1
|
Stupin DD, Kuzina EA, Abelit AA, Emelyanov AK, Nikolaev DM, Ryazantsev MN, Koniakhin SV, Dubina MV. Bioimpedance Spectroscopy: Basics and Applications. ACS Biomater Sci Eng 2021; 7:1962-1986. [PMID: 33749256 DOI: 10.1021/acsbiomaterials.0c01570] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this review, we aim to introduce the reader to the technique of electrical impedance spectroscopy (EIS) with a focus on its biological, biomaterials, and medical applications. We explain the theoretical and experimental aspects of the EIS with the details essential for biological studies, i.e., interaction of metal electrodes with biological matter and liquids, strategies of measurement rate increasing, noise reduction in bio-EIS experiments, etc. We also give various examples of successful bio-EIS practical implementations in science and technology, from whole-body health monitoring and sensors for vision prosthetic care to single living cell examination platforms, virus disease research, biomolecules detection, and implementation of novel biomaterials. The present review can be used as a bio-EIS tutorial for students as well as a handbook for scientists and engineers because of the extensive references covering the contemporary research papers in the field.
Collapse
Affiliation(s)
- Daniil D Stupin
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Ekaterina A Kuzina
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Anna A Abelit
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia
| | - Anton K Emelyanov
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Pavlov First Saint Petersburg State Medical University, L'va Tolstogo Street. 6-8, Saint Petersburg 197022, Russia
| | - Dmitrii M Nikolaev
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Mikhail N Ryazantsev
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, Saint Petersburg 198504, Russia
| | - Sergei V Koniakhin
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS, SIGMA Clermont, Clermont-Ferrand F-63000, France
| | - Michael V Dubina
- Institute of Highly Pure Biopreparation of the Federal Medical-Biological Agency, Pudozhskaya 7, St. Petersburg 197110, Russia
| |
Collapse
|
2
|
Cataldo R, De Nunzio G, Millithaler JF, Alfinito E. Aptamers Which Target Proteins: What Proteotronics Suggests to Pharmaceutics. Curr Pharm Des 2020; 26:363-371. [PMID: 31942851 DOI: 10.2174/1381612826666200114095027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/08/2020] [Indexed: 01/01/2023]
Abstract
Aptamers represent a challenging field of research, relevant for diagnosis in macular degeneration, cancer, thrombosis and many inflammatory diseases, and promising in drug discovery and development. Their selection is currently performed by a stable in vitro technology, namely, SELEX. Furthermore, computationalstatistical tools have been developed to complement the SELEX selection; they work both in the preliminary stage of selection, by designing high affinity aptamers for the assigned target, and also in the final stage, analyzing the features of the best performers to implement the selection technique further. A massive use of the in silico approach is, at present, only restricted by the limited knowledge of the specific aptamer-target topology. Actually, only about fifty X-ray structures of aptamer-protein complexes have been experimentally resolved, highlighting how this knowledge has to be improved. The structure of biomolecules like aptamer-protein complexes can be represented by networks, from which several parameters can be extracted. This work briefly reviews the literature, discussing if and how general network parameters in the framework of Proteotronics and graph theory (such as electrical features, link number, free energy change, and assortativity), are important in characterizing the complexes, anticipating some features of the biomolecules. To better explain this topic, a case-study is proposed, constituted by a set of anti-angiopoietin (Ang2) aptamers, whose performances are known from the experiments, and for which two different types of conformers were predicted. A topological indicator is proposed, named Möbius (M), which combines local and global information, and seems able to discriminate between the two possible types of conformers, so that it can be considered as a useful complement to the in vitro screening for pharmaceutical aims.
Collapse
Affiliation(s)
- Rosella Cataldo
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Lecce, Italy.,Laboratory of Interdisciplinary Research Applied to Medicine (DReAM), University of Salento and ASL (Local Health Authority), Lecce, Italy
| | - Giorgio De Nunzio
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Lecce, Italy.,Laboratory of Interdisciplinary Research Applied to Medicine (DReAM), University of Salento and ASL (Local Health Authority), Lecce, Italy
| | - Jean-Francois Millithaler
- Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, United States
| | - Eleonora Alfinito
- Department of Innovation Engineering, University of Salento, Lecce, Italy
| |
Collapse
|
3
|
Cataldo R, Alfinito E, Reggiani L. Hierarchy and Assortativity as New Tools for Binding-Affinity Investigation: The Case of the TBA Aptamer-Ligand Complex. IEEE Trans Nanobioscience 2019; 16:896-904. [PMID: 29364133 DOI: 10.1109/tnb.2017.2783440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aptamers are single stranded DNA, RNA, or peptide sequences having the ability to bind several specific targets (proteins, molecules as well as ions). Therefore, aptamer production and selection for therapeutic and diagnostic applications is very challenging. Usually, they are generated in vitro, although computational approaches have been recently developed for the in silico production. Despite these efforts, the mechanism of aptamer-ligand formation is not completely clear, and producing high-affinity aptamers is still quite difficult. This paper aims to develop a computational model able to describe aptamer-ligand affinity. Topological tools, such as the conventional degree distribution, the rank-degree distribution (hierarchy), and the node assortativity are employed. In doing so, the macromolecules tertiary-structures are mapped into appropriate graphs. These graphs reproduce the main topological features of the macromolecules, by preserving the distances between amino acids (nucleotides). Calculations are applied to the thrombin binding aptamer (TBA), and the TBA-thrombin complex produced in the presence of Na+ or K+. The topological analysis is able to detect several differences between complexes obtained in the presence of the two cations, as expected by previous investigations. These results support graph analysis as a novel computational tool for testing affinity. Otherwise, starting from the graphs, an electrical network can be obtained by using the specific electrical properties of amino acids and nucleobases. Therefore, a further analysis concerns with the electrical response, revealing that the resistance is sensitively affected by the presence of sodium or potassium, thus suggesting resistance as a useful physical parameter for testing binding affinity.
Collapse
|
4
|
|
5
|
Alfinito E, Reggiani L. Current-voltage characteristics of seven-helix proteins from a cubic array of amino acids. Phys Rev E 2016; 93:062401. [PMID: 27415292 DOI: 10.1103/physreve.93.062401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 12/16/2022]
Abstract
The electrical properties of a set of seven-helix transmembrane proteins, whose space arrangement [three-dimensional (3D) structure] is known, are investigated by using regular arrays of the amino acids. These structures, specifically cubes, have topological features similar to those shown by the chosen proteins. The theoretical results show a good agreement between the predicted current-voltage characteristics obtained from a cubic array and those obtained from a detailed 3D structure. The agreement is confirmed by available experiments on bacteriorhodopsin. Furthermore, all the analyzed proteins are found to share the same critical behavior of the voltage-dependent conductance and of its variance. In particular, the cubic arrangement evidences a short plateau of the excess conductance and its variance at high voltages. The results of the present investigation show the possibility to predict the I-V characteristics of a multiple-protein sample even in the absence of detailed knowledge of the proteins' 3D structure.
Collapse
Affiliation(s)
- Eleonora Alfinito
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, via Monteroni, I-73100 Lecce, Italy
| | - Lino Reggiani
- Dipartimento di Matematica e Fisica, "Ennio de Giorgi," Università del Salento, via Monteroni, I-73100 Lecce, Italy
| |
Collapse
|
6
|
Alfinito E, Pousset J, Reggiani L, Lee K. Photoreceptors for a light biotransducer: a comparative study of the electrical responses of two (type-1) opsins. NANOTECHNOLOGY 2013; 24:395501. [PMID: 24013479 DOI: 10.1088/0957-4484/24/39/395501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The increasing interest in photoactivated proteins as natural replacements for standard inorganic materials in photocells leads to the comparison analysis of bacteriorhodopsin and proteorhodopsin, two widely diffused proteins belonging to the family of type-1 opsins. These proteins share similar behaviors but exhibit relevant differences in the sequential chain of the amino acids constituting their tertiary structure. The use of an impedance network analog to model the protein main features provides a microscopic interpretation of a set of experiments on their photo-conductance properties. In particular, this model links the protein electrical responses to the tertiary structure and to the interactions between neighboring amino acids. The same model is also used to predict the small-signal response in terms of the Nyquist plot. Interestingly, these rhodopsins are found to behave like a wide-gap semiconductor with intrinsic conductivities of the order of 10⁻⁷ S cm⁻¹.
Collapse
Affiliation(s)
- E Alfinito
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, via Monteroni, I-73100 Lecce, Italy, EU. CNISM-Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, via della Vasca Navale, 84, I-00146 Roma, Italy, EU
| | | | | | | |
Collapse
|
7
|
Alfinito E, Pousset J, Reggiani L. The electrical properties of olfactory receptors in the development of biological smell sensors. Methods Mol Biol 2013; 1003:67-83. [PMID: 23585034 DOI: 10.1007/978-1-62703-377-0_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We present here the results of the investigation of the electrical properties of two olfactory receptors (ORs): rat, OR I7, and human, OR 17-40, which are of interest in the creation of smell nanobiosensors. Described here is our investigation comparing the results from experiments using electrochemical impedance spectroscopy with the theoretical predictions obtained from a recently developed impedance network protein analog. The changes in the OR response following excitation correlated with the protein conformational change. The satisfactory agreement between theory and experiment points to a promising development of a new class of nanobiosensors based on the electrical properties of sensing proteins.
Collapse
Affiliation(s)
- Eleonora Alfinito
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy
| | | | | |
Collapse
|
8
|
Reggiani L, Millithaler JF, Pennetta C. Microscopic modeling of charge transport in sensing proteins. NANOSCALE RESEARCH LETTERS 2012; 7:340. [PMID: 22726939 PMCID: PMC3512477 DOI: 10.1186/1556-276x-7-340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 06/22/2012] [Indexed: 06/01/2023]
Abstract
: Sensing proteins (receptors) are nanostructures that exhibit very complex behaviors (ions pumping, conformational change, reaction catalysis, etc). They are constituted by a specific sequence of amino acids within a codified spatial organization. The functioning of these macromolecules is intrinsically connected with their spatial structure, which modifications are normally associated with their biological function. With the advance of nanotechnology, the investigation of the electrical properties of receptors has emerged as a demanding issue. Beside the fundamental interest, the possibility to exploit the electrical properties for the development of bioelectronic devices of new generations has attracted major interest. From the experimental side, we investigate three complementary kinds of measurements: (1) current-voltage (I-V) measurements in nanometric layers sandwiched between macroscopic contacts, (2) I-V measurements within an AFM environment in nanometric monolayers deposited on a conducting substrate, and (3) electrochemical impedance spectroscopy measurements on appropriate monolayers of self-assembled samples. From the theoretical side, a microscopic interpretation of these experiments is still a challenging issue. This paper reviews recent theoretical results carried out within the European project, Bioelectronic Olfactory Neuron Device, which provides a first quantitative interpretation of charge transport experiments exploiting static and dynamic electrical properties of several receptors. To this purpose, we have developed an impedance network protein analogue (INPA) which considers the interaction between neighboring amino acids within a given radius as responsible of charge transfer throughout the protein. The conformational change, due to the sensing action produced by the capture of the ligand (photon, odour), induces a modification of the spatial structure and, thus, of the electrical properties of the receptor. By a scaling procedure, the electrical change of the receptor when passing from the native to the active state is used to interpret the macroscopic measurement obtained within different methods. The developed INPA model is found to be very promising for a better understanding of the role of receptor topology in the mechanism responsible of charge transfer. Present results point favorably to the development of a new generation of nano-biosensors within the lab-on-chip strategy.
Collapse
Affiliation(s)
- Lino Reggiani
- Dipartimento di Ingegneria dell’Innovazione and CNISM, Università del Salento, Via Arnesano, Lecce, 73100, Italy
- Dipartimento di Matematica e Fisica Ennio De Giorgi and CNISM, Università del Salento, Via Arnesano, Lecce, 73100, Italy
| | - Jean-Francois Millithaler
- Dipartimento di Ingegneria dell’Innovazione and CNISM, Università del Salento, Via Arnesano, Lecce, 73100, Italy
| | - Cecilia Pennetta
- Dipartimento di Matematica e Fisica Ennio De Giorgi and CNISM, Università del Salento, Via Arnesano, Lecce, 73100, Italy
| |
Collapse
|