1
|
Ilatovskaya DV, Behr A, Staruschenko A, Hall G, Palygin O. Mechanistic Insights Into Redox Damage of the Podocyte in Hypertension. Hypertension 2025; 82:14-25. [PMID: 39534957 PMCID: PMC11655258 DOI: 10.1161/hypertensionaha.124.22068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Podocytes are specialized cells within the glomerular filtration barrier, which are crucial for maintaining glomerular structural integrity and convective ultrafiltration. Podocytes exhibit a unique arborized morphology with foot processes interfacing by slit diaphragms, ladder-like, multimolecular sieves, which provide size and charge selectivity for ultrafiltration and transmembrane signaling. Podocyte dysfunction, resulting from oxidative stress, dysregulated prosurvival signaling, or structural damage, can drive the development of proteinuria and glomerulosclerosis in hypertensive nephropathy. Functionally, podocyte injury leads to actin cytoskeleton rearrangements, foot process effacement, dysregulated slit diaphragm protein expression, and impaired ultrafiltration. Notably, the renin-angiotensin system plays a pivotal role in podocyte function, with beneficial AT2R (angiotensin receptor 2)-mediated nitric oxide (NO) signaling to counteract AT1R (angiotensin receptor 1)-driven calcium (Ca2+) influx and oxidative stress. Disruption of this balance contributes significantly to podocyte dysfunction and drives albuminuria, a marker of kidney damage and overall disease progression. Oxidative stress can also lead to sustained ion channel-mediated Ca2+ influx and precipitate cytoskeletal disorganization. The complex interplay between GPCR (G-protein coupled receptor) signaling, ion channel activation, and redox injury pathways underscores the need for additional research aimed at identifying targeted therapies to protect podocytes and preserve glomerular function. Earlier detection of albuminuria and podocyte injury through routine noninvasive diagnostics will also be critical in populations at the highest risk for the development of hypertensive kidney disease. In this review, we highlight the established mechanisms of oxidative stress-mediated podocyte damage in proteinuric kidney diseases, with an emphasis on a hypertensive renal injury. We will also consider emerging therapies that have the potential to selectively protect podocytes from redox-related injury.
Collapse
Affiliation(s)
- Daria V. Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Amanda Behr
- Department of Medical Illustration, College of Allied Health Sciences, Augusta University, Augusta, GA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL
- James A. Haley Veterans’ Hospital, Tampa, FL
| | - Gentzon Hall
- Division of Nephrology, Department of Internal Medicine, Duke University School of Medicine, Durham, NC
- Department of Medicine, Division of Nephrology, Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
2
|
Rim S, Vedøy OB, Brønstad I, McCann A, Meyer K, Steinsland H, Hanevik K. Inflammation, the kynurenines, and mucosal injury during human experimental enterotoxigenic Escherichia coli infection. Med Microbiol Immunol 2024; 213:2. [PMID: 38430452 PMCID: PMC10908629 DOI: 10.1007/s00430-024-00786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/29/2023] [Indexed: 03/03/2024]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in children and travelers, especially in low- and middle-income countries. ETEC is a non-invasive gut pathogen colonizing the small intestinal wall before secreting diarrhea-inducing enterotoxins. We sought to investigate the impact of ETEC infection on local and systemic host defenses by examining plasma markers of inflammation and mucosal injury as well as kynurenine pathway metabolites. Plasma samples from 21 volunteers experimentally infected with ETEC were collected before and 1, 2, 3, and 7 days after ingesting the ETEC dose, and grouped based on the level of intestinal ETEC proliferation: 14 volunteers experienced substantial proliferation (SP) and 7 had low proliferation (LP). Plasma markers of inflammation, kynurenine pathway metabolites, and related cofactors (vitamins B2 and B6) were quantified using targeted mass spectrometry, whereas ELISA was used to quantify the mucosal injury markers, regenerating islet-derived protein 3A (Reg3a), and intestinal fatty acid-binding protein 2 (iFABP). We observed increased concentrations of plasma C-reactive protein (CRP), serum amyloid A (SAA), neopterin, kynurenine/tryptophan ratio (KTR), and Reg3a in the SP group following dose ingestion. Vitamin B6 forms, pyridoxal 5'-phosphate and pyridoxal, decreased over time in the SP group. CRP, SAA, and pyridoxic acid ratio correlated with ETEC proliferation levels. The changes following experimental ETEC infection indicate that ETEC, despite causing a non-invasive infection, induces systemic inflammation and mucosal injury when proliferating substantially, even in cases without diarrhea. It is conceivable that ETEC infections, especially when repeated, contribute to negative health impacts on children in ETEC endemic areas.
Collapse
Affiliation(s)
- Sehee Rim
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Oda Barth Vedøy
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ingeborg Brønstad
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | - Hans Steinsland
- Department of Global Public Health and Primary Care, Faculty of Medicine, Centre for Intervention Science in Maternal and Child Health, Centre for International Health, University of Bergen, Bergen, Norway
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kurt Hanevik
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, National Center for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
3
|
Porter CK, Talaat KR, Isidean SD, Kardinaal A, Chakraborty S, Gutiérrez RL, Sack DA, Bourgeois AL. The Controlled Human Infection Model for Enterotoxigenic Escherichia coli. Curr Top Microbiol Immunol 2024; 445:189-228. [PMID: 34669040 DOI: 10.1007/82_2021_242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The controlled human infection model (CHIM) for enterotoxigenic Escherichia coli (ETEC) has been instrumental in defining ETEC as a causative agent of acute watery diarrhea, providing insights into disease pathogenesis and resistance to illness, and enabling preliminary efficacy evaluations for numerous products including vaccines, immunoprophylactics, and drugs. Over a dozen strains have been evaluated to date, with a spectrum of clinical signs and symptoms that appear to replicate the clinical illness seen with naturally occurring ETEC. Recent advancements in the ETEC CHIM have enhanced the characterization of clinical, immunological, and microbiological outcomes. It is anticipated that omics-based technologies applied to ETEC CHIMs will continue to broaden our understanding of host-pathogen interactions and facilitate the development of primary and secondary prevention strategies.
Collapse
Affiliation(s)
- Chad K Porter
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, 20910, USA.
| | - Kawsar R Talaat
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Sandra D Isidean
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation, Bethesda, MD, 20817, USA
| | - Alwine Kardinaal
- NIZO Food Research, Ede, P.O. Box 20, 6710 BA EDE, Kernhemseweg 2, 6718 ZB EDE, The Netherlands
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Ramiro L Gutiérrez
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, 20910, USA
| | - David A Sack
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - A Louis Bourgeois
- PATH|Center for Vaccine Innovation and Access, 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001, USA
| |
Collapse
|
4
|
Williams AJ, Warfel KF, Desai P, Li J, Lee JJ, Wong DA, Nguyen PM, Qin Y, Sobol SE, Jewett MC, Chang YF, DeLisa MP. A low-cost recombinant glycoconjugate vaccine confers immunogenicity and protection against enterotoxigenic Escherichia coli infections in mice. Front Mol Biosci 2023; 10:1085887. [PMID: 36936989 PMCID: PMC10018396 DOI: 10.3389/fmolb.2023.1085887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the primary etiologic agent of traveler's diarrhea and a major cause of diarrheal disease and death worldwide, especially in infants and young children. Despite significant efforts over the past several decades, an affordable vaccine that appreciably decreases mortality and morbidity associated with ETEC infection among children under the age of 5 years remains an unmet aspirational goal. Here, we describe robust, cost-effective biosynthetic routes that leverage glycoengineered strains of non-pathogenic E. coli or their cell-free extracts for producing conjugate vaccine candidates against two of the most prevalent O serogroups of ETEC, O148 and O78. Specifically, we demonstrate site-specific installation of O-antigen polysaccharides (O-PS) corresponding to these serogroups onto licensed carrier proteins using the oligosaccharyltransferase PglB from Campylobacter jejuni. The resulting conjugates stimulate strong O-PS-specific humoral responses in mice and elicit IgG antibodies that possess bactericidal activity against the cognate pathogens. We also show that one of the prototype conjugates decorated with serogroup O148 O-PS reduces ETEC colonization in mice, providing evidence of vaccine-induced mucosal protection. We anticipate that our bacterial cell-based and cell-free platforms will enable creation of multivalent formulations with the potential for broad ETEC serogroup protection and increased access through low-cost biomanufacturing.
Collapse
Affiliation(s)
- Asher J. Williams
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Katherine F. Warfel
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute, Evanston, IL, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
- Center for Synthetic Biology, Northwestern University, Technological Institute, Evanston, IL, United States
| | - Primit Desai
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, United States
| | - Jie Li
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Jen-Jie Lee
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Derek A. Wong
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute, Evanston, IL, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
- Center for Synthetic Biology, Northwestern University, Technological Institute, Evanston, IL, United States
| | - Phuong M. Nguyen
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Yufan Qin
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Sarah E. Sobol
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute, Evanston, IL, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
- Center for Synthetic Biology, Northwestern University, Technological Institute, Evanston, IL, United States
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute, Evanston, IL, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
- Center for Synthetic Biology, Northwestern University, Technological Institute, Evanston, IL, United States
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Matthew P. DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, United States
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, United States
- *Correspondence: Matthew P. DeLisa,
| |
Collapse
|
5
|
George CM, Birindwa A, Li S, Williams C, Kuhl J, Thomas E, François R, Presence AS, Claude BRJ, Mirindi P, Bisimwa L, Perin J, Stine OC. Akkermansia muciniphila Associated with Improved Linear Growth among Young Children, Democratic Republic of the Congo. Emerg Infect Dis 2023; 29:81-88. [PMID: 36573546 PMCID: PMC9796213 DOI: 10.3201/eid2901.212118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To investigate the association between enteric pathogens, fecal microbes, and child growth, we conducted a prospective cohort study of 236 children <5 years of age in rural eastern Democratic Republic of the Congo. We analyzed baseline fecal specimens by quantitative PCR and measured child height and weight at baseline and growth at a 6-month follow-up. At baseline, 66% (156/236) of children had >3 pathogens in their feces. We observed larger increases in height-for-age-z-scores from baseline to the 6-month follow-up among children with Akkermansia muciniphila in their feces (coefficient 0.02 [95% CI 0.0001-0.04]; p = 0.04). Children with Cryptosporidium in their feces had larger declines in weight-for-height/length z-scores from baseline to the 6-month follow-up (coefficient -0.03 [95% CI -0.05 to -0.005]; p = 0.02). Our study showed high prevalence of enteric pathogens among this pediatric cohort and suggests A. muciniphila can potentially serve as a probiotic to improve child growth.
Collapse
|
6
|
George CM, Birindwa A, Li S, Williams C, Kuhl J, Thomas E, François R, Presence AS, Claude BRJ, Mirindi P, Bisimwa L, Perin J, Stine OC. Akkermansia muciniphila Associated with Improved Linear Growth among Young Children, Democratic Republic of the Congo. Emerg Infect Dis 2022. [DOI: 10.3201/eid2811.212118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
7
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
8
|
Pupa P, Apiwatsiri P, Sirichokchatchawan W, Pirarat N, Nedumpun T, Hampson DJ, Muangsin N, Prapasarakul N. Microencapsulated probiotic Lactiplantibacillus plantarum and/or Pediococcus acidilactici strains ameliorate diarrhoea in piglets challenged with enterotoxigenic Escherichia coli. Sci Rep 2022; 12:7210. [PMID: 35505092 PMCID: PMC9065055 DOI: 10.1038/s41598-022-11340-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
Lactiplantibacillus plantarum (strains 22F and 25F) and Pediococcus acidilactici (strain 72N) have displayed antibacterial activity in vitro, suggesting that they could be used to support intestinal health in pigs. The aim of this study was to determine if microencapsulated probiotics could reduce the severity of infection with enterotoxigenic Escherichia coli (ETEC) in weaned pigs. Sixty healthy neonatal piglets were cross-fostered and separated into five groups. Piglets to be given the microencapsulated probiotics received these orally on days 0, 3, 6, 9, and 12. Only piglets in groups 1 and 5 did not receive probiotics: those in groups 2 and 4 received the three microencapsulated probiotic strains (multi-strain probiotic), and piglets in group 3 received microencapsulated P. acidilactici strain 72N. After weaning, the pigs in groups 3-5 were challenged with 5 mL (at 109 CFU/mL) of pathogenic ETEC strain L3.2 carrying the k88, staP, and stb virulence genes. The multi-strain probiotic enhanced the average daily gain (ADG) and feed conversion ratio (FCR) of weaned piglets after the ETEC challenge (group 4), whilst supplementing with the single-strain probiotic increased FCR (group 3). Piglets in groups 3 and 4 developed mild to moderate diarrhoea and fever. In the probiotic-fed piglets there was an increase in lactic acid bacteria count and a decrease in E. coli count in the faeces. By using real-time PCR, virulence genes were detected at lower levels in the faeces of pigs that had received the probiotic strains. Using the MILLIPLEX MAP assay, probiotic supplementation was shown to reduce pro-inflammatory cytokines (IL-1α, IL-6, IL-8, and TNFα), while group 4 had high levels of anti-inflammatory cytokine (IL-10). Challenged piglets receiving probiotics had milder intestinal lesions with better morphology, including greater villous heights and villous height per crypt depth ratios, than pigs just receiving ETEC. In conclusion, prophylactic administration of microencapsulated probiotic strains may improve outcomes in weaned pigs with colibacillosis.
Collapse
Affiliation(s)
- Pawiya Pupa
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prasert Apiwatsiri
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Nopadon Pirarat
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Teerawut Nedumpun
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - David J Hampson
- School of Veterinary Medicine, Murdoch University, Perth, 6150, Australia
| | - Nongnuj Muangsin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nuvee Prapasarakul
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand. .,Diagnosis and Monitoring Animal Pathogens Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Connor S, Velagic M, Zhang X, Johura FT, Chowdhury G, Mukhopadhyay AK, Dutta S, Alam M, Sack DA, Wierzba TF, Chakraborty S. Evaluation of a simple, rapid and field-adapted diagnostic assay for enterotoxigenic E. coli and Shigella. PLoS Negl Trop Dis 2022; 16:e0010192. [PMID: 35130310 PMCID: PMC8853640 DOI: 10.1371/journal.pntd.0010192] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/17/2022] [Accepted: 01/21/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding the global burden of enterotoxigenic E. coli (ETEC) and Shigella diarrhea as well as estimating the cost effectiveness of vaccines to control these two significant pathogens have been hindered by the lack of a diagnostic test that is rapid, simple, sensitive, and can be applied to the endemic countries. We previously developed a simple and rapid assay, Rapid Loop mediated isothermal amplification based Diagnostic Test (RLDT) for the detection of ETEC and Shigella spp. (Shigella). In this study, the RLDT assay was evaluated in comparison with quantitative PCR (qPCR), culture and conventional PCR for the detection of ETEC and Shigella. This validation was performed using previously collected stool samples from endemic countries, from the travelers to the endemic countries, as well as samples from a controlled human infection model study of ETEC. The performance of RLDT from dried stool spots was also validated. RLDT resulted in excellent sensitivity and specificity compared to qPCR (99% and 99.2% respectively) ranging from 92.3 to 100% for the individual toxin genes of ETEC and 100% for Shigella. Culture was less sensitive compared to RLDT. No significant differences were noted in the performance of RLDT using samples from various sources or stool samples from moderate to severe diarrhea or asymptomatic infections. RLDT performed equally well in detection of ETEC and Shigella from the dried stool samples on filter papers. This study established that RLDT is sufficiently sensitive and specific to be used as a simple and rapid diagnostic assay to detect ETEC and Shigella in endemic countries to determine disease burden of these pathogens in the national and subnational levels. This information will be important to guide public health and policy makers to prioritize resources for accelerating the development and introduction of effective preventative and/or treatment interventions against these enteric infections. Enterotoxigenic E. coli (ETEC) and Shigella spp (Shigella) causes significant global morbidity and mortality, especially in low-and middle-income countries (LMICs). Since culture methods to detect Shigella are not sensitive, and the methods used to detect ETEC have not been feasible outside of specialized, well-equipped laboratories, the true burden of these pathogens at national and sub-national levels are mostly not available. Morbidity and mortality estimates, for these two pathogens are crucial to assess their relative public health importance in LMICs. We developed a simple and rapid diagnostic assay called the RLDT (Rapid Loop-mediated isothermal amplification based Diagnostic Test) for detection of ETEC and Shigella. In this study we evaluated RLDT compared to other currently available assays using previously collected stool samples. Our data showed that the RLDT assay exhibited high sensitivity and specificity for detection of ETEC and Shigella, with its result available within 50 minutes. The sensitivity of RLDT was higher than culture for these pathogens. We conclude that RLDT could be used as a rapid and simple diagnostic test to determine the burden of ETEC and Shigella in LMICs as well as in clinical vaccine trials of these pathogens.
Collapse
Affiliation(s)
- Sean Connor
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Mirza Velagic
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Xueyan Zhang
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Fatema-Tuz Johura
- icddr,b, Formerly International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Goutam Chowdhury
- ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | - Shanta Dutta
- ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Munirul Alam
- icddr,b, Formerly International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - David A. Sack
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Thomas F. Wierzba
- Wake Forest School of Medicine, Winston Salem, North Carolina, United States of America
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Chakraborty S, Connor S, Velagic M. Development of a simple, rapid, and sensitive diagnostic assay for enterotoxigenic E. coli and Shigella spp applicable to endemic countries. PLoS Negl Trop Dis 2022; 16:e0010180. [PMID: 35089927 PMCID: PMC8827434 DOI: 10.1371/journal.pntd.0010180] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/09/2022] [Accepted: 01/18/2022] [Indexed: 11/18/2022] Open
Abstract
Enterotoxigenic E. coli (ETEC) and Shigella spp (Shigella) are complex pathogens. The diagnostic assays currently used to detect these pathogens are elaborate or complicated, which make them difficult to apply in resource poor settings where these diseases are endemic. The culture methods used to detect Shigella are not sensitive, and the methods used to detect ETEC are only available in a few research labs. To address this gap, we developed a rapid and simple diagnostic assay–"Rapid LAMP based Diagnostic Test (RLDT)." The six minutes sample preparation method directly from the fecal samples with lyophilized reaction strips and using established Loop-mediated Isothermal Amplification (LAMP) platform, ETEC [heat labile toxin (LT) and heat stable toxins (STh, and STp) genes] and Shigella (ipaH gene) detection was made simple, rapid (<50 minutes), and inexpensive. This assay is cold chain and electricity free. Moreover, RLDT requires minimal equipment. To avoid any end user’s bias, a battery-operated, handheld reader was used to read the RLDT results. The results can be read as positive/negative or as real time amplification depending on the end user’s need. The performance specifications of the RLDT assay, including analytical sensitivity and specificity, were evaluated using fecal samples spiked with ETEC and Shigella strains. The limit of detection was ~105 CFU/gm of stool for LT, STh, and STp and ~104 CFU/gm of stool for the ipaH gene, which corresponds to about 23 CFU and 1 CFU respectively for ETEC and Shigella per 25uL reaction within 40 minutes. The RLDT assay from stool collection to result is simple, and rapid and at the same time sufficiently sensitive. RLDT has the potential to be applied in resource poor endemic settings for the rapid diagnosis of ETEC and Shigella. Enterotoxigenic E. coli and Shigella are the leading causes of moderate to severe diarrhea in the low-and middle-income countries (LMICs). A critical constraint to determine the ETEC and Shigella disease burden at the country or sub-national level, is the complex diagnostic methods currently required for detecting these pathogens. These methods are neither sufficiently sensitive nor standardized and are not feasible in the resource poor settings where these infections occur most commonly. We developed a simple and rapid diagnostic assay called "Rapid Loop-mediated isothermal amplification based Diagnostic Test (RLDT)" for the detection of these pathogens in low-resource settings. Using RLDT, ETEC and Shigella were detected directly from the stool, in less than 1 hour with minimal hands-on time. The assay does not require maintaining a cold chain and is electricity-free. Being rapid, simple, and sensitive, RLDT can be scaled up and is appropriate to apply in the LMICs where ETEC and Shigella diarrhea are endemic.
Collapse
Affiliation(s)
- Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| | - Sean Connor
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Mirza Velagic
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
11
|
Girard M, Hu D, Pradervand N, Neuenschwander S, Bee G. Chestnut extract but not sodium salicylate decreases the severity of diarrhea and enterotoxigenic Escherichia coli F4 shedding in artificially infected piglets. PLoS One 2020; 15:e0214267. [PMID: 32106264 PMCID: PMC7046202 DOI: 10.1371/journal.pone.0214267] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 01/16/2020] [Indexed: 01/16/2023] Open
Abstract
The development of alternatives to antibiotics is crucial to limiting the incidence of antimicrobial resistance, especially in prophylactic and metaphylactic use to control post-weaning diarrhea (PWD). Feed additives, including bioactive compounds, could be a promising alternative. This study aimed to test two bioactive compounds, sodium salicylate (SA) and a chestnut extract (CE) containing hydrolysable tannins, on the occurrence of PWD. At weaning, 72 piglets were assigned to four treatments that combined two factors: CE supplementation (with 2% of CE (CE+) or without (CE-)) and SA supplementation (with 35 mg/kg BW of SA (SA+) or without (SA-)). Then, 4 days after weaning, all piglets were infected with a suspension at 108 CFU/ml of enterotoxigenic Escherichia coli (ETEC F4ac). Each piglet had free access to an electrolyte solution containing, or not, SA. This SA supplementation was administered for 5 days (i.e., from the day of infection (day 0) to 4 days post-infection (day 4). During the 2 weeks post-infection, supplementation with SA had no effect (P > 0.05) on growth performances nor on fecal scores. A significant SA × time interaction (P < 0.01) for fecal scores and the percentage of diarrhea indicated that piglets with SA did not recover faster and did have a second episode of diarrhea. In contrast to SA treatment, inclusion of CE increased (P < 0.05) growth performances and feed intake. In the first week post-infection, CE decreased (P < 0.001) the overall fecal scores, the percentage of piglets with diarrhea, the days in diarrhea, and ETEC shedding in the feces. There was a SA×CE interaction (P < 0.05) for ETEC shedding, suggesting a negative effect of combining SA with CE. This study highlighted that, in contrast to SA, CE could represent a promising alternative to antibiotics immediately after weaning for improving growth performance and reducing PWD.
Collapse
Affiliation(s)
- M. Girard
- Agroscope, Posieux, Fribourg, Switzerland
| | - D. Hu
- Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland
| | | | | | - G. Bee
- Agroscope, Posieux, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
12
|
Hanevik K, Chen WH, Talaat KR, Porter C, Bourgeois L. The way forward for ETEC controlled human infection models (CHIMs). Vaccine 2019; 37:4794-4799. [PMID: 30709728 DOI: 10.1016/j.vaccine.2019.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/10/2018] [Accepted: 01/03/2019] [Indexed: 12/27/2022]
Abstract
In the absence of good animal models, Controlled Human Infection Models (CHIMs) are useful to assess efficacy of new vaccine candidates against Enterotoxic Escherichia coli (ETEC), as well as other preventive or therapeutic interventions. At the 2018 Vaccines Against Shigella and ETEC (VASE) conference, a workshop was held to further review and discuss new challenge model developments and key issues related to further model standardization. During the workshop, invited speakers briefly summarized for attendees recent developments and main agenda issues before workshop participants were divided into four groups for more focused discussions. The main issues discussed were: (1) whether there is a need for more ETEC strains to test a diversity of vaccine candidates, and if so, what criteria/qualities are desirable in strain selection; (2) how ETEC CHIMs could be more standardized to better support ETEC vaccine development; (3) how volunteer selection criteria and screening should be performed, and; (4) how an expanded sample collection schema and collaborative analysis plan may facilitate a more in-depth assessment of the role of antigen-specific humoral and cellular immune responses in ETEC infection, and provide better insights into ETEC pathogenesis and correlates of protection. The workshop concluded that additional challenge strains may need to be developed to better support new vaccines and therapeutics that are advancing in the development pipeline. In this regard, the need for a well characterized ST-only expressing ETEC strain was highlighted as a priority given that promising new heat stable toxoid based vaccine candidates are on the horizon. In addition, further standardization of the ETEC CHIMs was strongly encouraged, noting that it may not be realistic to standardize across all strains. Also, intensified volunteer screening may result in higher attack rates, although more stringent eligibility criteria may contribute to a more limited application of the model and diminish its representativeness. Finally, a sampling schedule and priority list for minimum set of samples was also proposed. Future workshops could be held to further refine standards for ETEC CHIMS and to facilitate more collaborative work on stored sample sets from previous and future ETEC CHIMs to maximize the contribution of these trials to our understanding of ETEC pathogenesis and our development of better prevention and control measures for this important pathogen.
Collapse
Affiliation(s)
- Kurt Hanevik
- Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway; Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.
| | - Wilbur H Chen
- University of Maryland School of Medicine, Center for Vaccine Development, Baltimore, MD, USA
| | - Kawsar R Talaat
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore MD, USA
| | - Chad Porter
- Naval Medical Research Center, Forest Glen, MD, USA
| | | |
Collapse
|
13
|
Proliferation of enterotoxigenic Escherichia coli strain TW11681 in stools of experimentally infected human volunteers. Gut Pathog 2018; 10:46. [PMID: 30349586 PMCID: PMC6192177 DOI: 10.1186/s13099-018-0273-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/10/2018] [Indexed: 11/10/2022] Open
Abstract
Background As part of the effort to develop an enterotoxigenic Escherichia coli (ETEC) human challenge model for testing new heat-stable toxin (ST)-based vaccine candidates, a controlled human infection model study based on the ST-producing ETEC strain TW11681 was undertaken. Here, we estimate stool TW11681 DNA concentration and evaluate its association with dose, clinical symptoms, and with levels of antibodies targeting the CfaB subunit of the ETEC Colonization Factor Antigen I and the E. coli mucinase YghJ. Nine volunteers ingested different doses of the strain and were subsequently followed for 9 days with daily stool specimen collection and clinical examination. Stool DNA was purified by using a newly developed microplate-based method, and DNA originating from TW11681 was quantified by using a probe-based quantitative PCR assay. Antibody levels against CfaB and YghJ were measured in serum collected before and 10 and 28 days after TW11681 was ingested by using a bead-based flow cytometry immunoassay. Results For 6 of the 9 volunteers, the stool TW11681 DNA concentration increased sharply a median 3.5 (range 2-5) days after dose ingestion, peaking at a median of 5.4% (range 3.3-8.2%) of the total DNA in the specimen. The concentration then fell sharply during the subsequent days, sometimes even before the onset of antibiotic treatment. The size or timing of these proliferation peaks did not seem to be associated with the number of TW11681 bacteria ingested, but the 2 volunteers who developed diarrhea and all five who experienced abdominal pains or cramps had these peaks. The 3 volunteers who did not have the proliferation peaks experienced fewer symptoms and they generally had relatively low CfaB- and YghJ-specific antibody levels before ingesting the strain and subsequently weaker responses than the other volunteers afterwards. Conclusions Since the lack of proliferation peaks appears to be associated with fewer clinical symptoms and lower serum antibody responses to virulence factors of the infecting strain, it may be important to account for proliferation peaks when explaining results from controlled human infection model studies and for improving the accuracy of protective efficacy estimates when testing new ETEC diarrhea vaccine candidates.
Collapse
|
14
|
Chakraborty S, Harro C, DeNearing B, Brubaker J, Connor S, Maier N, Dally L, Flores J, Bourgeois AL, Walker R, Sack DA. Impact of lower challenge doses of enterotoxigenic Escherichia coli on clinical outcome, intestinal colonization and immune responses in adult volunteers. PLoS Negl Trop Dis 2018; 12:e0006442. [PMID: 29702652 PMCID: PMC5942845 DOI: 10.1371/journal.pntd.0006442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/09/2018] [Accepted: 04/10/2018] [Indexed: 11/18/2022] Open
Abstract
A reliable and effective human challenge model is needed to help down-select the most promising ETEC vaccines currently under development. Such a model would need to reliably induce diarrhea in a high proportion of volunteers using the lowest possible inoculum to maximize safety and sensitivity. Previously we validated a challenge model that utilized a dose of 2x107 CFU of ETEC strain H10407 (LT+, ST+, CFA/I+ and O78+) to induce attack rates for moderate to severe diarrhea (MSD) of ~60-70%. Here we detail efforts to further refine the model in an attempt to determine if a lower challenge dose of H10407 can be used. Thirty subjects were randomized 1:1 to receive an oral administration of H10407 at doses of 106 or 105 CFU in bicarbonate buffer. After challenge, subjects were monitored for signs and symptoms of enteric illness and stool samples were collected to detect shedding of the challenge strain. Systemic and mucosal immune responses were measured using serum, antibody in lymphocyte supernatant and fecal samples. The attack rate was 13.3% (2/15) and 26.7% (4/15) for MSD in the 105 and 106 groups, respectively. Four MSD cases met criteria for early antibiotic treatment. All subjects but one shed the challenge strain in fecal samples. The frequency and magnitude of anti-LT toxin, CFA/I and LPS O78 immune responses were antigen, dose, severity of diarrhea and shedding levels dependent. Notably, although of lower magnitude, there were considerable immune responses in the subjects with no diarrhea. This may indicate that immune responses to asymptomatic infections of ETEC in children in the endemic countries may contribute to protection. Based on this and our prior studies, we conclude that a dose of 2x107 H10407 remains the lowest practical dose for use in future volunteer studies evaluating candidate vaccines and other preventive or therapeutic ETEC interventions. TRIAL REGISTRATION ClinicalTrials.gov NCT00844493.
Collapse
Affiliation(s)
- Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| | - Clayton Harro
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Barbara DeNearing
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jessica Brubaker
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Sean Connor
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | | | - Len Dally
- The EMMES Corporation, Rockville, Maryland, United States of America
| | | | - A. Louis Bourgeois
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- PATH, Washington, DC, United States of America
| | | | - David A. Sack
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
15
|
Lääveri T, Pakkanen SH, Kirveskari J, Kantele A. Travellers' diarrhoea: Impact of TD definition and control group design on study results. Travel Med Infect Dis 2018; 24:37-43. [PMID: 29409749 DOI: 10.1016/j.tmaid.2018.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Travellers' diarrhoea (TD) is a common health problem among visitors to the (sub)tropics. Much research deals with aetiology, prevention, and post-infection sequalae, yet the data may not allow comparisons due to incompatible definitions of TD and No TD control groups. METHOD The impact of defining TD and No TD control groups was explored by revisiting our recent data. We set up two TD groups: classical TD i.e. ≥3 loose or liquid stools/day and WHO TD (diarrhoea as defined by the WHO) i.e. any diarrhoea, and four No TD groups by TD definition and timing (no classical/WHO TD during travel, no ongoing classical/WHO TD). RESULTS TD was recorded for 37% versus 65% of subjects when using classical versus WHO definitions, respectively; the proportions of the various pathogens proved similar. The strictest criterion for the No TD control group (no WHO TD during travel) yielded pathogens among 61% and the least strict (no ongoing classical TD) among 73% of the travellers; the differences were greatest for enteroaggregative Escherichia coli and Campylobacter. CONCLUSIONS Definition of TD and control group design substantially impact on TD study results. The WHO definition yields more cases, but the pathogen selection is similar by both definitions. Design of the No TD control group was found critical: only those remaining asymptomatic throughout the journey should be included.
Collapse
Affiliation(s)
- Tinja Lääveri
- Inflammation Center, Division of Infectious Diseases, University of Helsinki and Helsinki University Hospital, POB 348, FIN-00029 HUS, Helsinki, Finland
| | - Sari H Pakkanen
- Department of Bacteriology and Immunology, University of Helsinki, P.O. Box 21, FIN-00014 Helsinki, Finland
| | - Juha Kirveskari
- Helsinki University Hospital Laboratory (HUSLAB), Department of Bacteriology, POB 720, FIN-00029 HUS, Helsinki, Finland; Mobidiag Ltd, Keilaranta 16 A, FIN-02150 Espoo, Finland
| | - Anu Kantele
- Inflammation Center, Division of Infectious Diseases, University of Helsinki and Helsinki University Hospital, POB 348, FIN-00029 HUS, Helsinki, Finland; Clinicum, University of Helsinki, PO Box 63, FIN-00014, Helsinki, Finland; Aava Travel Clinic, Medical Centre Aava, Annankatu 32, FIN-00100 Helsinki, Finland; Unit of Infectious Diseases, Department of Medicine/Solna, Karolinska Institutet, SE-17176 Stockholm, Sweden.
| |
Collapse
|
16
|
Pop M, Paulson JN, Chakraborty S, Astrovskaya I, Lindsay BR, Li S, Bravo HC, Harro C, Parkhill J, Walker AW, Walker RI, Sack DA, Stine OC. Individual-specific changes in the human gut microbiota after challenge with enterotoxigenic Escherichia coli and subsequent ciprofloxacin treatment. BMC Genomics 2016; 17:440. [PMID: 27277524 PMCID: PMC4898365 DOI: 10.1186/s12864-016-2777-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/25/2016] [Indexed: 01/01/2023] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in inhabitants from low-income countries and in visitors to these countries. The impact of the human intestinal microbiota on the initiation and progression of ETEC diarrhea is not yet well understood. Results We used 16S rRNA (ribosomal RNA) gene sequencing to study changes in the fecal microbiota of 12 volunteers during a human challenge study with ETEC (H10407) and subsequent treatment with ciprofloxacin. Five subjects developed severe diarrhea and seven experienced few or no symptoms. Diarrheal symptoms were associated with high concentrations of fecal E. coli as measured by quantitative culture, quantitative PCR, and normalized number of 16S rRNA gene sequences. Large changes in other members of the microbiota varied greatly from individual to individual, whether or not diarrhea occurred. Nonetheless the variation within an individual was small compared to variation between individuals. Ciprofloxacin treatment reorganized microbiota populations; however, the original structure was largely restored at one and three month follow-up visits. Conclusion Symptomatic ETEC infections, but not asymptomatic infections, were associated with high fecal concentrations of E. coli. Both infection and ciprofloxacin treatment caused variable changes in other bacteria that generally reverted to baseline levels after three months. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2777-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mihai Pop
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA.,Department of Computer Science, University of Maryland, College Park, MD, USA
| | - Joseph N Paulson
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA.,Graduate Program in Applied Mathematics & Scientific Computation, University of Maryland, College Park, MD, USA.,Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, MA, USA.,Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | | | - Irina Astrovskaya
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
| | - Brianna R Lindsay
- School of Medicine, University of Maryland, Baltimore, MD, USA.,Merck & Co. Inc, North Wales, PA, USA
| | - Shan Li
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Héctor Corrada Bravo
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA.,Department of Computer Science, University of Maryland, College Park, MD, USA
| | - Clayton Harro
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Julian Parkhill
- Pathogen Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Alan W Walker
- Pathogen Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK.,Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | | | - David A Sack
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - O Colin Stine
- School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
17
|
Abstract
The field of bacterial pathogenesis has advanced dramatically in the last decade. High throughput molecular technologies have empowered scientists as never before. However, there remain some limitations, misconceptions and ambiguities in the field that may bedevil even the experienced investigator. Here, I consider some of the unanswered questions that are not readily tractable to even the most powerful technology.
Collapse
|
18
|
Eibach D, Krumkamp R, Hahn A, Sarpong N, Adu-Sarkodie Y, Leva A, Käsmaier J, Panning M, May J, Tannich E. Application of a multiplex PCR assay for the detection of gastrointestinal pathogens in a rural African setting. BMC Infect Dis 2016; 16:150. [PMID: 27080387 PMCID: PMC4832549 DOI: 10.1186/s12879-016-1481-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 03/25/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Despite high morbidity and mortality, the laboratory diagnosis of gastrointestinal infections is largely neglected in tropical African settings. This study aims to apply the Luminex multiplex PCR assay for the diagnosis of gastrointestinal pathogens in rural Ghana to evaluate its usefulness as a routine method. METHODS A case-control study was conducted at the Agogo Presbyterian Hospital in Ghana. Stool samples were collected from children below 6 years of age with (cases) and without (controls) diarrhoea. Samples were screened for 15 different diarrhoeal pathogens by the Luminex xTAG GPP assay and associations between diarrhoea and gastrointestinal infections and fractions attributable to diarrhea (AF) were determined. RESULTS The Luminex PCR assay identified organisms in 96.6% (n = 428) of 443 cases and in 92.5% (n = 221) of 239 selected controls. A mean of 2.5 (standard deviation [SD]: ± 1.3) and 2.3 (SD: ± 1.3) organisms per sample were detected in cases and controls respectively. An association with diarrhoea was found for rotavirus (adjusted odds ratio [aOR] = 7.2; 95% confidence interval [CI]: 2.9-18.1), norovirus (aOR = 2.7; 95% CI: 1.4-5.3) and Shigella spp. (aOR = 1.7; 95% CI: 1.2-2.4) with respective AFs of 12.5% (95% CI: 9.6-15.3), 7.9% (95% CI: 3.8-11.7) and 16.9% (95% CI: 6.9-25.9). CONCLUSION The high proportion of pathogen-positive stool samples with a high number of co-infections in cases and controls suggests a substantial amount of transient or colonizing microorganisms for which treatment is not necessarily implicated. The use of sequential diagnostic algorithms with pathogen specific or quantitative PCRs might be most appropriate for diagnosing gastrointestinal infections.
Collapse
Affiliation(s)
- Daniel Eibach
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany.
| | - Ralf Krumkamp
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany.,German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck, Hamburg, Germany
| | - Andreas Hahn
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany.,German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck, Hamburg, Germany
| | - Nimako Sarpong
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Yaw Adu-Sarkodie
- Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Amelie Leva
- Institute for Virology, University Medical Center, Freiburg, Germany
| | - Julia Käsmaier
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Marcus Panning
- Institute for Virology, University Medical Center, Freiburg, Germany
| | - Jürgen May
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany.,German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck, Hamburg, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany.,German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck, Hamburg, Germany
| |
Collapse
|
19
|
Prospective study of pathogens in asymptomatic travellers and those with diarrhoea: aetiological agents revisited. Clin Microbiol Infect 2016; 22:535-41. [PMID: 26970046 DOI: 10.1016/j.cmi.2016.02.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/19/2016] [Accepted: 02/27/2016] [Indexed: 11/20/2022]
Abstract
Travellers' diarrhoea (TD) remains the most frequent health problem encountered by visitors to the (sub)tropics. Traditional stool culture identifies the pathogen in only 15% of cases. Exploiting PCR-based methods, we investigated TD pathogens with a focus on asymptomatic travellers and severity of symptoms. Pre- and post-travel stools of 382 travellers with no history of antibiotic use during travel were analysed with a multiplex quantitative PCR for Salmonella, Yersinia, Campylobacter, Shigella, Vibrio cholerae and five diarrhoeagenic Escherichia coli: enteroaggregative (EAEC), enteropathogenic (EPEC), enterotoxigenic (ETEC), enterohaemorrhagic (EHEC) and enteroinvasive (EIEC). The participants were categorized by presence/absence of TD during travel and on return, and by severity of symptoms. A pathogen was indentified in 61% of the asymptomatic travellers, 83% of those with resolved TD, and 83% of those with ongoing TD; 25%, 43% and 53% had multiple pathogens, respectively. EPEC, EAEC, ETEC and Campylobacter associated especially with ongoing TD symptoms. EAEC and EPEC proved more common than ETEC. To conclude, modern methodology challenges our perception of stool pathogens: all pathogens were common both in asymptomatic and symptomatic travellers. TD has a multibacterial nature, but diarrhoeal symptoms mostly associate with EAEC, EPEC, ETEC and Campylobacter.
Collapse
|
20
|
Pattabiraman V, Parsons MB, Bopp CA. Real-Time TaqMan PCR Assay for the Detection of Heat-Labile and Heat-Stable Enterotoxin Genes in a Geographically Diverse Collection of Enterotoxigenic Escherichia coli Strains and Stool Specimens. Foodborne Pathog Dis 2016; 13:212-20. [PMID: 26859628 DOI: 10.1089/fpd.2015.2064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) are an important cause of diarrhea in children under the age of 5 years in developing countries and are the leading bacterial agent of traveler's diarrhea in persons traveling to these countries. ETEC strains secrete heat-labile (LT) and/or heat-stable (ST) enterotoxins that induce diarrhea by causing water and electrolyte imbalance. We describe the validation of a real-time TaqMan PCR (RT-PCR) assay to detect LT, ST1a, and ST1b enterotoxin genes in E. coli strains and in stool specimens. We validated LT/ST1b duplex and ST1a single-plex RT-PCR assay using a conventional PCR assay as a gold standard with 188 ETEC strains and 42 non-ETEC strains. We validated LT/ST1b duplex and ST1a single-plex RT-PCR assay in stool specimens (n = 106) using traditional culture as the gold standard. RT- PCR assay sensitivities for LT, ST1a, and ST1b detection in strains were 100%, 100%, and 98%; specificities were 95%, 98%, and 99%, and Pearson correlation coefficient r was 0.9954 between RT-PCR assay and the gold standard. In stool specimens, RT-PCR assay sensitivities for LT, ST1a, and ST1b detection were 97%, 100%, and 97%; and specificities were 99%, 94%, and 97%. Pearson correlation coefficient r was 0.9975 between RT-PCR results in stool specimens and the gold standard. Limits of detection of LT, ST1a, and ST1b by RT-PCR assay were 0.1 to1.0 pg/μL and by conventional PCR assay were 100 to1000 pg/μL. The accuracy, rapidity and sensitivity of this RT-PCR assay is promising for ETEC detection in public health/clinical laboratories and for laboratories in need of an independent method to confirm results of other culture independent diagnostic tests.
Collapse
Affiliation(s)
- Vaishnavi Pattabiraman
- National Center for Zoonotic and Emerging Infectious Diseases, Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Michele B Parsons
- National Center for Zoonotic and Emerging Infectious Diseases, Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Cheryl A Bopp
- National Center for Zoonotic and Emerging Infectious Diseases, Centers for Disease Control and Prevention , Atlanta, Georgia
| |
Collapse
|
21
|
Yang WE, Suchindran S, Nicholson BP, McClain MT, Burke T, Ginsburg GS, Harro CD, Chakraborty S, Sack DA, Woods CW, Tsalik EL. Transcriptomic Analysis of the Host Response and Innate Resilience to Enterotoxigenic Escherichia coli Infection in Humans. J Infect Dis 2016; 213:1495-504. [PMID: 26787651 DOI: 10.1093/infdis/jiv593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/27/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (ETEC) is a globally prevalent cause of diarrhea. Though usually self-limited, it can be severe and debilitating. Little is known about the host transcriptional response to infection. We report the first gene expression analysis of the human host response to experimental challenge with ETEC. METHODS We challenged 30 healthy adults with an unattenuated ETEC strain, and collected serial blood samples shortly after inoculation and daily for 8 days. We performed gene expression analysis on whole peripheral blood RNA samples from subjects in whom severe symptoms developed (n = 6) and a subset of those who remained asymptomatic (n = 6) despite shedding. RESULTS Compared with baseline, symptomatic subjects demonstrated significantly different expression of 406 genes highlighting increased immune response and decreased protein synthesis. Compared with asymptomatic subjects, symptomatic subjects differentially expressed 254 genes primarily associated with immune response. This comparison also revealed 29 genes differentially expressed between groups at baseline, suggesting innate resilience to infection. Drug repositioning analysis identified several drug classes with potential utility in augmenting immune response or mitigating symptoms. CONCLUSIONS There are statistically significant and biologically plausible differences in host gene expression induced by ETEC infection. Differential baseline expression of some genes may indicate resilience to infection.
Collapse
Affiliation(s)
- William E Yang
- Duke University School of Medicine, Department of Medicine, Duke University Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University
| | - Sunil Suchindran
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University
| | - Bradly P Nicholson
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University Internal Medicine Service, Durham VA Medical Center, Duke University Medical Center, North Carolina
| | - Micah T McClain
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University Internal Medicine Service, Durham VA Medical Center, Duke University Medical Center, North Carolina Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, North Carolina
| | - Thomas Burke
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University
| | - Geoffrey S Ginsburg
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University
| | - Clayton D Harro
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - David A Sack
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Christopher W Woods
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University Internal Medicine Service, Durham VA Medical Center, Duke University Medical Center, North Carolina Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, North Carolina
| | - Ephraim L Tsalik
- Center for Applied Genomics & Precision Medicine, Department of Medicine, Duke University Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, North Carolina Emergency Medicine Service, Durham VA Medical Center, North Carolina
| |
Collapse
|
22
|
Liu J, Kabir F, Manneh J, Lertsethtakarn P, Begum S, Gratz J, Becker SM, Operario DJ, Taniuchi M, Janaki L, Platts-Mills JA, Haverstick DM, Kabir M, Sobuz SU, Nakjarung K, Sakpaisal P, Silapong S, Bodhidatta L, Qureshi S, Kalam A, Saidi Q, Swai N, Mujaga B, Maro A, Kwambana B, Dione M, Antonio M, Kibiki G, Mason CJ, Haque R, Iqbal N, Zaidi AKM, Houpt ER. Development and assessment of molecular diagnostic tests for 15 enteropathogens causing childhood diarrhoea: a multicentre study. THE LANCET. INFECTIOUS DISEASES 2014; 14:716-724. [PMID: 25022434 DOI: 10.1016/s1473-3099(14)70808-4] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Childhood diarrhoea can be caused by many pathogens that are difficult to assay in the laboratory. Molecular diagnostic techniques provide a uniform method to detect and quantify candidate enteropathogens. We aimed to develop and assess molecular tests for identification of enteropathogens and their association with disease. METHODS We developed and assessed molecular diagnostic tests for 15 enteropathogens across three platforms-PCR-Luminex, multiplex real-time PCR, and TaqMan array card-at five laboratories worldwide. We judged the analytical and clinical performance of these molecular techniques against comparator methods (bacterial culture, ELISA, and PCR) using 867 diarrhoeal and 619 non-diarrhoeal stool specimens. We also measured molecular quantities of pathogens to predict the association with diarrhoea, by univariate logistic regression analysis. FINDINGS The molecular tests showed very good analytical and clinical performance at all five laboratories. Comparator methods had limited sensitivity compared with the molecular techniques (20-85% depending on the target) but good specificity (median 97·3%, IQR 96·5-98·9; mean 95·2%, SD 9·1). Positive samples by comparator methods usually had higher molecular quantities of pathogens than did negative samples, across almost all platforms and for most pathogens (p<0·05). The odds ratio for diarrhoea at a given quantity (measured by quantification cycle, Cq) showed that for most pathogens associated with diarrhoea-including Campylobacter jejuni and Campylobacter coli, Cryptosporidium spp, enteropathogenic Escherichia coli, heat-stable enterotoxigenic E coli, rotavirus, Shigella spp and enteroinvasive E coli, and Vibrio cholerae-the strength of association with diarrhoea increased at higher pathogen loads. For example, Shigella spp at a Cq range of 15-20 had an odds ratio of 8·0 (p<0·0001), but at a Cq range of 25-30 the odds ratio fell to 1·7 (p=0·043). INTERPRETATION Molecular diagnostic tests can be implemented successfully and with fidelity across laboratories around the world. In the case of diarrhoea, these techniques can detect pathogens with high sensitivity and ascribe diarrhoeal associations based on quantification, including in mixed infections, providing rich and unprecedented measurements of infectious causes. FUNDING Bill & Melinda Gates Foundation Next Generation Molecular Diagnostics Project.
Collapse
Affiliation(s)
- Jie Liu
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Furqan Kabir
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | | | - Paphavee Lertsethtakarn
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Sharmin Begum
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B), Dhaka, Bangladesh
| | - Jean Gratz
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA; Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Steve M Becker
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Darwin J Operario
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Mami Taniuchi
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Lalitha Janaki
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - James A Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Doris M Haverstick
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Mamun Kabir
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B), Dhaka, Bangladesh
| | - Shihab U Sobuz
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B), Dhaka, Bangladesh
| | - Kaewkanya Nakjarung
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Pimmada Sakpaisal
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Sasikorn Silapong
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Ladaporn Bodhidatta
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Shahida Qureshi
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Adil Kalam
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Queen Saidi
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Ndealilia Swai
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | | | - Athanasia Maro
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | | | - Michel Dione
- Medical Research Council Unit, Banjul, The Gambia
| | | | - Gibson Kibiki
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Carl J Mason
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B), Dhaka, Bangladesh
| | - Najeeha Iqbal
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Anita K M Zaidi
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Eric R Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|