1
|
van Gisbergen MW, Rossel SVJ, Theunissen TEJ, Janssen R, Kaseke T, van der Smagt JJ, Steijlen PM, Vreeburg M, Gostynski AH, van Geel M. Expanding phenotypic insights of palmoplantar keratodermas based on novel FAM83G variants. Br J Dermatol 2025; 192:544-546. [PMID: 39449644 DOI: 10.1093/bjd/ljae419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
We report two unrelated patients with new pathogenic variants in the FAM83G gene, supporting the causal link to previously identified families with recessive hereditary palmoplantar keratoderma. Although structural changes of the hairs are a key feature of FAM83G-associated disease, a complete loss of the gene, seen in one of the patients, shows normal hair and does not support this part of the clinical phenotype.
Collapse
Affiliation(s)
- Marike W van Gisbergen
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands
- GROW - Research Institute for Oncology & Reproduction, Maastricht, the Netherlands
| | - S Vanya J Rossel
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands
- GROW - Research Institute for Oncology & Reproduction, Maastricht, the Netherlands
| | - Tom E J Theunissen
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands
- GROW - Research Institute for Oncology & Reproduction, Maastricht, the Netherlands
| | - Renske Janssen
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands
- GROW - Research Institute for Oncology & Reproduction, Maastricht, the Netherlands
| | - Tariraishe Kaseke
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands
- GROW - Research Institute for Oncology & Reproduction, Maastricht, the Netherlands
| | - Jasper J van der Smagt
- Department of Clinical Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Peter M Steijlen
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands
- GROW - Research Institute for Oncology & Reproduction, Maastricht, the Netherlands
| | - Maaike Vreeburg
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Antoni H Gostynski
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands
- GROW - Research Institute for Oncology & Reproduction, Maastricht, the Netherlands
| | - Michel van Geel
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands
- GROW - Research Institute for Oncology & Reproduction, Maastricht, the Netherlands
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
2
|
Tang J, Wang Z. Genome wide analysis of dexamethasone stimulated mineralization in human dental pulp cells by RNA sequencing. J Gene Med 2023; 25:e3466. [PMID: 36464925 DOI: 10.1002/jgm.3466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Human dental pulp cells (hDPCs) contain mesenchymal stem cells and are therefore indispensible for reparative dentin formation. Here, we present a pilot study of transcriptomic profiles of mineralized hDPCs isolated from sound human maxillary third molars. We observed altered gene expression of hDPCs between control (dexamethasone free) and experimental (dexamethasone 1 nm) groups. Differential expression analysis revealed up-regulation of several inflammation and mineralization-related genes in the experimental group. After a Gene Ontology analysis for predicting genes involved in biological process, cellular component and molecular function, we found enrichment of genes related to protein binding. Based on the results of Kyoto Encylopedia of Genes and Genomes pathway analysis, it is suggested up-regulated genes in mineralized hDPCs were mostly enriched in the mitogen-activated protein kinase (MAPK) signaling pathway, fluid shear stress and the atherosclerosis signaling pathway, etc. Importantly, Gene Set Enrichment Analysis revealed dexamethasone was positively related to the Janus kinase/signal transducer and activator of transcription, MAPK and Notch signaling pathway. Moreover, it was suggested that dexamethasone regulates signaling pathway in pluripotency of stem cells. Collectively, our work highlights transcriptome level gene regulation and intercellular interactions in mineralized hDPCs. The database produced in the present study paves the way for further investigations looking to explore genes that are involved in dental pulp cells mineralization.
Collapse
Affiliation(s)
- Jia Tang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| | - Zuolin Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Balmer P, Hariton WVJ, Sayar BS, Jagannathan V, Galichet A, Leeb T, Roosje P, Müller EJ. SUV39H2 epigenetic silencing controls fate conversion of epidermal stem and progenitor cells. J Cell Biol 2021; 220:211810. [PMID: 33604655 PMCID: PMC7898489 DOI: 10.1083/jcb.201908178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/04/2020] [Accepted: 01/21/2021] [Indexed: 12/31/2022] Open
Abstract
Epigenetic histone trimethylation on lysine 9 (H3K9me3) represents a major molecular signal for genome stability and gene silencing conserved from worms to man. However, the functional role of the H3K9 trimethylases SUV39H1/2 in mammalian tissue homeostasis remains largely unknown. Here, we use a spontaneous dog model with monogenic inheritance of a recessive SUV39H2 loss-of-function variant and impaired differentiation in the epidermis, a self-renewing tissue fueled by stem and progenitor cell proliferation and differentiation. Our results demonstrate that SUV39H2 maintains the stem and progenitor cell pool by restricting fate conversion through H3K9me3 repressive marks on gene promoters encoding components of the Wnt/p63/adhesion axis. When SUV39H2 function is lost, repression is relieved, and enhanced Wnt activity causes progenitor cells to prematurely exit the cell cycle, a process mimicked by pharmacological Wnt activation in primary canine, human, and mouse keratinocytes. As a consequence, the stem cell growth potential of cultured SUV39H2-deficient canine keratinocytes is exhausted while epidermal differentiation and genome stability are compromised. Collectively, our data identify SUV39H2 and potentially also SUV39H1 as major gatekeepers in the delicate balance of progenitor fate conversion through H3K9me3 rate-limiting road blocks in basal layer keratinocytes.
Collapse
Affiliation(s)
- Pierre Balmer
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - William V J Hariton
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Beyza S Sayar
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Arnaud Galichet
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Petra Roosje
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Eliane J Müller
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
A DSG1 Frameshift Variant in a Rottweiler Dog with Footpad Hyperkeratosis. Genes (Basel) 2020; 11:genes11040469. [PMID: 32344723 PMCID: PMC7230267 DOI: 10.3390/genes11040469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/30/2022] Open
Abstract
A single male Rottweiler dog with severe footpad hyperkeratosis starting at an age of eight weeks was investigated. The hyperkeratosis was initially restricted to the footpads. The footpad lesions caused severe discomfort to the dog and had to be trimmed under anesthesia every 8–10 weeks. Histologically, the epidermis showed papillated villous projections of dense keratin in the stratum corneum. Starting at eight months of age, the patient additionally developed signs consistent with atopic dermatitis and recurrent bacterial skin and ear infections. Crusted hyperkeratotic plaques developed at sites of infection. We sequenced the genome of the affected dog and compared the data to 655 control genomes. A search for variants in 32 candidate genes associated with human palmoplantar keratoderma (PPK) revealed a single private protein-changing variant in the affected dog. This was located in the DSG1 gene encoding desmoglein 1. Heterozygous monoallelic DSG1 variants have been reported in human patients with striate palmoplantar keratoderma I (SPPK1), while biallelic DSG1 loss of function variants in humans lead to a more pronounced condition termed severe dermatitis, multiple allergies, and metabolic wasting (SAM) syndrome. The identified canine variant, DSG1:c.2541_2545delGGGCT, leads to a frameshift and truncates about 20% of the coding sequence. The affected dog was homozygous for the mutant allele. The comparative data on desmoglein 1 function in humans suggest that the identified DSG1 variant may have caused the footpad hyperkeratosis and predisposition for allergies and skin infections in the affected dog.
Collapse
|
5
|
Affiliation(s)
- Kevin J. McElwee
- Centre for Skin Sciences University of Bradford Bradford UK
- Department of Dermatology and Skin Science University of British Columbia Vancouver BC Canada
| | - Antonella Tosti
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Leonard M. Miller School of Medicine Miami FL USA
| |
Collapse
|
6
|
Wu KZL, Jones RA, Tachie-Menson T, Macartney TJ, Wood NT, Varghese J, Gourlay R, Soares RF, Smith JC, Sapkota GP. Pathogenic FAM83G palmoplantar keratoderma mutations inhibit the PAWS1:CK1α association and attenuate Wnt signalling. Wellcome Open Res 2019. [PMID: 31656861 DOI: 10.12688/wellcomeopenres.15403.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background: Two recessive mutations in the FAM83G gene, causing A34E and R52P amino acid substitutions in the DUF1669 domain of the PAWS1 protein, are associated with palmoplantar keratoderma (PPK) in humans and dogs respectively. We have previously reported that PAWS1 associates with the Ser/Thr protein kinase CK1α through the DUF1669 domain to mediate canonical Wnt signalling. Methods: Co-immunoprecipitation was used to investigate possible changes to PAWS1 interactors caused by the mutations. We also compared the stability of wild-type and mutant PAWS1 in cycloheximide-treated cells. Effects on Wnt signalling were determined using the TOPflash luciferase reporter assay in U2OS cells expressing PAWS1 mutant proteins. The ability of PAWS1 to induce axis duplication in Xenopus embryos was also tested. Finally, we knocked-in the A34E mutation at the native gene locus and measured Wnt-induced AXIN2 gene expression by RT-qPCR. Results: We show that these PAWS1 A34E and PAWS1 R52P mutants fail to interact with CK1α but, like the wild-type protein, do interact with CD2AP and SMAD1. Like cells carrying a PAWS1 F296A mutation, which also abolishes CK1α binding, cells carrying the A34E and R52P mutants respond poorly to Wnt signalling to an extent resembling that observed in FAM83G gene knockout cells. Consistent with this observation, these mutants, in contrast to the wild-type protein, fail to induce axis duplication in Xenopus embryos. We also found that the A34E and R52P mutant proteins are less abundant than the native protein and appear to be less stable, both when overexpressed in FAM83G-knockout cells and when knocked-in at the native FAM83G locus. Ala 34 of PAWS1 is conserved in all FAM83 proteins and mutating the equivalent residue in FAM83H (A31E) also abolishes interaction with CK1 isoforms. Conclusions: We propose that mutations in PAWS1 cause PPK pathogenesis through disruption of the CK1α interaction and attenuation of Wnt signalling.
Collapse
Affiliation(s)
- Kevin Z L Wu
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | | | - Theresa Tachie-Menson
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Thomas J Macartney
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Nicola T Wood
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Joby Varghese
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Robert Gourlay
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Renata F Soares
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | | | - Gopal P Sapkota
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| |
Collapse
|
7
|
Plikus MV, Chuong CM. Understanding skin morphogenesis across developmental, regenerative and evolutionary levels. Exp Dermatol 2019; 28:327-331. [PMID: 30951234 DOI: 10.1111/exd.13932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, Irvine, California.,NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California.,Integrative Stem Cell Center, China Medical University, Taichung, Taiwan.,International Wound Repair and Regenerative Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
8
|
Wu KZL, Jones RA, Tachie-Menson T, Macartney TJ, Wood NT, Varghese J, Gourlay R, Soares RF, Smith JC, Sapkota GP. Pathogenic FAM83G palmoplantar keratoderma mutations inhibit the PAWS1:CK1α association and attenuate Wnt signalling. Wellcome Open Res 2019; 4:133. [PMID: 31656861 PMCID: PMC6798324 DOI: 10.12688/wellcomeopenres.15403.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 02/02/2023] Open
Abstract
Background: Two recessive mutations in the FAM83G gene, causing A34E and R52P amino acid substitutions in the DUF1669 domain of the PAWS1 protein, are associated with palmoplantar keratoderma (PPK) in humans and dogs respectively. We have previously reported that PAWS1 associates with the Ser/Thr protein kinase CK1α through the DUF1669 domain to mediate canonical Wnt signalling. Methods: Co-immunoprecipitation was used to investigate possible changes to PAWS1 interactors caused by the mutations. We also compared the stability of wild-type and mutant PAWS1 in cycloheximide-treated cells. Effects on Wnt signalling were determined using the TOPflash luciferase reporter assay in U2OS cells expressing PAWS1 mutant proteins. The ability of PAWS1 to induce axis duplication in Xenopus embryos was also tested. Finally, we knocked-in the A34E mutation at the native gene locus and measured Wnt-induced AXIN2 gene expression by RT-qPCR. Results: We show that these PAWS1 A34E and PAWS1 R52P mutants fail to interact with CK1α but, like the wild-type protein, do interact with CD2AP and SMAD1. Like cells carrying a PAWS1 F296A mutation, which also abolishes CK1α binding, cells carrying the A34E and R52P mutants respond poorly to Wnt signalling to an extent resembling that observed in FAM83G gene knockout cells. Consistent with this observation, these mutants, in contrast to the wild-type protein, fail to induce axis duplication in Xenopus embryos. We also found that the A34E and R52P mutant proteins are less abundant than the native protein and appear to be less stable, both when overexpressed in FAM83G-knockout cells and when knocked-in at the native FAM83G locus. Ala 34 of PAWS1 is conserved in all FAM83 proteins and mutating the equivalent residue in FAM83H (A31E) also abolishes interaction with CK1 isoforms. Conclusions: We propose that mutations in PAWS1 cause PPK pathogenesis through disruption of the CK1α interaction and attenuation of Wnt signalling.
Collapse
Affiliation(s)
- Kevin Z L Wu
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | | | - Theresa Tachie-Menson
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Thomas J Macartney
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Nicola T Wood
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Joby Varghese
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Robert Gourlay
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Renata F Soares
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | | | - Gopal P Sapkota
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| |
Collapse
|