to those with advanced disease which makes evaluation of these drugs as chemopreventive agents difficult. COX-2 and 5-LOX expression have been shown to be present during the early neoplastic changes of pancreatic cancer, well before progression to invasive disease. This indicates that the ideal role for these interventions is early in the disease process as preventive agents, perhaps in patients with chronic pancreatitis or hereditary pancreatitis.
Collapse
|
29
|
Randomized, Double-Blind, Phase II Trial Comparing Gemcitabine-Cisplatin plus the LTB4 Antagonist LY293111 versus Gemcitabine-Cisplatin plus Placebo in First-Line Non–Small-Cell Lung Cancer. J Thorac Oncol 2014; 9:126-31. [DOI: 10.1097/jto.0000000000000037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Warsame R, Grothey A. Treatment options for advanced pancreatic cancer: a review. Expert Rev Anticancer Ther 2013; 12:1327-36. [PMID: 23176620 DOI: 10.1586/era.12.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Advanced pancreatic adenocarcinoma historically has a poor prognosis and the mortality rate has remained unchanged for over a decade. Common treatment options for patients with advanced pancreatic cancer include chemoradiation and/or chemotherapy. Single-agent gemcitabine has been considered the standard of care since 1997. Recently published findings indicate that the oxaliplatin, irinotecan, fluorouracil and leucovorin (FOLFIRINOX) treatment regimen significantly improves overall survival compared with gemcitabine. Research has shifted to focus on understanding the causes the resistance of pancreatic cancer to chemotherapy and potential methods to overcome it. This review will focus on the current treatment options, the evolution of targeted therapy, novel agents on the horizon and potential options to ameliorate chemoresistance.
Collapse
Affiliation(s)
- Rahma Warsame
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
31
|
GRICE CHERYLA, FOURIE ANNEM, LEE-DUTRA ALICE. Leukotriene A4 Hydrolase: Biology, Inhibitors and Clinical Applications. ANTI-INFLAMMATORY DRUG DISCOVERY 2012. [DOI: 10.1039/9781849735346-00058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Leukotriene A4 hydrolase is a zinc-containing cytosolic enzyme with both hydrolase and aminopeptidase activity. LTA4H stereospecifically catalyzes the transformation of the unstable epoxide LTA4 to the potent pro-inflammatory mediator LTB4. Variations in the lta4h gene have been linked to susceptibility to multiple diseases including myocardial infarction, stroke and asthma. Pre-clinical animal models and human biomarker data have implicated LTB4 in inflammatory diseases. Several groups have now identified selective inhibitors of LTA4H, many of which were influenced by the disclosure of a protein crystal structure a decade ago. Clinical validation of LTA4H remains elusive despite the progression of inhibitors into pre-clinical and clinical development.
Collapse
Affiliation(s)
- CHERYL A. GRICE
- Johnson & Johnson Pharmaceutical Research & Development, 3210 Merryfield Row, San Diego California 92121 USA
| | - ANNE M. FOURIE
- Johnson & Johnson Pharmaceutical Research & Development, 3210 Merryfield Row, San Diego California 92121 USA
| | - ALICE LEE-DUTRA
- Johnson & Johnson Pharmaceutical Research & Development, 3210 Merryfield Row, San Diego California 92121 USA
| |
Collapse
|
32
|
Vamecq J, Colet JM, Vanden Eynde JJ, Briand G, Porchet N, Rocchi S. PPARs: Interference with Warburg' Effect and Clinical Anticancer Trials. PPAR Res 2012; 2012:304760. [PMID: 22654896 PMCID: PMC3357561 DOI: 10.1155/2012/304760] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/15/2012] [Accepted: 02/19/2012] [Indexed: 02/07/2023] Open
Abstract
The metabolic/cell signaling basis of Warburg's effect ("aerobic glycolysis") and the general metabolic phenotype adopted by cancer cells are first reviewed. Several bypasses are adopted to provide a panoramic integrated view of tumoral metabolism, by attributing a central signaling role to hypoxia-induced factor (HIF-1) in the expression of aerobic glycolysis. The cancer metabolic phenotype also results from alterations of other routes involving ras, myc, p53, and Akt signaling and the propensity of cancer cells to develop signaling aberrances (notably aberrant surface receptor expression) which, when present, offer unique opportunities for therapeutic interventions. The rationale for various emerging strategies for cancer treatment is presented along with mechanisms by which PPAR ligands might interfere directly with tumoral metabolism and promote anticancer activity. Clinical trials using PPAR ligands are reviewed and followed by concluding remarks and perspectives for future studies. A therapeutic need to associate PPAR ligands with other anticancer agents is perhaps an important lesson to be learned from the results of the clinical trials conducted to date.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, HMNO, CBP, CHRU Lille, 59037 Lille, France
- Biochemistry and Molecular Biology, HMNO, CBP, CHRU Lille, 59037 Lille, France
| | - Jean-Marie Colet
- Department of Human Biology and Toxicology, Faculty of Medicine and Pharmacy, UMons, 7000 Mons, Belgium
| | | | - Gilbert Briand
- Biochemistry and Molecular Biology, HMNO, CBP, CHRU Lille, 59037 Lille, France
| | - Nicole Porchet
- Biochemistry and Molecular Biology, HMNO, CBP, CHRU Lille, 59037 Lille, France
| | - Stéphane Rocchi
- Inserm U1065, IFR 50, Mediterranean Center of Molecular Medicine, 06204 Nice, France
| |
Collapse
|
33
|
Abstract
Unresolved inflammation, due to insufficient production of proresolving anti-inflammatory lipid mediators, can lead to an increased risk of tumorigenesis and tumor cell invasiveness. Various bioactive lipids, particularly those formed by cyclooxygenase (COX) and lipoxygenase (LOX) enzymes, have been well established as therapeutic targets for many epithelial cancers. Emerging studies suggest that there is a role for anti-inflammatory bioactive lipids and their mediators during the resolution phase of inflammation. These proresolving bioactive lipids, including lipoxins (LXs) and resolvins (RVs), have potent anti-inflammatory and anti-carcinogenic properties. The molecular signaling pathways controlling generation and degradation of the proresolving mediators LXs and RVs are now being elucidated, and the component molecules may serve as new targets for regulation of inflammation and inflammation-associated cancers like colon and pancreatic cancers. This review will highlight the recent advances in our understanding of how these bioactive lipids and proresolving mediators may function with various immune cells and cytokines in inhibiting tumor cell proliferation and progression and invasiveness of colon and pancreatic cancers.
Collapse
|
34
|
Riall TS, Brown KM. Individualizing care for locoregional pancreatic cancer? J Surg Res 2012; 179:41-4. [PMID: 22221606 DOI: 10.1016/j.jss.2011.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 10/13/2011] [Accepted: 10/26/2011] [Indexed: 11/16/2022]
Affiliation(s)
- Taylor S Riall
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX 77555-0541, USA.
| | | |
Collapse
|
35
|
Bedos-Belval F, Rouch A, Vanucci-Bacqué C, Baltas M. Diaryl ether derivatives as anticancer agents – a review. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20199b] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Abstract
Somatic, gain-of-function mutations in ras genes were the first specific genetic alterations identified in human cancer about 3 decades ago. Studies during the last quarter century have characterized the Ras proteins as essential components of signaling networks controlling cellular proliferation, differentiation, or survival. The oncogenic mutations of the H-ras, N-ras, or K-ras genes frequently found in human tumors are known to throw off balance the normal outcome of those signaling pathways, thus leading to tumor development. Oncogenic mutations in a number of other upstream or downstream components of Ras signaling pathways (including membrane RTKs or cytosolic kinases) have been detected more recently in association with a variety of cancers. Interestingly, the oncogenic Ras mutations and the mutations in other components of Ras/MAPK signaling pathways appear to be mutually exclusive events in most tumors, indicating that deregulation of Ras-dependent signaling is the essential requirement for tumorigenesis. In contrast to sporadic tumors, separate studies have identified germline mutations in Ras and various other components of Ras signaling pathways that occur in specific association with a number of different familial, developmental syndromes frequently sharing common phenotypic cardiofaciocutaneous features. Finally, even without being a causative force, defective Ras signaling has been cited as a contributing factor to many other human illnesses, including diabetes and immunological and inflammatory disorders. We aim this review at summarizing and updating current knowledge on the contribution of Ras mutations and altered Ras signaling to development of various tumoral and nontumoral pathologies.
Collapse
|
37
|
Upregulation of leukotriene receptors in gastric cancer. Cancers (Basel) 2011; 3:3156-68. [PMID: 24212950 PMCID: PMC3759191 DOI: 10.3390/cancers3033156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/02/2011] [Accepted: 08/04/2011] [Indexed: 12/17/2022] Open
Abstract
Background Leukotrienes (LT) mediate allergic and inflammatory processes. Previously, we identified significant changes in the expression pattern of LT receptors in the gastric mucosa after eradication of Helicobacter pylori infection. The aim of the present study was to evaluate the expression of 5-lipoxygenase (5-LOX) and LT receptors in gastric cancer (GC). Methods The expression of 5-LOX and receptors for LTB4 (BLT-1, BLT-2) and cysteinyl-LT (CysLT-1, CysLT-2) were analyzed by immunohistochemistry (IHC) in GC samples of 35 consecutive patients who underwent gastrectomy and in 29 tumor-free tissue specimens from gastric mucosa. Results Male-to-female ratio was 24:11. The median age was 70 years (range 34–91). Twenty-two patients had GC of intestinal, six of diffuse, six of mixed and one of undifferentiated type. The IHC analysis showed a nearly ubiquitous expression of studied proteins in GC (88–97%) and in tumor-free specimens as well (89–100%). An increase in the immunoreactive score of both BLT receptors and CysLT-1 was observed in GC compared to tumor-free gastric mucosa (p < 0.001 for BLT-1; p < 0.01 for BLT-2 and CysLT-1, Mann-Whitney U-test). No differences in the IHC expression of 5-LOX and CsyLT-2 were observed between GC and tumor-free mucosa. The expression of BLT-2, CysLT-1 and CysLT-2 was increased in GC of intestinal type when compared to the diffuse type (p < 0.05; Mann-Whitney U-test). Conclusions LTB4 receptors and CysLT-1 are up-regulated in GC tissue implying a role in gastric carcinogenesis.
Collapse
|
38
|
Affiliation(s)
- Motonao Nakamura
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Hongo, Tokyo, Japan.
| | | |
Collapse
|
39
|
Hu J, Zhao G, Wang HX, Tang L, Xu YC, Ma Y, Zhang FC. A meta-analysis of gemcitabine containing chemotherapy for locally advanced and metastatic pancreatic adenocarcinoma. J Hematol Oncol 2011; 4:11. [PMID: 21439076 PMCID: PMC3079694 DOI: 10.1186/1756-8722-4-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 03/26/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The objectives of the present study are to investigate the efficacy and safety profile of gemcitabine-based combinations in the treatment of locally advanced and metastatic pancreatic adenocarcinoma (LA/MPC). METHODS We performed a computerized search using combinations of the following keywords: "chemotherapy", "gemcitabine", "trial", and "pancreatic cancer". RESULTS Thirty-five trials were included in the present analysis, with a total of 9,979 patients accrued. The analysis showed that the gemcitabine-based combination therapy was associated with significantly better overall survival (OS) (ORs, 1.15; p = 0.011), progression-free survival (PFS) (ORs, 1.27; p < 0.001), and overall response rate (ORR) (ORs, 1.58; p < 0.001) than gemcitabine monotherapy. Similar results were obtained when the gemcitabine-fluoropyrimidine combination was compared with gemcitabine, with the OS (ORs, 1.33; p = 0.007), PFS (ORs, 1.53; p < 0.001), and ORR (ORs 1.47, p = 0.03) being better in the case of the former. The OS (ORs, 1.33; p = 0.019), PFS (ORs, 1.38; p = 0.011), and one-year survival (ORs, 1.40; p = 0.04) achieved with the gemcitabine-oxaliplatin combination were significantly greater than those achieved with gemcitabine alone. However, no survival benefit (OS: ORs, 1.01, p = 0.93; PFS: ORs, 1.19, p = 0.17) was noted when the gemcitabine-cisplatin combination was compared to gemcitabine monotherapy. The combinations of gemcitabine and other cytotoxic agents also afforded disappointing results. Our analysis indicated that the ORR improved when patients were treated with the gemcitabine-camptothecin combination rather than gemcitabine alone (ORs, 2.03; p = 0.003); however, there were no differences in the OS (ORs, 1.03; p = 0.82) and PFS (ORs, 0.97; p = 0.78) in this case. CONCLUSIONS Gemcitabine in combination with capecitabine or oxaliplatin was associated with enhanced OS and ORR as compared with gemcitabine in monotherapy, which are likely to become the preferred standard first-line treatment of LA/MPC.
Collapse
Affiliation(s)
- Jing Hu
- Department of Oncology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Gang Zhao
- Department of Surgery, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Hong-Xia Wang
- Department of Oncology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Lei Tang
- Department of Oncology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Ying-Chun Xu
- Department of Oncology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Yue Ma
- Department of Oncology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Feng-Chun Zhang
- Department of Oncology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou 215021, China
| |
Collapse
|
40
|
Steinhilber D, Fischer AS, Metzner J, Steinbrink SD, Roos J, Ruthardt M, Maier TJ. 5-lipoxygenase: underappreciated role of a pro-inflammatory enzyme in tumorigenesis. Front Pharmacol 2010; 1:143. [PMID: 21833182 PMCID: PMC3153017 DOI: 10.3389/fphar.2010.00143] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 12/10/2010] [Indexed: 01/14/2023] Open
Abstract
Leukotrienes constitute a group of bioactive lipids generated by the 5-lipoxygenase (5-LO) pathway. An increasing body of evidence supports an acute role for 5-LO products already during the earliest stages of pancreatic, prostate, and colorectal carcinogenesis. Several pieces of experimental data form the basis for this hypothesis and suggest a correlation between 5-LO expression and tumor cell viability. First, several independent studies documented an overexpression of 5-LO in primary tumor cells as well as in established cancer cell lines. Second, addition of 5-LO products to cultured tumor cells also led to increased cell proliferation and activation of anti-apoptotic signaling pathways. 5-LO antisense technology approaches demonstrated impaired tumor cell growth due to reduction of 5-LO expression. Lastly, pharmacological inhibition of 5-LO potently suppressed tumor cell growth by inducing cell cycle arrest and triggering cell death via the intrinsic apoptotic pathway. However, the documented strong cytotoxic off-target effects of 5-LO inhibitors, in combination with the relatively high concentrations of 5-LO products needed to achieve mitogenic effects in cell culture assays, raise concern over the assignment of the cause, and question the relationship between 5-LO products and tumorigenesis.
Collapse
Affiliation(s)
- Dieter Steinhilber
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe University Frankfurt Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Goodnow RA, Hicks A, Sidduri A, Kowalczyk A, Dominique R, Qiao Q, Lou JP, Gillespie P, Fotouhi N, Tilley J, Cohen N, Choudhry S, Cavallo G, Tannu SA, Ventre JD, Lavelle D, Tare NS, Oh H, Lamb M, Kurylko G, Hamid R, Wright MB, Pamidimukkala A, Egan T, Gubler U, Hoffman AF, Wei X, Li YL, O’Neil J, Marcano R, Pozzani K, Molinaro T, Santiago J, Singer L, Hargaden M, Moore D, Catala AR, Chao LCF, Hermann G, Venkat R, Mancebo H, Renzetti LM. Discovery of Novel and Potent Leukotriene B4 Receptor Antagonists. Part 1. J Med Chem 2010; 53:3502-16. [DOI: 10.1021/jm1001919] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | | | | | | | | | - Qi Qiao
- Departments of Discovery Chemistry
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gesine Hermann
- ChemOvation Ltd., Graylands, Langhurst Wood Road, Horsham, West Sussex RH12 4QD, U.K
| | - Radhika Venkat
- Multispan Inc, 26219 Eden Landing Road, Hayward, California 94545
| | - Helena Mancebo
- Multispan Inc, 26219 Eden Landing Road, Hayward, California 94545
| | | |
Collapse
|
42
|
Kashfi K. Anti-inflammatory agents as cancer therapeutics. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2009; 57:31-89. [PMID: 20230759 DOI: 10.1016/s1054-3589(08)57002-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer prevention sometimes referred to as tertiary prevention or chemoprevention makes use of specific xenobiotics or drugs to prevent, delay, or retard the development of cancer. Over the last two decades or so cancer prevention has made significant strides. For example, prevention of lung cancer through smoking cessation; cervical cancer prevention through regular Pap smear tests; colon cancer prevention through screening colonoscopy; and prostate cancer reductions by prostate-specific antigen measurements in conjunction with regular prostate examinations. The seminal epidemiological observation that nonsteroidal anti-inflammatory drugs (NSAIDs) prevent colon and other cancers has provided the impetus to develop novel chemoprevention approaches against cancer. To that end, a number of "designer drugs" have been synthesized that are in different stages of development, evaluation, and deployment. Some include the cyclooxygenase-2-specific inhibitors (coxibs), nitric oxide-releasing NSAIDs (NO-NSAIDs and NONO-NSAIDs), hydrogen sulfide-releasing NSAIDs, modulators of the lipoxygenase pathway, prostanoid receptor blockers, and chemokine receptor antagonists. In addition to these novel agents, there are also a host of naturally occurring compounds/micronutrients that have chemopreventive properties. This chapter reviews these classes of compounds, their utility and mechanism(s) of action against the background of mediators that link inflammation and cancer.
Collapse
Affiliation(s)
- Khosrow Kashfi
- Department of Physiology and Pharmacology, Sophie Davis School of Biomedical Education, The City College of The City University of New York, New York 10031, USA
| |
Collapse
|
43
|
Xie DR, Liang HL, Wang Y, Guo SS, Yang Q. Meta-analysis on inoperable pancreatic cancer: a comparison between gemcitabine-based combination therapy and gemcitabine alone. World J Gastroenterol 2006; 12:6973-81. [PMID: 17109519 PMCID: PMC4087341 DOI: 10.3748/wjg.v12.i43.6973] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 10/02/2006] [Accepted: 10/11/2006] [Indexed: 02/06/2023] Open
Abstract
AIM To compare gemcitabine-based combination therapy and gemcitabine (GEM) alone in patients with advanced pancreatic cancer (APCa) through meta-analysis. METHODS MEDLINE and EMBASE searches were supplemented by information from trial registers of randomized controlled trials (RCTs) for GEM-based combination therapy and GEM alone for APCa. A quantitative meta-analysis was carried out by two reviewers based on the inclusion criteria from all available RCTs. The meta-analysis involved overall survival (OS), objective remission rate (ORR), clinical benefit rate (CBR), time to progress/progress free survival (TTP/PFS) and toxicity. RESULTS The meta-analysis included 22 RCTs. There was significant improvement in the GEM combination group with regard to the 6-mo survival rate (RD = 0.04, 95% CI 0.01-0.06, P = 0.008), 1-year survival rate (RD = 0.03, 95% CI 0.01-0.05, P = 0.01), ORR (RD = 0.04, 95% CI 0.01-0.07, P = 0.02), CBR (RD = 0.10, 95% CI 0.02-0.17, P = 0.01) and 6-mo TTP/PFS (RD = 0.07, 95% CI 0.04-0.10, P < 0.00001). However, the Grade 3-4 toxicity set by WHO was higher for the GEM combination group for neutropenia (RD = 0.05, 95% CI 0.01-0.10, P = 0.02), thrombocytopenia (RD = 0.05, 95% CI 0.02-0.08, P = 0.002) and vomiting/nausea (RD = 0.03, 95% CI 0.00-0.05, P = 0.02). CONCLUSION GEM-based combination therapy may improve the overall survival and palliation in optimal patients with APCa as compared with GEM alone.
Collapse
Affiliation(s)
- De-Rong Xie
- Department of Oncology, Second Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong Province, China.
| | | | | | | | | |
Collapse
|