1
|
Meyer M, Melville DW, Baldwin HJ, Wilhelm K, Nkrumah EE, Badu EK, Oppong SK, Schwensow N, Stow A, Vallo P, Corman VM, Tschapka M, Drosten C, Sommer S. Bat species assemblage predicts coronavirus prevalence. Nat Commun 2024; 15:2887. [PMID: 38575573 PMCID: PMC10994947 DOI: 10.1038/s41467-024-46979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 03/15/2024] [Indexed: 04/06/2024] Open
Abstract
Anthropogenic disturbances and the subsequent loss of biodiversity are altering species abundances and communities. Since species vary in their pathogen competence, spatio-temporal changes in host assemblages may lead to changes in disease dynamics. We explore how longitudinal changes in bat species assemblages affect the disease dynamics of coronaviruses (CoVs) in more than 2300 cave-dwelling bats captured over two years from five caves in Ghana. This reveals uneven CoV infection patterns between closely related species, with the alpha-CoV 229E-like and SARS-related beta-CoV 2b emerging as multi-host pathogens. Prevalence and infection likelihood for both phylogenetically distinct CoVs is influenced by the abundance of competent species and naïve subadults. Broadly, bat species vary in CoV competence, and highly competent species are more common in less diverse communities, leading to increased CoV prevalence in less diverse bat assemblages. In line with the One Health framework, our work supports the notion that biodiversity conservation may be the most proactive measure to prevent the spread of pathogens with zoonotic potential.
Collapse
Affiliation(s)
- Magdalena Meyer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany.
| | - Dominik W Melville
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Heather J Baldwin
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Evans Ewald Nkrumah
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ebenezer K Badu
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Samuel Kingsley Oppong
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Nina Schwensow
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Adam Stow
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Peter Vallo
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Victor M Corman
- Charité - Universitätsmedizin Berlin Institute of Virology, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Marco Tschapka
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Christian Drosten
- Charité - Universitätsmedizin Berlin Institute of Virology, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany.
| |
Collapse
|
2
|
Didkowska A, Klich D, Nowak M, Wojciechowska M, Prolejko K, Kwiecień E, Rzewuska M, Olech W, Anusz K. A serological survey of pathogens associated with the respiratory and digestive system in the Polish European bison (Bison bonasus) population in 2017-2022. BMC Vet Res 2023; 19:74. [PMID: 37264393 DOI: 10.1186/s12917-023-03627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND The European bison (Bison bonasus) is a near threatened species and requires health monitoring. The aim of the present study was to determine the prevalence of antibodies to pathogens known to cause respiratory and digestive illness in ruminants. RESULTS In the studied 328 European bison, the highest seroprevalence was observed for Bovine herpesvirus-1 (BoHV-1) (50.27%), Bovine Coronavirus (BCoV) (26.36%), and Bluetongue Virus (BTV) (12.83%). For Mycoplasma bovis strains and Bovine Viral Diarrhea Virus (BVDV), positive results were rare. Interestingly, a higher prevalence of BTV antibodies was noted in the northeastern populations and older animals. CONCLUSIONS Our findings indicate that the Polish European bison population appears to have considerable contact with BoHV-1; however, this does not appear to be of great significance, as clinical symptoms and post-mortem lesions are rarely noted in Polish European bison population. The high seroprevalence of BTV in the north-east of Poland is an ongoing trend, also noted in previous studies. It is possible that European bison may perpetuate the virus in this region. This is the first report of antibodies for BCoV in European bison.
Collapse
Affiliation(s)
- Anna Didkowska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, Warsaw, Poland.
| | - Daniel Klich
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, University of Life Sciences (SGGW), Ciszewskiego 8, Warsaw, 02-786, Poland
| | - Magdalena Nowak
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, Warsaw, Poland
| | - Marlena Wojciechowska
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, University of Life Sciences (SGGW), Ciszewskiego 8, Warsaw, 02-786, Poland
| | - Kinga Prolejko
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, Warsaw, Poland
| | - Ewelina Kwiecień
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, Warsaw, 02-786, Poland
| | - Magdalena Rzewuska
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, Warsaw, 02-786, Poland
| | - Wanda Olech
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, University of Life Sciences (SGGW), Ciszewskiego 8, Warsaw, 02-786, Poland
| | - Krzysztof Anusz
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, Warsaw, Poland
| |
Collapse
|
3
|
Green J, Jakins C, Asfaw E, Bruschi N, Parker A, de Waal L, D’Cruze N. African Lions and Zoonotic Diseases: Implications for Commercial Lion Farms in South Africa. Animals (Basel) 2020; 10:ani10091692. [PMID: 32962130 PMCID: PMC7552683 DOI: 10.3390/ani10091692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary In South Africa, thousands of African lions are bred on farms for commercial purposes, such as tourism, trophy hunting, and traditional medicine. Lions on farms often have direct contact with people, such as farm workers and tourists. Such close contact between wild animals and humans creates opportunities for the spread of zoonotic diseases (diseases that can be passed between animals and people). To help understand the health risks associated with lion farms, our study compiled a list of pathogens (bacteria, viruses, parasites, and fungi) known to affect African lions. We reviewed 148 scientific papers and identified a total of 63 pathogens recorded in both wild and captive lions, most of which were parasites (35, 56%), followed by viruses (17, 27%) and bacteria (11, 17%). This included pathogens that can be passed from lions to other animals and to humans. We also found a total of 83 diseases and clinical symptoms associated with these pathogens. Given that pathogens and their associated infectious diseases can cause harm to both animals and public health, we recommend that the lion farming industry in South Africa takes action to prevent and manage potential disease outbreaks. Abstract African lions (Panthera leo) are bred in captivity on commercial farms across South Africa and often have close contact with farm staff, tourists, and other industry workers. As transmission of zoonotic diseases occurs through close proximity between wildlife and humans, these commercial captive breeding operations pose a potential risk to thousands of captive lions and to public health. An understanding of pathogens known to affect lions is needed to effectively assess the risk of disease emergence and transmission within the industry. Here, we conduct a systematic search of the academic literature, identifying 148 peer-reviewed studies, to summarize the range of pathogens and parasites known to affect African lions. A total of 63 pathogenic organisms were recorded, belonging to 35 genera across 30 taxonomic families. Over half were parasites (35, 56%), followed by viruses (17, 27%) and bacteria (11, 17%). A number of novel pathogens representing unidentified and undescribed species were also reported. Among the pathogenic inventory are species that can be transmitted from lions to other species, including humans. In addition, 83 clinical symptoms and diseases associated with these pathogens were identified. Given the risks posed by infectious diseases, this research highlights the potential public health risks associated with the captive breeding industry. We recommend that relevant authorities take imminent action to help prevent and manage the risks posed by zoonotic pathogens on lion farms.
Collapse
Affiliation(s)
- Jennah Green
- World Animal Protection 222 Gray’s Inn Rd., London WC1X 8HB, UK; (J.G.); (E.A.); (N.B.); (A.P.)
| | - Catherine Jakins
- Blood Lion NPC, P.O. Box 1548, Kloof 3640, South Africa; (C.J.); (L.d.W.)
| | - Eyob Asfaw
- World Animal Protection 222 Gray’s Inn Rd., London WC1X 8HB, UK; (J.G.); (E.A.); (N.B.); (A.P.)
| | - Nicholas Bruschi
- World Animal Protection 222 Gray’s Inn Rd., London WC1X 8HB, UK; (J.G.); (E.A.); (N.B.); (A.P.)
| | - Abbie Parker
- World Animal Protection 222 Gray’s Inn Rd., London WC1X 8HB, UK; (J.G.); (E.A.); (N.B.); (A.P.)
| | - Louise de Waal
- Blood Lion NPC, P.O. Box 1548, Kloof 3640, South Africa; (C.J.); (L.d.W.)
| | - Neil D’Cruze
- World Animal Protection 222 Gray’s Inn Rd., London WC1X 8HB, UK; (J.G.); (E.A.); (N.B.); (A.P.)
- Correspondence:
| |
Collapse
|
4
|
Maruping-Mzileni NT, Ferreira SM, Funston PJ, Kalala Mutombo F, Goodall V. Horizontal disease transmission in lions from behavioural interfaces via social network analysis. MAMMAL RES 2020. [DOI: 10.1007/s13364-020-00526-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Eroksuz Y, Baydar E, Otlu B, Dabak M, Eroksuz H, Karabulut B, Incili CA, Timurkan MO. Case report: systemic tuberculosis caused by Mycobacterium bovis in a cat. BMC Vet Res 2019; 15:9. [PMID: 30611261 PMCID: PMC6321719 DOI: 10.1186/s12917-018-1759-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 12/21/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The diagnosis of previous cases of feline tuberculosis in Turkey has been made based solely on pathological changes without isolation of the causative agent. This case report details the first case of feline tuberculosis in Turkey for which the causative agent (Mycobacterium bovis) was confirmed with microbiological isolation, morphological evaluation, molecular (PCR) characterization and antibiotic sensitivity. CASE PRESENTATION Systemic tuberculosis was diagnosed via postmortem examination of a 5-year-old stray male cat. Mycobacterium bovis was isolated from the lungs, bronchial and gastrointestinal lymph nodes, kidney and liver. The isolate was defined as M. bovis using the Genotype MTBC assay (Hain Lifescience, Germany), which allows differentiation of species within the Mycobacterium tuberculosis complex with an easy-to-perform reverse hybridization assay. Pathological changes were characterized by multifocal to coalescing granulomatous inflammation in the lungs, liver, lymph nodes and kidneys. Further pathological changes included severe, diffuse, hepatocytic atrophy, periportal fibrosis with lymphohistiocytic infiltration, multifocal lymphohistiocytic interstitial nephritis, mild focal pulmonary anthracosis and mild renal and hepatic amyloidosis. Infection by immunosuppressive viral pathogens including feline herpes virus-1, feline immunodeficiency virus and feline parvovirus virus were ruled out by polymerase chain reaction assay (PCR). The isolated mycobacteria were susceptible to isoniazid, ethambutol, rifampicin or streptomycin. CONCLUSION Disseminated M. bovis is a rare infection in cats. Involvement of submandibular lymph nodes suggested that primary transmission might have been the oral route in the present case.
Collapse
Affiliation(s)
- Yesari Eroksuz
- Department of Pathology, Faculty of Veterinary Medicine, Firat University, 23 200 Elazig, Turkey
| | - Ersoy Baydar
- Department of Internal Medicine, Faculty of Veterinary Medicine, Balikesir University, Balikesir, Turkey
| | - Baris Otlu
- Department of Medical Microbiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Murat Dabak
- Department of Internal Medicine, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Hatice Eroksuz
- Department of Pathology, Faculty of Veterinary Medicine, Firat University, 23 200 Elazig, Turkey
| | - Burak Karabulut
- Department of Pathology, Faculty of Veterinary Medicine, Firat University, 23 200 Elazig, Turkey
| | - Canan Akdeniz Incili
- Department of Pathology, Faculty of Veterinary Medicine, Firat University, 23 200 Elazig, Turkey
| | - Mehmet Ozkan Timurkan
- Department of Virology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
6
|
van Hooft P, Keet DF, Brebner DK, Bastos ADS. Genetic insights into dispersal distance and disperser fitness of African lions (Panthera leo) from the latitudinal extremes of the Kruger National Park, South Africa. BMC Genet 2018; 19:21. [PMID: 29614950 PMCID: PMC5883395 DOI: 10.1186/s12863-018-0607-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/16/2018] [Indexed: 11/30/2022] Open
Abstract
Background Female lions generally do not disperse far beyond their natal range, while males can disperse distances of over 200 km. However, in bush-like ecosystems dispersal distances less than 25 km are reported. Here, we investigate dispersal in lions sampled from the northern and southern extremes of Kruger National Park, a bush-like ecosystem in South Africa where bovine tuberculosis prevalence ranges from low to high across a north-south gradient. Results A total of 109 individuals sampled from 1998 to 2004 were typed using 11 microsatellite markers, and mitochondrial RS-3 gene sequences were generated for 28 of these individuals. Considerable north-south genetic differentiation was observed in both datasets. Dispersal was male-biased and generally further than 25 km, with long-distance male gene flow (75–200 km, detected for two individuals) confirming that male lions can travel large distances, even in bush-like ecosystems. In contrast, females generally did not disperse further than 20 km, with two distinctive RS-3 gene clusters for northern and southern females indicating no or rare long-distance female dispersal. However, dispersal rate for the predominantly non-territorial females from southern Kruger (fraction dispersers ≥0.68) was higher than previously reported. Of relevance was the below-average body condition of dispersers and their low presence in prides, suggesting low fitness. Conclusions Large genetic differences between the two sampling localities, and low relatedness among males and high dispersal rates among females in the south, suggestive of unstable territory structure and high pride turnover, have potential implications for spread of diseases and the management of the Kruger lion population. Electronic supplementary material The online version of this article (10.1186/s12863-018-0607-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pim van Hooft
- Resource Ecology Group, Wageningen University, Wageningen, Netherlands. .,Department of Zoology & Entomology, Mammal Research Institute,, University of Pretoria, Hatfield, South Africa.
| | - Dewald F Keet
- Veterinary Services, Kruger National Park, Skukuza, South Africa.,Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa.,, Phalaborwa, Limpopo Province, South Africa
| | - Diana K Brebner
- Department of Zoology & Entomology, Mammal Research Institute,, University of Pretoria, Hatfield, South Africa
| | - Armanda D S Bastos
- Department of Zoology & Entomology, Mammal Research Institute,, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
7
|
BRIDGING GAPS BETWEEN ZOO AND WILDLIFE MEDICINE: ESTABLISHING REFERENCE INTERVALS FOR FREE-RANGING AFRICAN LIONS (PANTHERA LEO). J Zoo Wildl Med 2017; 48:298-311. [PMID: 28749296 DOI: 10.1638/2016-0021r.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The International Species Information System has set forth an extensive database of reference intervals for zoologic species, allowing veterinarians and game park officials to distinguish normal health parameters from underlying disease processes in captive wildlife. However, several recent studies comparing reference values from captive and free-ranging animals have found significant variation between populations, necessitating the development of separate reference intervals in free-ranging wildlife to aid in the interpretation of health data. Thus, this study characterizes reference intervals for six biochemical analytes, eleven hematologic or immune parameters, and three hormones using samples from 219 free-ranging African lions ( Panthera leo ) captured in Kruger National Park, South Africa. Using the original sample population, exclusion criteria based on physical examination were applied to yield a final reference population of 52 clinically normal lions. Reference intervals were then generated via 90% confidence intervals on log-transformed data using parametric bootstrapping techniques. In addition to the generation of reference intervals, linear mixed-effect models and generalized linear mixed-effect models were used to model associations of each focal parameter with the following independent variables: age, sex, and body condition score. Age and sex were statistically significant drivers for changes in hepatic enzymes, renal values, hematologic parameters, and leptin, a hormone related to body fat stores. Body condition was positively correlated with changes in monocyte counts. Given the large variation in reference values taken from captive versus free-ranging lions, it is our hope that this study will serve as a baseline for future clinical evaluations and biomedical research targeting free-ranging African lions.
Collapse
|
8
|
Romansic JM, Johnson JE, Wagner RS, Hill RH, Gaulke CA, Vredenburg VT, Blaustein AR. Complex interactive effects of water mold, herbicide, and the fungus Batrachochytrium dendrobatidis on Pacific treefrog Hyliola regilla hosts. DISEASES OF AQUATIC ORGANISMS 2017; 123:227-238. [PMID: 28322209 DOI: 10.3354/dao03094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Infectious diseases pose a serious threat to global biodiversity. However, their ecological impacts are not independent of environmental conditions. For example, the pathogenic fungus Batrachochytrium dendrobatidis (Bd), which has contributed to population declines and extinctions in many amphibian species, interacts with several environmental factors to influence its hosts, but potential interactions with other pathogens and environmental contaminants are understudied. We examined the combined effects of Bd, a water mold (Achlya sp.), and the herbicide Roundup® Regular (hereafter, Roundup®) on larval Pacific treefrog Hyliola regilla hosts. We employed a 2 wk, fully factorial laboratory experiment with 3 ecologically realistic levels (0, 1, and 2 mg l-1 of active ingredient) of field-formulated Roundup®, 2 Achlya treatments (present and absent), and 2 Bd treatments (present and absent). Our results were consistent with sublethal interactive effects involving all 3 experimental factors. When Roundup® was absent, the proportion of Bd-exposed larvae infected with Bd was elevated in the presence of Achlya, consistent with Achlya acting as a synergistic cofactor that facilitated the establishment of Bd infection. However, this Achlya effect became nonsignificant at 1 mg l-1 of the active ingredient of Roundup® and disappeared at the highest Roundup® concentration. In addition, Roundup® decreased Bd loads among Bd-exposed larvae. Our study suggests complex interactive effects of a water mold and a contaminant on Bd infection in amphibian hosts. Achlya and Roundup® were both correlated with altered patterns of Bd infection, but in different ways, and Roundup® appeared to remove the influence of Achlya on Bd.
Collapse
Affiliation(s)
- John M Romansic
- Department of Integrative Biology, 3029 Cordley Hall, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Prevalence and Risk Factors for Mycobacterium bovis Infection in African Lions ( Panthera leo ) in the Kruger National Park. J Wildl Dis 2017; 53:372-376. [PMID: 28122192 DOI: 10.7589/2016-07-159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycobacterium bovis, the causative agent of bovine tuberculosis (BTB), is endemic in the Kruger National Park (KNP), South Africa. African lions ( Panthera leo ) are susceptible to BTB, but the impact of the disease on lion populations is unknown. In this study, we used a novel gene expression assay for chemokine (C-X-C motif) ligand 9 (CXCL9) to measure the prevalence of M. bovis infection in 70 free-ranging lions that were opportunistically sampled in the southern and central regions of the KNP. In the southern region of the KNP, the apparent prevalence of M. bovis infection was 54% (95% confidence interval [CI]=36.9-70.5%), compared with 33% (95% CI=18.0-51.8%) in the central region, an important difference (P=0.08). Prevalence of M. bovis infection in lions showed similar patterns to estimated BTB prevalence in African buffaloes ( Syncerus caffer ) in the same areas. Investigation of other risk factors showed a trend for older lions, males, or lions with concurrent feline immunodeficiency virus infection to have a higher M. bovis prevalence. Our findings demonstrate that the CXCL9 gene expression assay is a useful tool for the determination of M. bovis status in free-ranging lions and identifies important epidemiologic trends for future studies.
Collapse
|
10
|
Kosmala M, Miller P, Ferreira S, Funston P, Keet D, Packer C. Estimating wildlife disease dynamics in complex systems using an Approximate Bayesian Computation framework. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:295-308. [PMID: 27039526 DOI: 10.1890/14-1808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Emerging infectious diseases of wildlife are of increasing concern to managers and conservation policy makers, but are often difficult to study and predict due to the complexity of host-disease systems and a paucity of empirical data. We demonstrate the use of an Approximate Bayesian Computation statistical framework to reconstruct the disease dynamics of bovine tuberculosis in Kruger National Park's lion population, despite limited empirical data on the disease's effects in lions. The modeling results suggest that, while a large proportion of the lion population will become infected with bovine tuberculosis, lions are a spillover host and long disease latency is common. In the absence of future aggravating factors, bovine tuberculosis is projected to cause a lion population decline of ~3% over the next 50 years, with the population stabilizing at this new equilibrium. The Approximate Bayesian Computation framework is a new tool for wildlife managers. It allows emerging infectious diseases to be modeled in complex systems by incorporating disparate knowledge about host demographics, behavior, and heterogeneous disease transmission, while allowing inference of unknown system parameters.
Collapse
|
11
|
Complex links between natural tuberculosis and porcine circovirus type 2 infection in wild boar. BIOMED RESEARCH INTERNATIONAL 2014; 2014:765715. [PMID: 24991567 PMCID: PMC4065697 DOI: 10.1155/2014/765715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 12/14/2022]
Abstract
Individuals in natural populations are exposed to a diversity of pathogens which results in coinfections. The aim of this study was to investigate the relation between natural infection with tuberculosis (TB) due to infection by bacteria of the Mycobacterium tuberculosis complex and porcine circovirus type 2 (PCV2) in free-ranging Eurasian wild boar (Sus scrofa). Apparent prevalence for TB lesions and PCV2 infection was extremely high in all age classes, including piglets (51% for TB; 85.7% for PCV2). Modeling results revealed that the relative risk of young (less than 2 years old) wild boar to test positive to PCV2 PCR was negatively associated with TB lesion presence. Also, an interaction between TB, PCV2, and body condition was evidenced: in wild boar with TB lesions probability of being PCV2 PCR positive increased with body condition, whereas this relation was negative for wild boar without TB lesions. This study provides insight into the coinfections occurring in free-ranging host populations that are naturally exposed to several pathogens at an early age. Using TB and PCV2 as a case study, we showed that coinfection is a frequent event among natural populations that takes place early in life with complex effects on the infections and the hosts.
Collapse
|
12
|
Selakovic S, de Ruiter PC, Heesterbeek H. Infectious disease agents mediate interaction in food webs and ecosystems. Proc Biol Sci 2014; 281:20132709. [PMID: 24403336 DOI: 10.1098/rspb.2013.2709] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Infectious agents are part of food webs and ecosystems via the relationship with their host species that, in turn, interact with both hosts and non-hosts. Through these interactions, infectious agents influence food webs in terms of structure, functioning and stability. The present literature shows a broad range of impacts of infectious agents on food webs, and by cataloguing that range, we worked towards defining the various mechanisms and their specific effects. To explore the impact, a direct approach is to study changes in food-web properties with infectious agents as separate species in the web, acting as additional nodes, with links to their host species. An indirect approach concentrates not on adding new nodes and links, but on the ways that infectious agents affect the existing links across host and non-host nodes, by influencing the 'quality' of consumer-resource interaction as it depends on the epidemiological state host involved. Both approaches are natural from an ecological point of view, but the indirect approach may connect more straightforwardly to commonly used tools in infectious disease dynamics.
Collapse
Affiliation(s)
- Sanja Selakovic
- Faculty of Veterinary Medicine, University of Utrecht, , Yalelaan 7, Utrecht 3584, The Netherlands, Biometris, Wageningen University, , PO Box 100, Wageningen 6700, The Netherlands
| | | | | |
Collapse
|
13
|
Angkawanish T, Morar D, van Kooten P, Bontekoning I, Schreuder J, Maas M, Wajjwalku W, Sirimalaisuwan A, Michel A, Tijhaar E, Rutten V. The Elephant Interferon Gamma Assay: A Contribution to Diagnosis of Tuberculosis in Elephants. Transbound Emerg Dis 2013; 60 Suppl 1:53-9. [DOI: 10.1111/tbed.12098] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Indexed: 02/05/2023]
Affiliation(s)
- T. Angkawanish
- National Elephant Institute; Hangchart Lampang Thailand
- Department of Infectious Diseases and Immunology; Faculty of Veterinary Medicine; Utrecht University; Utrecht the Netherlands
| | - D. Morar
- Department of Veterinary Tropical Diseases; Faculty of Veterinary Science; University of Pretoria; Pretoria South Africa
| | - P. van Kooten
- Department of Infectious Diseases and Immunology; Faculty of Veterinary Medicine; Utrecht University; Utrecht the Netherlands
- Podiceps BV; Science Park Utrecht; Utrecht the Netherlands
| | - I. Bontekoning
- Department of Infectious Diseases and Immunology; Faculty of Veterinary Medicine; Utrecht University; Utrecht the Netherlands
- Faculty of Veterinary Medicine; Kasetsart University; Nakhonpathom Thailand
- Faculty of Veterinary Medicine; Chiangmai University; Chiangmai Thailand
| | - J. Schreuder
- Department of Infectious Diseases and Immunology; Faculty of Veterinary Medicine; Utrecht University; Utrecht the Netherlands
- Department of Veterinary Tropical Diseases; Faculty of Veterinary Science; University of Pretoria; Pretoria South Africa
| | - M. Maas
- Department of Infectious Diseases and Immunology; Faculty of Veterinary Medicine; Utrecht University; Utrecht the Netherlands
| | - W. Wajjwalku
- Faculty of Veterinary Medicine; Kasetsart University; Nakhonpathom Thailand
| | - A. Sirimalaisuwan
- Faculty of Veterinary Medicine; Chiangmai University; Chiangmai Thailand
| | - A. Michel
- Department of Veterinary Tropical Diseases; Faculty of Veterinary Science; University of Pretoria; Pretoria South Africa
| | - E. Tijhaar
- Cell Biology and Immunology Group; Wageningen University; Wageningen the Netherlands
| | - V. Rutten
- Department of Infectious Diseases and Immunology; Faculty of Veterinary Medicine; Utrecht University; Utrecht the Netherlands
- Department of Veterinary Tropical Diseases; Faculty of Veterinary Science; University of Pretoria; Pretoria South Africa
| |
Collapse
|
14
|
Host and parasite diversity jointly control disease risk in complex communities. Proc Natl Acad Sci U S A 2013; 110:16916-21. [PMID: 24082092 DOI: 10.1073/pnas.1310557110] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Host-parasite interactions are embedded within complex communities composed of multiple host species and a cryptic assemblage of other parasites. To date, however, surprisingly few studies have explored the joint effects of host and parasite richness on disease risk, despite growing interest in the diversity-disease relationship. Here, we combined field surveys and mechanistic experiments to test how transmission of the virulent trematode Ribeiroia ondatrae was affected by the diversity of both amphibian hosts and coinfecting parasites. Within natural wetlands, host and parasite species richness correlated positively, consistent with theoretical predictions. Among sites that supported Ribeiroia, however, host and parasite richness interacted to negatively affect Ribeiroia transmission between its snail and amphibian hosts, particularly in species-poor assemblages. In laboratory and outdoor experiments designed to decouple the relative contributions of host and parasite diversity, increases in host richness decreased Ribeiroia infection by 11-65%. Host richness also tended to decrease total infections by other parasite species (four of six instances), such that more diverse host assemblages exhibited ∼40% fewer infections overall. Importantly, parasite richness further reduced both per capita and total Ribeiroia infection by 15-20%, possibly owing to intrahost competition among coinfecting species. These findings provide evidence that parasitic and free-living diversity jointly regulate disease risk, help to resolve apparent contradictions in the diversity-disease relationship, and emphasize the challenges of integrating research on coinfection and host heterogeneity to develop a community ecology-based approach to infectious diseases.
Collapse
|
15
|
Maas M, Keet DF, Nielen M. Hematologic and serum chemistry reference intervals for free-ranging lions (Panthera leo). Res Vet Sci 2013; 95:266-8. [PMID: 23415881 DOI: 10.1016/j.rvsc.2013.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 01/15/2013] [Accepted: 01/20/2013] [Indexed: 10/27/2022]
Abstract
Hematologic and serum chemistry values are used by veterinarians and wildlife researchers to assess health status and to identify abnormally high or low levels of a particular blood parameter in a target species. For free-ranging lions (Panthera leo) information about these values is scarce. In this study 7 hematologic and 11 serum biochemistry values were evaluated from 485 lions from the Kruger National Park, South Africa. Significant differences between sexes and sub-adult (≤ 36 months) and adult (>36 months) lions were found for most of the blood parameters and separate reference intervals were made for those values. The obtained reference intervals include the means of the various blood parameter values measured in captive lions, except for alkaline phosphatase in the subadult group. These reference intervals can be utilized for free-ranging lions, and may likely also be used as reference intervals for captive lions.
Collapse
Affiliation(s)
- Miriam Maas
- Division of Epidemiology, Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | | | | |
Collapse
|
16
|
Development of a lion-specific interferon-gamma assay. Vet Immunol Immunopathol 2012; 149:292-7. [DOI: 10.1016/j.vetimm.2012.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/03/2012] [Accepted: 07/30/2012] [Indexed: 11/23/2022]
|