1
|
Kotwal A, Saragadam V, Bernstock JD, Sandoval A, Veeraraghavan A, Valdés PA. Hyperspectral imaging in neurosurgery: a review of systems, computational methods, and clinical applications. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:023512. [PMID: 39544341 PMCID: PMC11559659 DOI: 10.1117/1.jbo.30.2.023512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 11/17/2024]
Abstract
Significance Accurate identification between pathologic (e.g., tumors) and healthy brain tissue is a critical need in neurosurgery. However, conventional surgical adjuncts have significant limitations toward achieving this goal (e.g., image guidance based on pre-operative imaging becomes inaccurate up to 3 cm as surgery proceeds). Hyperspectral imaging (HSI) has emerged as a potential powerful surgical adjunct to enable surgeons to accurately distinguish pathologic from normal tissues. Aim We review HSI techniques in neurosurgery; categorize, explain, and summarize their technical and clinical details; and present some promising directions for future work. Approach We performed a literature search on HSI methods in neurosurgery focusing on their hardware and implementation details; classification, estimation, and band selection methods; publicly available labeled and unlabeled data; image processing and augmented reality visualization systems; and clinical study conclusions. Results We present a detailed review of HSI results in neurosurgery with a discussion of over 25 imaging systems, 45 clinical studies, and 60 computational methods. We first provide a short overview of HSI and the main branches of neurosurgery. Then, we describe in detail the imaging systems, computational methods, and clinical results for HSI using reflectance or fluorescence. Clinical implementations of HSI yield promising results in estimating perfusion and mapping brain function, classifying tumors and healthy tissues (e.g., in fluorescence-guided tumor surgery, detecting infiltrating margins not visible with conventional systems), and detecting epileptogenic regions. Finally, we discuss the advantages and disadvantages of HSI approaches and interesting research directions as a means to encourage future development. Conclusions We describe a number of HSI applications across every major branch of neurosurgery. We believe these results demonstrate the potential of HSI as a powerful neurosurgical adjunct as more work continues to enable rapid acquisition with smaller footprints, greater spectral and spatial resolutions, and improved detection.
Collapse
Affiliation(s)
- Alankar Kotwal
- University of Texas Medical Branch, Department of Neurosurgery, Galveston, Texas, United States
- Rice University, Department of Electrical and Computer Engineering, Houston, Texas, United States
| | - Vishwanath Saragadam
- University of California Riverside, Department of Electrical and Computer Engineering, Riverside, California, United States
| | - Joshua D. Bernstock
- Brigham and Women’s Hospital, Harvard Medical School, Department of Neurosurgery, Boston, Massachusetts, United States
- Massachusetts Institute of Technology, David H. Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, United States
| | - Alfredo Sandoval
- University of Texas Medical Branch, Department of Neurosurgery, Galveston, Texas, United States
| | - Ashok Veeraraghavan
- Rice University, Department of Electrical and Computer Engineering, Houston, Texas, United States
| | - Pablo A. Valdés
- University of Texas Medical Branch, Department of Neurosurgery, Galveston, Texas, United States
- Rice University, Department of Electrical and Computer Engineering, Houston, Texas, United States
| |
Collapse
|
2
|
Giannoni L, Marradi M, Scibilia K, Ezhov I, Bonaudo C, Artemiou A, Toaha A, Lange F, Caredda C, Montcel B, Della Puppa A, Tachtsidis I, Rückert D, Pavone FS. Transportable hyperspectral imaging setup based on fast, high-density spectral scanning for in situ quantitative biochemical mapping of fresh tissue biopsies. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:093508. [PMID: 39258259 PMCID: PMC11384341 DOI: 10.1117/1.jbo.29.9.093508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
Significance Histopathological examination of surgical biopsies, such as in glioma and glioblastoma resection, is hindered in current clinical practice by the long time required for the laboratory analysis and pathological screening, typically taking several days or even weeks to be completed. Aim We propose here a transportable, high-density, spectral scanning-based hyperspectral imaging (HSI) setup, named HyperProbe1, that can provide in situ, fast biochemical analysis, and mapping of fresh surgical tissue samples, right after excision, and without the need for fixing, staining nor compromising the integrity of the tissue properties. Approach HyperProbe1 is based on spectral scanning via supercontinuum laser illumination filtered with acousto-optic tunable filters. Such methodology allows the user to select any number and type of wavelength bands in the visible and near-infrared range between 510 and 900 nm (up to a maximum of 79) and to reconstruct 3D hypercubes composed of high-resolution (4 to 5 μ m ), widefield images ( 0.9 × 0.9 mm 2 ) of the surgical samples, where each pixel is associated with a complete spectrum. Results The HyperProbe1 setup is here presented and characterized. The system is applied to 11 fresh surgical biopsies of glioma from routine patients, including different grades of tumor classification. Quantitative analysis of the composition of the tissue is performed via fast spectral unmixing to reconstruct the mapping of major biomarkers, such as oxy-(HbO 2 ) and deoxyhemoglobin (HHb), as well as cytochrome-c-oxidase (CCO). We also provided a preliminary attempt to infer tumor classification based on differences in composition in the samples, suggesting the possibility of using lipid content and differential CCO concentrations to distinguish between lower and higher-grade gliomas. Conclusions A proof of concept of the performances of HyperProbe1 for quantitative, biochemical mapping of surgical biopsies is demonstrated, paving the way for improving current post-surgical, histopathological practice via non-destructive, in situ streamlined screening of fresh tissue samples in a matter of minutes after excision.
Collapse
Affiliation(s)
- Luca Giannoni
- University of Florence, Department
of Physics and Astronomy, Florence, Italy
- European Laboratory for Non-Linear
Spectroscopy, Sesto Fiorentino, Italy
| | - Marta Marradi
- University of Florence, Department
of Physics and Astronomy, Florence, Italy
- European Laboratory for Non-Linear
Spectroscopy, Sesto Fiorentino, Italy
| | - Kevin Scibilia
- Technical University of Munich,
TranslaTUM - Center for Translational Cancer Research, Munich,
Germany
| | - Ivan Ezhov
- Technical University of Munich,
TranslaTUM - Center for Translational Cancer Research, Munich,
Germany
| | - Camilla Bonaudo
- Azienda Ospedaliero-Universitaria
Careggi, University of Florence, Neurosurgery, Department of Neuroscience,
Psychology, Pharmacology and Child Health, Florence, Italy
| | - Angelos Artemiou
- University College London,
Department of Medical Physics and Biomedical Engineering, London, United
Kingdom
| | - Anam Toaha
- University of Florence, Department
of Physics and Astronomy, Florence, Italy
- European Laboratory for Non-Linear
Spectroscopy, Sesto Fiorentino, Italy
| | - Frédéric Lange
- University College London,
Department of Medical Physics and Biomedical Engineering, London, United
Kingdom
| | - Charly Caredda
- Université de Lyon,
INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm,
CREATIS UMR 5220, Lyon, France
| | - Bruno Montcel
- Université de Lyon,
INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm,
CREATIS UMR 5220, Lyon, France
| | - Alessandro Della Puppa
- Azienda Ospedaliero-Universitaria
Careggi, University of Florence, Neurosurgery, Department of Neuroscience,
Psychology, Pharmacology and Child Health, Florence, Italy
| | - Ilias Tachtsidis
- University College London,
Department of Medical Physics and Biomedical Engineering, London, United
Kingdom
| | - Daniel Rückert
- Technical University of Munich,
TranslaTUM - Center for Translational Cancer Research, Munich,
Germany
- Imperial College London,
Department of Computing, London, United Kingdom
| | - Francesco Saverio Pavone
- University of Florence, Department
of Physics and Astronomy, Florence, Italy
- European Laboratory for Non-Linear
Spectroscopy, Sesto Fiorentino, Italy
- National Research Council,
National Institute of Optics, Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Banbury C, Harris G, Clancy M, Blanch RJ, Rickard JJS, Goldberg Oppenheimer P. Window into the mind: Advanced handheld spectroscopic eye-safe technology for point-of-care neurodiagnostic. SCIENCE ADVANCES 2023; 9:eadg5431. [PMID: 37967190 PMCID: PMC10651125 DOI: 10.1126/sciadv.adg5431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/19/2023] [Indexed: 11/17/2023]
Abstract
Traumatic brain injury (TBI), a major cause of morbidity and mortality worldwide, is hard to diagnose at the point of care with patients often exhibiting no clinical symptoms. There is an urgent need for rapid point-of-care diagnostics to enable timely intervention. We have developed a technology for rapid acquisition of molecular fingerprints of TBI biochemistry to safely measure proxies for cerebral injury through the eye, providing a path toward noninvasive point-of-care neurodiagnostics using simultaneous Raman spectroscopy and fundus imaging of the neuroretina. Detection of endogenous neuromarkers in porcine eyes' posterior revealed enhancement of high-wave number bands, clearly distinguishing TBI and healthy cohorts, classified via artificial neural network algorithm for automated data interpretation. Clinically, translating into reduced specialist support, this markedly improves the speed of diagnosis. Designed as a hand-held cost-effective technology, it can allow clinicians to rapidly assess TBI at the point of care and identify long-term changes in brain biochemistry in acute or chronic neurodiseases.
Collapse
Affiliation(s)
- Carl Banbury
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Georgia Harris
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Michael Clancy
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Ministry of Justice, 102 Petty France, Westminster, London, UK
| | - Richard J. Blanch
- Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Robert Aiken Institute for Clinical Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Ophthalmology, Queen Elizabeth Hospital Birmingham, UHB NHS Foundation Trust, West Midlands, UK
| | | | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Healthcare Technologies Institute, Institute of Translational Medicine, Mindelsohn Way, Birmingham, B15 2TH, UK
| |
Collapse
|
4
|
Bahl A, Horgan CC, Janatka M, MacCormac OJ, Noonan P, Xie Y, Qiu J, Cavalcanti N, Fürnstahl P, Ebner M, Bergholt MS, Shapey J, Vercauteren T. Synthetic white balancing for intra-operative hyperspectral imaging. J Med Imaging (Bellingham) 2023; 10:046001. [PMID: 37492187 PMCID: PMC10363486 DOI: 10.1117/1.jmi.10.4.046001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023] Open
Abstract
Purpose Hyperspectral imaging shows promise for surgical applications to non-invasively provide spatially resolved, spectral information. For calibration purposes, a white reference image of a highly reflective Lambertian surface should be obtained under the same imaging conditions. Standard white references are not sterilizable and so are unsuitable for surgical environments. We demonstrate the necessity for in situ white references and address this by proposing a novel, sterile, synthetic reference construction algorithm. Approach The use of references obtained at different distances and lighting conditions to the subject were examined. Spectral and color reconstructions were compared with standard measurements qualitatively and quantitatively, using Δ E and normalized RMSE, respectively. The algorithm forms a composite image from a video of a standard sterile ruler, whose imperfect reflectivity is compensated for. The reference is modeled as the product of independent spatial and spectral components, and a scalar factor accounting for gain, exposure, and light intensity. Evaluation of synthetic references against ideal but non-sterile references is performed using the same metrics alongside pixel-by-pixel errors. Finally, intraoperative integration is assessed though cadaveric experiments. Results Improper white balancing leads to increases in all quantitative and qualitative errors. Synthetic references achieve median pixel-by-pixel errors lower than 6.5% and produce similar reconstructions and errors to an ideal reference. The algorithm integrated well into surgical workflow, achieving median pixel-by-pixel errors of 4.77% while maintaining good spectral and color reconstruction. Conclusions We demonstrate the importance of in situ white referencing and present a novel synthetic referencing algorithm. This algorithm is suitable for surgery while maintaining the quality of classical data reconstruction.
Collapse
Affiliation(s)
- Anisha Bahl
- King’s College London, School of Biomedical Engineering and Imaging Sciences, London, United Kingdom
| | - Conor C. Horgan
- King’s College London, School of Biomedical Engineering and Imaging Sciences, London, United Kingdom
- Hypervision Surgical Ltd., London, United Kingdom
| | | | - Oscar J. MacCormac
- King’s College London, School of Biomedical Engineering and Imaging Sciences, London, United Kingdom
- King’s College Hospital, Denmark Hill, London, United Kingdom
| | | | - Yijing Xie
- King’s College London, School of Biomedical Engineering and Imaging Sciences, London, United Kingdom
| | - Jianrong Qiu
- King’s College London, School of Biomedical Engineering and Imaging Sciences, London, United Kingdom
- King’s College London, Centre for Craniofacial and Regenerative Biology, London, United Kingdom
| | | | | | | | - Mads S. Bergholt
- King’s College London, Centre for Craniofacial and Regenerative Biology, London, United Kingdom
| | - Jonathan Shapey
- King’s College London, School of Biomedical Engineering and Imaging Sciences, London, United Kingdom
- Hypervision Surgical Ltd., London, United Kingdom
- King’s College Hospital, Denmark Hill, London, United Kingdom
| | - Tom Vercauteren
- King’s College London, School of Biomedical Engineering and Imaging Sciences, London, United Kingdom
- Hypervision Surgical Ltd., London, United Kingdom
| |
Collapse
|
5
|
Urban BE, Subhash HM, Kilpatrick-Liverman L. Measuring changes in blood volume fraction during induced gingivitis of healthy and unhealthy populations using hyperspectral spatial frequency domain imaging: a clinical study. Sci Rep 2022; 12:18357. [PMID: 36319677 PMCID: PMC9626635 DOI: 10.1038/s41598-022-23115-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022] Open
Abstract
This investigation aimed to quantitatively measure the changes in inflammation of subjects with healthy and unhealthy gums during a period of induced gingivitis. A total of 30 subjects (15 healthy, 15 with gum inflammation) were enlisted and given oral exams by a dental hygienist. Baseline measurements were acquired before a 3-week period of oral hygiene abstinence. The lobene modified gingival index scoring was used for inflammation scoring and hyperspectral spatial frequency domain imaging was used to quantitatively measure oxy- and deoxygenated blood volume fraction at two time points: at Baseline and after 3 weeks of oral hygiene abstinence. We found that abstaining from oral hygiene causes a near proportional increase in oxygenated and deoxygenated blood volume fraction for healthy individuals. For individuals who started the study with mild to moderate gingivitis, increases in blood volume were mainly due to deoxygenated blood.
Collapse
Affiliation(s)
- Ben E. Urban
- grid.418753.c0000 0004 4685 452XGlobal Technology and Design Center, Colgate Palmolive Technology Center Campus, Piscataway, NJ 08854 USA
| | - Hrebesh M. Subhash
- grid.418753.c0000 0004 4685 452XGlobal Technology and Design Center, Colgate Palmolive Technology Center Campus, Piscataway, NJ 08854 USA
| | - LaTonya Kilpatrick-Liverman
- grid.418753.c0000 0004 4685 452XGlobal Technology and Design Center, Colgate Palmolive Technology Center Campus, Piscataway, NJ 08854 USA
| |
Collapse
|
6
|
Ayaz H, Baker WB, Blaney G, Boas DA, Bortfeld H, Brady K, Brake J, Brigadoi S, Buckley EM, Carp SA, Cooper RJ, Cowdrick KR, Culver JP, Dan I, Dehghani H, Devor A, Durduran T, Eggebrecht AT, Emberson LL, Fang Q, Fantini S, Franceschini MA, Fischer JB, Gervain J, Hirsch J, Hong KS, Horstmeyer R, Kainerstorfer JM, Ko TS, Licht DJ, Liebert A, Luke R, Lynch JM, Mesquida J, Mesquita RC, Naseer N, Novi SL, Orihuela-Espina F, O’Sullivan TD, Peterka DS, Pifferi A, Pollonini L, Sassaroli A, Sato JR, Scholkmann F, Spinelli L, Srinivasan VJ, St. Lawrence K, Tachtsidis I, Tong Y, Torricelli A, Urner T, Wabnitz H, Wolf M, Wolf U, Xu S, Yang C, Yodh AG, Yücel MA, Zhou W. Optical imaging and spectroscopy for the study of the human brain: status report. NEUROPHOTONICS 2022; 9:S24001. [PMID: 36052058 PMCID: PMC9424749 DOI: 10.1117/1.nph.9.s2.s24001] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Hasan Ayaz
- Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, Pennsylvania, United States
- Drexel University, College of Arts and Sciences, Department of Psychological and Brain Sciences, Philadelphia, Pennsylvania, United States
| | - Wesley B. Baker
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Giles Blaney
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - David A. Boas
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Heather Bortfeld
- University of California, Merced, Departments of Psychological Sciences and Cognitive and Information Sciences, Merced, California, United States
| | - Kenneth Brady
- Lurie Children’s Hospital, Northwestern University Feinberg School of Medicine, Department of Anesthesiology, Chicago, Illinois, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - Sabrina Brigadoi
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
| | - Erin M. Buckley
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Robert J. Cooper
- University College London, Department of Medical Physics and Bioengineering, DOT-HUB, London, United Kingdom
| | - Kyle R. Cowdrick
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Joseph P. Culver
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Ippeita Dan
- Chuo University, Faculty of Science and Engineering, Tokyo, Japan
| | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Birmingham, United Kingdom
| | - Anna Devor
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Turgut Durduran
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Adam T. Eggebrecht
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
| | - Lauren L. Emberson
- University of British Columbia, Department of Psychology, Vancouver, British Columbia, Canada
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Sergio Fantini
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Jonas B. Fischer
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Judit Gervain
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Joy Hirsch
- Yale School of Medicine, Department of Psychiatry, Neuroscience, and Comparative Medicine, New Haven, Connecticut, United States
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Keum-Shik Hong
- Pusan National University, School of Mechanical Engineering, Busan, Republic of Korea
- Qingdao University, School of Automation, Institute for Future, Qingdao, China
| | - Roarke Horstmeyer
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States
- Duke University, Department of Physics, Durham, North Carolina, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Tiffany S. Ko
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Daniel J. Licht
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
| | - Adam Liebert
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Robert Luke
- Macquarie University, Department of Linguistics, Sydney, New South Wales, Australia
- Macquarie University Hearing, Australia Hearing Hub, Sydney, New South Wales, Australia
| | - Jennifer M. Lynch
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Jaume Mesquida
- Parc Taulí Hospital Universitari, Critical Care Department, Sabadell, Spain
| | - Rickson C. Mesquita
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil
| | - Noman Naseer
- Air University, Department of Mechatronics and Biomedical Engineering, Islamabad, Pakistan
| | - Sergio L. Novi
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Western University, Department of Physiology and Pharmacology, London, Ontario, Canada
| | | | - Thomas D. O’Sullivan
- University of Notre Dame, Department of Electrical Engineering, Notre Dame, Indiana, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behaviour Institute, New York, United States
| | | | - Luca Pollonini
- University of Houston, Department of Engineering Technology, Houston, Texas, United States
| | - Angelo Sassaroli
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - João Ricardo Sato
- Federal University of ABC, Center of Mathematics, Computing and Cognition, São Bernardo do Campo, São Paulo, Brazil
| | - Felix Scholkmann
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Lorenzo Spinelli
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Vivek J. Srinivasan
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- NYU Langone Health, Department of Ophthalmology, New York, New York, United States
- NYU Langone Health, Department of Radiology, New York, New York, United States
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Yunjie Tong
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, Indiana, United States
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Milan, Italy
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Tara Urner
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Martin Wolf
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Ursula Wolf
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
| | - Shiqi Xu
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Changhuei Yang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Meryem A. Yücel
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Wenjun Zhou
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- China Jiliang University, College of Optical and Electronic Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Browning CM, Mayes S, Mayes SA, Rich TC, Leavesley SJ. Microscopy is better in color: development of a streamlined spectral light path for real-time multiplex fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:3751-3772. [PMID: 35991911 PMCID: PMC9352297 DOI: 10.1364/boe.453657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Spectroscopic image data has provided molecular discrimination for numerous fields including: remote sensing, food safety and biomedical imaging. Despite the various technologies for acquiring spectral data, there remains a trade-off when acquiring data. Typically, spectral imaging either requires long acquisition times to collect an image stack with high spectral specificity or acquisition times are shortened at the expense of fewer spectral bands or reduced spatial sampling. Hence, new spectral imaging microscope platforms are needed to help mitigate these limitations. Fluorescence excitation-scanning spectral imaging is one such new technology, which allows more of the emitted signal to be detected than comparable emission-scanning spectral imaging systems. Here, we have developed a new optical geometry that provides spectral illumination for use in excitation-scanning spectral imaging microscope systems. This was accomplished using a wavelength-specific LED array to acquire spectral image data. Feasibility of the LED-based spectral illuminator was evaluated through simulation and benchtop testing and assessment of imaging performance when integrated with a widefield fluorescence microscope. Ray tracing simulations (TracePro) were used to determine optimal optical component selection and geometry. Spectral imaging feasibility was evaluated using a series of 6-label fluorescent slides. The LED-based system response was compared to a previously tested thin-film tunable filter (TFTF)-based system. Spectral unmixing successfully discriminated all fluorescent components in spectral image data acquired from both the LED and TFTF systems. Therefore, the LED-based spectral illuminator provided spectral image data sets with comparable information content so as to allow identification of each fluorescent component. These results provide proof-of-principle demonstration of the ability to combine output from many discrete wavelength LED sources using a double-mirror (Cassegrain style) optical configuration that can be further modified to allow for high speed, video-rate spectral image acquisition. Real-time spectral fluorescence microscopy would allow monitoring of rapid cell signaling processes (i.e., Ca2+ and other second messenger signaling) and has potential to be translated to clinical imaging platforms.
Collapse
Affiliation(s)
- Craig M. Browning
- Chemical and Biomolecular Engineering, University of South Alabama, AL 36688, USA
- Systems Engineering, University of South Alabama, AL 36688, USA
- These authors contributed equally to this work
| | - Samantha Mayes
- Chemical and Biomolecular Engineering, University of South Alabama, AL 36688, USA
- These authors contributed equally to this work
| | - Samuel A. Mayes
- Chemical and Biomolecular Engineering, University of South Alabama, AL 36688, USA
- Systems Engineering, University of South Alabama, AL 36688, USA
| | - Thomas C. Rich
- Pharmacology, University of South Alabama, AL 36688, USA
- Center for Lung Biology, University of South Alabama, AL 36688, USA
| | - Silas J. Leavesley
- Chemical and Biomolecular Engineering, University of South Alabama, AL 36688, USA
- Pharmacology, University of South Alabama, AL 36688, USA
- Center for Lung Biology, University of South Alabama, AL 36688, USA
| |
Collapse
|
8
|
Wu Y, Xu Z, Yang W, Ning Z, Dong H. Review on the Application of Hyperspectral Imaging Technology of the Exposed Cortex in Cerebral Surgery. Front Bioeng Biotechnol 2022; 10:906728. [PMID: 35711634 PMCID: PMC9196632 DOI: 10.3389/fbioe.2022.906728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The study of brain science is vital to human health. The application of hyperspectral imaging in biomedical fields has grown dramatically in recent years due to their unique optical imaging method and multidimensional information acquisition. Hyperspectral imaging technology can acquire two-dimensional spatial information and one-dimensional spectral information of biological samples simultaneously, covering the ultraviolet, visible and infrared spectral ranges with high spectral resolution, which can provide diagnostic information about the physiological, morphological and biochemical components of tissues and organs. This technology also presents finer spectral features for brain imaging studies, and further provides more auxiliary information for cerebral disease research. This paper reviews the recent advance of hyperspectral imaging in cerebral diagnosis. Firstly, the experimental setup, image acquisition and pre-processing, and analysis methods of hyperspectral technology were introduced. Secondly, the latest research progress and applications of hyperspectral imaging in brain tissue metabolism, hemodynamics, and brain cancer diagnosis in recent years were summarized briefly. Finally, the limitations of the application of hyperspectral imaging in cerebral disease diagnosis field were analyzed, and the future development direction was proposed.
Collapse
Affiliation(s)
- Yue Wu
- Research Center for Intelligent Sensing Systems, Zhejiang Lab, Hangzhou, China
| | - Zhongyuan Xu
- Research Center for Intelligent Sensing Systems, Zhejiang Lab, Hangzhou, China
| | - Wenjian Yang
- Research Center for Intelligent Sensing Systems, Zhejiang Lab, Hangzhou, China
| | - Zhiqiang Ning
- Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (CAS), Hefei, China.,Science Island Branch, Graduate School of USTC, Hefei, China
| | - Hao Dong
- Research Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou, China
| |
Collapse
|
9
|
Ma Q, Wang T, Gao W, Liu B, Zhang H, Cui Z, Guo H, Xiu L, Wang S, Li Z, Guo L, Yu S, Yu X, Xu X, Qiu J. Broadband, Enhanced, and Antithermally Quenched Near-Infrared Phosphors via a Cosubstitution Approach. Inorg Chem 2021; 60:11616-11625. [PMID: 34284577 DOI: 10.1021/acs.inorgchem.1c01588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Wearable biosensing and food safety inspection devices with high thermal stability, high brightness, and broad near-infrared (NIR) phosphor-converted light-emitting diodes (pc-LEDs) could accelerate the next-generation NIR light applications. In this work, NIR La3-xGdxGa5GeO14:Cr3+ (x = 0 to 1.5) phosphors were successfully fabricated by a high-temperature solid-state method. Here, by doping Gd3+ ions into the La3+ sites in the La3Ga5GeO14 matrix, a 7.9-fold increase in the photoluminescence (PL) intensity of the Cr3+ ions, as well as a remarkably broadened full width at half-maximum (FWHM) of the corresponding PL spectra, is achieved. The enhancements in the PL, PLE intensity, and FWHM are attributed to the suppression of the nonradiative transition process of Cr3+ when Gd3+ ions are doped into the host, which can be demonstrated by the decay curves. Moreover, the La1.5Gd1.5Ga5GeO14:Cr3+ phosphor displays an abnormally negative thermal phenomenon that the integral PL intensity reaches 131% of the initial intensity when the ambient temperature increases to 160 °C. Finally, the broadband NIR pc-LED was fabricated based on the as-explored La1.5Gd1.5Ga5GeO14:Cr3+ phosphors combined with a 460 nm chip, and the potential applications for the broadband NIR pc-LEDs were discussed in detail.
Collapse
Affiliation(s)
- Qianrui Ma
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Ting Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.,The Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999999, China
| | - Wei Gao
- The Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999999, China
| | - Bitao Liu
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Hao Zhang
- College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Zhenzhen Cui
- College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Haihong Guo
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Liang Xiu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Shaoqing Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610059, China
| | - Ziyang Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610059, China
| | - Longchao Guo
- School of Mechanical Engineering, Chengdu University, Chengdu 610059, China
| | - Siufung Yu
- The Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999999, China
| | - Xue Yu
- College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.,School of Mechanical Engineering, Chengdu University, Chengdu 610059, China
| | - Xuhui Xu
- College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Jianbei Qiu
- College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
10
|
The Use of Supercontinuum Laser Sources in Biomedical Diffuse Optics: Unlocking the Power of Multispectral Imaging. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Optical techniques based on diffuse optics have been around for decades now and are making their way into the day-to-day medical applications. Even though the physics foundations of these techniques have been known for many years, practical implementation of these technique were hindered by technological limitations, mainly from the light sources and/or detection electronics. In the past 20 years, the developments of supercontinuum laser (SCL) enabled to unlock some of these limitations, enabling the development of system and methodologies relevant for medical use, notably in terms of spectral monitoring. In this review, we focus on the use of SCL in biomedical diffuse optics, from instrumentation and methods developments to their use for medical applications. A total of 95 publications were identified, from 1993 to 2021. We discuss the advantages of the SCL to cover a large spectral bandwidth with a high spectral power and fast switching against the disadvantages of cost, bulkiness, and long warm up times. Finally, we summarize the utility of using such light sources in the development and application of diffuse optics in biomedical sciences and clinical applications.
Collapse
|