1
|
Schick RS, Cioffi WR, Foley HJ, Joseph J, Kaney NA, Margolina T, Swaim ZT, Zheng L, Southall BL. Estimating received level in behavioral response studies through the use of ancillary data. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:4169-4180. [PMID: 39704550 DOI: 10.1121/10.0034617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/15/2024] [Indexed: 12/21/2024]
Abstract
Marine mammals are known to respond to various human noises, including and in certain cases, strongly, to military active sonar. Responses include small and short-term changes in diving behavior, horizontal avoidance of an ensonified area, and mass strandings. Considerable research has been conducted using short-term biologging tags to understand these responses. Yet researchers and managers want a better understanding of responses to sound over longer periods of time in a variety of contexts. The Atlantic Behavioral Response Study examines responses across multiple spatial and temporal scales using vessel-based focal follows, short-term biologging tags, and medium-term satellite transmitting tags. Since the latter do not record sound, we must intersect positions with a sound propagation model to estimate received sound pressure levels. We use all available information from (1) the observed x,y positions from the tag(s) and from focal follow vessels; (2) the discrete depth bin data (z) from the tag; (3) ocean bathymetry; and (4) outputs from sound propagation models. All these disparate streams of data contain varying levels of error in x, y, or z. We account for as much uncertainty as possible and include here a refined approach to better estimate the range of sound levels received by animals.
Collapse
Affiliation(s)
- Robert S Schick
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, USA
- Southall Environmental Associates, Aptos, California 95003, USA
| | - William R Cioffi
- Southall Environmental Associates, Aptos, California 95003, USA
- Duke University Marine Lab, Beaufort, North Carolina 28516, USA
| | - Heather J Foley
- Duke University Marine Lab, Beaufort, North Carolina 28516, USA
- Fisheries Science Center, NOAA Fisheries, Woods Hole, Massachusetts 02543, USA
| | - John Joseph
- Department of Oceanography, Naval Postgraduate School, Monterey, California 93943, USA
| | | | - Tetyana Margolina
- Department of Oceanography, Naval Postgraduate School, Monterey, California 93943, USA
| | - Zachary T Swaim
- Duke University Marine Lab, Beaufort, North Carolina 28516, USA
| | - Larry Zheng
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, USA
| | - Brandon L Southall
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, USA
- Southall Environmental Associates, Aptos, California 95003, USA
| |
Collapse
|
2
|
Fernández A, Suárez-Santana C, Alonso-Almorox P, Consoli FA, Suárez González Z, Molpeceres-Diego I, Iglesias González C, Hernández ML, Pérez AH, Martín-Barrasa JL, Llorente LI, Medina FM, Guzmán RG, Rueda DL, Arbelo M, Sierra E. Case Report: Ambergris coprolite and septicemia in a male sperm whale stranded in La Palma (Canary Islands). Front Vet Sci 2024; 11:1388276. [PMID: 38650849 PMCID: PMC11034612 DOI: 10.3389/fvets.2024.1388276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
On the 21st of May 2023, a dead adult male sperm whale (Physeter macrocephalus) of 13 m in length and estimated weight of around 18,000 kg was reportedly stranded at Playa Los Nogales, La Palma, Canary Islands, Spain. A necropsy was performed 48hpm. A 50 cm diameter and 9.5 kg coprolite was found obstructing the caudal colon-rectal lumen. Necro-hemorrhagic lesions were found in heart muscles and three different bacteria of intestinal origin were isolated and identified (Edwarsiella tarda, Hathewaya limosa and Clostridium perfringens). It is reported a lethal septicemia of intestinal origin associated with ambergris coprolite as cause of death in this sperm whale.
Collapse
Affiliation(s)
- Antonio Fernández
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Atlantic Center for Cetacean Research, Marine Mammals Health WOAH col Centre, University of Las Palmas de Gran Canaria, Veterinary School, Las Palmas, Spain
- Canary Islands Stranding Network, Canary Islands Government, Canary Islands, Spain
| | - Cristian Suárez-Santana
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Atlantic Center for Cetacean Research, Marine Mammals Health WOAH col Centre, University of Las Palmas de Gran Canaria, Veterinary School, Las Palmas, Spain
- Canary Islands Stranding Network, Canary Islands Government, Canary Islands, Spain
| | - Paula Alonso-Almorox
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Atlantic Center for Cetacean Research, Marine Mammals Health WOAH col Centre, University of Las Palmas de Gran Canaria, Veterinary School, Las Palmas, Spain
- Canary Islands Stranding Network, Canary Islands Government, Canary Islands, Spain
| | - Francesco Achille Consoli
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Atlantic Center for Cetacean Research, Marine Mammals Health WOAH col Centre, University of Las Palmas de Gran Canaria, Veterinary School, Las Palmas, Spain
- Canary Islands Stranding Network, Canary Islands Government, Canary Islands, Spain
| | - Zuleima Suárez González
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Atlantic Center for Cetacean Research, Marine Mammals Health WOAH col Centre, University of Las Palmas de Gran Canaria, Veterinary School, Las Palmas, Spain
- Canary Islands Stranding Network, Canary Islands Government, Canary Islands, Spain
| | - Ignacio Molpeceres-Diego
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Atlantic Center for Cetacean Research, Marine Mammals Health WOAH col Centre, University of Las Palmas de Gran Canaria, Veterinary School, Las Palmas, Spain
- Canary Islands Stranding Network, Canary Islands Government, Canary Islands, Spain
| | - Claudia Iglesias González
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Atlantic Center for Cetacean Research, Marine Mammals Health WOAH col Centre, University of Las Palmas de Gran Canaria, Veterinary School, Las Palmas, Spain
- Canary Islands Stranding Network, Canary Islands Government, Canary Islands, Spain
| | | | - Amaranta Hugo Pérez
- Canary Islands Stranding Network, Canary Islands Government, Canary Islands, Spain
| | - José Luis Martín-Barrasa
- Group of Fish Health and Infectious Diseases, University Institute of Animal Health, and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Veterinary School, Las Palmas, Spain
- Country Animal Facility, Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Laura Iglesias Llorente
- Microbiology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Félix M. Medina
- Biodiversity Unit, Cabildo de la Isla de La Palma, Canary Islands, Spain
| | - Raiden Grandía Guzmán
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Atlantic Center for Cetacean Research, Marine Mammals Health WOAH col Centre, University of Las Palmas de Gran Canaria, Veterinary School, Las Palmas, Spain
- Canary Islands Stranding Network, Canary Islands Government, Canary Islands, Spain
| | - Diego Llinás Rueda
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Atlantic Center for Cetacean Research, Marine Mammals Health WOAH col Centre, University of Las Palmas de Gran Canaria, Veterinary School, Las Palmas, Spain
- Canary Islands Stranding Network, Canary Islands Government, Canary Islands, Spain
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Atlantic Center for Cetacean Research, Marine Mammals Health WOAH col Centre, University of Las Palmas de Gran Canaria, Veterinary School, Las Palmas, Spain
- Canary Islands Stranding Network, Canary Islands Government, Canary Islands, Spain
| | - Eva Sierra
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Atlantic Center for Cetacean Research, Marine Mammals Health WOAH col Centre, University of Las Palmas de Gran Canaria, Veterinary School, Las Palmas, Spain
- Canary Islands Stranding Network, Canary Islands Government, Canary Islands, Spain
| |
Collapse
|
3
|
Feyrer LJ, Stanistreet JE, Moors-Murphy HB. Navigating the unknown: assessing anthropogenic threats to beaked whales, family Ziphiidae. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240058. [PMID: 38633351 PMCID: PMC11021932 DOI: 10.1098/rsos.240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
This review comprehensively evaluates the impacts of anthropogenic threats on beaked whales (Ziphiidae)-a taxonomic group characterized by cryptic biology, deep dives and remote offshore habitat, which have challenged direct scientific observation. By synthesizing information published in peer-reviewed studies and grey literature, we identified available evidence of impacts across 14 threats for each Ziphiidae species. Threats were assessed based on their pathways of effects on individuals, revealing many gaps in scientific understanding of the risks faced by beaked whales. By applying a comprehensive taxon-level analysis, we found evidence that all beaked whale species are affected by multiple stressors, with climate change, entanglement and plastic pollution being the most common threats documented across beaked whale species. Threats assessed as having a serious impact on individuals included whaling, military sonar, entanglement, depredation, vessel strikes, plastics and oil spills. This review emphasizes the urgent need for targeted research to address a range of uncertainties, including cumulative and population-level impacts. Understanding the evidence and pathways of the effects of stressors on individuals can support future assessments, guide practical mitigation strategies and advance current understanding of anthropogenic impacts on rare and elusive marine species.
Collapse
Affiliation(s)
- Laura J. Feyrer
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova ScotiaB2Y 4A2, Canada
- Department of Biology, Dalhousie University, Halifax, Nova ScotiaB3H 4R2, Canada
| | - Joy E. Stanistreet
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova ScotiaB2Y 4A2, Canada
| | - Hilary B. Moors-Murphy
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova ScotiaB2Y 4A2, Canada
| |
Collapse
|
4
|
Fahlman A. Cardiorespiratory adaptations in small cetaceans and marine mammals. Exp Physiol 2024; 109:324-334. [PMID: 37968859 PMCID: PMC10988691 DOI: 10.1113/ep091095] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023]
Abstract
The dive response, or the 'master switch of life', is probably the most studied physiological trait in marine mammals and is thought to conserve the available O2 for the heart and brain. Although generally thought to be an autonomic reflex, several studies indicate that the cardiovascular changes during diving are anticipatory and can be conditioned. The respiratory adaptations, where the aquatic breathing pattern resembles intermittent breathing in land mammals, with expiratory flow exceeding 160 litres s-1 has been measured in cetaceans, and where exposure to extreme pressures results in alveolar collapse (atelectasis) and recruitment upon ascent. Cardiorespiratory coupling, where breathing results in changes in heart rate, has been proposed to improve gas exchange. Cardiorespiratory coupling has also been reported in marine mammals, and in the bottlenose dolphin, where it alters both heart rate and stroke volume. When accounting for this respiratory dependence on cardiac function, several studies have reported an absence of a diving-related bradycardia except during dives that exceed the duration that is fuelled by aerobic metabolism. This review summarizes what is known about the respiratory physiology in marine mammals, with a special focus on cetaceans. The cardiorespiratory coupling is reviewed, and the selective gas exchange hypothesis is summarized, which provides a testable mechanism for how breath-hold diving vertebrates may actively prevent uptake of N2 during routine dives, and how stress results in failure of this mechanism, which results in diving-related gas emboli.
Collapse
Affiliation(s)
- Andreas Fahlman
- Global Diving Research SLValenciaSpain
- Fundación Oceanogràfic de la Comunidad ValencianaValenciaSpain
- Kolmården Wildlife ParkKolmårdenSweden
- IFMLinköping UniversityLinköpingSweden
| |
Collapse
|
5
|
Motani R, Pyenson ND. Downsizing a heavyweight: factors and methods that revise weight estimates of the giant fossil whale Perucetus colossus. PeerJ 2024; 12:e16978. [PMID: 38436015 PMCID: PMC10909350 DOI: 10.7717/peerj.16978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Extremes in organismal size have broad interest in ecology and evolution because organismal size dictates many traits of an organism's biology. There is particular fascination with identifying upper size extremes in the largest vertebrates, given the challenges and difficulties of measuring extant and extinct candidates for the largest animal of all time, such as whales, terrestrial non-avian dinosaurs, and extinct marine reptiles. The discovery of Perucetus colossus, a giant basilosaurid whale from the Eocene of Peru, challenged many assumptions about organismal extremes based on reconstructions of its body weight that exceeded reported values for blue whales (Balaenoptera musculus). Here we present an examination of a series of factors and methodological approaches to assess reconstructing body weight in Perucetus, including: data sources from large extant cetaceans; fitting published body mass estimates to body outlines; testing the assumption of isometry between skeletal and body masses, even with extrapolation; examining the role of pachyostosis in body mass reconstructions; addressing method-dependent error rates; and comparing Perucetus with known physiological and ecological limits for living whales, and Eocene oceanic productivity. We conclude that Perucetus did not exceed the body mass of today's blue whales. Depending on assumptions and methods, we estimate that Perucetus weighed 60-70 tons assuming a length 17 m. We calculated larger estimates potentially as much as 98-114 tons at 20 m in length, which is far less than the direct records of blue whale weights, or the 270 ton estimates that we calculated for body weights of the largest blue whales measured by length.
Collapse
Affiliation(s)
- Ryosuke Motani
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, United States
| | - Nicholas D. Pyenson
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, District of Columbia, United States
| |
Collapse
|
6
|
Moccia V, Centelleghe C, Giusti I, Peruffo A, Dolo V, Mazzariol S, Zappulli V. Isolation and Characterization of Cetacean Cell-Derived Extracellular Vesicles. Animals (Basel) 2023; 13:3304. [PMID: 37958059 PMCID: PMC10650552 DOI: 10.3390/ani13213304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Cetaceans are of scientific interest because they are good candidates as environmental bioindicators. However, in vivo research is arduous and in vitro studies represent a rarely used valid alternative. Extracellular vesicles (EVs) are membrane-bound structures playing roles in cell-to-cell communication. Despite being a promising investigative tool in different fields of science, EVs have been poorly studied in cetaceans. To fill this gap, we describe the preliminary characterization of EVs isolated from a bottlenose dolphin and a Cuvier's beaked whale cell line. EVs have been isolated with ultracentrifugation (UC) or size exclusion chromatography (SEC) and characterized with nanoparticle tracking analysis (NTA), Western blotting (WB), and scanning transmission electron microscopy (STEM). UC and SEC allowed the isolation of mainly small EVs (<200 nm). A higher number of particles were isolated through UC compared to SEC from both cell lines. At WB, all EVs expressed the EV-markers CD9 and integrin-β. Only EVs isolated with UC were positive for TSG101. In conclusion, we isolated for the first time EVs from a bottlenose dolphin and a Cuvier's beaked whale cell line using two different techniques. Further studies on cell-derived EVs will be useful to deepen our knowledge on cetacean pathophysiology and health status assessment.
Collapse
Affiliation(s)
- Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (V.M.); (A.P.); (S.M.); (V.Z.)
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (V.M.); (A.P.); (S.M.); (V.Z.)
| | - Ilaria Giusti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.G.); (V.D.)
| | - Antonella Peruffo
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (V.M.); (A.P.); (S.M.); (V.Z.)
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.G.); (V.D.)
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (V.M.); (A.P.); (S.M.); (V.Z.)
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (V.M.); (A.P.); (S.M.); (V.Z.)
| |
Collapse
|
7
|
Sacchini S, Bombardi C, Arbelo M, Herráez P. The Hypothalamus of the Beaked Whales: The Paraventricular, Supraoptic, and Suprachiasmatic Nuclei. BIOLOGY 2023; 12:1319. [PMID: 37887029 PMCID: PMC10604544 DOI: 10.3390/biology12101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
The hypothalamus is the body's control coordinating center. It is responsible for maintaining the body's homeostasis by directly influencing the autonomic nervous system or managing hormones. Beaked whales are the longest divers among cetaceans and their brains are rarely available for study. Complete hypothalamic samples from a female Cuvier's beaked whale and a male Blainville's beaked whale were processed to investigate the paraventricular (PVN) and supraoptic (SON) nuclei, using immunohistochemical staining against vasopressin. The PVN occupied the preoptic region, where it reached its maximum size, and then regressed in the anterior or suprachiasmatic region. The SON was located from the preoptic to the tuberal hypothalamic region, encompassing the optical structures. It was composed of a retrochiasmatic region (SONr), which bordered and infiltrated the optic tracts, and a principal region (SONp), positioned more medially and dorsally. A third vasopressin-positive nucleus was also detected, i.e., the suprachiasmatic nucleus (SCN), which marked the end of the SON. This is the first description of the aforementioned nuclei in beaked whales-and in any marine mammals-as well as their rostro-caudal extent and immunoreactivity. Moreover, the SCN has been recognized for the first time in any marine mammal species.
Collapse
Affiliation(s)
- Simona Sacchini
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, c/Transmontaña, s/n, 35416 Arucas, Spain; (M.A.); (P.H.)
- Department of Morphology, Campus Universitario de San Cristobal, University of Las Palmas de Gran Canaria, c/Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Cristiano Bombardi
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, c/Transmontaña, s/n, 35416 Arucas, Spain; (M.A.); (P.H.)
| | - Pedro Herráez
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, c/Transmontaña, s/n, 35416 Arucas, Spain; (M.A.); (P.H.)
| |
Collapse
|
8
|
Hin V, de Roos AM, Benoit-Bird KJ, Claridge DE, DiMarzio N, Durban JW, Falcone EA, Jacobson EK, Jones-Todd CM, Pirotta E, Schorr GS, Thomas L, Watwood S, Harwood J. Using individual-based bioenergetic models to predict the aggregate effects of disturbance on populations: A case study with beaked whales and Navy sonar. PLoS One 2023; 18:e0290819. [PMID: 37651444 PMCID: PMC10470956 DOI: 10.1371/journal.pone.0290819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Anthropogenic activities can lead to changes in animal behavior. Predicting population consequences of these behavioral changes requires integrating short-term individual responses into models that forecast population dynamics across multiple generations. This is especially challenging for long-lived animals, because of the different time scales involved. Beaked whales are a group of deep-diving odontocete whales that respond behaviorally when exposed to military mid-frequency active sonar (MFAS), but the effect of these nonlethal responses on beaked whale populations is unknown. Population consequences of aggregate exposure to MFAS was assessed for two beaked whale populations that are regularly present on U.S. Navy training ranges where MFAS is frequently used. Our approach integrates a wide range of data sources, including telemetry data, information on spatial variation in habitat quality, passive acoustic data on the temporal pattern of sonar use and its relationship to beaked whale foraging activity, into an individual-based model with a dynamic bioenergetic module that governs individual life history. The predicted effect of disturbance from MFAS on population abundance ranged between population extinction to a slight increase in population abundance. These effects were driven by the interaction between the temporal pattern of MFAS use, baseline movement patterns, the spatial distribution of prey, the nature of beaked whale behavioral response to MFAS and the top-down impact of whale foraging on prey abundance. Based on these findings, we provide recommendations for monitoring of marine mammal populations and highlight key uncertainties to help guide future directions for assessing population impacts of nonlethal disturbance for these and other long-lived animals.
Collapse
Affiliation(s)
- Vincent Hin
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Wageningen Marine Research, IJmuiden, The Netherlands
| | - André M. de Roos
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Kelly J. Benoit-Bird
- Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | | | - Nancy DiMarzio
- Naval Undersea Warfare Center, Newport, Rhode Island, United States of America
| | | | - Erin A. Falcone
- Marine Ecology and Telemetry Research, Seabeck, Washington, United States of America
| | - Eiren K. Jacobson
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, United Kingdom
| | | | - Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, United Kingdom
| | - Gregory S. Schorr
- Marine Ecology and Telemetry Research, Seabeck, Washington, United States of America
| | - Len Thomas
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, United Kingdom
| | - Stephanie Watwood
- Naval Undersea Warfare Center, Newport, Rhode Island, United States of America
| | - John Harwood
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
9
|
Velázquez-Wallraf A, Caballero MJ, Fernández A, Betancor MB, Saavedra P, Hemingway HW, Bernaldo de Quirós Y. Biomarkers related to gas embolism: Gas score, pathology, and gene expression in a gas bubble disease model. PLoS One 2023; 18:e0288659. [PMID: 37440588 DOI: 10.1371/journal.pone.0288659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Fish exposed to water supersaturated with dissolved gas experience gas embolism similar to decompression sickness (DCS), known as gas bubble disease (GBD) in fish. GBD has been postulated as an alternative to traditional mammals' models on DCS. Gas embolism can cause mechanical and biochemical damage, generating pathophysiological responses. Increased expression of biomarkers of cell damage such as the heat shock protein (HSP) family, endothelin 1 (ET-1) or intercellular adhesion molecule 1 (ICAM-1) has been observed, being a possible target for further studies of gas embolism. The GBD model consisted of exposing fish to supersaturation in water with approximately 170% total dissolved gas (TDG) for 18 hours, producing severe gas embolism. This diagnosis was confirmed by a complete histopathological exam and the gas score method. HSP70 showed a statistically significant upregulation compared to the control in all the studied organs (p <0.02). Gills and heart showed upregulation of HSP90 with statistical significance (p = 0.015 and p = 0.02, respectively). In addition, HSP70 gene expression in gills was positively correlated with gas score (p = 0.033). These results suggest that gas embolism modify the expression of different biomarkers, with HSP70 being shown as a strong marker of this process. Furthermore, gas score is a useful tool to study the abundance of gas bubbles, although individual variability always remains present. These results support the validity of the GBD model in fish to study gas embolism in diseases such as DCS.
Collapse
Affiliation(s)
- Alicia Velázquez-Wallraf
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Maria José Caballero
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Antonio Fernández
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Mónica B Betancor
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Pedro Saavedra
- Department of Mathematics, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Holden W Hemingway
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Yara Bernaldo de Quirós
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| |
Collapse
|
10
|
Duignan P. Aquatic Mammals. PATHOLOGY AND EPIDEMIOLOGY OF AQUATIC ANIMAL DISEASES FOR PRACTITIONERS 2023:214-350. [DOI: 10.1002/9781119839729.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Kok ACM, Berkhout BW, Carlson NV, Evans NP, Khan N, Potvin DA, Radford AN, Sebire M, Shafiei Sabet S, Shannon G, Wascher CAF. How chronic anthropogenic noise can affect wildlife communities. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1130075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Anthropogenic noise is a major pollutant in terrestrial and aquatic ecosystems. Since the industrial revolution, human activities have become increasingly noisy, leading to both acute and chronic disturbance of a wide variety of animals. Chronic noise exposure can affect animals over their lifespan, leading to changes in species interactions and likely altering communities. However, the community-level impacts of chronic noise are not well-understood, which impairs our ability for effective mitigation. In this review, we address the effects of chronic noise exposure on communities and explore possible mechanisms underlying these effects. The limited studies on this topic suggest that noise can affect communities by changing the behavior and/or physiology of species in a community, which results in direct or knock-on consequences for other species in the ecosystem. Major knowledge gaps remain due to the logistically complex and financially expensive nature of the long-term studies needed to address these questions. By identifying these gaps and suggesting approaches to answer them, we provide a road map toward mitigating the effects of a noisy world.
Collapse
|
12
|
Fernandez A, Jepson PD, Diaz-Delgado J, de Quiros YB, Sierra E, Mompeo B, Vela AI, Di Guardo G, Suarez-Santana C, de Los Monteros AE, Herraez P, Andrada M, Caballero MJ, Rivero M, Consoli F, Castro-Alonso A, Quesada-Canales O, Arbelo M. Budd-Chiari-like pathology in dolphins. Sci Rep 2022; 12:12635. [PMID: 35879404 PMCID: PMC9314369 DOI: 10.1038/s41598-022-16947-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Nearly two decades ago, pathologic examination results suggested that acoustic factors, such as mid-frequency active naval military sonar (MFAS) could be the cause of acute decompression-like sickness in stranded beaked whales. Acute systemic gas embolism in these whales was reported together with enigmatic cystic liver lesions (CLL), characterized by intrahepatic encapsulated gas-filled cysts, tentatively interpreted as “gas-bubble” lesions in various other cetacean species. Here we provide a pathologic reinterpretation of CLL in odontocetes. Among 1,200 cetaceans necropsied, CLL were only observed in four striped dolphins (Stenella coeruleoalba), with a low prevalence (2%, N = 179). Together, our data strongly suggest that CLL are the result of the combination of a pre-existing or concomitant hepatic vascular disorder superimposed and exacerbated by gas bubbles, and clearly differ from acute systemic gas embolism in stranded beaked whales that is linked to MFAS. Budd-Chiari-like syndrome in dolphins is hypothesized based on the present pathologic findings. Nonetheless, further researched is warranted to determine precise etiopathogenesis(es) and contributing factors for CLL in cetaceans.
Collapse
Affiliation(s)
- Antonio Fernandez
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain.
| | - Paul D Jepson
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain.,Institute of Zoology, London, UK
| | - Josue Diaz-Delgado
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| | - Yara Bernaldo de Quiros
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| | - Eva Sierra
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| | - Blanca Mompeo
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain.,Human Medicine School, University Las Palmas de Gran Canaria, Las Palmas, Spain
| | | | - Giovanni Di Guardo
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain.,Veterinary School, Teramo University, Teramo, Italy
| | - Cristian Suarez-Santana
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| | - Antonio Espinosa de Los Monteros
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| | - Pedro Herraez
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| | - Marisa Andrada
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| | - Maria Jose Caballero
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| | - Miguel Rivero
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| | - Francesco Consoli
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| | - Ayoze Castro-Alonso
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain.,Canary Islands Oceanic Platform (Plocan), Canary Islands, Spain
| | - Oscar Quesada-Canales
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Institute of Animal Health, University of Las Palmas de Gran Canaria, Veterinary School, C/ Transmontaña s/n, Arucas, 35416, Las Palmas, Spain
| |
Collapse
|
13
|
Williams TM, Blackwell SB, Tervo O, Garde E, Sinding MS, Richter B, Heide‐Jørgensen MP. Physiological responses of narwhals to anthropogenic noise: A case study with seismic airguns and vessel traffic in the Arctic. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Terrie M. Williams
- Coastal Biology Building‐ Department of Ecology and Evolutionary Biology, 130 McAllister Way University of California‐ Santa Cruz CA
| | | | - Outi Tervo
- Greenland Institute of Natural Resources Copenhagen K Denmark
| | - Eva Garde
- Greenland Institute of Natural Resources Copenhagen K Denmark
| | | | - Beau Richter
- Coastal Biology Building‐ Department of Ecology and Evolutionary Biology, 130 McAllister Way University of California‐ Santa Cruz CA
| | | |
Collapse
|
14
|
Fundamental Concepts, Knowledge Gaps and Key Concerns Relating to Welfare and Survival of Stranded Cetaceans. DIVERSITY 2022. [DOI: 10.3390/d14050338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Wildlife management can influence animal welfare and survival, although both are often not explicitly integrated into decision making. This study explores fundamental concepts and key concerns relating to the welfare and survival of stranded cetaceans. Using the Delphi method, the opinions of an international, interdisciplinary expert panel were gathered, regarding the characterisation of stranded cetacean welfare and survival likelihood, knowledge gaps and key concerns. Experts suggest that stranded cetacean welfare should be characterised based on interrelated aspects of animals’ biological function, behaviour, and mental state and the impacts of human interventions. The characterisation of survival likelihood should reflect aspects of stranded animals’ biological functioning and behaviour as well as a 6-month post-re-floating survival marker. Post-release monitoring was the major knowledge gap for survival. Welfare knowledge gaps related to diagnosing internal injuries, interpreting behavioural and physiological parameters, and euthanasia decision making. Twelve concerns were highlighted for both welfare and survival likelihood, including difficulty breathing and organ compression, skin damage and physical traumas, separation from conspecifics, and suffering and stress due to stranding and human intervention. These findings indicate inextricable links between perceptions of welfare state and the likely survival of stranded cetaceans and demonstrate a need to integrate welfare science alongside conservation biology to achieve effective, ethical management at strandings.
Collapse
|
15
|
Velázquez-Wallraf A, Fernández A, Caballero MJ, Arregui M, González Díaz Ó, Betancor MB, Bernaldo de Quirós Y. Establishment of a fish model to study gas-bubble lesions. Sci Rep 2022; 12:6592. [PMID: 35449183 PMCID: PMC9023494 DOI: 10.1038/s41598-022-10539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/01/2022] [Indexed: 11/08/2022] Open
Abstract
Decompression sickness (DCS) is a clinical syndrome caused by the formation of systemic intravascular and extravascular gas bubbles. The presence of these bubbles in blood vessels is known as gas embolism. DCS has been described in humans and animals such as sea turtles and cetaceans. To delve deeper into DCS, experimental models in terrestrial mammals subjected to compression/decompression in a hyperbaric chamber have been used. Fish can suffer from gas bubble disease (GBD), characterized by the formation of intravascular and extravascular systemic gas bubbles, similarly to that observed in DCS. Given these similarities and the fact that fish develop this disease naturally in supersaturated water, they could be used as an alternative experimental model for the study of the pathophysiological aspect of gas bubbles. The objective of this study was to obtain a reproducible model for GBD in fish by an engineering system and a complete pathological study, validating this model for the study of the physiopathology of gas related lesions in DCS. A massive and severe GBD was achieved by exposing the fish for 18 h to TDG values of 162-163%, characterized by the presence of severe hemorrhages and the visualization of massive quantities of macroscopic and microscopic gas bubbles, systemically distributed, circulating through different large vessels of experimental fish. These pathological findings were the same as those described in small mammals for the study of explosive DCS by hyperbaric chamber, validating the translational usefulness of this first fish model to study the gas-bubbles lesions associated to DCS from a pathological standpoint.
Collapse
Affiliation(s)
- Alicia Velázquez-Wallraf
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Antonio Fernández
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - María José Caballero
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain.
| | - Marina Arregui
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
| | - Óscar González Díaz
- Physical and Chemical Instrumental Center for the Development of Applied Research Technology and Scientific Estate, Institute for Environmental Studies and Natural Resources (I-UNAT), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain
| | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Yara Bernaldo de Quirós
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Canary Islands, Spain
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
16
|
Behavioral responses to predatory sounds predict sensitivity of cetaceans to anthropogenic noise within a soundscape of fear. Proc Natl Acad Sci U S A 2022; 119:e2114932119. [PMID: 35312354 PMCID: PMC9060435 DOI: 10.1073/pnas.2114932119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Acoustic signals travel efficiently in the marine environment, allowing soniferous predators and prey to eavesdrop on each other. Our results with four cetacean species indicate that they use acoustic information to assess predation risk and have evolved mechanisms to reduce predation risk by ceasing foraging. Species that more readily gave up foraging in response to predatory sounds of killer whales also decreased foraging more during 1- to 4-kHz sonar exposures, indicating that species exhibiting costly antipredator responses also have stronger behavioral reactions to anthropogenic noise. This advance in our understanding of the drivers of disturbance helps us to predict what species and habitats are likely to be most severely impacted by underwater noise pollution in oceans undergoing increasing anthropogenic activities. As human activities impact virtually every animal habitat on the planet, identifying species at-risk from disturbance is a priority. Cetaceans are an example taxon where responsiveness to anthropogenic noise can be severe but highly species and context specific, with source–receiver characteristics such as hearing sensitivity only partially explaining this variability. Here, we predicted that ecoevolutionary factors that increase species responsiveness to predation risk also increase responsiveness to anthropogenic noise. We found that reductions in intense-foraging time during exposure to 1- to 4-kHz naval sonar and predatory killer whale sounds were highly correlated (r = 0.92) across four cetacean species. Northern bottlenose whales ceased foraging completely during killer whale and sonar exposures, followed by humpback, long-finned pilot, and sperm whales, which reduced intense foraging by 48 to 97%. Individual responses to sonar were partly predicted by species-level responses to killer whale playbacks, implying a similar level of perceived risk. The correlation cannot be solely explained by hearing sensitivity, indicating that species- and context-specific antipredator adaptations also shape cetacean responses to human-made noise. Species that are more responsive to predator presence are predicted to be more disturbance sensitive, implying a looming double whammy for Arctic cetaceans facing increased anthropogenic and predator activity with reduced ice cover.
Collapse
|
17
|
Felipe-Jiménez I, Fernández A, Arbelo M, Segura-Göthlin S, Colom-Rivero A, Suárez-Santana CM, De La Fuente J, Sierra E. Molecular Diagnosis of Cetacean Morbillivirus in Beaked Whales Stranded in the Canary Islands (1999–2017). Vet Sci 2022; 9:vetsci9030121. [PMID: 35324849 PMCID: PMC8950905 DOI: 10.3390/vetsci9030121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 12/30/2022] Open
Abstract
A retrospective survey for detecting the cetacean morbillivirus (CeMV) was carried out in beaked whales (BWs) stranded in the Canary Islands (1999–2017). CeMV is responsible for causing worldwide epizootic events with the highest mass die-offs in cetaceans, although the epidemic status of the Canarian Archipelago seems to be that of an endemic situation. A total of 319 tissue samples from 55 BWs (35 Cuvier’s BWs and 20 specimens belonging to the Mesoplodon genus) were subjected to the amplification of a fragment of the fusion protein (F) and/or phosphoprotein (P) genes of CeMV by means of one or more of three polymerase chain reactions (PCR). RNA integrity could not be demonstrated in samples from 11 animals. Positivity (dolphin morbillivirus strain (DMV)) was detected in the skin sample of only a subadult male Cuvier’s BW stranded in 2002, being the earliest confirmed occurrence of DMV in the Cuvier’s BW species. The obtained P gene sequence showed the closest relationship with other DMVs detected in a striped dolphin stranded in the Canary Islands in the same year. A phylogenetic analysis supports a previous hypothesis of a cross-species infection and the existence of the circulation of endemic DMV strains in the Atlantic Ocean similar to those later detected in the North-East Atlantic, the Mediterranean Sea and the South-West Pacific.
Collapse
|
18
|
Chahouri A, Elouahmani N, Ouchene H. Recent progress in marine noise pollution: A thorough review. CHEMOSPHERE 2022; 291:132983. [PMID: 34801565 DOI: 10.1016/j.chemosphere.2021.132983] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
The increase in urbanization and the progressive development of marine industries have led to the appearance of a new kind of pollution called "noise pollution". This pollution exerts an increasing pressure on marine mammals, fish species, and invertebrates, which constitutes a new debate that must be controlled in a sustainable way by environmental and noise approaches with the objective of preserving marine and human life. Despite, noise pollution can travel long distances underwater, cover large areas, and have secondary effects on marine animals; by masking their ability to hear their prey or predators, finding their way, or connecting group members. During the COVID-19 pandemic, except for the transportation of essential goods and emergency services, all the public transport services were suspended including aircraft and ships. This lockdown has impacted positively on the marine environment through reduction of the noise sources. In this article, we are interested in noise pollution in general, its sources, impacts, and the management and future actions to follow. And since this pollution is not studied in Morocco, we focused on the different sources that can generate it on the Moroccan coasts. This is the first review article, which focuses on the impact of the COVID 19 pandemic on this type of pollution in the marine environment; which we aim to identify the impact of this pandemic on underwater noise and marine species. Finally, and given the increase in noise levels, preventive management, both at the national and international level, is required before irreversible damage is caused to biodiversity and the marine ecosystem.
Collapse
Affiliation(s)
- Abir Chahouri
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco.
| | - Nadia Elouahmani
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco
| | - Hanan Ouchene
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
19
|
Sierra E, Ramírez T, Bernaldo de Quirós Y, Arregui M, Mompeó B, Rivero MA, Fernández A. Pulmonary and Systemic Skeletal Muscle Embolism in a Beaked Whale with a Massive Trauma of Unknown Aetiology. Animals (Basel) 2022; 12:ani12040508. [PMID: 35203216 PMCID: PMC8868372 DOI: 10.3390/ani12040508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary A severe trauma of unknown aetiology was suspected as the cause of death in an adult female Sowerby’s beaked whale found floating dead in the Canary Islands in December 2016. Many bruises in the skin and muscles (contusions) were observed in the chest wall and bone fractures, mainly located in the mandible and ribs. The broken rib bones also affected thoracic muscles, which escaped into the blood circulation once ruptured, reaching several organic locations, including the lungs, where they became trapped within the small lumen of pulmonary blood vessels, leading to a systemic and pulmonary skeletal muscle embolism. An embolism occurs when a piece of intravascular internal or foreign material obstructs the lumen of a blood vessel, starving tissues of blood and oxygen. An embolism necessarily needs cardiac function, indicating a survival time after trauma. This case report aimed to include the diagnosis of skeletal muscle embolism as a routine tool to determine if the traumatic event occurred before or after death. This is especially valuable when working with dead animals because no other evidence of traumatic injury may be recorded if carcasses are in advanced decay. Abstract An adult female Sowerby’s beaked whale was found floating dead in Hermigua (La Gomera, Canary Islands, Spain) on 7 December 2016. Severe traumas of unknown aetiology were attributed, and the gross and microscopic findings are consistent with catastrophic trauma as a cause of death. Rib fractures affected the intercostals, transverse thoracis skeletal muscles, and thoracic rete mirabile. Degenerated muscle fibres were extruded to flow into vascular and lymphatic vessels travelling to several anatomic locations into the thoracic cavity, including the lungs, where they occluded the small lumen of pulmonary microvasculature. A pulmonary and systemic skeletal muscle embolism was diagnosed, constituting the first description of this kind of embolism in an animal. The only previous description has been reported in a woman after peritoneal dialysis. Skeletal pulmonary embolism should be considered a valuable diagnostic for different types of trauma in vivo in wild animals. This is especially valuable when working with decomposed carcasses, as in those cases, it is not always feasible to assess other traumatic evidence.
Collapse
Affiliation(s)
- Eva Sierra
- Division of Histology and Animal Pathology, University Institute of Animal Health and Food Security (IUSA), Universidad de Las Palmas de Gran Canaria (ULPGC), 35413 Las Palmas, Canary Islands, Spain; (E.S.); (T.R.); (Y.B.d.Q.); (M.A.); (M.A.R.)
| | - Tania Ramírez
- Division of Histology and Animal Pathology, University Institute of Animal Health and Food Security (IUSA), Universidad de Las Palmas de Gran Canaria (ULPGC), 35413 Las Palmas, Canary Islands, Spain; (E.S.); (T.R.); (Y.B.d.Q.); (M.A.); (M.A.R.)
| | - Yara Bernaldo de Quirós
- Division of Histology and Animal Pathology, University Institute of Animal Health and Food Security (IUSA), Universidad de Las Palmas de Gran Canaria (ULPGC), 35413 Las Palmas, Canary Islands, Spain; (E.S.); (T.R.); (Y.B.d.Q.); (M.A.); (M.A.R.)
| | - Marina Arregui
- Division of Histology and Animal Pathology, University Institute of Animal Health and Food Security (IUSA), Universidad de Las Palmas de Gran Canaria (ULPGC), 35413 Las Palmas, Canary Islands, Spain; (E.S.); (T.R.); (Y.B.d.Q.); (M.A.); (M.A.R.)
| | - Blanca Mompeó
- Department of Morphology, Universidad de Las Palmas de Gran Canaria (ULPGC), 35016 Las Palmas, Canary Islands, Spain;
| | - Miguel A. Rivero
- Division of Histology and Animal Pathology, University Institute of Animal Health and Food Security (IUSA), Universidad de Las Palmas de Gran Canaria (ULPGC), 35413 Las Palmas, Canary Islands, Spain; (E.S.); (T.R.); (Y.B.d.Q.); (M.A.); (M.A.R.)
| | - Antonio Fernández
- Division of Histology and Animal Pathology, University Institute of Animal Health and Food Security (IUSA), Universidad de Las Palmas de Gran Canaria (ULPGC), 35413 Las Palmas, Canary Islands, Spain; (E.S.); (T.R.); (Y.B.d.Q.); (M.A.); (M.A.R.)
- Correspondence:
| |
Collapse
|
20
|
Stanistreet JE, Beslin WAM, Kowarski K, Martin SB, Westell A, Moors-Murphy HB. Changes in the acoustic activity of beaked whales and sperm whales recorded during a naval training exercise off eastern Canada. Sci Rep 2022; 12:1973. [PMID: 35132140 PMCID: PMC8821608 DOI: 10.1038/s41598-022-05930-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/20/2022] [Indexed: 11/09/2022] Open
Abstract
Experimental research has shown that beaked whales exhibit strong avoidance reactions to naval active sonars used during antisubmarine warfare training exercises, including cessation of echolocation and foraging activity. Behavioural responses to sonar have also been linked to strandings and mortality. Much of the research on the responses of beaked whales and other cetaceans to naval active sonar has occurred on or near U.S. naval training ranges, and the impacts of sonar in other regions remain poorly understood, particularly as these impacts, including mortality, are likely to go unobserved in offshore areas. In September 2016 the multinational naval exercise 'CUTLASS FURY 2016' (CF16) was conducted off eastern Canada. We used passive acoustic recordings collected in the region to quantify the occurrence and characteristics of sonar signals, measure ambient noise levels, and assess changes in the acoustic activity of beaked and sperm whales. The number of hours per day with echolocation clicks from Cuvier's beaked whales and sperm whales were significantly reduced during CF16, compared to the pre-exercise period in 2016 (sperm whales) and to control data from 2015 (both species). Clicks from an unidentified Mesoplodont beaked whale species, sporadically detected prior to CF16, were absent during the exercise and for 7 days afterward. These results suggest that beaked and sperm whales ceased foraging in the vicinity of CF16 and likely avoided the affected area. Such disturbance may have energetic, health, and fitness consequences.
Collapse
Affiliation(s)
- Joy E Stanistreet
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, Canada.
| | - Wilfried A M Beslin
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, Canada
| | - Katie Kowarski
- JASCO Applied Sciences, 32 Troop Avenue, Suite 202, Dartmouth, NS, Canada
| | - S Bruce Martin
- JASCO Applied Sciences, 32 Troop Avenue, Suite 202, Dartmouth, NS, Canada
| | - Annabel Westell
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, Canada
| | - Hilary B Moors-Murphy
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, Canada
| |
Collapse
|
21
|
Jones‐Todd CM, Pirotta E, Durban JW, Claridge DE, Baird RW, Falcone EA, Schorr GS, Watwood S, Thomas L. Discrete-space continuous-time models of marine mammal exposure to Navy sonar. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02475. [PMID: 34653299 PMCID: PMC9786920 DOI: 10.1002/eap.2475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 02/01/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Assessing the patterns of wildlife attendance to specific areas is relevant across many fundamental and applied ecological studies, particularly when animals are at risk of being exposed to stressors within or outside the boundaries of those areas. Marine mammals are increasingly being exposed to human activities that may cause behavioral and physiological changes, including military exercises using active sonars. Assessment of the population-level consequences of anthropogenic disturbance requires robust and efficient tools to quantify the levels of aggregate exposure for individuals in a population over biologically relevant time frames. We propose a discrete-space, continuous-time approach to estimate individual transition rates across the boundaries of an area of interest, informed by telemetry data collected with uncertainty. The approach allows inferring the effect of stressors on transition rates, the progressive return to baseline movement patterns, and any difference among individuals. We apply the modeling framework to telemetry data from Blainville's beaked whale (Mesoplodon densirostris) tagged in the Bahamas at the Atlantic Undersea Test and Evaluation Center (AUTEC), an area used by the U.S. Navy for fleet readiness training. We show that transition rates changed as a result of exposure to sonar exercises in the area, reflecting an avoidance response. Our approach supports the assessment of the aggregate exposure of individuals to sonar and the resulting population-level consequences. The approach has potential applications across many applied and fundamental problems where telemetry data are used to characterize animal occurrence within specific areas.
Collapse
Affiliation(s)
| | - Enrico Pirotta
- Department of Mathematics and StatisticsWashington State University14204 NE Salmon Creek AvenueVancouverWashington98686USA
- School of Biological, Earth and Environmental SciencesUniversity College CorkNorth MallDistillery FieldsCorkT23 N73KIreland
- Centre for Research into Ecological and Environmental ModellingThe ObservatoryUniversity of St AndrewsSt AndrewsKY16 9LZUK
| | - John W. Durban
- Southall Environmental Associates Inc.9099 Soquel Drive, Suite 8AptosCalifornia95003USA
| | - Diane E. Claridge
- Bahamas Marine Mammal Research OrganizationMarsh HarbourAbacoBahamas
| | - Robin W. Baird
- Cascadia Research Collective218 ½ W. 4th AvenueOlympiaWashington98501USA
| | - Erin A. Falcone
- Marine Ecology and Telemetry Research2420 Nellita Road NWSeabeckWashington98380USA
| | - Gregory S. Schorr
- Marine Ecology and Telemetry Research2420 Nellita Road NWSeabeckWashington98380USA
| | - Stephanie Watwood
- Naval Undersea Warfare Center DivisionCode 70TNewportRhode Island02841USA
| | - Len Thomas
- Centre for Research into Ecological and Environmental ModellingThe ObservatoryUniversity of St AndrewsSt AndrewsKY16 9LZUK
| |
Collapse
|
22
|
Velázquez-Wallraf A, Fernández A, Caballero MJ, Møllerløkken A, Jepson PD, Andrada M, Bernaldo de Quirós Y. Decompressive Pathology in Cetaceans Based on an Experimental Pathological Model. Front Vet Sci 2021; 8:676499. [PMID: 34169109 PMCID: PMC8218990 DOI: 10.3389/fvets.2021.676499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/26/2021] [Indexed: 11/26/2022] Open
Abstract
Decompression sickness (DCS) is a widely known clinical syndrome in human medicine, mainly in divers, related to the formation of intravascular and extravascular gas bubbles. Gas embolism and decompression-like sickness have also been described in wild animals, such as cetaceans. It was hypothesized that adaptations to the marine environment protected them from DCS, but in 2003, decompression-like sickness was described for the first time in beaked whales, challenging this dogma. Since then, several episodes of mass strandings of beaked whales coincidental in time and space with naval maneuvers have been recorded and diagnosed with DCS. The diagnosis of human DCS is based on the presence of clinical symptoms and the detection of gas embolism by ultrasound, but in cetaceans, the diagnosis is limited to forensic investigations. For this reason, it is necessary to resort to experimental animal models to support the pathological diagnosis of DCS in cetaceans. The objective of this study is to validate the pathological results of cetaceans through an experimental rabbit model wherein a complete and detailed histopathological analysis was performed. Gross and histopathological results were very similar in the experimental animal model compared to stranded cetaceans with DCS, with the presence of gas embolism systemically distributed as well as emphysema and hemorrhages as primary lesions in different organs. The experimental data reinforces the pathological findings found in cetaceans with DCS as well as the hypothesis that individuality plays an essential role in DCS, as it has previously been proposed in animal models and human diving medicine.
Collapse
Affiliation(s)
- Alicia Velázquez-Wallraf
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Antonio Fernández
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Maria José Caballero
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Andreas Møllerløkken
- Faculty of Engineering, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Paul D Jepson
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Marisa Andrada
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Yara Bernaldo de Quirós
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
23
|
Carlucci R, Manea E, Ricci P, Cipriano G, Fanizza C, Maglietta R, Gissi E. Managing multiple pressures for cetaceans' conservation with an Ecosystem-Based Marine Spatial Planning approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112240. [PMID: 33740744 DOI: 10.1016/j.jenvman.2021.112240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Despite the recognized important ecological role that cetaceans play in the marine environment, their protection is still scarcely enforced in the Mediterranean Sea even though this area is strongly threatened by local human pressures and climate change. The piecemeal of knowledge related to cetaceans' ecology and distribution in the basin undermines the capacity of addressing cetaceans' protection and identifying effective conservation strategies. In this study, an Ecosystem-Based Marine Spatial Planning (EB-MSP) approach is applied to assess human pressures on cetaceans and guide the designation of a conservation area in the Gulf of Taranto, Northern Ionian Sea (Central-eastern Mediterranean Sea). The Gulf of Taranto hosts different cetacean species that accomplish important phases of their life in the area. Despite this fact, the gulf does not fall within any area-based management tools (ABMTs) for cetacean conservation. We pin down the Gulf of Taranto being eligible for the designation of diverse ABMTs for conservation, both legally and non-legally binding. Through a risk-based approach, this study explores the cause-effect relationships that link any human activities and pressures exerted in the study area to potential effects on cetaceans, by identifying major drivers of potential impacts. These were found to be underwater noise, marine litter, ship collision, and competition and disturbance on preys. We draw some recommendations based on different sources of available knowledge produced so far in the area (i.e., empirical evidence, scientific and grey literature, and expert judgement) to boost cetaceans' conservation. Finally, we stress the need of sectoral coordination for the management of human activities by applying an EB-MSP approach and valuing the establishment of an ABMT in the Gulf of Taranto.
Collapse
Affiliation(s)
- Roberto Carlucci
- Department of Biology, University of Bari, Via Orabona 4, 70125, Bari, Italy; CoNISMa, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Elisabetta Manea
- Institute of Marine Sciences, National Research Council, ISMAR-CNR, Arsenale, Tesa 104, Castello 2737/F, 30122, Venice, Italy.
| | - Pasquale Ricci
- Department of Biology, University of Bari, Via Orabona 4, 70125, Bari, Italy; CoNISMa, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Giulia Cipriano
- Department of Biology, University of Bari, Via Orabona 4, 70125, Bari, Italy; CoNISMa, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Carmelo Fanizza
- Jonian Dolphin Conservation, Viale Virgilio 102, 74121, Taranto, Italy
| | - Rosalia Maglietta
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing, National Research Council, Via Amendola 122 D/O, 70126, Bari, Italy
| | - Elena Gissi
- Institute of Marine Sciences, National Research Council, ISMAR-CNR, Arsenale, Tesa 104, Castello 2737/F, 30122, Venice, Italy; University Iuav of Venice, Tolentini, Santa Croce 191, 30135, Venice, Italy
| |
Collapse
|
24
|
Deathly Silent: Exploring the Global Lack of Data Relating to Stranded Cetacean Euthanasia. Animals (Basel) 2021; 11:ani11051460. [PMID: 34069749 PMCID: PMC8161157 DOI: 10.3390/ani11051460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Cetacean strandings are frequent in occurrence and are likely to become even more common globally because of the effects of escalating anthropogenic activities. Due to the compromised state of stranded animals, euthanasia is often recommended or required. However, current knowledge and implementation of euthanasia methods remain highly variable, with limited data on the practicalities and welfare impacts of procedures. This study sought to evaluate the available published data on cetacean euthanasia in order to highlight significant knowledge gaps and provide direction to improve the welfare of stranded cetaceans. Data from the peer-reviewed literature and published reports were analysed, and significant knowledge gaps highlighted. Two main euthanasia methods, chemical and ballistics, were reported, with few details provided on the specific application of these. Few data were available about time to death/insensibility, parameters commonly required to assess the welfare impacts of killing methods. Overall, the findings highlight the lack of available information on cetacean euthanasia and suggest avenues for future work to improve welfare through the use of appropriate methods and increased data collection. Abstract The compromised state of stranded cetaceans means that euthanasia is often required. However, current knowledge and implementation of euthanasia methods remain highly variable, with limited data on the practicalities and welfare impacts of procedures. This study evaluated the available published data on cetacean euthanasia, highlighting knowledge gaps and providing direction to improve stranded cetacean welfare. A total of 2147 peer-reviewed articles describing marine mammal euthanasia were examined. Of these 3.1% provided details on the method used, with 91% employing chemical methods. Two countries, the United Kingdom (UK) and New Zealand (NZ), provided euthanasia reports to the International Whaling Commission (IWC) between 2007 and 2020. Methods employed were reported for 78.3% and 100% of individual cetaceans euthanised in the UK and NZ, respectively. In the UK, chemical euthanasia was most common (52%), whilst in NZ only ballistics methods were used. Few data were available about time to death/insensibility (TTD); 0.5% of peer-reviewed articles provided TTD, whilst TTD was reported for 35% of individuals in the UK and for 98% in NZ. However, IWC reports lacked detail on how death/insensibility were assessed, with multiple individuals “presumed instantly” killed. Overall, the findings highlight the lack of available information on cetacean euthanasia, and suggest increased data collection and the application of appropriate methods to improve welfare.
Collapse
|
25
|
Lipid signature of neural tissues of marine and terrestrial mammals: consistency across species and habitats. J Comp Physiol B 2021; 191:815-829. [PMID: 33973058 DOI: 10.1007/s00360-021-01373-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/24/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
Marine mammals are exposed to O2-limitation and increased N2 gas concentrations as they dive to exploit habitat and food resources. The lipid-rich tissues (blubber, acoustic, neural) are of particular concern as N2 is five times more soluble in lipid than in blood or muscle, creating body compartments that can become N2 saturated, possibly leading to gas emboli upon surfacing. We characterized lipids in the neural tissues of marine mammals to determine whether they have similar lipid profiles compared to terrestrial mammals. Lipid profiles (lipid content, lipid class composition, and fatty acid signatures) were determined in the neural tissues of 12 cetacean species with varying diving regimes, and compared to two species of terrestrial mammals. Neural tissue lipid profile was not significantly different in marine versus terrestrial mammals across tissue types. Within the marine species, average dive depth was not significantly associated with the lipid profile of cervical spinal cord. Across species, tissue type (brain, spinal cord, and spinal nerve) was a significant factor in lipid profile, largely due to the presence of storage lipids (triacylglycerol and wax ester/sterol ester) in spinal nerve tissue only. The stability of lipid signatures within the neural tissue types of terrestrial and marine species, which display markedly different dive behaviors, points to the consistent role of lipids in these tissues. These findings indicate that despite large differences in the level of N2 gas exposure by dive type in the species examined, the lipids of neural tissues likely do not have a neuroprotective role in marine mammals.
Collapse
|
26
|
Aniceto AS, Tassara L, Rikardsen A, Blévin P. Mass strandings of seven toothed and baleen whale species in Northern Norway in March 2020 call for further investigation. Polar Biol 2021. [DOI: 10.1007/s00300-021-02869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractMonitoring whale strandings are a key aspect of ecosystem management as stranded animals can provide indications on ecosystem health, pollution and adverse effects due to anthropogenic activities. Most mass mortality events are reported for toothed whales and rarely involve baleen whales. In the course of one month in spring 2020, 17 whales belonging to seven different species, stranded on the shores of Northern Norway, above the Arctic circle. This multi-species event included humpback (Megaptera novaeangliae), fin (Balaenoptera physalus) and sperm whales (Physeter macrocephalus), that were accompanied by northern bottlenose whales (Hyperoodon ampullatus), a white-beaked dolphin (Lagenorhynchus albirostris), a long-finned pilot whale (Globicephala melas) and a harbour porpoise (Phocoena phocoena). We discuss some potential causes of death based on the previous literature and available information for the area, highlighting the need for further investigation on cetacean strandings at high latitudes. Ultimately, the reasons for the stranding could only be identified by a thorough examination of all the animals, which was unfortunately not conducted. As the threats to polar ecosystems and access to local shores are likely to increase, reports of cetacean mortality are also expected to surge, particularly in high latitude regions where climate variations and anthropogenic activities are increasing. This study makes recommendations for future steps and considerations for monitoring networks and standardized sampling methods for future marine mammal stranding events. Finally, we suggest that national and international efforts based on the collaborative relationships are implemented, considering the multiple facets of animal ecology and health as an achievable step in the near future.
Collapse
|
27
|
Derous D, Sahu J, Douglas A, Lusseau D, Wenzel M. Comparative genomics of cetartiodactyla: energy metabolism underpins the transition to an aquatic lifestyle. CONSERVATION PHYSIOLOGY 2021; 9:coaa136. [PMID: 33505701 PMCID: PMC7816800 DOI: 10.1093/conphys/coaa136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/09/2020] [Accepted: 12/19/2020] [Indexed: 05/28/2023]
Abstract
Foraging disruption caused by human activities is emerging as a key issue in cetacean conservation because it can affect nutrient levels and the amount of energy available to individuals to invest into reproduction. Our ability to predict how anthropogenic stressors affect these ecological processes and ultimately population trajectory depends crucially on our understanding of the complex physiological mechanisms that detect nutrient availability and regulate energy metabolism, foraging behavior and life-history decisions. These physiological mechanisms are likely to differ considerably from terrestrial mammalian model systems. Here, we examine nucleotide substitution rates in cetacean and other artiodactyl genomes to identify signatures of selection in genes associated with nutrient sensing pathways. We also estimated the likely physiological consequences of adaptive amino acid substitutions for pathway functions. Our results highlight that genes involved in the insulin, mTOR and NF-ĸB pathways are subject to significant positive selection in cetaceans compared to terrestrial artiodactyla. These genes may have been positively selected to enable cetaceans to adapt to a glucose-poor diet, to overcome deleterious effects caused by hypoxia during diving (e.g. oxidative stress and inflammation) and to modify fat-depot signaling functions in a manner different to terrestrial mammals. We thus show that adaptation in cetaceans to an aquatic lifestyle significantly affected functions in nutrient sensing pathways. The use of fat stores as a condition index in cetaceans may be confounded by the multiple and critical roles fat has in regulating cetacean metabolism, foraging behavior and diving physiology.
Collapse
Affiliation(s)
- Davina Derous
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Jagajjit Sahu
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Alex Douglas
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - David Lusseau
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Copenhagen, Denmark
| | - Marius Wenzel
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
28
|
Daly E, White M. Bottom trawling noise: Are fishing vessels polluting to deeper acoustic habitats? MARINE POLLUTION BULLETIN 2021; 162:111877. [PMID: 33290960 DOI: 10.1016/j.marpolbul.2020.111877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The impact of bottom trawling noise was quantified on two surrounding marine acoustic habitats using fixed mooring acoustic recorders. Noise during trawling activity is shown to be considerably louder than ambient noise and a nearby underway research vessel. Estimated source levels were above cetacean damage thresholds. Measurements at a submarine canyon indicated potential noise focussing, inferring a role for such features to enhance down slope noise propagation at continental margin sites. Modelled sound propagates more efficiently when sourced from trawling gear dragging along the seabed relative to the vessel as a surface source. Results are contextualised with respect to marine mammal harm, to other anthropogenic ocean noise sources, topography and seasons. Noise energy emitted by bottom trawling activity is a source of pollution that requires further consideration, in line with other pervasive trawling pressures on marine species and seabed habitats, especially in areas of heightened ecological susceptibility.
Collapse
Affiliation(s)
- Eoghan Daly
- Earth and Ocean Sciences, Ryan Institute, National University of Ireland, Galway, Ireland; Irish Centre for Research in Applied Geosciences (iCRAG), Ireland.
| | - Martin White
- Earth and Ocean Sciences, Ryan Institute, National University of Ireland, Galway, Ireland; Irish Centre for Research in Applied Geosciences (iCRAG), Ireland
| |
Collapse
|
29
|
Favilla AB, Costa DP. Thermoregulatory Strategies of Diving Air-Breathing Marine Vertebrates: A Review. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.555509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Thompson LA, Hindle AG, Black SR, Romano TA. Variation in the hemostatic complement (C5a) responses to in vitro nitrogen bubbles in monodontids and phocids. J Comp Physiol B 2020; 190:811-822. [PMID: 32815023 DOI: 10.1007/s00360-020-01297-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 11/26/2022]
Abstract
Immune responses to nitrogen gas bubbles, particularly activation of inflammation via the complement cascade, have been linked to the development of symptoms and damage associated with decompression sickness (DCS) in humans. Marine mammals were long thought not to be susceptible to such dive-related injury, yet evidence of DCS-like injury and new models of tissue nitrogen super-saturation suggest that bubbles may routinely form. As such, it is possible that marine mammals have protective adaptations that allow them to deal with a certain level of bubble formation during normal dives, without acute adverse effects. This work evaluated the complement response, indicative of inflammation, to in vitro nitrogen bubble exposures in several marine mammal species to assess whether a less-responsive immune system serves a protective role against DCS-like injury in these animals. Serum samples from beluga (Delphinapterus leucas), and harbor seals (Phoca vitulina) (relatively shallow divers) and deep diving narwhal (Monodon monoceros), and Weddell seals (Leptonychotes weddellii) were exposed to nitrogen bubbles in vitro. Complement activity was evaluated by measuring changes in the terminal protein C5a in serum, and results suggest marine mammal complement is less sensitive to gas bubbles than human complement, but the response varies between species. Species-specific differences may be related to dive ability, and suggest moderate or shallow divers may be more susceptible to DCS-like injury. This information is an important consideration in assessing the impact of changing dive behaviors in response to anthropogenic stressors, startle responses, or changing environmental conditions that affect prey depth distributions.
Collapse
Affiliation(s)
- Laura A Thompson
- Mystic Aquarium, a Division of SeaResearch Inc., Mystic, CT, 06355, USA.
| | | | | | - Tracy A Romano
- Mystic Aquarium, a Division of SeaResearch Inc., Mystic, CT, 06355, USA
| |
Collapse
|
31
|
Mauro M, Pérez-Arjona I, Perez EJB, Ceraulo M, Bou-Cabo M, Benson T, Espinosa V, Beltrame F, Mazzola S, Vazzana M, Buscaino G. The effect of low frequency noise on the behaviour of juvenile Sparus aurata. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:3795. [PMID: 32611157 DOI: 10.1121/10.0001255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic activities are causing increased noise levels in the marine environment. To date, few studies have been undertaken to investigate the effects of different noise frequencies on the behaviour of juvenile fish. In this study, the behavioural changes of juvenile gilthead seabream (Sparus aurata) are evaluated when exposed to white noise filtered in third-octave bands centred at 63, 125, 500, and 1000 Hz (sound pressure level, 140-150 dB re 1 μΡa) for 7 h. The group dispersion, motility, and swimming height of the fish were analysed before and during the acoustic emission. Dispersion of the fish was found to reduce immediately upon application of low frequency sound (63 and 125 Hz) with a return to control condition after 2 h (indicative of habituation), whereas at 1 kHz, dispersion increased after 2 h without any habituation. The motility decreased significantly at 63 Hz throughout the 7 h of sound exposure. The swimming height decreased significantly for all frequencies other than 125 Hz. The results of this study highlight significant variations in the behavioural responses of juvenile fish that could have consequences on their fitness and survival.
Collapse
Affiliation(s)
- Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, Palermo, 90123, Italy
| | - Isabel Pérez-Arjona
- Universitat Politècnica de València, Campus de Gandia, C/Paranimf, 1-46730, Spain
| | | | - Maria Ceraulo
- BioacousticsLab, National Research Council UOS of Capo Granitola, Via del mare, Torretta Granitola, 3-91021, Italy
| | - Manuel Bou-Cabo
- Instituto Español de Oceanografía (IEO), C. O. Murcia, San Pedro del Pinatar (Murcia), 1-30740, Spain
| | - Thomas Benson
- HR Wallingford, Howbery Park, Wallingford, OX10 8BA, United Kingdom
| | - Victor Espinosa
- Universitat Politècnica de València, Campus de Gandia, C/Paranimf, 1-46730, Spain
| | - Francesco Beltrame
- ENR, The Italian Institution for Research and Promotion of Standardization, Via Francesco Crispi, Palermo, 248-90139, Italy
| | - Salvatore Mazzola
- BioacousticsLab, National Research Council UOS of Capo Granitola, Via del mare, Torretta Granitola, 3-91021, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, Palermo, 90123, Italy
| | - Giuseppa Buscaino
- BioacousticsLab, National Research Council UOS of Capo Granitola, Via del mare, Torretta Granitola, 3-91021, Italy
| |
Collapse
|
32
|
Simonis AE, Brownell RL, Thayre BJ, Trickey JS, Oleson EM, Huntington R, Baumann-Pickering S. Co-occurrence of beaked whale strandings and naval sonar in the Mariana Islands, Western Pacific. Proc Biol Sci 2020; 287:20200070. [PMID: 32070257 PMCID: PMC7062028 DOI: 10.1098/rspb.2020.0070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mid-frequency active sonar (MFAS), used for antisubmarine warfare (ASW), has been associated with multiple beaked whale (BW) mass stranding events. Multinational naval ASW exercises have used MFAS offshore of the Mariana Archipelago semi-annually since 2006. We report BW and MFAS acoustic activity near the islands of Saipan and Tinian from March 2010 to November 2014. Signals from Cuvier's (Ziphius cavirostris) and Blainville's beaked whales (Mesoplodon densirostris), and a third unidentified BW species, were detected throughout the recording period. Both recorders documented MFAS on 21 August 2011 before two Cuvier's beaked whales stranded on 22–23 August 2011. We compared the history of known naval operations and BW strandings from the Mariana Archipelago to consider potential threats to BW populations. Eight BW stranding events between June 2006 and January 2019 each included one to three animals. Half of these strandings occurred during or within 6 days after naval activities, and this co-occurrence is highly significant. We highlight strandings of individual BWs can be associated with ASW, and emphasize the value of ongoing passive acoustic monitoring, especially for beaked whales that are difficult to visually detect at sea. We strongly recommend more visual monitoring efforts, at sea and along coastlines, for stranded cetaceans before, during and after naval exercises.
Collapse
Affiliation(s)
- Anne E Simonis
- Contractor to Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
| | - Robert L Brownell
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Monterey, CA, USA
| | - Bruce J Thayre
- Scripps Institution of Oceanography, UCSD, La Jolla, CA, USA
| | | | - Erin M Oleson
- Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
| | - Roderick Huntington
- Scripps Institution of Oceanography, UCSD, La Jolla, CA, USA.,Mount Edgecumbe High School, Sitka, AK, USA
| | | |
Collapse
|
33
|
Fear of Killer Whales Drives Extreme Synchrony in Deep Diving Beaked Whales. Sci Rep 2020; 10:13. [PMID: 32029750 PMCID: PMC7005263 DOI: 10.1038/s41598-019-55911-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/13/2019] [Indexed: 11/21/2022] Open
Abstract
Fear of predation can induce profound changes in the behaviour and physiology of prey species even if predator encounters are infrequent. For echolocating toothed whales, the use of sound to forage exposes them to detection by eavesdropping predators, but while some species exploit social defences or produce cryptic acoustic signals, deep-diving beaked whales, well known for mass-strandings induced by navy sonar, seem enigmatically defenceless against their main predator, killer whales. Here we test the hypothesis that the stereotyped group diving and vocal behaviour of beaked whales has benefits for abatement of predation risk and thus could have been driven by fear of predation over evolutionary time. Biologging data from 14 Blainville’s and 12 Cuvier’s beaked whales show that group members have an extreme synchronicity, overlapping vocal foraging time by 98% despite hunting individually, thereby reducing group temporal availability for acoustic detection by killer whales to <25%. Groups also perform a coordinated silent ascent in an unpredictable direction, covering a mean of 1 km horizontal distance from their last vocal position. This tactic sacrifices 35% of foraging time but reduces by an order of magnitude the risk of interception by killer whales. These predator abatement behaviours have likely served beaked whales over millions of years, but may become maladaptive by playing a role in mass strandings induced by man-made predator-like sonar sounds.
Collapse
|
34
|
Wensveen PJ, Isojunno S, Hansen RR, von Benda-Beckmann AM, Kleivane L, van IJsselmuide S, Lam FPA, Kvadsheim PH, DeRuiter SL, Curé C, Narazaki T, Tyack PL, Miller PJO. Northern bottlenose whales in a pristine environment respond strongly to close and distant navy sonar signals. Proc Biol Sci 2019; 286:20182592. [PMID: 30890101 PMCID: PMC6452067 DOI: 10.1098/rspb.2018.2592] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/25/2019] [Indexed: 11/12/2022] Open
Abstract
Impact assessments for sonar operations typically use received sound levels to predict behavioural disturbance in marine mammals. However, there are indications that cetaceans may learn to associate exposures from distant sound sources with lower perceived risk. To investigate the roles of source distance and received level in an area without frequent sonar activity, we conducted multi-scale controlled exposure experiments ( n = 3) with 12 northern bottlenose whales near Jan Mayen, Norway. Animals were tagged with high-resolution archival tags ( n = 1 per experiment) or medium-resolution satellite tags ( n = 9 in total) and subsequently exposed to sonar. We also deployed bottom-moored recorders to acoustically monitor for whales in the exposed area. Tagged whales initiated avoidance of the sound source over a wide range of distances (0.8-28 km), with responses characteristic of beaked whales. Both onset and intensity of response were better predicted by received sound pressure level (SPL) than by source distance. Avoidance threshold SPLs estimated for each whale ranged from 117-126 dB re 1 µPa, comparable to those of other tagged beaked whales. In this pristine underwater acoustic environment, we found no indication that the source distances tested in our experiments modulated the behavioural effects of sonar, as has been suggested for locations where whales are frequently exposed to sonar.
Collapse
Affiliation(s)
- Paul J. Wensveen
- Sea Mammal Research Unit, School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Saana Isojunno
- Sea Mammal Research Unit, School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Rune R. Hansen
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Alexander M. von Benda-Beckmann
- Acoustics and Sonar Research Group, Netherlands Organisation for Applied Scientific Research (TNO), The Hague, The Netherlands
| | | | - Sander van IJsselmuide
- Acoustics and Sonar Research Group, Netherlands Organisation for Applied Scientific Research (TNO), The Hague, The Netherlands
| | - Frans-Peter A. Lam
- Acoustics and Sonar Research Group, Netherlands Organisation for Applied Scientific Research (TNO), The Hague, The Netherlands
| | | | - Stacy L. DeRuiter
- Department of Mathematics and Statistics, Calvin College, Grand Rapids, MI, USA
| | - Charlotte Curé
- Cerema—Ifsttar, UMRAE, Laboratoire de Strasbourg, Strasbourg, France
| | - Tomoko Narazaki
- Sea Mammal Research Unit, School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Peter L. Tyack
- Sea Mammal Research Unit, School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Patrick J. O. Miller
- Sea Mammal Research Unit, School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| |
Collapse
|