1
|
Reshadmanesh A, Dehdahsi S, Ahangari F, Kahrizi K, Kariminejad A, Mahdavi SS, Talebi S, Najmabadi H. First Case of Macrocephaly, Dysmorphic Facies, and Psychomotor Retardation Harboring Co-inherited Variants in HERC1 and PMP22 Genes from Iran: Two Novel Variants. ARCHIVES OF IRANIAN MEDICINE 2024; 27:700-706. [PMID: 39891458 PMCID: PMC11786211 DOI: 10.34172/aim.31593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/21/2024] [Indexed: 02/03/2025]
Abstract
Here, we report a case with concomitant variants: a novel homozygous HERC1 gene variant and a novel heterozygous PMP22 duplication. The 2-year-old male presented with seizures, developmental delay, macrocephaly, hypotonia, unilateral hypertrophy, thoracic scoliosis, normal brain MRI, and elevated homocysteine level which normalized after treatment. Whole exome sequencing (WES) revealed a co-occurrence of a homozygous novel likely pathogenic variant in the HERC1 gene (NM_003922.3:c.1280dup (p.ILe469Aspfs*33) and a novel heterozygous large duplication of exon 1-5 in the PMP22 gene, which has not been reported previously. The case underscores the challenges in understanding genotype-phenotype correlations and suggests a potential interplay between these genetic variants in shaping the current and future clinical phenotype of the patient. In the case of genetic diseases, this event may have important implications on family members' counseling, and concomitant variants in Charcot-Marie-Tooth (CMT) families should be considered when significant intra-familial clinical heterogeneity is observed.
Collapse
Affiliation(s)
- Azadeh Reshadmanesh
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shima Dehdahsi
- Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | | | - Saeed Talebi
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Iran
| |
Collapse
|
2
|
Hale AT, Boudreau H, Devulapalli R, Duy PQ, Atchley TJ, Dewan MC, Goolam M, Fieggen G, Spader HL, Smith AA, Blount JP, Johnston JM, Rocque BG, Rozzelle CJ, Chong Z, Strahle JM, Schiff SJ, Kahle KT. The genetic basis of hydrocephalus: genes, pathways, mechanisms, and global impact. Fluids Barriers CNS 2024; 21:24. [PMID: 38439105 PMCID: PMC10913327 DOI: 10.1186/s12987-024-00513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Hydrocephalus (HC) is a heterogenous disease characterized by alterations in cerebrospinal fluid (CSF) dynamics that may cause increased intracranial pressure. HC is a component of a wide array of genetic syndromes as well as a secondary consequence of brain injury (intraventricular hemorrhage (IVH), infection, etc.) that can present across the age spectrum, highlighting the phenotypic heterogeneity of the disease. Surgical treatments include ventricular shunting and endoscopic third ventriculostomy with or without choroid plexus cauterization, both of which are prone to failure, and no effective pharmacologic treatments for HC have been developed. Thus, there is an urgent need to understand the genetic architecture and molecular pathogenesis of HC. Without this knowledge, the development of preventive, diagnostic, and therapeutic measures is impeded. However, the genetics of HC is extraordinarily complex, based on studies of varying size, scope, and rigor. This review serves to provide a comprehensive overview of genes, pathways, mechanisms, and global impact of genetics contributing to all etiologies of HC in humans.
Collapse
Affiliation(s)
- Andrew T Hale
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK.
| | - Hunter Boudreau
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK
| | - Rishi Devulapalli
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Travis J Atchley
- Department of Neurosurgery, University of Alabama at Birmingham, FOT Suite 1060, 1720 2ndAve, Birmingham, AL, 35294, UK
| | - Michael C Dewan
- Division of Pediatric Neurosurgery, Monroe Carell Jr. Children's Hospital, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mubeen Goolam
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Graham Fieggen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Pediatric Neurosurgery, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Heather L Spader
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Anastasia A Smith
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jeffrey P Blount
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - James M Johnston
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Brandon G Rocque
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Curtis J Rozzelle
- Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Zechen Chong
- Heflin Center for Genomics, University of Alabama at Birmingham, Birmingham, AL, UK
| | - Jennifer M Strahle
- Division of Pediatric Neurosurgery, St. Louis Children's Hospital, Washington University in St. Louis, St. Louis, MO, USA
| | - Steven J Schiff
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Ben-Mahmoud A, Kishikawa S, Gupta V, Leach NT, Shen Y, Moldovan O, Goel H, Hopper B, Ranguin K, Gruchy N, Maas SM, Lacassie Y, Kim SH, Kim WY, Quade BJ, Morton CC, Kim CH, Layman LC, Kim HG. A cryptic microdeletion del(12)(p11.21p11.23) within an unbalanced translocation t(7;12)(q21.13;q23.1) implicates new candidate loci for intellectual disability and Kallmann syndrome. Sci Rep 2023; 13:12984. [PMID: 37563198 PMCID: PMC10415337 DOI: 10.1038/s41598-023-40037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
In a patient diagnosed with both Kallmann syndrome (KS) and intellectual disability (ID), who carried an apparently balanced translocation t(7;12)(q22;q24)dn, array comparative genomic hybridization (aCGH) disclosed a cryptic heterozygous 4.7 Mb deletion del(12)(p11.21p11.23), unrelated to the translocation breakpoint. This novel discovery prompted us to consider the possibility that the combination of KS and neurological disorder in this patient could be attributed to gene(s) within this specific deletion at 12p11.21-12p11.23, rather than disrupted or dysregulated genes at the translocation breakpoints. To further support this hypothesis, we expanded our study by screening five candidate genes at both breakpoints of the chromosomal translocation in a cohort of 48 KS patients. However, no mutations were found, thus reinforcing our supposition. In order to delve deeper into the characterization of the 12p11.21-12p11.23 region, we enlisted six additional patients with small copy number variations (CNVs) and analyzed eight individuals carrying small CNVs in this region from the DECIPHER database. Our investigation utilized a combination of complementary approaches. Firstly, we conducted a comprehensive phenotypic-genotypic comparison of reported CNV cases. Additionally, we reviewed knockout animal models that exhibit phenotypic similarities to human conditions. Moreover, we analyzed reported variants in candidate genes and explored their association with corresponding phenotypes. Lastly, we examined the interacting genes associated with these phenotypes to gain further insights. As a result, we identified a dozen candidate genes: TSPAN11 as a potential KS candidate gene, TM7SF3, STK38L, ARNTL2, ERGIC2, TMTC1, DENND5B, and ETFBKMT as candidate genes for the neurodevelopmental disorder, and INTS13, REP15, PPFIBP1, and FAR2 as candidate genes for KS with ID. Notably, the high-level expression pattern of these genes in relevant human tissues further supported their candidacy. Based on our findings, we propose that dosage alterations of these candidate genes may contribute to sexual and/or cognitive impairments observed in patients with KS and/or ID. However, the confirmation of their causal roles necessitates further identification of point mutations in these candidate genes through next-generation sequencing.
Collapse
Affiliation(s)
- Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Shotaro Kishikawa
- Gene Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Natalia T Leach
- Integrated Genetics, Laboratory Corporation of America Holdings, 3400 Computer Drive, Westborough, MA, 01581, USA
| | - Yiping Shen
- Division of Genetics and Genomics at Boston Children's Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Oana Moldovan
- Medical Genetics Service, Pediatric Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Himanshu Goel
- Hunter Genetics, Waratah, NSW, 2298, Australia
- University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Bruce Hopper
- Forster Genetics-Hunter New England Local Health District, Forster, NSW, 2428, Australia
| | - Kara Ranguin
- Department of Genetics, Reference Center for Rare Diseases of Developmental anomalies and polymalformative syndrome, CHU de Caen Normandie, Caen, France
| | - Nicolas Gruchy
- Department of Genetics, Reference Center for Rare Diseases of Developmental anomalies and polymalformative syndrome, CHU de Caen Normandie, Caen, France
| | - Saskia M Maas
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Yves Lacassie
- Division of Genetics, Department of Pediatrics, Louisiana State University, New Orleans, LA, 70118, USA
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Bradley J Quade
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, Manchester, UK
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, USA
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
4
|
Gul R, Firasat S, Schubert M, Ullah A, Peña E, Thuesen ACB, Hussain M, Staeger FF, Gjesing AP, Albrechtsen A, Hansen T. Identifying the genetic causes of phenotypically diagnosed Pakistani mucopolysaccharidoses patients by whole genome sequencing. Front Genet 2023; 14:1128850. [PMID: 37091798 PMCID: PMC10113632 DOI: 10.3389/fgene.2023.1128850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Lysosomal storage disorders (LSDs) are a group of inherited metabolic diseases, which encompass more than 50 different subtypes of pathologies. These disorders are caused by defects in lysosomal enzymes, transporters, and other non-lysosomal proteins. Mucopolysaccharidosis (MPS) is the most common subgroup of lysosomal storage disorders in which the body is unable to properly breakdown mucopolysaccharides. The aim of the present study was to identify novel genes and pathogenic variants in families from diverse regions of Pakistan with clinically diagnosed mucopolysaccharidosis type I and mucopolysaccharidosis type II.Methods: Clinical diagnosis identified 12 with mucopolysaccharidosis I and 2 with mucopolysaccharidosis II in 14 families and whole genome sequencing (WGS) was performed to identify the causative variations in 15 affected individuals. Twenty-two unaffected individuals including parents or normal siblings of patients were also sequenced. Putative causal variants were identified by co-segregation and functional annotation.Results: Analysis of whole genome sequencing data revealed ten novel and six previously reported variants in lysosomal storage disorders-associated genes (IDUA, GALNS, SGSH, GAA, IDS, ALDOB, TRAPPC4, MASP1, SMARCAL, KIAA1109, HERC1, RRAS2) and a novel candidate gene (ABCA5) for lysosomal storage disorder-like phenotypes, which has previously been associated with symptoms strongly related with lysosomal storage disorder in animal models.Conclusion: Multigenic inheritance was found in several families highlighting the importance of searching for homozygous pathogenic variants in several genes also in families with a high degree of consanguinity.
Collapse
Affiliation(s)
- Rutaba Gul
- Department of Zoology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sabika Firasat
- Department of Zoology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
- *Correspondence: Sabika Firasat, ; Torben Hansen,
| | - Mikkel Schubert
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Asmat Ullah
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elionora Peña
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne C. B. Thuesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mulazim Hussain
- The Children Hospital, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Frederik F. Staeger
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anette P. Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Albrechtsen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Sabika Firasat, ; Torben Hansen,
| |
Collapse
|
5
|
Ben-Mahmoud A, Kishikawa S, Gupta V, Leach NT, Shen Y, Moldovan O, Goel H, Hopper B, Ranguin K, Gruchy N, Maas SM, Lacassie Y, Kim SH, Kim WY, Quade BJ, Morton CC, Kim CH, Layman LC, Kim HG. A microdeletion del(12)(p11.21p11.23) with a cryptic unbalanced translocation t(7;12)(q21.13;q23.1) implicates new candidate loci for intellectual disability and Kallmann syndrome. RESEARCH SQUARE 2023:rs.3.rs-2572736. [PMID: 37034680 PMCID: PMC10081357 DOI: 10.21203/rs.3.rs-2572736/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
In an apparently balanced translocation t(7;12)(q22;q24)dn exhibiting both Kallmann syndrome (KS) and intellectual disability (ID), we detected a cryptic heterozygous 4.7 Mb del(12)(p11.21p11.23) unrelated to the translocation breakpoint. This new finding raised the possibility that KS combined with neurological disorder in this patient could be caused by gene(s) within this deletion at 12p11.21-12p11.23 instead of disrupted or dysregulated genes at the genomic breakpoints. Screening of five candidate genes at both breakpoints in 48 KS patients we recruited found no mutation, corroborating our supposition. To substantiate this hypothesis further, we recruited six additional subjects with small CNVs and analyzed eight individuals carrying small CNVs in this region from DECIPHER to dissect 12p11.21-12p11.23. We used multiple complementary approaches including a phenotypic-genotypic comparison of reported cases, a review of knockout animal models recapitulating the human phenotypes, and analyses of reported variants in the interacting genes with corresponding phenotypes. The results identified one potential KS candidate gene ( TSPAN11 ), seven candidate genes for the neurodevelopmental disorder ( TM7SF3 , STK38L , ARNTL2 , ERGIC2 , TMTC1 , DENND5B , and ETFBKMT ), and four candidate genes for KS with ID ( INTS13 , REP15 , PPFIBP1 , and FAR2 ). The high-level expression pattern in the relevant human tissues further suggested the candidacy of these genes. We propose that the dosage alterations of the candidate genes may contribute to sexual and/or cognitive impairment in patients with KS and/or ID. Further identification of point mutations through next generation sequencing will be necessary to confirm their causal roles.
Collapse
Affiliation(s)
| | | | | | | | | | - Oana Moldovan
- Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte
| | | | - Bruce Hopper
- Forster Genetics-Hunter New England Local Health District
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sala-Gaston J, Costa-Sastre L, Pedrazza L, Martinez-Martinez A, Ventura F, Rosa JL. Regulation of MAPK Signaling Pathways by the Large HERC Ubiquitin Ligases. Int J Mol Sci 2023; 24:ijms24054906. [PMID: 36902336 PMCID: PMC10003351 DOI: 10.3390/ijms24054906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Protein ubiquitylation acts as a complex cell signaling mechanism since the formation of different mono- and polyubiquitin chains determines the substrate's fate in the cell. E3 ligases define the specificity of this reaction by catalyzing the attachment of ubiquitin to the substrate protein. Thus, they represent an important regulatory component of this process. Large HERC ubiquitin ligases belong to the HECT E3 protein family and comprise HERC1 and HERC2 proteins. The physiological relevance of the Large HERCs is illustrated by their involvement in different pathologies, with a notable implication in cancer and neurological diseases. Understanding how cell signaling is altered in these different pathologies is important for uncovering novel therapeutic targets. To this end, this review summarizes the recent advances in how the Large HERCs regulate the MAPK signaling pathways. In addition, we emphasize the potential therapeutic strategies that could be followed to ameliorate the alterations in MAPK signaling caused by Large HERC deficiencies, focusing on the use of specific inhibitors and proteolysis-targeting chimeras.
Collapse
|
7
|
Pedrazza L, Martinez-Martinez A, Sánchez-de-Diego C, Valer JA, Pimenta-Lopes C, Sala-Gaston J, Szpak M, Tyler-Smith C, Ventura F, Rosa JL. HERC1 deficiency causes osteopenia through transcriptional program dysregulation during bone remodeling. Cell Death Dis 2023; 14:17. [PMID: 36635269 PMCID: PMC9837143 DOI: 10.1038/s41419-023-05549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
Bone remodeling is a continuous process between bone-forming osteoblasts and bone-resorbing osteoclasts, with any imbalance resulting in metabolic bone disease, including osteopenia. The HERC1 gene encodes an E3 ubiquitin ligase that affects cellular processes by regulating the ubiquitination of target proteins, such as C-RAF. Of interest, an association exists between biallelic pathogenic sequence variants in the HERC1 gene and the neurodevelopmental disorder MDFPMR syndrome (macrocephaly, dysmorphic facies, and psychomotor retardation). Most pathogenic variants cause loss of HERC1 function, and the affected individuals present with features related to altered bone homeostasis. Herc1-knockout mice offer an excellent model in which to study the role of HERC1 in bone remodeling and to understand its role in disease. In this study, we show that HERC1 regulates osteoblastogenesis and osteoclastogenesis, proving that its depletion increases gene expression of osteoblastic makers during the osteogenic differentiation of mesenchymal stem cells. During this process, HERC1 deficiency increases the levels of C-RAF and of phosphorylated ERK and p38. The Herc1-knockout adult mice developed imbalanced bone homeostasis that presented as osteopenia in both sexes of the adult mice. By contrast, only young female knockout mice had osteopenia and increased number of osteoclasts, with the changes associated with reductions in testosterone and dihydrotestosterone levels. Finally, osteocytes isolated from knockout mice showed a higher expression of osteocytic genes and an increase in the Rankl/Opg ratio, indicating a relevant cell-autonomous role of HERC1 when regulating the transcriptional program of bone formation. Overall, these findings present HERC1 as a modulator of bone homeostasis and highlight potential therapeutic targets for individuals affected by pathological HERC1 variants.
Collapse
Affiliation(s)
- Leonardo Pedrazza
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Arturo Martinez-Martinez
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Cristina Sánchez-de-Diego
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - José Antonio Valer
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Carolina Pimenta-Lopes
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Joan Sala-Gaston
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Michal Szpak
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Francesc Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
8
|
Pérez-Villegas EM, Ruiz R, Bachiller S, Ventura F, Armengol JA, Rosa JL. The HERC proteins and the nervous system. Semin Cell Dev Biol 2022; 132:5-15. [PMID: 34848147 DOI: 10.1016/j.semcdb.2021.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
The HERC protein family is one of three subfamilies of Homologous to E6AP C-terminus (HECT) E3 ubiquitin ligases. Six HERC genes have been described in humans, two of which encode Large HERC proteins -HERC1 and HERC2- with molecular weights above 520 kDa that are constitutively expressed in the brain. There is a large body of evidence that mutations in these Large HERC genes produce clinical syndromes in which key neurodevelopmental events are altered, resulting in intellectual disability and other neurological disorders like epileptic seizures, dementia and/or signs of autism. In line with these consequences in humans, two mice carrying mutations in the Large HERC genes have been studied quite intensely: the tambaleante mutant for Herc1 and the Herc2+/530 mutant for Herc2. In both these mutant mice there are clear signs that autophagy is dysregulated, eliciting cerebellar Purkinje cell death and impairing motor control. The tambaleante mouse was the first of these mice to appear and is the best studied, in which the Herc1 mutation elicits: (i) delayed neural transmission in the peripheral nervous system; (ii) impaired learning, memory and motor control; and (iii) altered presynaptic membrane dynamics. In this review, we discuss the information currently available on HERC proteins in the nervous system and their biological activity, the dysregulation of which could explain certain neurodevelopmental syndromes and/or neurodegenerative diseases.
Collapse
Affiliation(s)
- Eva M Pérez-Villegas
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| | - Rocío Ruiz
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Seville, Spain
| | - Sara Bachiller
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Sevilla, Virgen del Rocío University Hospital, CSIC, University of Sevilla, Sevilla, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, IBIDELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose A Armengol
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain.
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, IBIDELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
9
|
Kane E, Beasley S, Schafer J, Bohl J, Lee Y, Rich K, Bosia E, Spratt D. Redefining the catalytic HECT domain boundaries for the HECT E3 ubiquitin ligase family. Biosci Rep 2022; 42:BSR20221036. [PMID: 36111624 PMCID: PMC9547173 DOI: 10.1042/bsr20221036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
There are 28 unique human members of the homologous to E6AP C-terminus (HECT) E3 ubiquitin ligase family. Each member of the HECT E3 ubiquitin ligases contains a conserved bilobal HECT domain of approximately 350 residues found near their C-termini that is responsible for their respective ubiquitylation activities. Recent studies have begun to elucidate specific roles that each HECT E3 ubiquitin ligase has in various cancers, age-induced neurodegeneration, and neurological disorders. New structural models have been recently released for some of the HECT E3 ubiquitin ligases, but many HECT domain structures have yet to be examined due to chronic insolubility and/or protein folding issues. Building on these recently published structural studies coupled with our in-house experiments discussed in the present study, we suggest that the addition of ∼50 conserved residues preceding the N-terminal to the current UniProt defined boundaries of the HECT domain are required for isolating soluble, stable, and active HECT domains. We show using in silico bioinformatic analyses coupled with secondary structural prediction software that this predicted N-terminal α-helix found in all 28 human HECT E3 ubiquitin ligases forms an obligate amphipathic α-helix that binds to a hydrophobic pocket found within the HECT N-terminal lobe. The present study brings forth the proposal to redefine the residue boundaries of the HECT domain to include this N-terminal extension that will likely be critical for future biochemical, structural, and therapeutic studies on the HECT E3 ubiquitin ligase family.
Collapse
Affiliation(s)
- Emma I. Kane
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, U.S.A
| | - Steven A. Beasley
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, U.S.A
| | - Johanna M. Schafer
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, U.S.A
| | - Justine E. Bohl
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, U.S.A
| | - Young Sun Lee
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, U.S.A
| | - Kayla J. Rich
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, U.S.A
| | - Elizabeth F. Bosia
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, U.S.A
| | - Donald E. Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, U.S.A
| |
Collapse
|
10
|
Guo A, Lun P, Chen J, Li Q, Chang K, Li T, Pan D, Zhang J, Zhou J, Wang K, Zhang Q, Yang Q, Gao C, Wu C, Jian X, Wen Y, Wang Z, Shi Y, Zhao X, Sun P, Li Z. Association analysis of risk genes identified by SCHEMA with schizophrenia in the Chinese Han population. Psychiatr Genet 2022; 32:188-193. [PMID: 36125369 DOI: 10.1097/ypg.0000000000000321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Schizophrenia is a chronic brain disorder. Previously, the Schizophrenia Exome Sequencing Meta-analysis consortium identified 10 highest risk genes related to schizophrenia. This study aimed to analyze the relationship between the 10 highest risk genes identified by the SCHEMA and schizophrenia in a Chinese population. METHODS A total of 225 variants in 10 genes were screened in a Chinese population of 6836 using a customized array. All variants were annotated through the Variant Effect Predictor tool, and the functional impacts of missense variants were assessed based on sorting intolerant from tolerant and PolyPhen-2 scores. The SHEsisPlus tool was used to analyze the association between risk genes and schizophrenia at the locus and gene levels. RESULTS At the locus level, no missense variants significantly related to schizophrenia were found, but we detected three missense variants that appeared only in cases, including TRIO p. Arg1185Gln, RB1CC1 p. Arg1514Cys, and HERC1 p. Val4517Leu. At the gene level, five genes (TRIO, RB1CC1, HERC1, GRIN2A, and CACAN1G) with more than one variant analyzed were kept for the gene-level association analysis. Only the association between RB1CC1 and schizophrenia reached a significant level (OR = 1.634; 95% CI, 1.062-2.516; P = 0.025). CONCLUSION In this study, we determined that RB1CC1 might be a risk gene for schizophrenia in the Chinese population. Our results provide new evidence for recognizing the correlation of these risk genes with the Chinese schizophrenia population.
Collapse
Affiliation(s)
- Aiguo Guo
- School of Basic Medicine, Qingdao University
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
| | - Peng Lun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Qinghua Li
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao
| | - Kaihui Chang
- School of Basic Medicine, Qingdao University
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
| | - Teng Li
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
- School of Public Health, Qingdao University, Qingdao
| | - Dun Pan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Jinmai Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Qian Zhang
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
| | - Qiangzhen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Chengwen Gao
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
| | - Chuanhong Wu
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
| | - Xuemin Jian
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
| | - Yanqin Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Yongyong Shi
- School of Basic Medicine, Qingdao University
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
- Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangzhong Zhao
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao
| | - Zhiqiang Li
- School of Basic Medicine, Qingdao University
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
- School of Public Health, Qingdao University, Qingdao
- Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Nagai Y, Nishioka M, Tanaka T, Shimano T, Kirino E, Suzuki T, Kato T. Identification of 22q11.2 deletion in a patient with schizophrenia and clinically diagnosed Rubinstein-Taybi syndrome. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2022; 1:e34. [PMID: 38868697 PMCID: PMC11114328 DOI: 10.1002/pcn5.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/22/2022] [Accepted: 07/07/2022] [Indexed: 06/14/2024]
Abstract
Background Rubinstein-Taybi syndrome (RTS) is a rare autosomal-dominant disease. Almost all cases are sporadic and attributed to de novo variant. Psychotic symptoms in RTS are rare and have been reported in only a few published cases. On the other hand, 22q11.2 deletion syndrome is the most common chromosomal microdeletion in humans. The 22q11.2 deletion is well recognized as a risk factor for schizophrenia. Here, we present a schizophrenic psychosis case clinically diagnosed as RTS but resolved as carrying 22q11.2 deletion by genomic analysis. Case presentation A 38-year-old Japanese male was admitted to our hospital due to psychotic symptoms. He had been diagnosed with RTS based on physical characteristics at the age of 9 months. On admission, we performed whole exome sequencing. He had no pathogenic variant in CREBBP or EP300. We detected 2.5 Mb deletion on 22q11.2 and one rare loss-of-function variant in a loss-of-function-constrained gene (MTSS1) and three rare missense variants in missense-constrained genes (CELSR3, HERC1, and TLN1). Psychotic symptoms were ameliorated by the treatment of risperidone. Conclusion The psychiatric manifestation and genomic analysis may be a clue to detecting 22q11.2 deletion syndrome in undiagnosed patients. The reason for similarity in physical characteristics in 22q11.2 deletion syndrome and RTS remains unresolved. The 22q11.2 deletion and HERC1 contribute to the patient's phenotype.
Collapse
Affiliation(s)
- Yasuhito Nagai
- Department of PsychiatryJuntendo University School of MedicineTokyoJapan
- Department of PsychiatryJuntendo Tokyo Koto Geriatric Medical CenterTokyoJapan
| | - Masaki Nishioka
- Department of PsychiatryJuntendo University School of MedicineTokyoJapan
- Department of PsychiatryJuntendo University HospitalTokyoJapan
| | - Tatsuki Tanaka
- Department of PsychiatryJuntendo University School of MedicineTokyoJapan
- Department of PsychiatryJuntendo University Koshigaya HospitalKoshigayaJapan
| | | | - Eiji Kirino
- Department of PsychiatryJuntendo University School of MedicineTokyoJapan
- Department of PsychiatryJuntendo University Shizuoka HospitalIzunokuniJapan
| | - Toshihito Suzuki
- Department of PsychiatryJuntendo University School of MedicineTokyoJapan
- Department of PsychiatryJuntendo University Koshigaya HospitalKoshigayaJapan
| | - Tadafumi Kato
- Department of PsychiatryJuntendo University School of MedicineTokyoJapan
- Department of PsychiatryJuntendo University HospitalTokyoJapan
| |
Collapse
|
12
|
Lambert N, Moïse M, Nguyen L. E3 Ubiquitin ligases and cerebral cortex development in health and disease. Dev Neurobiol 2022; 82:392-407. [PMID: 35476229 DOI: 10.1002/dneu.22877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/24/2022] [Accepted: 03/30/2022] [Indexed: 11/08/2022]
Abstract
Cerebral cortex development involves the sequential progression of biological steps driven by molecular pathways whose tight regulation often relies on ubiquitination. Ubiquitination is a post-translational modification involved in all aspects of cellular homeostasis through the attachment of a ubiquitin moiety on proteins. Over the past years, an increasing amount of research has highlighted the crucial role played by ubiquitin ligases in every step of cortical development and whose impairment often leads to various neurodevelopmental disorders. In this review, we focus on the key contributions of E3 ubiquitin ligases for the progression of the different steps of corticogenesis, as well as the pathological consequences of their mutations, often resulting in malformations of cortical development. Finally, we discuss some promising targeted treatment strategies for these diseases based on recent advances in the field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nicolas Lambert
- Laboratory of molecular regulation of neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, 4000, Belgium.,Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Martin Moïse
- Laboratory of molecular regulation of neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, 4000, Belgium.,Department of Radiology, University Hospital of Liège, Liège, Belgium
| | - Laurent Nguyen
- Laboratory of molecular regulation of neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, 4000, Belgium
| |
Collapse
|
13
|
Lalonde R, Strazielle C. The Herc1 gene in neurobiology. Gene X 2022; 814:146144. [PMID: 34990797 DOI: 10.1016/j.gene.2021.146144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 11/04/2022] Open
Abstract
The function of the HERC1 gene has mainly been delineated by studying Herc1tbl (tambaleante) mutant mice, characterized by losses in cerebellar Purkinje cells, a lower number of synaptic vesicles in the hippocampus, and anomalies in climbing fiber projections from the inferior olive as well as alpha-motoneuron projections to the skeletal muscle. The salient behavioral phenotypes include cerebellar ataxia, a loss in motor coordination, muscle weakness, and spatial deficits. Similar neuropathological and behavioral profiles have been described in childhood-onset subjects with HERC1 variants, including cerebellar ataxia and hypotonia.
Collapse
Affiliation(s)
- Robert Lalonde
- University of Rouen, Dept Psychology, 76821 Mont-Saint-Aignan, France; Laboratory of Stress, Immunity, Pathogens (EA7300), University of Lorraine Medical School, Vandœuvre-les-Nancy, France.
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA7300), University of Lorraine Medical School, Vandœuvre-les-Nancy, France; CHRU Nancy, Vandœuvre-les-Nancy, France
| |
Collapse
|
14
|
Yang Y, Zhou X, Liu X, Song R, Gao Y, Wang S. Implications of FBXW7 in Neurodevelopment and Neurodegeneration: Molecular Mechanisms and Therapeutic Potential. Front Cell Neurosci 2021; 15:736008. [PMID: 34512273 PMCID: PMC8424092 DOI: 10.3389/fncel.2021.736008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) mediated protein degradation is crucial to maintain quantitive and functional homeostasis of diverse proteins. Balanced cellular protein homeostasis controlled by UPS is fundamental to normal neurological functions while impairment of UPS can also lead to some neurodevelopmental and neurodegenerative disorders. Functioning as the substrate recognition component of the SCF-type E3 ubiquitin ligase, FBXW7 is essential to multiple aspects of cellular processes via targeting a wide range of substrates for proteasome-mediated degradation. Accumulated evidence shows that FBXW7 is fundamental to neurological functions and especially implicated in neurodevelopment and the nosogenesis of neurodegeneration. In this review, we describe general features of FBXW7 gene and proteins, and mainly present recent findings that highlight the vital roles and molecular mechanisms of FBXW7 in neurodevelopment such as neurogenesis, myelination and cerebral vasculogenesis and in the pathogenesis of some typical neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease. Additionally, we also provide a prospect on focusing FBXW7 as a potential therapeutic target to rescue neurodevelopmental and neurodegenerative impairment.
Collapse
Affiliation(s)
- Yu Yang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Xuan Zhou
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China.,Research Center for Quality of Life and Applied Psychology, School of Humanities and Management, Guangdong Medical University, Dongguan, China
| | - Xinpeng Liu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Ruying Song
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Yiming Gao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Shuai Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
15
|
Zavodszky E, Peak-Chew SY, Juszkiewicz S, Narvaez AJ, Hegde RS. Identification of a quality-control factor that monitors failures during proteasome assembly. Science 2021; 373:998-1004. [PMID: 34446601 PMCID: PMC7611656 DOI: 10.1126/science.abc6500] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022]
Abstract
In eukaryotic cells, half of all proteins function as subunits within multiprotein complexes. Imbalanced synthesis of subunits leads to unassembled intermediates that must be degraded to minimize cellular toxicity. Here, we found that excess PSMC5, a subunit of the proteasome base, was targeted for degradation by the HERC1 ubiquitin ligase in mammalian cells. HERC1 identified unassembled PSMC5 by its cognate assembly chaperone PAAF1. Because PAAF1 only dissociates after assembly, HERC1 could also engage later assembly intermediates such as the PSMC4-PSMC5-PAAF1 complex. A missense mutant of HERC1 that causes neurodegeneration in mice was impaired in the recognition and ubiquitination of the PSMC5-PAAF1 complex. Thus, proteasome assembly factors can serve as adaptors for ubiquitin ligases to facilitate elimination of unassembled intermediates and maintain protein homeostasis.
Collapse
|
16
|
Moirangthem A, Mandal K, Saxena D, Srivastava P, Gambhir PS, Agrawal N, Shambhavi A, Nampoothiri S, Phadke SR. Genetic heterogeneity of disorders with overgrowth and intellectual disability: Experience from a center in North India. Am J Med Genet A 2021; 185:2345-2355. [PMID: 33942996 DOI: 10.1002/ajmg.a.62241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/25/2021] [Accepted: 04/10/2021] [Indexed: 12/24/2022]
Abstract
Overgrowth, defined as height and/or OFC ≥ +2SD, characterizes a subset of patients with syndromic intellectual disability (ID). Many of the disorders with overgrowth and ID (OGID) are rare and the full phenotypic and genotypic spectra have not been unraveled. This study was undertaken to characterize the phenotypic and genotypic profile of patients with OGID. Patients with OGID were ascertained from the cohort of patients who underwent cytogenetic microarray (CMA) and/or exome sequencing (ES) at our center over a period of 6 years. Thirty-one subjects (six females) formed the study group with ages between 3.5 months and 13 years. CMA identified pathogenic deletions in two patients. In another 11 patients, a disease causing variant was detected by ES. The spectrum of disorders encompassed aberrations in genes involved in the two main pathways associated with OGID. These were genes involved in epigenetic regulation like NSD1, NFIX, FOXP1, and those in the PI3K-AKT pathway like PTEN, AKT3, TSC2, PPP2R5D. Five novel pathogenic variants were added by this study. NSD1-related Sotos syndrome was the most common disorder, seen in five patients. A causative variant was identified in 61.5% of patients who underwent only ES compared to the low yield of 11.1% in the CMA group. The molecular etiology could be confirmed in 13 subjects with OGID giving a diagnostic yield of 42%. The major burden was formed by autosomal dominant monogenic disorders. Hence, ES maybe a better first-tier genomic test rather than CMA in OGID.
Collapse
Affiliation(s)
- Amita Moirangthem
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Deepti Saxena
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Priyanka Srivastava
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Poonam Singh Gambhir
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Neha Agrawal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Arya Shambhavi
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, AIMS, Cochin, Kerala, India
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
17
|
Pérez-Villegas EM, Pérez-Rodríguez M, Negrete-Díaz JV, Ruiz R, Rosa JL, de Toledo GA, Rodríguez-Moreno A, Armengol JA. HERC1 Ubiquitin Ligase Is Required for Hippocampal Learning and Memory. Front Neuroanat 2020; 14:592797. [PMID: 33328904 PMCID: PMC7710975 DOI: 10.3389/fnana.2020.592797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/23/2020] [Indexed: 11/23/2022] Open
Abstract
Mutations in the human HERC1 E3 ubiquitin ligase protein develop intellectual disability. The tambaleante (tbl) mouse carries a HERC1 mutation characterized by cerebellar ataxia due of adult cerebellar Purkinje cells death by extensive autophagy. Our previous studies demonstrated that both the neuromuscular junction and the peripheral nerve myelin sheaths are also affected in this mutant. Moreover, there are signs of dysregulated autophagy in the central nervous system in the tbl mouse, affecting spinal cord motor neurons, and pyramidal neurons of the neocortex and the hippocampal CA3 region. The tbl mutation affects associative learning, with absence of short- and long-term potentiation in the lateral amygdala, altered spinogenesis in their neurons, and a dramatic decrease in their glutamatergic input. To assess whether other brain areas engaged in learning processes might be affected by the tbl mutation, we have studied the tbl hippocampus using behavioral tests, ex vivo electrophysiological recordings, immunohistochemistry, the Golgi-Cox method and transmission electron microscopy. The tbl mice performed poorly in the novel-object recognition, T-maze and Morris water maze tests. In addition, there was a decrease in glutamatergic input while the GABAergic one remains unaltered in the hippocampal CA1 region of tbl mice, accompanied by changes in the dendritic spines, and signs of cellular damage. Moreover, the proportions of immature and mature neurons in the dentate gyrus of the tbl hippocampus differ relative to the control mice. Together, these observations demonstrate the important role of HERC1 in regulating synaptic activity during learning.
Collapse
Affiliation(s)
- Eva M. Pérez-Villegas
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - Mikel Pérez-Rodríguez
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - José V. Negrete-Díaz
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
- División de Ciencias de la Salud e Ingenierías, Universidad de Guanajuato, Guanajuato, Mexico
| | - Rocío Ruiz
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Seville, Spain
- Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, IBIDELL, Universitat de Barcelona, Barcelona, Spain
| | | | - Antonio Rodríguez-Moreno
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - José A. Armengol
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
18
|
Lin Y, Afshar S, Rajadhyaksha AM, Potash JB, Han S. A Machine Learning Approach to Predicting Autism Risk Genes: Validation of Known Genes and Discovery of New Candidates. Front Genet 2020; 11:500064. [PMID: 33133139 PMCID: PMC7513695 DOI: 10.3389/fgene.2020.500064] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 08/13/2020] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a strong genetic basis. The role of de novo mutations in ASD has been well established, but the set of genes implicated to date is still far from complete. The current study employs a machine learning-based approach to predict ASD risk genes using features from spatiotemporal gene expression patterns in human brain, gene-level constraint metrics, and other gene variation features. The genes identified through our prediction model were enriched for independent sets of ASD risk genes, and tended to be down-expressed in ASD brains, especially in frontal and parietal cortex. The highest-ranked genes not only included those with strong prior evidence for involvement in ASD (for example, NBEA, HERC1, and TCF20), but also indicated potentially novel candidates, such as, MYCBP2 and CAND1, which are involved in protein ubiquitination. We also showed that our method outperformed state-of-the-art scoring systems for ranking curated ASD candidate genes. Gene ontology enrichment analysis of our predicted risk genes revealed biological processes clearly relevant to ASD, including neuronal signaling, neurogenesis, and chromatin remodeling, but also highlighted other potential mechanisms that might underlie ASD, such as regulation of RNA alternative splicing and ubiquitination pathway related to protein degradation. Our study demonstrates that human brain spatiotemporal gene expression patterns and gene-level constraint metrics can help predict ASD risk genes. Our gene ranking system provides a useful resource for prioritizing ASD candidate genes.
Collapse
Affiliation(s)
- Ying Lin
- Department of Industrial Engineering, University of Houston, Houston, TX, United States
| | - Shiva Afshar
- Department of Industrial Engineering, University of Houston, Houston, TX, United States
| | - Anjali M Rajadhyaksha
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States.,Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, United States.,Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, NY, United States
| | - James B Potash
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Shizhong Han
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Lieber Institute for Brain Development, Baltimore, MD, United States
| |
Collapse
|
19
|
Schwarz JM, Pedrazza L, Stenzel W, Rosa JL, Schuelke M, Straussberg R. A new homozygous HERC1 gain-of-function variant in MDFPMR syndrome leads to mTORC1 hyperactivation and reduced autophagy during cell catabolism. Mol Genet Metab 2020; 131:126-134. [PMID: 32921582 DOI: 10.1016/j.ymgme.2020.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
The giant 532 kDa HERC1 protein is a ubiquitin ligase that interacts with tuberous sclerosis complex subunit 2 (TSC2), a negative upstream regulator of the mammalian target of rapamycin complex 1 (mTORC1). TSC2 regulates anabolic cell growth through its influence on protein synthesis, cell growth, proliferation, autophagy, and differentiation. TSC subunit 1 (TSC1) stabilizes TSC2 by inhibiting the interaction between TSC2 and HERC1, forming a TSC1-TSC2 complex that negatively regulates mTORC1. HERC1-TSC2 interaction destabilizes and degrades TSC2. Recessive mutations in HERC1 have been reported in patients with intellectual disability. Some patients exhibit epilepsy, macrocephaly, somatic overgrowth, and dysmorphic facial features as well. Here we describe two sisters from a consanguineous marriage with a novel homozygous missense variant in the C-terminal HECT domain of HERC1 [chr15:g63,907,989C>G GRCh37.p11 | c.14,072G>C NM_003922 | p.(Arg4,691Pro)]. Symptoms compris global developmental delay, macrocephaly, somatic overgrowth, intellectual disability, seizures, schizoaffective disorder, and pyramidal tract signs. We functionally assessed the HERC1 mutation by investigation of patient and control fibroblasts under normal and nutrient starving conditions. During catabolic state, mTORC1 activity remained high in patient fibroblasts, which stands in stark contrast to its downregulation in controls. This was corroborated by an abnormally high phosphorylation of S6K1-kinase, a direct downstream target of mTORC1, in patients. Moreover, autophagy, usually enhanced in catabolic states, was down-regulated in patient fibroblasts. These data confirm that the missense variant found in both patients results in a gain-of-function for the mutant HERC1 protein.
Collapse
Affiliation(s)
- Jana Marie Schwarz
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Leonardo Pedrazza
- Departament de Ciències Fisiològiques, Institut d'Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, Institut d'Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Markus Schuelke
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.
| | - Rachel Straussberg
- Schneider Children's Medical Center, Petach Tikva, Israel; Department of Child Neurology, Neurogenetic Service, Affiliated to Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel.
| |
Collapse
|
20
|
Folci A, Mirabella F, Fossati M. Ubiquitin and Ubiquitin-Like Proteins in the Critical Equilibrium between Synapse Physiology and Intellectual Disability. eNeuro 2020; 7:ENEURO.0137-20.2020. [PMID: 32719102 PMCID: PMC7544190 DOI: 10.1523/eneuro.0137-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 01/04/2023] Open
Abstract
Posttranslational modifications (PTMs) represent a dynamic regulatory system that precisely modulates the functional organization of synapses. PTMs consist in target modifications by small chemical moieties or conjugation of lipids, sugars or polypeptides. Among them, ubiquitin and a large family of ubiquitin-like proteins (UBLs) share several features such as the structure of the small protein modifiers, the enzymatic cascades mediating the conjugation process, and the targeted aminoacidic residue. In the brain, ubiquitination and two UBLs, namely sumoylation and the recently discovered neddylation orchestrate fundamental processes including synapse formation, maturation and plasticity, and their alteration is thought to contribute to the development of neurological disorders. Remarkably, emerging evidence suggests that these pathways tightly interplay to modulate the function of several proteins that possess pivotal roles for brain homeostasis as well as failure of this crosstalk seems to be implicated in the development of brain pathologies. In this review, we outline the role of ubiquitination, sumoylation, neddylation, and their functional interplay in synapse physiology and discuss their implication in the molecular pathogenesis of intellectual disability (ID), a neurodevelopmental disorder that is frequently comorbid with a wide spectrum of brain pathologies. Finally, we propose a few outlooks that might contribute to better understand the complexity of these regulatory systems in regard to neuronal circuit pathophysiology.
Collapse
Affiliation(s)
- Alessandra Folci
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano (MI), Italy
| | - Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve 9 Emanuele - Milan, Italy
| | - Matteo Fossati
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano (MI), Italy
- CNR-Institute of Neuroscience, via Manzoni 56, 20089, Rozzano (MI), Italy
| |
Collapse
|
21
|
Montes-Fernández MA, Pérez-Villegas EM, Garcia-Gonzalo FR, Pedrazza L, Rosa JL, de Toledo GA, Armengol JA. The HERC1 ubiquitin ligase regulates presynaptic membrane dynamics of central synapses. Sci Rep 2020; 10:12057. [PMID: 32694577 PMCID: PMC7374096 DOI: 10.1038/s41598-020-68970-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
HERC1 is a ubiquitin ligase protein, which, when mutated, induces several malformations and intellectual disability in humans. The animal model of HERC1 mutation is the mouse tambaleante characterized by: (1) overproduction of the protein; (2) cerebellar Purkinje cells death by autophagy; (3) dysregulation of autophagy in spinal cord motor neurons, and CA3 and neocortical pyramidal neurons; (4) impairment of associative learning, linked to altered spinogenesis and absence of LTP in the lateral amygdala; and, (5) motor impairment due to delayed action potential transmission, decrease synaptic transmission efficiency and altered myelination in the peripheral nervous system. To investigate the putative role of HERC1 in the presynaptic dynamics we have performed a series of experiments in cultured tambaleante hippocampal neurons by using transmission electron microscopy, FM1-43 destaining and immunocytochemistry. Our results show: (1) a decrease in the number of synaptic vesicles; (2) reduced active zones; (3) less clathrin immunoreactivity and less presynaptic endings over the hippocampal main dendritic trees; which contrast with (4) a greater number of endosomes and autophagosomes in the presynaptic endings of the tambaleante neurons relative to control ones. Altogether these results show an important role of HERC1 in the regulation of presynaptic membrane dynamics.
Collapse
Affiliation(s)
| | - Eva Mª Pérez-Villegas
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| | | | - Leonardo Pedrazza
- Department of Physiological Sciences, IDIBELL, University of Barcelona, Barcelona, Spain
| | - Jose Luis Rosa
- Department of Physiological Sciences, IDIBELL, University of Barcelona, Barcelona, Spain
| | | | - José A Armengol
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain.
| |
Collapse
|
22
|
García-Cano J, Martinez-Martinez A, Sala-Gaston J, Pedrazza L, Rosa JL. HERCing: Structural and Functional Relevance of the Large HERC Ubiquitin Ligases. Front Physiol 2019; 10:1014. [PMID: 31447701 PMCID: PMC6692442 DOI: 10.3389/fphys.2019.01014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Homologous to the E6AP carboxyl terminus (HECT) and regulator of chromosome condensation 1 (RCC1)-like domain-containing proteins (HERCs) belong to the superfamily of ubiquitin ligases. HERC proteins are divided into two subfamilies, Large and Small HERCs. Despite their similarities in terms of both structure and domains, these subfamilies are evolutionarily very distant and result from a convergence phenomenon rather than from a common origin. Large HERC genes, HERC1 and HERC2, are present in most metazoan taxa. They encode very large proteins (approximately 5,000 amino acid residues in a single polypeptide chain) that contain more than one RCC1-like domain as a structural characteristic. Accumulating evidences show that these unusually large proteins play key roles in a wide range of cellular functions which include neurodevelopment, DNA damage repair, and cell proliferation. To better understand the origin, evolution, and function of the Large HERC family, this minireview provides with an integrated overview of their structure and function and details their physiological implications. This study also highlights and discusses how dysregulation of these proteins is associated with severe human diseases such as neurological disorders and cancer.
Collapse
Affiliation(s)
- Jesús García-Cano
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Arturo Martinez-Martinez
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Joan Sala-Gaston
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Leonardo Pedrazza
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Jose Luis Rosa
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Rasika S, Passemard S, Verloes A, Gressens P, El Ghouzzi V. Golgipathies in Neurodevelopment: A New View of Old Defects. Dev Neurosci 2019; 40:396-416. [PMID: 30878996 DOI: 10.1159/000497035] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/16/2019] [Indexed: 11/19/2022] Open
Abstract
The Golgi apparatus (GA) is involved in a whole spectrum of activities, from lipid biosynthesis and membrane secretion to the posttranslational processing and trafficking of most proteins, the control of mitosis, cell polarity, migration and morphogenesis, and diverse processes such as apoptosis, autophagy, and the stress response. In keeping with its versatility, mutations in GA proteins lead to a number of different disorders, including syndromes with multisystem involvement. Intriguingly, however, > 40% of the GA-related genes known to be associated with disease affect the central or peripheral nervous system, highlighting the critical importance of the GA for neural function. We have previously proposed the term "Golgipathies" in relation to a group of disorders in which mutations in GA proteins or their molecular partners lead to consequences for brain development, in particular postnatal-onset microcephaly (POM), white-matter defects, and intellectual disability (ID). Here, taking into account the broader role of the GA in the nervous system, we refine and enlarge this emerging concept to include other disorders whose symptoms may be indicative of altered neurodevelopmental processes, from neurogenesis to neuronal migration and the secretory function critical for the maturation of postmitotic neurons and myelination.
Collapse
Affiliation(s)
- Sowmyalakshmi Rasika
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Sandrine Passemard
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Alain Verloes
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Pierre Gressens
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Vincent El Ghouzzi
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France,
| |
Collapse
|
24
|
A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development. Mol Psychiatry 2019; 24:1065-1078. [PMID: 29463886 PMCID: PMC6756287 DOI: 10.1038/s41380-018-0020-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/03/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022]
Abstract
Genetic investigations of people with impaired development of spoken language provide windows into key aspects of human biology. Over 15 years after FOXP2 was identified, most speech and language impairments remain unexplained at the molecular level. We sequenced whole genomes of nineteen unrelated individuals diagnosed with childhood apraxia of speech, a rare disorder enriched for causative mutations of large effect. Where DNA was available from unaffected parents, we discovered de novo mutations, implicating genes, including CHD3, SETD1A and WDR5. In other probands, we identified novel loss-of-function variants affecting KAT6A, SETBP1, ZFHX4, TNRC6B and MKL2, regulatory genes with links to neurodevelopment. Several of the new candidates interact with each other or with known speech-related genes. Moreover, they show significant clustering within a single co-expression module of genes highly expressed during early human brain development. This study highlights gene regulatory pathways in the developing brain that may contribute to acquisition of proficient speech.
Collapse
|
25
|
Calhoun JD, Carvill GL. Unravelling the genetic architecture of autosomal recessive epilepsy in the genomic era. J Neurogenet 2018; 32:295-312. [PMID: 30247086 DOI: 10.1080/01677063.2018.1513509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The technological advancement of next-generation sequencing has greatly accelerated the pace of variant discovery in epilepsy. Despite an initial focus on autosomal dominant epilepsy due to the tractable nature of variant discovery with trios under a de novo model, more and more variants are being reported in families with epilepsies consistent with autosomal recessive (AR) inheritance. In this review, we touch on the classical AR epilepsy variants such as the inborn errors of metabolism and malformations of cortical development. However, we also highlight recently reported genes that are being identified by next-generation sequencing approaches and online 'matchmaking' platforms. Syndromes mainly characterized by seizures and complex neurodevelopmental disorders comorbid with epilepsy are discussed as an example of the wide phenotypic spectrum associated with the AR epilepsies. We conclude with a foray into the future, from the application of whole-genome sequencing to identify elusive epilepsy variants, to the promise of precision medicine initiatives to provide novel targeted therapeutics specific to the individual based on their clinical genetic testing.
Collapse
Affiliation(s)
- Jeffrey D Calhoun
- a Department of Neurology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Gemma L Carvill
- a Department of Neurology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| |
Collapse
|
26
|
Schneider T, Martinez-Martinez A, Cubillos-Rojas M, Bartrons R, Ventura F, Rosa JL. The E3 ubiquitin ligase HERC1 controls the ERK signaling pathway targeting C-RAF for degradation. Oncotarget 2018; 9:31531-31548. [PMID: 30140388 PMCID: PMC6101136 DOI: 10.18632/oncotarget.25847] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 07/12/2018] [Indexed: 12/14/2022] Open
Abstract
The RAF/MEK/ERK cascade is a conserved intracellular signaling pathway that controls fundamental cellular processes including growth, proliferation, differentiation, survival and migration. Aberrant regulation of this signaling pathway has long been associated with human cancers. A major point of regulation of this pathway occurs at the level of the serine/threonine protein kinase C-RAF. Here, we show how the E3 ubiquitin ligase HERC1 regulates ERK signaling. HERC1 knockdown induced cellular proliferation, which is associated with an increase in ERK phosphorylation and in C-RAF protein levels. We demonstrate that overexpression of wild-type C-RAF is sufficient to increase ERK phosphorylation. Experiments with pharmacological inhibitors of RAF activity, or with interference RNA, show that the regulation of ERK phosphorylation by HERC1 is RAF-dependent. Immunoprecipitation, pull-down and confocal fluorescence microscopy experiments demonstrate an interaction between HERC1 and C-RAF proteins. Mechanistically, HERC1 controls C-RAF stability by regulating its polyubiquitylation in a lysine 48-linked chain. In vitro ubiquitylation assays indicate that C-RAF is a substrate of the E3 ubiquitin ligase HERC1. Altogether, we show how HERC1 can regulate cell proliferation through the activation of ERK signaling by a mechanism that affects C-RAF’s stability.
Collapse
Affiliation(s)
- Taiane Schneider
- Departament de Ciències Fisiològiques, IDIBELL, Campus Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Arturo Martinez-Martinez
- Departament de Ciències Fisiològiques, IDIBELL, Campus Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Monica Cubillos-Rojas
- Departament de Ciències Fisiològiques, IDIBELL, Campus Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ramon Bartrons
- Departament de Ciències Fisiològiques, IDIBELL, Campus Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, IDIBELL, Campus Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, IDIBELL, Campus Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
27
|
Bachiller S, Roca-Ceballos MA, García-Domínguez I, Pérez-Villegas EM, Martos-Carmona D, Pérez-Castro MÁ, Real LM, Rosa JL, Tabares L, Venero JL, Armengol JÁ, Carrión ÁM, Ruiz R. HERC1 Ubiquitin Ligase Is Required for Normal Axonal Myelination in the Peripheral Nervous System. Mol Neurobiol 2018; 55:8856-8868. [PMID: 29603094 DOI: 10.1007/s12035-018-1021-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/16/2018] [Indexed: 12/14/2022]
Abstract
A missense mutation in HERC1 provokes loss of cerebellar Purkinje cells, tremor, and unstable gait in tambaleante (tbl) mice. Recently, we have shown that before cerebellar degeneration takes place, the tbl mouse suffers from a reduction in the number of vesicles available for release at the neuromuscular junction (NMJ). The aim of the present work was to study to which extent the alteration in HERC1 may affect other cells in the nervous system and how this may influence the motor dysfunction observed in these mice. The functional analysis showed a consistent delay in the propagation of the action potential in mutant mice in comparison with control littermates. Morphological analyses of glial cells in motor axons revealed signs of compact myelin damage as tomacula and local hypermyelination foci. Moreover, we observed an alteration in non-myelinated terminal Schwann cells at the level of the NMJ. Additionally, we found a significant increment of phosphorylated Akt-2 in the sciatic nerve. Based on these findings, we propose a molecular model that could explain how mutated HERC1 in tbl mice affects the myelination process in the peripheral nervous system. Finally, since the myelin abnormalities found in tbl mice are histological hallmarks of neuropathic periphery diseases, tbl mutant mice could be considered as a new mouse model for this type of diseases.
Collapse
Affiliation(s)
- Sara Bachiller
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - María Angustias Roca-Ceballos
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Calle Profesor García González 2, 41012, Sevilla, Spain
| | - Irene García-Domínguez
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Calle Profesor García González 2, 41012, Sevilla, Spain
| | - Eva María Pérez-Villegas
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - David Martos-Carmona
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - Miguel Ángel Pérez-Castro
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Calle Profesor García González 2, 41012, Sevilla, Spain
| | - Luis Miguel Real
- Unit of Infectious Diseases and Microbiology, Valme University Hospital, Seville, Spain
| | - José Luis Rosa
- Departament de Ciències Fisiològiques II, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, E-08907, Barcelona, Spain
| | - Lucía Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Seville, Spain
| | - José Luis Venero
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Calle Profesor García González 2, 41012, Sevilla, Spain
| | - José Ángel Armengol
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - Ángel Manuel Carrión
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - Rocío Ruiz
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain. .,Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Calle Profesor García González 2, 41012, Sevilla, Spain.
| |
Collapse
|
28
|
Kamien B, Ronan A, Poke G, Sinnerbrink I, Baynam G, Ward M, Gibson WT, Dudding-Byth T, Scott RJ. A Clinical Review of Generalized Overgrowth Syndromes in the Era of Massively Parallel Sequencing. Mol Syndromol 2018; 9:70-82. [PMID: 29593474 DOI: 10.1159/000484532] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
The overgrowth syndromes are important to diagnose, not just for accurate genetic counseling, but also for knowledge surrounding cancer surveillance and prognosis. There has been a recent expansion in the number of genes associated with a mendelian overgrowth phenotype, so this review updates previous classifications of overgrowth syndromes. We also describe a clinical and molecular approach to the investigation of individuals presenting with overgrowth. This review aims to assist the clinical diagnosis of generalized overgrowth syndromes by outlining the salient features of well-known overgrowth syndromes alongside the many syndromes that have been discovered and classified more recently. We provide key clinical "handles" to aid clinical diagnosis and a list of genes to aid with panel design when using next generation sequencing, which we believe is frequently needed due to the overlapping phenotypic features seen between overgrowth syndromes.
Collapse
Affiliation(s)
- Benjamin Kamien
- Hunter Genetics, Perth, WA, Australia.,School of Medicine and Public Health, The University of Newcastle, Perth, WA, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
| | - Anne Ronan
- Hunter Genetics, Perth, WA, Australia.,School of Medicine and Public Health, The University of Newcastle, Perth, WA, Australia
| | - Gemma Poke
- Department of Clinical Genetics, Capital & Coast District Health Board, Wellington, New Zealand
| | - Ingrid Sinnerbrink
- Department of Clinical Genetics, Nepean Hospital, Perth, WA, Australia.,Nepean Clinical School, University of Sydney, Penrith, NSW, Australia
| | - Gareth Baynam
- Genetic Services of Western Australia, Newcastle, NSW, Australia.,Western Australian Register of Developmental Anomalies, Perth, WA, Australia.,Office of Population Health Genomics, Public Health Division, Department of Health, Government of Western Australia, Perth, WA, Australia.,School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia.,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Spatial Sciences, Department of Science and Engineering, Curtin University, Perth, WA, Australia
| | - Michelle Ward
- Genetic Services of Western Australia, Newcastle, NSW, Australia
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Tracy Dudding-Byth
- Hunter Genetics, Perth, WA, Australia.,GrowUpWell Priority Research Center, Perth, WA, Australia.,School of Medicine and Public Health, The University of Newcastle, Perth, WA, Australia.,Hunter Medical Research Institute, Perth, WA, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Molecular Pathology, Hunter Area Pathology Service, Perth, WA, Australia
| |
Collapse
|
29
|
Duplomb L, Droin N, Bouchot O, Thauvin-Robinet C, Bruel AL, Thevenon J, Callier P, Meurice G, Pata-Merci N, Loffroy R, Vandroux D, Costa RDA, Carmignac V, Solary E, Faivre L. A constitutive BCL2 down-regulation aggravates the phenotype of PKD1-mutant-induced polycystic kidney disease. Hum Mol Genet 2017; 26:4680-4688. [DOI: 10.1093/hmg/ddx349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/05/2017] [Indexed: 01/22/2023] Open
|
30
|
Unbiased Proteomics of Early Lewy Body Formation Model Implicates Active Microtubule Affinity-Regulating Kinases (MARKs) in Synucleinopathies. J Neurosci 2017; 37:5870-5884. [PMID: 28522732 DOI: 10.1523/jneurosci.2705-16.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/22/2017] [Accepted: 04/14/2017] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) patients progressively accumulate intracytoplasmic inclusions formed by misfolded α-synuclein known as Lewy bodies (LBs). LBs also contain other proteins that may or may not be relevant in the disease process. To identify proteins involved early in LB formation, we performed proteomic analysis of insoluble proteins in a primary neuron culture model of α-synuclein pathology. We identified proteins previously found in authentic LBs in PD as well as several novel proteins, including the microtubule affinity-regulating kinase 1 (MARK1), one of the most enriched proteins in this model of LB formation. Activated MARK proteins (MARKs) accumulated in LB-like inclusions in this cell-based model as well as in a mouse model of LB disease and in LBs of postmortem synucleinopathy brains. Inhibition of MARKs dramatically exacerbated α-synuclein pathology. These findings implicate MARKs early in synucleinopathy pathogenesis and as potential therapeutic drug targets.SIGNIFICANCE STATEMENT Neurodegenerative diseases are diagnosed definitively only in postmortem brains by the presence of key misfolded and aggregated disease proteins, but cellular processes leading to accumulation of these proteins have not been well elucidated. Parkinson's disease (PD) patients accumulate misfolded α-synuclein in LBs, the diagnostic signatures of PD. Here, unbiased mass spectrometry was used to identify the microtubule affinity-regulating kinase family (MARKs) as activated and insoluble in a neuronal culture PD model. Aberrant activation of MARKs was also found in a PD mouse model and in postmortem PD brains. Further, inhibition of MARKs led to increased pathological α-synuclein burden. We conclude that MARKs play a role in PD pathogenesis.
Collapse
|
31
|
Utine GE, Taşkıran EZ, Koşukcu C, Karaosmanoğlu B, Güleray N, Doğan ÖA, Kiper PÖŞ, Boduroğlu K, Alikaşifoğlu M. HERC1 mutations in idiopathic intellectual disability. Eur J Med Genet 2017; 60:279-283. [PMID: 28323226 DOI: 10.1016/j.ejmg.2017.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/02/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
HERC1 is a member of HERC protein family of ubiquitin ligases and is a negative regulator of the mTOR pathway. It is also a guanine nucleotide exchange factor for ARF and Rab family GTPases. Biallelic mutations in HERC1 were recently shown to cause a human phenotype with overgrowth and intellectual disability as main features. Herein we describe clinical features in another patient with homozygous novel mutation in HERC1. Moderate to severe intellectual disability, hypotonia, macrocephaly, tall stature, and facial features appear as main clinical features of the condition. Kyphoscoliosis and seizures frequently accompany and autistic features might be another feature as recent studies also implicate. HERC1 mutations should be considered in differential diagnosis of severe intellectual disability and behavioural problems, particularly in patients testing negative for fragile X and KANSL1 mutations.
Collapse
Affiliation(s)
- G Eda Utine
- Hacettepe University, Faculty of Medicine, Department of Pediatric Genetics, Ankara, Turkey.
| | - Ekim Z Taşkıran
- Hacettepe University, Faculty of Medicine, Department of Medical Genetics, Ankara, Turkey
| | - Can Koşukcu
- Hacettepe University, Faculty of Medicine, Department of Medical Genetics, Ankara, Turkey
| | - Beren Karaosmanoğlu
- Hacettepe University, Faculty of Medicine, Department of Medical Genetics, Ankara, Turkey
| | - Naz Güleray
- Hacettepe University, Faculty of Medicine, Department of Medical Genetics, Ankara, Turkey
| | - Özlem Akgün Doğan
- Hacettepe University, Faculty of Medicine, Department of Pediatric Genetics, Ankara, Turkey
| | - P Özlem Şimşek Kiper
- Hacettepe University, Faculty of Medicine, Department of Pediatric Genetics, Ankara, Turkey
| | - Koray Boduroğlu
- Hacettepe University, Faculty of Medicine, Department of Pediatric Genetics, Ankara, Turkey
| | - Mehmet Alikaşifoğlu
- Hacettepe University, Faculty of Medicine, Department of Medical Genetics, Ankara, Turkey
| |
Collapse
|
32
|
Pérez-Villegas EM, Negrete-Díaz JV, Porras-García ME, Ruiz R, Carrión AM, Rodríguez-Moreno A, Armengol JA. Mutation of the HERC 1 Ubiquitin Ligase Impairs Associative Learning in the Lateral Amygdala. Mol Neurobiol 2017; 55:1157-1168. [PMID: 28102468 DOI: 10.1007/s12035-016-0371-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022]
Abstract
Tambaleante (tbl/tbl) is a mutant mouse that carries a spontaneous Gly483Glu substitution in the HERC1 (HECT domain and RCC1 domain) E3 ubiquitin ligase protein (HERC1). The tbl/tbl mutant suffers an ataxic syndrome given the almost complete loss of cerebellar Purkinje cells during adult life. More recent analyses have identified alterations at neuromuscular junctions in these mice, as well as in other neurons of the central nervous system, such as motor neurons in the spinal cord, or pyramidal neurons in the hippocampal CA3 region and the neocortex. Accordingly, the effect of the tbl/tbl mutation apparently extends to other regions of the nervous system far from the cerebellum. As HERC1 mutations in humans have been correlated with intellectual impairment, we studied the effect of the tbl/tbl mutation on learning. Using a behavioral test, ex vivo electrophysiological recordings, immunohistochemistry, and Golgi method, we analyzed the associative learning in the lateral amygdala of the tbl/tbl mouse. The tbl/tbl mice perform worse than wild-type animals in the passive avoidance test, and histologically, the tbl/tbl mice have more immature forms of dendritic spines. In addition, LTP cannot be detected in these animals and their STP is dampened, as is their glutamatergic input to the lateral amygdala. Together, these data suggest that HERC1 is probably involved in regulating synaptic function in the amygdala. Indeed, these results indicate that the tbl/tbl mutation is a good model to analyze the effect of alterations to the ubiquitin-proteasome pathway on the synaptic mechanisms involved in learning and its defects.
Collapse
Affiliation(s)
- Eva Mª Pérez-Villegas
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Ctra Utrera km. 1, 41013, Seville, Spain
| | - José V Negrete-Díaz
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Ctra Utrera km. 1, 41013, Seville, Spain
- División de Ciencias de la Salud e Ingenierías, Universidad de Guanajuato, Campus Celaya-Salvatierra, Guanajuato, Mexico
| | - Mª Elena Porras-García
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Ctra Utrera km. 1, 41013, Seville, Spain
| | - Rocío Ruiz
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, 41012, Seville, Spain
| | - Angel M Carrión
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Ctra Utrera km. 1, 41013, Seville, Spain
| | - Antonio Rodríguez-Moreno
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Ctra Utrera km. 1, 41013, Seville, Spain
| | - José A Armengol
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Ctra Utrera km. 1, 41013, Seville, Spain.
| |
Collapse
|
33
|
Sánchez-Tena S, Cubillos-Rojas M, Schneider T, Rosa JL. Functional and pathological relevance of HERC family proteins: a decade later. Cell Mol Life Sci 2016; 73:1955-68. [PMID: 26801221 PMCID: PMC11108380 DOI: 10.1007/s00018-016-2139-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/22/2022]
Abstract
The HERC gene family encodes proteins with two characteristic domains in their sequence: the HECT domain and the RCC1-like domain (RLD). In humans, the HERC family comprises six members that can be divided into two groups based on their molecular mass and domain structure. Whereas large HERCs (HERC1 and HERC2) contain one HECT and more than one RLD, small HERCs (HERC3-6) possess single HECT and RLD domains. Accumulating evidence shows the HERC family proteins to be key components of a wide range of cellular functions, including neurodevelopment, DNA damage repair, cell growth and immune response. Considering the significant recent advances made regarding HERC functionality, an updated review summarizing the progress is greatly needed at 10 years since the last HERC review. We provide an integrated view of HERC function and go into detail about its implications for several human diseases such as cancer and neurological disorders.
Collapse
Affiliation(s)
- Susana Sánchez-Tena
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Monica Cubillos-Rojas
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Taiane Schneider
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| |
Collapse
|
34
|
Aggarwal S, Bhowmik AD, Ramprasad VL, Murugan S, Dalal A. A splice site mutation in HERC1 leads to syndromic intellectual disability with macrocephaly and facial dysmorphism: Further delineation of the phenotypic spectrum. Am J Med Genet A 2016; 170:1868-73. [PMID: 27108999 DOI: 10.1002/ajmg.a.37654] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/20/2016] [Indexed: 11/05/2022]
Abstract
We report on a sib pair of Indian origin presenting with intellectual disability, dysmorphism, and macrocephaly. Exome sequencing revealed a homozygous splice site HERC1 mutation in both probands. Functional analysis revealed use of an alternate splice site resulting in formation of a downstream stop codon and nonsense mediated decay. In the light of recent reports of HERC1 mutations in two families with a similar phenotypic presentation, this report reiterates the pathogenic nature and clinical consequences of HERC1 disruption. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shagun Aggarwal
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India.,Division of Diagnostics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Aneek Das Bhowmik
- Division of Diagnostics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | | | | | - Ashwin Dalal
- Division of Diagnostics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|