Vadivasova TE, Slepnev AV, Zakharova A. Control of inter-layer synchronization by multiplexing noise.
CHAOS (WOODBURY, N.Y.) 2020;
30:091101. [PMID:
33003909 DOI:
10.1063/5.0023071]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
We study the synchronization of spatio-temporal patterns in a two-layer network of coupled chaotic maps, where each layer is represented by a nonlocally coupled ring. In particular, we focus on noisy inter-layer communication that we call multiplexing noise. We show that noisy modulation of inter-layer coupling strength has a significant impact on the dynamics of the network and specifically on the degree of synchronization of spatio-temporal patterns of interacting layers initially (in the absence of interaction) exhibiting chimera states. Our goal is to develop control strategies based on multiplexing noise for both identical and non-identical layers. We find that for the appropriate choice of intensity and frequency characteristics of parametric noise, complete or partial synchronization of the layers can be observed. Interestingly, for achieving inter-layer synchronization through multiplexing noise, it is crucial to have colored noise with intermediate spectral width. In the limit of white noise, the synchronization is destroyed. These results are the first step toward understanding the role of noisy inter-layer communication for the dynamics of multilayer networks.
Collapse