1
|
Ma C, Zheng F, Xu W, Liu W, Xu C, Chen Y, Sha J. Surface Roughness Effects on Confined Nanoscale Transport of Ions and Biomolecules. SMALL METHODS 2024; 8:e2301485. [PMID: 38150654 DOI: 10.1002/smtd.202301485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/26/2023] [Revised: 12/14/2023] [Indexed: 12/29/2023]
Abstract
Biological channels, especially membrane proteins, play a crucial role in metabolism, facilitating the transport of nutrients and other materials across cell membranes in a bio-electrolyte environment. Artificial nanopores are employed to study ion and biomolecule transport behavior inside. While the non-specific interaction between the nanopore surface and transport targets has garnered significant attention, the impact of surface roughness is overlooked. In this study, Nanopores with different levels of inner surface roughness is created by adjusting the FIB (Focus Ion Beam) fabrication parameters. Experiments and molecular dynamics (MD) simulations are employed to demonstrate that greater roughness results from larger FIB beam currents and shorter processing times. Lower roughness increases the capture rate of biomolecules, while greater roughness enhances the normalized blockade current (ΔI/I0). The phenomenon of rougher nanopores are attributed to a barrier-dominated capture mechanism and more likely to induce DNA folding. This transport barrier exists in rough nanopores by utilizing steer molecular dynamics (SMD) simulations to investigate the force profile of a dA10 DNA molecule during translocation is demonstrated. This work illustrates how surface roughness influences the ionic current features and the translocation of biomolecules, paving a new way for tunning the molecule transport in nanopores.
Collapse
Affiliation(s)
- Chaofan Ma
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Fei Zheng
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Wei Xu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Wei Liu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Changhui Xu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
2
|
Baldelli M, Di Muccio G, Viola F, Giacomello A, Cecconi F, Balme S, Chinappi M. Performance of Single Nanopore and Multi-Pore Membranes for Blue Energy. Chemphyschem 2024:e202400395. [PMID: 39161129 DOI: 10.1002/cphc.202400395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2024] [Revised: 07/12/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
The salinity gradient power extracted from the mixing of electrolyte solutions at different concentrations through selective nanoporous membranes is a promising route to renewable energy. However, several challenges need to be addressed to make this technology profitable, one of the most relevant being the increase of the extractable power per membrane area. Here, the performance of asymmetric conical and bullet-shaped nanopores in a 50 nm thick membrane are studied via electrohydrodynamic simulations, varying the pore radius, curvature, and surface charge. The output power reaches ~60 pW per pore for positively charged membranes (surface charge σw=160 mC/m2) and ~30 pW for negatively charges ones, σw=-160 mC/m2 and it is robust to minor variations of nanopore shape and radius. A theoretical argument that takes into account the interaction among neighbour pores allows to extrapolate the single-pore performance to multi-pore membranes showing that power densities from tens to hundreds of W/m2 can be reached by proper tuning of the nanopore number density and the boundary layer thickness. Our model for scaling single-pore performance to multi-pore membrane can be applied also to experimental data providing a simple tool to effectively compare different nanopore membranes in blue energy applications.
Collapse
Affiliation(s)
- Matteo Baldelli
- Department of Industrial Engeenering, University of Rome Tor Vergata, Roma, Italy
| | - Giovanni Di Muccio
- Department of Mechanical and Aerospace Engineering, University of Rome Sapienza, Roma, Italy
| | | | - Alberto Giacomello
- Department of Mechanical and Aerospace Engineering, University of Rome Sapienza, Roma, Italy
| | - Fabio Cecconi
- Istituto Sistemi Complessi, CNR, Via dei Taurini 19, Roma, Italy
- INFN, Sezione Roma 1, Piazzale Aldo Moro, 2, Roma, Italy
| | - Sébastien Balme
- Institut Européen des Membranes, IEM UMR 5635, Univ. Montpellier, France
| | - Mauro Chinappi
- Department of Industrial Engeenering, University of Rome Tor Vergata, Roma, Italy
| |
Collapse
|
3
|
Chakraborty R, Crawford-Eng HT, Leburton JP. Asymmetric ion transport through "Janus" MoSSe sub-nanometer pores. NANOSCALE 2024; 16:13106-13120. [PMID: 38912547 DOI: 10.1039/d4nr00589a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/25/2024]
Abstract
We conduct all-atom molecular dynamics simulations to systematically investigate the underlying mechanisms governing ion transport through a sub-nanometer pore decorated with negative charges in a "Janus" MoSSe membrane. The charge imbalance between S and Se atoms on each side of the membrane induces different types of ion adsorption processes depending on the pore inner charge configuration, and the polarity of external biases, which leads to asymmetry in ionic I-V characteristics. Statistical analysis of the total translocation times including adsorption-desorption processes, and ion dwell times indicates that potassium ions predominantly remain adsorbed during their interaction with the membrane before undertaking a quick translocation through the pore. High applied biases suppress cation adsorption, which results in fast translocation with the current flow boosted by negative inner charges around the pore. We also show that in a membrane consisting of several "Janus" layers, the applied bias necessary to overcome the sub-nm pore barrier increases with the number of layers, providing control over the ionic current.
Collapse
Affiliation(s)
- Rajat Chakraborty
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Nick Holonyak, Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Henry T Crawford-Eng
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jean-Pierre Leburton
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Nick Holonyak, Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Liu Z, Ma L, Zhang H, Zhuang J, Man J, Siwy ZS, Qiu Y. Dynamic Response of Ionic Current in Conical Nanopores. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30496-30505. [PMID: 38830306 DOI: 10.1021/acsami.4c02078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/05/2024]
Abstract
Ionic current rectification (ICR) of charged conical nanopores has various applications in fields including nanofluidics, biosensing, and energy conversion, whose function is closely related to the dynamic response of nanopores. The occurrence of ICR originates from the ion enrichment and depletion in conical pores, whose formation is found to be affected by the scanning rate of voltages. Here, through time-dependent simulations, we investigate the variation of ion current under electric fields and the dynamic formation of ion enrichment and depletion, which can reflect the response time of conical nanopores. The response time of nanopores when ion enrichment forms, i.e., at the "on" state is significantly longer than that with the formation of ion depletion, i.e., at the "off" state. Our simulation results reveal the regulation of response time by different nanopore parameters including the surface charge density, pore length, tip, and base radius, as well as the applied conditions such as the voltage and bulk concentration. The response time of nanopores is closely related to the surface charge density, pore length, voltage, and bulk concentration. Our uncovered dynamic response mechanism of the ionic current can guide the design of nanofluidic devices with conical nanopores, including memristors, ionic switches, and rectifiers.
Collapse
Affiliation(s)
- Zhe Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518000, China
| | - Long Ma
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Hongwen Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Jiakun Zhuang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zuzanna S Siwy
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518000, China
- Suzhou Research Institute of Shandong University, Suzhou 215123, China
| |
Collapse
|
5
|
Liu W, Zheng F, Ma C, Xu W, Chen Y, Sha J. Single-Digit Nanobubble Sensing via Nanopore Technology. Anal Chem 2024; 96:9544-9550. [PMID: 38809167 DOI: 10.1021/acs.analchem.4c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/30/2024]
Abstract
Nanobubbles play an important role in diverse fields, including engineering, medicine, and agriculture. Understanding the characteristics of individual nanobubbles is essential for comprehending fluid dynamics behaviors and advancing nanoscale science across various fields. Here, we report a strategy based on nanopore sensors for characterizing single-digit nanobubbles. We investigated the sizes and diffusion coefficients of nanobubbles at different voltages. Additionally, the finite element simulation and molecular dynamics simulation were introduced to account for counterion concentration variation around nanobubbles in the nanopore. In particular, the differences in stability and surface charge density of nanobubbles under various solution environments have been studied by the ion-stabilized model and the DLVO theory. Additionally, a straightforward method to mitigate nanobubble generation in the bulk for reducing current noise in nanopore sensing was suggested. The results hold significant implications for enhancing the understanding of individual nanobubble characterizations, especially in the nanofluid field.
Collapse
Affiliation(s)
- Wei Liu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Department of Chemistry & Chemical Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Fei Zheng
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
- School of Nanoscience and Nanotechnology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chaofan Ma
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Wei Xu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
6
|
Choudhary A, Ho TA. Confinement-induced clustering of H 2 and CO 2 gas molecules in hydrated nanopores. Phys Chem Chem Phys 2024; 26:10506-10514. [PMID: 38380805 DOI: 10.1039/d3cp06024a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/22/2024]
Abstract
Gas molecule clustering within nanopores holds significance in the fields of nanofluidics, biology, gas adsorption/desorption, and geological gas storage. However, the intricate roles of nanoconfinement and surface chemistry that govern the formation of gas clusters remain inadequately explored. In this study, through free energy calculation in molecular simulations, we systematically compared the tendencies of H2 and CO2 molecules to aggregate within hydrated hydrophobic pyrophyllite and hydrophilic gibbsite nanopores. The results indicate that nanoconfinement enhances gas dimer formation in the nanopores, irrespective of surface chemistry. However, surface hydrophilicity prohibits the formation of gas clusters larger than dimers, while large gas clusters form easily in hydrophobic nanopores. Despite H2 and CO2 both being non-polar, the larger quadrupole moment of CO2 leads to a stronger preference for dimer/cluster formation compared to H2. Our results also indicate that gases prefer to enter the nanopores as individual molecules, but exit the nanopores as dimers/clusters. This investigation provides a mechanistic understanding of gas cluster formation within nanopores, which is relevant to various applications, including geological gas storage.
Collapse
Affiliation(s)
- Aditya Choudhary
- Geochemistry Department, Sandia National Laboratories, Albuquerque, NM 87185, USA.
| | - Tuan A Ho
- Geochemistry Department, Sandia National Laboratories, Albuquerque, NM 87185, USA.
| |
Collapse
|
7
|
Giacomello A. What keeps nanopores boiling. J Chem Phys 2023; 159:110902. [PMID: 37724724 DOI: 10.1063/5.0167530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
The liquid-to-vapor transition can occur under unexpected conditions in nanopores, opening the door to fundamental questions and new technologies. The physics of boiling in confinement is progressively introduced, starting from classical nucleation theory, passing through nanoscale effects, and terminating with the material and external parameters that affect the boiling conditions. The relevance of boiling in specific nanoconfined systems is discussed, focusing on heterogeneous lyophobic systems, chromatographic columns, and ion channels. The current level of control of boiling in nanopores enabled by microporous materials such as metal organic frameworks and biological nanopores paves the way to thrilling theoretical challenges and to new technological opportunities in the fields of energy, neuromorphic computing, and sensing.
Collapse
Affiliation(s)
- Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, 00184 Rome, Italy
| |
Collapse
|
8
|
Salehirozveh M, Kure Larsen AK, Stojmenovic M, Thei F, Dong M. In-situ PLL-g-PEG Functionalized Nanopore for Enhancing Protein Characterization. Chem Asian J 2023; 18:e202300515. [PMID: 37497831 DOI: 10.1002/asia.202300515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2023] [Revised: 07/03/2023] [Indexed: 07/28/2023]
Abstract
Single-molecule nanopore detection technology has revolutionized proteomics research by enabling highly sensitive and label-free detection of individual proteins. Herein, we designed a small, portable, and leak-free flowcell made of PMMA for nanopore experiments. In addition, we developed an in situ functionalizing PLL-g-PEG approach to produce non-sticky nanopores for measuring the volume of diseases-relevant biomarker, such as the Alpha-1 antitrypsin (AAT) protein. The in situ functionalization method allows continuous monitoring, ensuring adequate functionalization, which can be directly used for translocation experiments. The functionalized nanopores exhibit improved characteristics, including an increased nanopore lifetime and enhanced translocation events of the AAT proteins. Furthermore, we demonstrated the reduction in the translocation event's dwell time, along with an increase in current blockade amplitudes and translocation numbers under different voltage stimuli. The study also successfully measures the single AAT protein volume (253 nm3 ), which closely aligns with the previously reported hydrodynamic volume. The real-time in situ PLL-g-PEG functionalizing method and the developed nanopore flowcell hold great promise for various nanopores applications involving non-sticky single-molecule characterization.
Collapse
Affiliation(s)
- Mostafa Salehirozveh
- Department Of Physics And Astronomy, University of Bologna, Bologna, Italy
- Elements srl, Cesena, Italy
| | - Anne-Kathrine Kure Larsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- Sino-Danish Center for Education and Research, Aarhus, Denmark
- University of the Chinese Academy of Sciences, Beijing, China
| | | | | | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- Department of Biology - Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
MacKenzie M, Argyropoulos C. An Introduction to Nanopore Sequencing: Past, Present, and Future Considerations. MICROMACHINES 2023; 14:459. [PMID: 36838159 PMCID: PMC9966803 DOI: 10.3390/mi14020459] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/17/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
There has been significant progress made in the field of nanopore biosensor development and sequencing applications, which address previous limitations that restricted widespread nanopore use. These innovations, paired with the large-scale commercialization of biological nanopore sequencing by Oxford Nanopore Technologies, are making the platforms a mainstay in contemporary research laboratories. Equipped with the ability to provide long- and short read sequencing information, with quick turn-around times and simple sample preparation, nanopore sequencers are rapidly improving our understanding of unsolved genetic, transcriptomic, and epigenetic problems. However, there remain some key obstacles that have yet to be improved. In this review, we provide a general introduction to nanopore sequencing principles, discussing biological and solid-state nanopore developments, obstacles to single-base detection, and library preparation considerations. We present examples of important clinical applications to give perspective on the potential future of nanopore sequencing in the field of molecular diagnostics.
Collapse
Affiliation(s)
- Morgan MacKenzie
- Department of Internal Medicine, Division of Nephrology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Christos Argyropoulos
- Department of Internal Medicine, Division of Nephrology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
- Clinical & Translational Science Center, Department of Internal Medicine, Division of Nephrology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
10
|
Abstract
Heterogeneous bubble nucleation is one of the most fundamental interfacial processes ranging from nature to technology. There is excellent evidence that surface topology is important in directing heterogeneous nucleation; however, deep understanding of the energetics by which nanoscale architectures promote nucleation is still challenging. Herein, we report a direct and quantitative measurement of single-bubble nucleation on a single silica nanoparticle within a microsized droplet using scanning electrochemical cell microscopy. Local gas concentration at nucleation is determined from finite element simulation at the corresponding faradaic current of the peak-featured voltammogram. It is demonstrated that the criteria gas concentration for nucleation first drops and then rises with increasing nanoparticle radius. An optimum nanoparticle radius around 10 nm prominently expedites the nucleation by facilitating the special topological nanoconfinements that consequently catalyze the nucleation. Moreover, the experimental result is corroborated by our theoretical calculations of free energy change based on the classic nucleation theory. This study offers insights into the impact of surface topology on heterogenous nucleation that have not been previously observed.
Collapse
|
11
|
Chen Q, Zhao J, Deng X, Shan Y, Peng Y. Single-Entity Electrochemistry of Nano- and Microbubbles in Electrolytic Gas Evolution. J Phys Chem Lett 2022; 13:6153-6163. [PMID: 35762985 DOI: 10.1021/acs.jpclett.2c01388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/27/2023]
Abstract
Gas bubbles are found in diverse electrochemical processes, ranging from electrolytic water splitting to chlor-alkali electrolysis, as well as photoelectrochemical processes. Understanding the intricate influence of bubble evolution on the electrode processes and mass transport is key to the rational design of efficient devices for electrolytic energy conversion and thus requires precise measurement and analysis of individual gas bubbles. In this Perspective, we review the latest advances in single-entity measurement of gas bubbles on electrodes, covering the approaches of voltammetric and galvanostatic studies based on nanoelectrodes, probing bubble evolution using scanning probe electrochemistry with spatial information, and monitoring the transient nature of nanobubble formation and dynamics with opto-electrochemical imaging. We emphasize the intrinsic and quantitative physicochemical interpretation of single gas bubbles from electrochemical data, highlighting the fundamental understanding of the heterogeneous nucleation, dynamic state of the three-phase boundary, and the correlation between electrolytic bubble dynamics and nanocatalyst activities. In addition, a brief discussion of future perspectives is presented.
Collapse
Affiliation(s)
- Qianjin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jiao Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoli Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yun Shan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yu Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
12
|
Das N, Chakraborty B, RoyChaudhuri C. A review on nanopores based protein sensing in complex analyte. Talanta 2022; 243:123368. [DOI: 10.1016/j.talanta.2022.123368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2021] [Revised: 01/30/2022] [Accepted: 03/03/2022] [Indexed: 11/26/2022]
|
13
|
Alawami MF, Bošković F, Zhu J, Chen K, Sandler SE, Keyser UF. Lifetime of glass nanopores in a PDMS chip for single-molecule sensing. iScience 2022; 25:104191. [PMID: 35479403 PMCID: PMC9036133 DOI: 10.1016/j.isci.2022.104191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2021] [Revised: 02/16/2022] [Accepted: 03/30/2022] [Indexed: 11/09/2022] Open
Abstract
Nanopore sensing is an emerging technology that has many biosensing applications ranging from DNA sequencing using biological pores to biomolecular analysis using solid-state pores. Solid-state nanopores that are more stable are an attractive choice for biosensing applications. Still, biomolecule interactions with the nanopore surface reduce nanopore stability and increase usage costs. In this study, we investigated the biosensing capability for 102 quartz glass nanopores with a diameter of 11–18 nm that were fabricated using laser-assisted capillary pulling. Nanopores were assembled into multiple microfluidic chips that were repeatedly used for up to 19 weeks. We find that using vacuum storage combined with minimal washing steps improved the number of use cycles for nanopores. The single-molecule biosensing capability over repeated use cycles was demonstrated by quantitative analysis of a DNA carrier designed for detection of short single-stranded DNA oligonucleotides. Maintaining low noise and linear current-voltage relation is crucial for biosensing Multiple nanopores embedded in a chip can make more than 90 different measurements Nanopores can be reused weekly over 19 weeks Nanopore failure can be attributed to contaminant accumulation and dissolution
Collapse
|
14
|
Bentley CL, Kang M, Bukola S, Creager SE, Unwin PR. High-Resolution Ion-Flux Imaging of Proton Transport through Graphene|Nafion Membranes. ACS NANO 2022; 16:5233-5245. [PMID: 35286810 PMCID: PMC9047657 DOI: 10.1021/acsnano.1c05872] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/11/2021] [Accepted: 11/29/2021] [Indexed: 05/18/2023]
Abstract
In 2014, it was reported that protons can traverse between aqueous phases separated by nominally pristine monolayer graphene and hexagonal boron nitride (h-BN) films (membranes) under ambient conditions. This intrinsic proton conductivity of the one-atom-thick crystals, with proposed through-plane conduction, challenged the notion that graphene is impermeable to atoms, ions, and molecules. More recent evidence points to a defect-facilitated transport mechanism, analogous to transport through conventional ion-selective membranes based on graphene and h-BN. Herein, local ion-flux imaging is performed on chemical vapor deposition (CVD) graphene|Nafion membranes using an "electrochemical ion (proton) pump cell" mode of scanning electrochemical cell microscopy (SECCM). Targeting regions that are free from visible macroscopic defects (e.g., cracks, holes, etc.) and assessing hundreds to thousands of different sites across the graphene surfaces in a typical experiment, we find that most of the CVD graphene|Nafion membrane is impermeable to proton transport, with transmission typically occurring at ≈20-60 localized sites across a ≈0.003 mm2 area of the membrane (>5000 measurements total). When localized proton transport occurs, it can be a highly dynamic process, with additional transmission sites "opening" and a small number of sites "closing" under an applied electric field on the seconds time scale. Applying a simple equivalent circuit model of ion transport through a cylindrical nanopore, the local transmission sites are estimated to possess dimensions (radii) on the (sub)nanometer scale, implying that rare atomic defects are responsible for proton conductance. Overall, this work reinforces SECCM as a premier tool for the structure-property mapping of microscopically complex (electro)materials, with the local ion-flux mapping configuration introduced herein being widely applicable for functional membrane characterization and beyond, for example in diagnosing the failure mechanisms of protective surface coatings.
Collapse
Affiliation(s)
- Cameron L. Bentley
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Minkyung Kang
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Saheed Bukola
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Stephen E. Creager
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
15
|
Jiang X, Zhao C, Noh Y, Xu Y, Chen Y, Chen F, Ma L, Ren W, Aluru NR, Feng J. Nonlinear electrohydrodynamic ion transport in graphene nanopores. SCIENCE ADVANCES 2022; 8:eabj2510. [PMID: 35030026 PMCID: PMC8759738 DOI: 10.1126/sciadv.abj2510] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/29/2021] [Accepted: 11/22/2021] [Indexed: 05/25/2023]
Abstract
Mechanosensitivity is one of the essential functionalities of biological ion channels. Synthesizing an artificial nanofluidic system to mimic such sensations will not only improve our understanding of these fluidic systems but also inspire applications. In contrast to the electrohydrodynamic ion transport in long nanoslits and nanotubes, coupling hydrodynamical and ion transport at the single-atom thickness remains challenging. Here, we report the pressure-modulated ion conduction in graphene nanopores featuring nonlinear electrohydrodynamic coupling. Increase of ionic conductance, ranging from a few percent to 204.5% induced by the pressure—an effect that was not predicted by the classical linear coupling of molecular streaming to voltage-driven ion transport—was observed experimentally. Computational and theoretical studies reveal that the pressure sensitivity of graphene nanopores arises from the transport of capacitively accumulated ions near the graphene surface. Our findings may help understand the electrohydrodynamic ion transport in nanopores and offer a new ion transport controlling methodology.
Collapse
Affiliation(s)
- Xiaowei Jiang
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chunxiao Zhao
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yechan Noh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yang Xu
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuang Chen
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Fanfan Chen
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Laipeng Ma
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Wencai Ren
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Narayana R. Aluru
- Walker Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, TX 78712, USA
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Qiu H, Zhou W, Guo W. Nanopores in Graphene and Other 2D Materials: A Decade's Journey toward Sequencing. ACS NANO 2021; 15:18848-18864. [PMID: 34841865 DOI: 10.1021/acsnano.1c07960] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/13/2023]
Abstract
Nanopore techniques offer a low-cost, label-free, and high-throughput platform that could be used in single-molecule biosensing and in particular DNA sequencing. Since 2010, graphene and other two-dimensional (2D) materials have attracted considerable attention as membranes for producing nanopore devices, owing to their subnanometer thickness that can in theory provide the highest possible spatial resolution of detection. Moreover, 2D materials can be electrically conductive, which potentially enables alternative measurement schemes relying on the transverse current across the membrane material itself and thereby extends the technical capability of traditional ionic current-based nanopore devices. In this review, we discuss key advances in experimental and computational research into DNA sensing with nanopores built from 2D materials, focusing on both the ionic current and transverse current measurement schemes. Challenges associated with the development of 2D material nanopores toward DNA sequencing are further analyzed, concentrating on lowering the noise levels, slowing down DNA translocation, and inhibiting DNA fluctuations inside the pores. Finally, we overview future directions of research that may expedite the emergence of proof-of-concept DNA sequencing with 2D material nanopores.
Collapse
Affiliation(s)
- Hu Qiu
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wanqi Zhou
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
17
|
Tang W, Wu Y, Mehdipour M, Chen HS, Tilley RD, Gooding JJ. Key Parameters That Determine the Magnitude of the Decrease in Current in Nanopore Blockade Sensors. NANO LETTERS 2021; 21:9374-9380. [PMID: 34726925 DOI: 10.1021/acs.nanolett.1c01855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/13/2023]
Abstract
Nanopore blockade sensors were developed to address the challenges of sensitivity and selectivity for conventional nanopore sensors. To date, the parameters affecting the current of the sensor have not been elucidated. Herein, the impacts of nanopore size and charge and the shape, size, surface charge, and aggregation state of magnetic nanoparticles were assessed. The sensor was tolerant to all parameters contrary to predictions from electronic or geometric arguments on the current change. Theoretical models showed the greater importance of the polymers around nanoparticles and the access resistance of nanopores to the current, when compared with translocation-based nanopore sensors. The signal magnitude was dominated by the change in access resistance of ∼4.25 MΩ for all parameters, resulting in a robust system. The findings provide understandings of changes in current when nanopores are blocked, like in RNA trapping or nanopore blockade sensors, and are important for designing sensors based on nanopore blockades.
Collapse
Affiliation(s)
- Wenxian Tang
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yanfang Wu
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Milad Mehdipour
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Hsiang-Sheng Chen
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Richard D Tilley
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
18
|
SI A, Kyzas GZ, Pal K, de Souza Jr. FG. Graphene functionalized hybrid nanomaterials for industrial-scale applications: A systematic review. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130518] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2023]
|
19
|
Liang S, Zhang W, Xiang F. The effect of laser irradiation on reducing the noise of solid-state nanopore. NANOTECHNOLOGY 2021; 32:345301. [PMID: 33979783 DOI: 10.1088/1361-6528/ac007f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/07/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
The performance of solid-state nanopore is affected by the noise level. This study aimed to investigate the effect of laser irradiation on the noise performance of solid-state nanoporein situ. Laser irradiation is applied to fresh and contaminated nanopores. The measurement results show that the noise of fresh and contaminated nanopores decreases with the laser power and there is a threshold of laser power in reducing the noise of contaminated nanopores. The possible reasons for reducing noise in the laser irradiation process are discussed. The laser treatment is proven to provide a convenient method for reducing the noise of solid-state nanopore.
Collapse
Affiliation(s)
- Shengfa Liang
- Key Lab of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wenchang Zhang
- Key Lab of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
| | - Feibin Xiang
- Key Lab of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, People's Republic of China
- School of Electronic Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
20
|
Marion S, Macha M, Davis SJ, Chernev A, Radenovic A. Wetting of nanopores probed with pressure. Phys Chem Chem Phys 2021; 23:4975-4987. [PMID: 33621304 DOI: 10.1039/d1cp00253h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Nanopores are both a tool to study single-molecule biophysics and nanoscale ion transport, but also a promising material for desalination or osmotic power generation. Understanding the physics underlying ion transport through nano-sized pores allows better design of porous membrane materials. Material surfaces can present hydrophobicity, a property which can make them prone to formation of surface nanobubbles. Nanobubbles can influence the electrical transport properties of such devices. We demonstrate an approach which uses hydraulic pressure to probe the electrical transport properties of solid state nanopores. We show how pressure can be used to wet pores, and how it allows control over bubbles or other contaminants in the nanometer scale range normally unachievable using only an electrical driving force. Molybdenum disulfide is then used as a typical example of a 2D material on which we demonstrate wetting and bubble induced nonlinear and linear conductance in the regimes typically used with these experiments. We show that by using pressure one can identify and evade wetting artifacts.
Collapse
Affiliation(s)
- Sanjin Marion
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland.
| | - Michal Macha
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland.
| | - Sebastian J Davis
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland.
| | - Andrey Chernev
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland.
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland.
| |
Collapse
|
21
|
Abstract
Here, we investigate the role of a dilute hydrophobic gas on the phase behavior of water confined in hydrophobic nanopores. Molecular dynamics showed that gas atoms are hydrophobically attracted within the pores, where even a single particle is able to induce spontaneous drying of the whole pore. The drying process is rationalized in terms of its free-energy landscape, revealing that the penetration of a gas atom is able to suppress the drying free-energy barriers of hydrophobic pores. Results provide insights into the role of gases on the wettability of nanopores and evidence of a possibile physical mechanism for the action of volatile anesthetics on some kinds of ion channels. Results also indicate a novel, bioinspired strategy for controlling bubble formation in nanopores for sensing and energy applications.
Collapse
Affiliation(s)
- Gaia Camisasca
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Rome, Italy
| | - Antonio Tinti
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Rome, Italy
| | - Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Rome, Italy
| |
Collapse
|
22
|
Radium in groundwater hosted in porous aquifers: estimation of retardation factor and recoil rate constant by using NAPLs. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03610-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/23/2022] Open
|
23
|
Rabinowitz J, Whittier E, Liu Z, Jayant K, Frank J, Shepard K. Nanobubble-controlled nanofluidic transport. SCIENCE ADVANCES 2020; 6:6/46/eabd0126. [PMID: 33188030 PMCID: PMC7673748 DOI: 10.1126/sciadv.abd0126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/26/2020] [Accepted: 09/23/2020] [Indexed: 05/03/2023]
Abstract
Nanofluidic platforms offering tunable material transport are applicable in biosensing, chemical detection, and filtration. Prior studies have achieved selective and controllable ion transport through electrical, optical, or chemical gating of complex nanostructures. Here, we mechanically control nanofluidic transport using nanobubbles. When plugging nanochannels, nanobubbles rectify and occasionally enhance ionic currents in a geometry-dependent manner. These conductance effects arise from nanobubbles inducing surface-governed ion transport through interfacial electrolyte films residing between nanobubble surfaces and nanopipette walls. The nanobubbles investigated here are mechanically generated, made metastable by surface pinning, and verified with cryogenic transmission electron microscopy. Our findings are relevant to nanofluidic device engineering, three-phase interface properties, and nanopipette-based applications.
Collapse
Affiliation(s)
- Jake Rabinowitz
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Elizabeth Whittier
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Zheng Liu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Krishna Jayant
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Joachim Frank
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Kenneth Shepard
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
24
|
Patil O, Manikandan D, Nandigana VVR. A molecular dynamics simulation framework for predicting noise in solid-state nanopores. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1798004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/23/2022]
Affiliation(s)
- Onkar Patil
- Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai, India
| | - D. Manikandan
- Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai, India
| | - Vishal V. R. Nandigana
- Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai, India
| |
Collapse
|
25
|
Hu R, Tong X, Zhao Q. Four Aspects about Solid-State Nanopores for Protein Sensing: Fabrication, Sensitivity, Selectivity, and Durability. Adv Healthc Mater 2020; 9:e2000933. [PMID: 32734703 DOI: 10.1002/adhm.202000933] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2020] [Revised: 07/11/2020] [Indexed: 12/27/2022]
Abstract
Solid-state nanopores are a mimic of innate biological nanopores embedded on lipid membranes. They are fabricated on thin suspended layers of synthetic materials that provide superior thermal, mechanical, chemical stability, and geometry flexibility. As their counterpart biological nanopores reach the goal of DNA sequencing and become commercial, solid-state nanopores thrive in aspects of protein sensing and have become an important research component for clinical diagnostic technologies. This review focuses on resistive pulse sensing modes, which are versatile for low-cost, portable sensing devices and summarizes four main aspects toward commercially available resistive pulse-based protein sensing techniques using solid-state nanopores. In each aspect of fabrication, sensitivity, selectivity, and durability, brief fundamentals are introduced and the challenges and improvements are discussed. The rapid advance of a practical technique requires greater multidisciplinary cooperation. The review aims at clarifying existing obstacles in solid-state nanopore based protein sensing, intriguing readers with existing solutions and finally encouraging multidisciplinary researchers to advance the development of this promising protein sensing methodology.
Collapse
Affiliation(s)
- Rui Hu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano‐optoelectronics School of Physics Peking University Beijing 100871 China
| | - Xin Tong
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano‐optoelectronics School of Physics Peking University Beijing 100871 China
| | - Qing Zhao
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano‐optoelectronics School of Physics Peking University Beijing 100871 China
- Peking University Yangtze Delta Institute of Optoelectronics Nantong Jiangsu 226010 China
- Collaborative Innovation Center of Quantum Matter Beijing 100084 China
| |
Collapse
|
26
|
Su S, Guo X, Fu Y, Xie Y, Wang X, Xue J. Origin of nonequilibrium 1/f noise in solid-state nanopores. NANOSCALE 2020; 12:8975-8981. [PMID: 32270161 DOI: 10.1039/c9nr09829a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/11/2023]
Abstract
Nanopore devices are applied in many fields such as molecular sensing and DNA sequencing, and the detection precision is primarily determined by 1/f noise. The mechanism of 1/f noise in nanopores is still not clearly understood, especially the nonequilibrium 1/f noise in rectifying nanopores. Hereby, we propose that 1/f noise in solid-state nanopores originates from the electrolyte ion trapping-detrapping process occurring on the inner surface of the nanopores, which can nonlinearly affect the ion number inside the rectifying nanopores due to the specific ion enrichment/depletion effect. Our model can not only quantitatively explain the nonlinear dependence of 1/f noise on the applied voltage, i.e., the nonequilibrium 1/f noise, for current rectifying nanopores, but also provide a unified explanation on the influence of the electrolyte concentration, pH value, and geometry of the nanopores. From our model, we observe a new flattening phenomenon of 1/f noise in conical nanopores, and this is further confirmed by our experimental results. Our research can be helpful in understanding and reducing 1/f noise in other nanopore devices, especially where the enrichment or depletion of ions exists.
Collapse
Affiliation(s)
- Shihao Su
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China.
| | | | | | | | | | | |
Collapse
|
27
|
Liang S, Xiang F, Tang Z, Nouri R, He X, Dong M, Guan W. Noise in nanopore sensors: Sources, models, reduction, and benchmarking. NANOTECHNOLOGY AND PRECISION ENGINEERING 2020. [DOI: 10.1016/j.npe.2019.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023]
|
28
|
Fragasso A, Schmid S, Dekker C. Comparing Current Noise in Biological and Solid-State Nanopores. ACS NANO 2020; 14:1338-1349. [PMID: 32049492 PMCID: PMC7045697 DOI: 10.1021/acsnano.9b09353] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/26/2019] [Accepted: 02/12/2020] [Indexed: 05/16/2023]
Abstract
Nanopores bear great potential as single-molecule tools for bioanalytical sensing and sequencing, due to their exceptional sensing capabilities, high-throughput, and low cost. The detection principle relies on detecting small differences in the ionic current as biomolecules traverse the nanopore. A major bottleneck for the further progress of this technology is the noise that is present in the ionic current recordings, because it limits the signal-to-noise ratio (SNR) and thereby the effective time resolution of the experiment. Here, we review the main types of noise at low and high frequencies and discuss the underlying physics. Moreover, we compare biological and solid-state nanopores in terms of the SNR, the important figure of merit, by measuring translocations of a short ssDNA through a selected set of nanopores under typical experimental conditions. We find that SiNx solid-state nanopores provide the highest SNR, due to the large currents at which they can be operated and the relatively low noise at high frequencies. However, the real game-changer for many applications is a controlled slowdown of the translocation speed, which for MspA was shown to increase the SNR > 160-fold. Finally, we discuss practical approaches for lowering the noise for optimal experimental performance and further development of the nanopore technology.
Collapse
Affiliation(s)
- Alessio Fragasso
- Department of Bionanoscience,
Kavli Institute of Nanoscience, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Sonja Schmid
- Department of Bionanoscience,
Kavli Institute of Nanoscience, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience,
Kavli Institute of Nanoscience, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
29
|
Zhu Z, Duan X, Li Q, Wu R, Wang Y, Li B. Low-Noise Nanopore Enables In-Situ and Label-Free Tracking of a Trigger-Induced DNA Molecular Machine at the Single-Molecular Level. J Am Chem Soc 2020; 142:4481-4492. [PMID: 32069050 DOI: 10.1021/jacs.0c00029] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Solid-state nanopores have shown special high potential in a label-free molecular assay, structure identification, and target-index at the single-molecular level, even though frustrating electrical baseline noise is still one of the major factors that limit the spatial resolution and signaling reliability of solid-state nanopores, especially in small target detection. Here we develop a significant and easy-operating noise-reduction approach via mixing organic solvents with high dielectric constants into a traditional aqueous electrolyte. The strategy is generally effective for pores made of different materials, such as the most commonly used conical glass (CGN) or SiNx. While the mechanism should be multisourced, MD simulations suggest the noise reduction may partially arise from the even ionic distribution caused by the addition of higher dielectric species. Among all solvents experimentally tested, the two with the highest dielectric constants, formamide and methylformamide, exhibit the best noise reduction effect for target detection of CGN. The power spectral density at the low-frequency limit is reduced by nearly 3 orders with the addition of 20% formamide. Our work qualifies the reliability of solid-state nanopores into much subtler scales of detection, such as dsDNAs under 100 bp. As a practical example, bare CGN is innovatively employed to perform in-situ tracking of trigger-responsive DNA machine forming oligomers.
Collapse
Affiliation(s)
- Zhentong Zhu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaozheng Duan
- State Key Lab of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Qiao Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Ruiping Wu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.,University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yesheng Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.,University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Bingling Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.,University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
30
|
Hao R, Fan Y, Anderson TJ, Zhang B. Imaging Single Nanobubbles of H 2 and O 2 During the Overall Water Electrolysis with Single-Molecule Fluorescence Microscopy. Anal Chem 2020; 92:3682-3688. [PMID: 32024359 DOI: 10.1021/acs.analchem.9b04793] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
In this work, we describe the preparation and use of a thin metal film modified Indium Tin Oxide (ITO) electrode as a highly conductive, transparent, and electrocatalytically active electrode material for studying nanobubbles generated at the electrode/solution interface. Hydrogen and oxygen nanobubbles were generated from water electrolysis on the surface of a Au/Pd alloy modified ITO electrode. The formation of single H2 and O2 nanobubbles was imaged in real time during a potential scan using single-molecule fluorescence microscopy. Our results show that while O2 nanobubbles can be detected at an early stage in the oxygen evolution reaction (OER), the formation of H2 nanobubbles requires a significant overpotential. Our study shows that thin-film-coated ITO electrodes are simple to make and can be useful electrode substrates for (single molecule) spectroelectrochemistry research.
Collapse
Affiliation(s)
- Rui Hao
- Department of Chemistry, University of Washington, Seattle, Washington 98115, United States
| | - Yunshan Fan
- Department of Chemistry, University of Washington, Seattle, Washington 98115, United States
| | - Todd J Anderson
- Department of Chemistry, University of Washington, Seattle, Washington 98115, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98115, United States
| |
Collapse
|
31
|
Gravelle S, Netz RR, Bocquet L. Adsorption Kinetics in Open Nanopores as a Source of Low-Frequency Noise. NANO LETTERS 2019; 19:7265-7272. [PMID: 31466445 DOI: 10.1021/acs.nanolett.9b02858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/10/2023]
Abstract
Ionic current measurements through solid-state nanopores consistently show a power spectral density that scales as 1/f α at low frequency f, with an exponent α ∼ 0.5-1.5, but strikingly, the physical origin of this behavior remains elusive. Here, we perform simulations of particles reversibly adsorbing at the surface of a nanopore and show that the fluctuations in the number of adsorbed particles exhibit low-frequency pink noise. We furthermore propose theoretical modeling for the time-dependent adsorption of particles on the nanopore surface for various geometries, which predicts a frequency spectrum in very good agreement with the simulation results. Altogether, our results highlight that the low-frequency noise takes its origin in the reversible adsorption of ions at the pore surface combined with the long-lasting excursions of the ions in the reservoirs. The scaling regime of the power spectrum extends down to a cutoff frequency which is far smaller than simple diffusion estimates. Using realistic values for the pore dimensions and the adsorption-desorption kinetics, this predicts the observation of pink noise for frequencies down to the hertz for a typical solid-state nanopore, in good agreement with experiments.
Collapse
Affiliation(s)
- Simon Gravelle
- School of Engineering and Material Science , Queen Mary University of London , London E1 4NS , United Kingdom
| | - Roland R Netz
- Department of Physics , Freie Universität Berlin , 14195 Berlin , Germany
| | - Lydéric Bocquet
- Laboratoire de Physique de l'Ecole Normale Supérieure , CNRS, Université PSL, Sorbonne Université, Sorbonne Paris Cité , Paris 75005 , France
| |
Collapse
|
32
|
Han C, Hao R, Fan Y, Edwards MA, Gao H, Zhang B. Observing Transient Bipolar Electrochemical Coupling on Single Nanoparticles Translocating through a Nanopore. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7180-7190. [PMID: 31074628 DOI: 10.1021/acs.langmuir.9b01255] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/09/2023]
Abstract
We report the observation of transient bipolar electrochemical coupling on freely moving 40 nm silver nanoparticles. The use of an asymmetric nanoelectrochemical environment at the nanopore orifice, for example, an acid inside the pipette and halide ions in the bulk, enabled us to observe unusually large current blockages of single Ag nanoparticles. We attribute these current blockages to the formation of H2 nanobubbles on the surface of Ag nanoparticles due to the coupled faradaic reactions, in which the reduction of protons and water is coupled to the oxidation of Ag and water under potentials higher than 1 V. The appearance of large current blockages was strongly dependent on the applied voltage and the choice of anions in the bulk solution. The correlation between large current blockages with the oxidation of Ag nanoparticles and their nanopore translocation was further supported by simultaneous fluorescence and electric recordings. This study demonstrates that transient bipolar electrochemistry can take place on small metal nanoparticles below 50 nm when they pass through nanopores where the electric field is highly localized. The use of a nanopore and the resistive-pulse sensing method to study transient bipolar electrochemistry of nanoparticles may be extended to future studies in ultrafast electrochemistry, nanocatalyst screening, and gas nucleation on nanoparticles.
Collapse
Affiliation(s)
- Chu Han
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Rui Hao
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Yunshan Fan
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Martin A Edwards
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Hongfang Gao
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Bo Zhang
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
33
|
Cantley L, Swett JL, Lloyd D, Cullen DA, Zhou K, Bedworth PV, Heise S, Rondinone AJ, Xu Z, Sinton S, Bunch JS. Voltage gated inter-cation selective ion channels from graphene nanopores. NANOSCALE 2019; 11:9856-9861. [PMID: 31089608 DOI: 10.1039/c8nr10360g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/09/2023]
Abstract
With the ability to selectively control ionic flux, biological protein ion channels perform a fundamental role in many physiological processes. For practical applications that require the functionality of a biological ion channel, graphene provides a promising solid-state alternative, due to its atomic thinness and mechanical strength. Here, we demonstrate that nanopores introduced into graphene membranes, as large as 50 nm in diameter, exhibit inter-cation selectivity with a ∼20× preference for K+ over divalent cations and can be modulated by an applied gate voltage. Liquid atomic force microscopy of the graphene devices reveals surface nanobubbles near the pore to be responsible for the observed selective behavior. Molecular dynamics simulations indicate that translocation of ions across the pore likely occurs via a thin water layer at the edge of the pore and the nanobubble. Our results demonstrate a significant improvement in the inter-cation selectivity displayed by a solid-state nanopore device and by utilizing the pores in a de-wetted state, offers an approach to fabricate selective graphene membranes that does not rely on the fabrication of sub-nm pores.
Collapse
Affiliation(s)
- Lauren Cantley
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA.
| | - Jacob L Swett
- Advanced Technology Center, Lockheed Martin Space, Palo Alto, California 94304, USA
| | - David Lloyd
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA.
| | - David A Cullen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Ke Zhou
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Peter V Bedworth
- Advanced Technology Center, Lockheed Martin Space, Palo Alto, California 94304, USA
| | - Scott Heise
- Advanced Technology Center, Lockheed Martin Space, Palo Alto, California 94304, USA
| | - Adam J Rondinone
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Zhiping Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Steve Sinton
- Advanced Technology Center, Lockheed Martin Space, Palo Alto, California 94304, USA
| | - J Scott Bunch
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA. and Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts 02446, USA
| |
Collapse
|
34
|
Fabrication and practical applications of molybdenum disulfide nanopores. Nat Protoc 2019; 14:1130-1168. [PMID: 30903110 DOI: 10.1038/s41596-019-0131-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/14/2018] [Accepted: 01/04/2019] [Indexed: 01/01/2023]
Abstract
Among the different developed solid-state nanopores, nanopores constructed in a monolayer of molybdenum disulfide (MoS2) stand out as powerful devices for single-molecule analysis or osmotic power generation. Because the ionic current through a nanopore is inversely proportional to the thickness of the pore, ultrathin membranes have the advantage of providing relatively high ionic currents at very small pore sizes. This increases the signal generated during translocation of biomolecules and improves the nanopores' efficiency when used for desalination or reverse electrodialysis applications. The atomic thickness of MoS2 nanopores approaches the inter-base distance of DNA, creating a potential candidate for DNA sequencing. In terms of geometry, MoS2 nanopores have a well-defined vertical profile due to their atomic thickness, which eliminates any unwanted effects associated with uneven pore profiles observed in other materials. This protocol details all the necessary procedures for the fabrication of solid-state devices. We discuss different methods for transfer of monolayer MoS2, different approaches for the creation of nanopores, their applicability in detecting DNA translocations and the analysis of translocation data through open-source programming packages. We present anticipated results through the application of our nanopores in DNA translocations and osmotic power generation. The procedure comprises four parts: fabrication of devices (2-3 d), transfer of MoS2 and cleaning procedure (24 h), the creation of nanopores within MoS2 (30 min) and performing DNA translocations (2-3 h). We anticipate that our protocol will enable large-scale manufacturing of single-molecule-analysis devices as well as next-generation DNA sequencing.
Collapse
|
35
|
Lee K, Park KB, Kim HJ, Yu JS, Chae H, Kim HM, Kim KB. Recent Progress in Solid-State Nanopores. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704680. [PMID: 30260506 DOI: 10.1002/adma.201704680] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/17/2017] [Revised: 06/08/2018] [Indexed: 05/28/2023]
Abstract
The solid-state nanopore has attracted much attention as a next-generation DNA sequencing tool or a single-molecule biosensor platform with its high sensitivity of biomolecule detection. The platform has advantages of processability, robustness of the device, and flexibility in the nanopore dimensions as compared with the protein nanopore, but with the limitation of insufficient spatial and temporal resolution to be utilized in DNA sequencing. Here, the fundamental principles of the solid-state nanopore are summarized to illustrate the novelty of the device, and improvements in the performance of the platform in terms of device fabrication are explained. The efforts to reduce the electrical noise of solid-state nanopore devices, and thus to enhance the sensitivity of detection, are presented along with detailed descriptions of the noise properties of the solid-state nanopore. Applications of 2D materials including graphene, h-BN, and MoS2 as a nanopore membrane to enhance the spatial resolution of nanopore detection, and organic coatings on the nanopore membranes for the addition of chemical functionality to the nanopore are summarized. Finally, the recently reported applications of the solid-state nanopore are categorized and described according to the target biomolecules: DNA-bound proteins, modified DNA structures, proteins, and protein oligomers.
Collapse
Affiliation(s)
- Kidan Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyeong-Beom Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyung-Jun Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Seok Yu
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hongsik Chae
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Mi Kim
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ki-Bum Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
36
|
Puczkarski P, Wu Q, Sadeghi H, Hou S, Karimi A, Sheng Y, Warner JH, Lambert CJ, Briggs GAD, Mol JA. Low-Frequency Noise in Graphene Tunnel Junctions. ACS NANO 2018; 12:9451-9460. [PMID: 30114902 DOI: 10.1021/acsnano.8b04713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/17/2023]
Abstract
Graphene tunnel junctions are a promising experimental platform for single molecule electronics and biosensing. Ultimately their noise properties will play a critical role in developing these applications. Here we report a study of electrical noise in graphene tunnel junctions fabricated through feedback-controlled electroburning. We observe random telegraph signals characterized by a Lorentzian noise spectrum at cryogenic temperatures (77 K) and a 1/ f noise spectrum at room temperature. To gain insight into the origin of these noise features, we introduce a theoretical model that couples a quantum mechanical tunnel barrier to one or more classical fluctuators. The fluctuators are identified as charge traps in the underlying dielectric, which through random fluctuations in their occupation introduce time-dependent modulations in the electrostatic environment that shift the potential barrier of the junction. Analysis of the experimental results and the tight-binding model indicate that the random trap occupation is governed by Poisson statistics. In the 35 devices measured at room temperature, we observe a 20-60% time-dependent variance of the current, which can be attributed to a relative potential barrier shift of between 6% and 10%. In 10 devices measured at 77 K, we observe a 10% time-dependent variance of the current, which can be attributed to a relative potential barrier shift of between 3% and 4%. Our measurements reveal a high sensitivity of the graphene tunnel junctions to their local electrostatic environment, with observable features of intertrap Coulomb interactions in the distribution of current switching amplitudes.
Collapse
Affiliation(s)
- Paweł Puczkarski
- Department of Materials , University of Oxford , 16 Parks Road , Oxford OX1 3PH , United Kingdom
| | - Qingqing Wu
- Department of Physics , Lancaster University , Bailrigg , Lancaster LA1 4YB , United Kingdom
| | - Hatef Sadeghi
- Department of Physics , Lancaster University , Bailrigg , Lancaster LA1 4YB , United Kingdom
| | - Songjun Hou
- Department of Physics , Lancaster University , Bailrigg , Lancaster LA1 4YB , United Kingdom
| | - Amin Karimi
- Department of Materials , University of Oxford , 16 Parks Road , Oxford OX1 3PH , United Kingdom
| | - Yuewen Sheng
- Department of Materials , University of Oxford , 16 Parks Road , Oxford OX1 3PH , United Kingdom
| | - Jamie H Warner
- Department of Materials , University of Oxford , 16 Parks Road , Oxford OX1 3PH , United Kingdom
| | - Colin J Lambert
- Department of Physics , Lancaster University , Bailrigg , Lancaster LA1 4YB , United Kingdom
| | - G Andrew D Briggs
- Department of Materials , University of Oxford , 16 Parks Road , Oxford OX1 3PH , United Kingdom
| | - Jan A Mol
- Department of Materials , University of Oxford , 16 Parks Road , Oxford OX1 3PH , United Kingdom
| |
Collapse
|
37
|
Arjmandi-Tash H, Bellunato A, Wen C, Olsthoorn RC, Scheicher RH, Zhang SL, Schneider GF. Zero-Depth Interfacial Nanopore Capillaries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29372574 DOI: 10.1002/adma.201703602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/28/2017] [Revised: 10/11/2017] [Indexed: 05/09/2023]
Abstract
High-fidelity analysis of translocating biomolecules through nanopores demands shortening the nanocapillary length to a minimal value. Existing nanopores and capillaries, however, inherit a finite length from the parent membranes. Here, nanocapillaries of zero depth are formed by dissolving two superimposed and crossing metallic nanorods, molded in polymeric slabs. In an electrolyte, the interface shared by the crossing fluidic channels is mathematically of zero thickness and defines the narrowest constriction in the stream of ions through the nanopore device. This novel architecture provides the possibility to design nanopore fluidic channels, particularly with a robust 3D architecture maintaining the ultimate zero thickness geometry independently of the thickness of the fluidic channels. With orders of magnitude reduced biomolecule translocation speed, and lowered electronic and ionic noise compared to nanopores in 2D materials, the findings establish interfacial nanopores as a scalable platform for realizing nanofluidic systems, capable of single-molecule detection.
Collapse
Affiliation(s)
- Hadi Arjmandi-Tash
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, 2333CC, Leiden, The Netherlands
| | - Amedeo Bellunato
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, 2333CC, Leiden, The Netherlands
| | - Chenyu Wen
- Division of Solid-State Electronics, Department of Engineering Sciences, Uppsala University, 75121, Uppsala, Sweden
| | - René C Olsthoorn
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, 2333CC, Leiden, The Netherlands
| | - Ralph H Scheicher
- Division of Materials Theory, Department of Physics and Astronomy, Uppsala University, 75120, Uppsala, Sweden
| | - Shi-Li Zhang
- Division of Solid-State Electronics, Department of Engineering Sciences, Uppsala University, 75121, Uppsala, Sweden
| | - Grégory F Schneider
- Faculty of Science, Leiden Institute of Chemistry, Leiden University, 2333CC, Leiden, The Netherlands
| |
Collapse
|
38
|
Yamazaki H, Hu R, Henley RY, Halman J, Afonin KA, Yu D, Zhao Q, Wanunu M. Label-Free Single-Molecule Thermoscopy Using a Laser-Heated Nanopore. NANO LETTERS 2017; 17:7067-7074. [PMID: 28975798 DOI: 10.1021/acs.nanolett.7b03752] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/07/2023]
Abstract
When light is used to excite electronic transitions in a material, nonradiative energy during relaxation is often released in the form of heat. In this work, we show that photoexcitation of a silicon nitride nanopore using a focused visible laser results in efficient localized photothermal heating, which reduces the nearby electrolyte viscosity and increases the ionic conductance. In addition, a strong localized thermal gradient in the pore vicinity is produced, evidenced by finite-element simulations and experimental observation of both ion and DNA thermophoresis. After correcting for thermophoresis, the nanopore current can be used as a nanoscale thermometer, enabling rapid force thermoscopy. We utilize this to probe thermal melting transitions in synthetic and native biomolecules that are heated at the nanopore. Our results on single molecules are validated by correspondence to bulk measurements, which paves the way to various biophysical experiments that require rapid temperature and force control on individual molecules.
Collapse
Affiliation(s)
- Hirohito Yamazaki
- Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States
| | - Rui Hu
- Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University , Beijing 100871, People's Republic of China
| | - Robert Y Henley
- Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States
| | - Justin Halman
- Department of Chemistry, University of North Carolina at Charlotte , 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte , 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | - Dapeng Yu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University , Beijing 100871, People's Republic of China
| | - Qing Zhao
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University , Beijing 100871, People's Republic of China
| | - Meni Wanunu
- Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States
| |
Collapse
|
39
|
Wen C, Zeng S, Arstila K, Sajavaara T, Zhu Y, Zhang Z, Zhang SL. Generalized Noise Study of Solid-State Nanopores at Low Frequencies. ACS Sens 2017; 2:300-307. [PMID: 28723146 DOI: 10.1021/acssensors.6b00826] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
Nanopore technology has been extensively investigated for analysis of biomolecules, and a success story in this field concerns DNA sequencing using a nanopore chip featuring an array of hundreds of biological nanopores (BioNs). Solid-state nanopores (SSNs) have been explored to attain longer lifetime and higher integration density than what BioNs can offer, but SSNs are generally considered to generate higher noise whose origin remains to be confirmed. Here, we systematically study low-frequency (including thermal and flicker) noise characteristics of SSNs measuring 7 to 200 nm in diameter drilled through a 20-nm-thick SiNx membrane by focused ion milling. Both bulk and surface ionic currents in the nanopore are found to contribute to the flicker noise, with their respective contributions determined by salt concentration and pH in electrolytes as well as bias conditions. Increasing salt concentration at constant pH and voltage bias leads to increase in the bulk ionic current and noise therefrom. Changing pH at constant salt concentration and current bias results in variation of surface charge density, and hence alteration of surface ionic current and noise. In addition, the noise from Ag/AgCl electrodes can become predominant when the pore size is large and/or the salt concentration is high. Analysis of our comprehensive experimental results leads to the establishment of a generalized nanopore noise model. The model not only gives an excellent account of the experimental observations, but can also be used for evaluation of various noise components in much smaller nanopores currently not experimentally available.
Collapse
Affiliation(s)
- Chenyu Wen
- Division
of Solid-State Electronics, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Shuangshuang Zeng
- Division
of Solid-State Electronics, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Kai Arstila
- Department
of Physics, University of Jyväskylä, P.O. Box 35, FI-40014, Jyvaskylä, Finland
| | - Timo Sajavaara
- Department
of Physics, University of Jyväskylä, P.O. Box 35, FI-40014, Jyvaskylä, Finland
| | - Yu Zhu
- IBM Thomas J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598, United States
| | - Zhen Zhang
- Division
of Solid-State Electronics, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Shi-Li Zhang
- Division
of Solid-State Electronics, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden
| |
Collapse
|
40
|
Abstract
We show that for an ideally ion-selective nanopore, current oscillations can be due to chaos rather than noise, and that the color associated with the chaotic spectrum, which has 1/f type dynamics, is pink.
Collapse
Affiliation(s)
| | - N. R. Aluru
- Department of Mechanical Science and Engineering
- Beckman Institute for Advanced Science and Technology
- University of Illinois at Urbana – Champaign
- Urbana
- USA
| |
Collapse
|
41
|
Xiao K, Zhou Y, Kong XY, Xie G, Li P, Zhang Z, Wen L, Jiang L. Electrostatic-Charge- and Electric-Field-Induced Smart Gating for Water Transportation. ACS NANO 2016; 10:9703-9709. [PMID: 27648730 DOI: 10.1021/acsnano.6b05682] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/27/2023]
Abstract
Regulating and controlling the transport of water across nanochannels is of great importance in both fundamental research and practical applications because it is difficult to externally control water flow through nanochannels as in biological channels. To date, only a few hydrophobic nanochannels controlling the transport of water have been reported, all of which use exotic hydrophobic molecules. However, the effect of electrostatic charges, which plays an indispensable role in membrane proteins and dominates the energetics of water permeation across aquaporins, has not gained enough attention to control water transport through a solid-state nanochannel/nanopore. Here, we report electrostatic-charge-induced water gating of a single ion track-etched sub-10 nm channel. This system can directly realize the gating transition between an open, conductive state and a closed, nonconductive state by regulating the surface charge density through a process that involves alternating capillary evaporation and capillary condensation. Compared to the introduction of exotic hydrophobic molecules, water gating controlled by electrostatic charges is simple, convenient, and effective. Such a system anticipates potential applications including desalination, controllable valves, and drug delivery systems.
Collapse
Affiliation(s)
- Kai Xiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, and ‡Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, People's Republic of China
| | - Yahong Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, and ‡Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, People's Republic of China
| | - Xiang-Yu Kong
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, and ‡Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, People's Republic of China
| | - Ganhua Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, and ‡Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, People's Republic of China
| | - Pei Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, and ‡Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, People's Republic of China
| | - Zhen Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, and ‡Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, People's Republic of China
| | - Liping Wen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, and ‡Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, People's Republic of China
| | - Lei Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, and ‡Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, People's Republic of China
| |
Collapse
|
42
|
Abstract
In this article, we perform a computational investigation of a nanopore connected to external fluidic reservoirs of asymmetric geometries. The asymmetry between the reservoirs is achieved by changing the cross-sectional areas, and the reservoirs are designated as the micropore reservoir and macropore reservoir. When an electric field is applied, which is directed from the macropore towards the micropore reservoir, we observe local nonequilibrium chaotic current oscillations. The current oscillations originate at the micropore-nanopore interface owing to the local cascade of ions; we refer to this phenomenon as the "avalanche effects." We mathematically quantify chaos in terms of the maximum Lyapunov exponent. The maximum Lyapunov exponent exhibits a monotonic increase with the applied voltage and the macropore reservoir diameter. The temporal power spectra maps of the chaotic currents depict a low-frequency "1/f"-type dynamics for the voltage chaos and "1/f^{2}"-type dynamics for the macropore reservoir chaos. The results presented here offer avenues to manipulate ionic diodes and fluidic pumps.
Collapse
Affiliation(s)
- Vishal V R Nandigana
- Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - N R Aluru
- Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
43
|
Givelet CC, Dron PI, Wen J, Magnera TF, Zamadar M, Čépe K, Fujiwara H, Shi Y, Tuchband MR, Clark N, Zbořil R, Michl J. Challenges in the Structure Determination of Self-Assembled Metallacages: What Do Cage Cavities Contain, Internal Vapor Bubbles or Solvent and/or Counterions? J Am Chem Soc 2016; 138:6676-87. [DOI: 10.1021/jacs.5b12050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | | | | | | | - Klára Čépe
- Regional
Centre of Advanced Technologies and Materials, Faculty of Science,
Department of Physical Chemistry, Palacký University, Šlechtitelů
27, Olomouc 783 71, Czech Republic
| | | | | | | | | | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Faculty of Science,
Department of Physical Chemistry, Palacký University, Šlechtitelů
27, Olomouc 783 71, Czech Republic
| | - Josef Michl
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of Czech Republic, Flemingovo nám. 2, 16610 Prague, Czech Republic
| |
Collapse
|
44
|
|
45
|
Pitchford WH, Kim HJ, Ivanov AP, Kim HM, Yu JS, Leatherbarrow RJ, Albrecht T, Kim KB, Edel JB. Synchronized optical and electronic detection of biomolecules using a low noise nanopore platform. ACS NANO 2015; 9:1740-8. [PMID: 25635821 DOI: 10.1021/nn506572r] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/21/2023]
Abstract
In the past two decades there has been a tremendous amount of research into the use of nanopores as single molecule sensors, which has been inspired by the Coulter counter and molecular transport across biological pores. Recently, the desire to increase structural resolution and analytical throughput has led to the integration of additional detection methods such as fluorescence spectroscopy. For structural information to be probed electronically high bandwidth measurements are crucial due to the high translocation velocity of molecules. The most commonly used solid-state nanopore sensors consist of a silicon nitride membrane and bulk silicon substrate. Unfortunately, the photoinduced noise associated with illumination of these platforms limits their applicability to high-bandwidth, high-laser-power synchronized optical and electronic measurements. Here we present a unique low-noise nanopore platform, composed of a predominately Pyrex substrate and silicon nitride membrane, for synchronized optical and electronic detection of biomolecules. Proof of principle experiments are conducted showing that the Pyrex substrates have substantially lowers ionic current noise arising from both laser illumination and platform capacitance. Furthermore, using confocal microscopy and a partially metallic pore we demonstrate high signal-to-noise synchronized optical and electronic detection of dsDNA.
Collapse
Affiliation(s)
- William H Pitchford
- Department of Chemistry, Imperial College London, South Kensington Campus , London SW7 2AZ, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells. Nat Commun 2015; 6:6068. [PMID: 25641584 DOI: 10.1038/ncomms7068] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2014] [Accepted: 12/10/2014] [Indexed: 12/23/2022] Open
Abstract
Formation, evolution and vanishing of bubbles are common phenomena in nature, which can be easily observed in boiling or falling water, carbonated drinks, gas-forming electrochemical reactions and so on. However, the morphology and the growth dynamics of the bubbles at nanoscale have not been fully investigated owing to the lack of proper imaging tools that can visualize nanoscale objects in the liquid phase. Here, we demonstrate for the first time that the nanobubbles in water encapsulated by graphene membrane can be visualized by in-situ ultra-high vacuum transmission electron microscopy. Our microscopic results indicate two distinct growth mechanisms of merging nanobubbles and the existence of a critical radius of nanobubbles that determines the unusually long stability of nanobubbles. Interestingly, the gas transport through ultrathin water membranes at nanobubble interface is free from dissolution, which is clearly different from conventional gas transport that includes condensation, transmission and evaporation.
Collapse
|
47
|
Li Y, Nicoli F, Chen C, Lagae L, Groeseneken G, Stakenborg T, Zandbergen H, Dekker C, Van Dorpe P, Jonsson MP. Photoresistance switching of plasmonic nanopores. NANO LETTERS 2015; 15:776-82. [PMID: 25514824 PMCID: PMC4296925 DOI: 10.1021/nl504516d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/25/2014] [Revised: 12/12/2014] [Indexed: 05/03/2023]
Abstract
Fast and reversible modulation of ion flow through nanosized apertures is important for many nanofluidic applications, including sensing and separation systems. Here, we present the first demonstration of a reversible plasmon-controlled nanofluidic valve. We show that plasmonic nanopores (solid-state nanopores integrated with metal nanocavities) can be used as a fluidic switch upon optical excitation. We systematically investigate the effects of laser illumination of single plasmonic nanopores and experimentally demonstrate photoresistance switching where fluidic transport and ion flow are switched on or off. This is manifested as a large (∼ 1-2 orders of magnitude) increase in the ionic nanopore resistance and an accompanying current rectification upon illumination at high laser powers (tens of milliwatts). At lower laser powers, the resistance decreases monotonically with increasing power, followed by an abrupt transition to high resistances at a certain threshold power. A similar rapid transition, although at a lower threshold power, is observed when the power is instead swept from high to low power. This hysteretic behavior is found to be dependent on the rate of the power sweep. The photoresistance switching effect is attributed to plasmon-induced formation and growth of nanobubbles that reversibly block the ionic current through the nanopore from one side of the membrane. This explanation is corroborated by finite-element simulations of a nanobubble in the nanopore that show the switching and the rectification.
Collapse
Affiliation(s)
- Yi Li
- imec, Kapeldreef 75, Leuven B3001, Belgium
- Department of Electrical
Engineering, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
| | - Francesca Nicoli
- Kavli Institute of Nanoscience, Delft University
of Technology, Lorentzweg
1, 2628 CJ Delft, The Netherlands
| | - Chang Chen
- imec, Kapeldreef 75, Leuven B3001, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Liesbet Lagae
- imec, Kapeldreef 75, Leuven B3001, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Guido Groeseneken
- imec, Kapeldreef 75, Leuven B3001, Belgium
- Department of Electrical
Engineering, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
| | | | - Henny
W. Zandbergen
- Kavli Institute of Nanoscience, Delft University
of Technology, Lorentzweg
1, 2628 CJ Delft, The Netherlands
| | - Cees Dekker
- Kavli Institute of Nanoscience, Delft University
of Technology, Lorentzweg
1, 2628 CJ Delft, The Netherlands
| | - Pol Van Dorpe
- imec, Kapeldreef 75, Leuven B3001, Belgium
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Magnus P. Jonsson
- Kavli Institute of Nanoscience, Delft University
of Technology, Lorentzweg
1, 2628 CJ Delft, The Netherlands
| |
Collapse
|
48
|
Affiliation(s)
- Zhen Gu
- Key
Laboratory for Advanced Materials and Department of Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
- Department
of Chemistry, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Yi-Lun Ying
- Key
Laboratory for Advanced Materials and Department of Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Chan Cao
- Key
Laboratory for Advanced Materials and Department of Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Pingang He
- Department
of Chemistry, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People’s Republic of China
| | - Yi-Tao Long
- Key
Laboratory for Advanced Materials and Department of Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| |
Collapse
|
49
|
Tang Z, Lu B, Zhao Q, Wang J, Luo K, Yu D. Surface modification of solid-state nanopores for sticky-free translocation of single-stranded DNA. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:4332-9. [PMID: 25044955 DOI: 10.1002/smll.201401091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/21/2014] [Revised: 06/15/2014] [Indexed: 05/25/2023]
Abstract
Nanopore technology is one of the most promising approaches for fast and low-cost DNA sequencing application. Single-stranded DNA detection is primary objective in such device, while solid-state nanopores remain less explored than their biological counterparts due to bio-molecule clogging issue caused by surface interaction between DNA and nanopore wall. By surface coating a layer of polyethylene glycol (PEG), solid-state nanopore can achieve long lifetime for single-stranded DNA sticky-free translocation at pH 11.5. Associated with elimination of non-specific binding of molecule, PEG coated nanopore presents new surface characteristic as less hydrophility, lower 1/f noise, and passivated surface charge responsiveness on pH. Meanwhile, conductance blockage of single-stranded DNA is found to be deeper than double-stranded DNA, which can be well described by a string of blobs model for a quasi-equilibrium state polymer in constraint space.
Collapse
Affiliation(s)
- Zhipeng Tang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, P. R. China
| | | | | | | | | | | |
Collapse
|
50
|
Zhang Y, Wu G, Si W, Sha J, Liu L, Chen Y. Retarding and manipulating of DNA molecules translocation through nanopores. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-014-0655-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/01/2022]
|