1
|
Beigl TB, Paul A, Fellmeth TP, Nguyen D, Barber L, Weller S, Schäfer B, Gillissen BF, Aulitzky WE, Kopp HG, Rehm M, Andrews DW, Pluhackova K, Essmann F. BCL-2 and BOK regulate apoptosis by interaction of their C-terminal transmembrane domains. EMBO Rep 2024; 25:3896-3924. [PMID: 39048751 PMCID: PMC11387410 DOI: 10.1038/s44319-024-00206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The Bcl-2 family controls apoptosis by direct interactions of pro- and anti-apoptotic proteins. The principle mechanism is binding of the BH3 domain of pro-apoptotic proteins to the hydrophobic groove of anti-apoptotic siblings, which is therapeutically exploited by approved BH3-mimetic anti-cancer drugs. Evidence suggests that also the transmembrane domain (TMD) of Bcl-2 proteins can mediate Bcl-2 interactions. We developed a highly-specific split luciferase assay enabling the analysis of TMD interactions of pore-forming apoptosis effectors BAX, BAK, and BOK with anti-apoptotic Bcl-2 proteins in living cells. We confirm homotypic interaction of the BAX-TMD, but also newly identify interaction of the TMD of anti-apoptotic BCL-2 with the TMD of BOK, a peculiar pro-apoptotic Bcl-2 protein. BOK-TMD and BCL-2-TMD interact at the endoplasmic reticulum. Molecular dynamics simulations confirm dynamic BOK-TMD and BCL-2-TMD dimers and stable heterotetramers. Mutation of BCL-2-TMD at predicted key residues abolishes interaction with BOK-TMD. Also, inhibition of BOK-induced apoptosis by BCL-2 depends specifically on their TMDs. Thus, TMDs of Bcl-2 proteins are a relevant interaction interface for apoptosis regulation and provide a novel potential drug target.
Collapse
Affiliation(s)
- Tobias B Beigl
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Alexander Paul
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Thomas P Fellmeth
- Cluster of Excellence SimTech, University of Stuttgart, Stuttgart, Germany
| | - Dang Nguyen
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Lynn Barber
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Sandra Weller
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | | | - Bernhard F Gillissen
- Department of Hematology, Oncology, and Tumorimmunology, Charité University Medicine, Berlin, Germany
| | | | - Hans-Georg Kopp
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
- Robert-Bosch-Hospital, Stuttgart, Germany
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - David W Andrews
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | | | - Frank Essmann
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany.
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Nguyen D, Osterlund E, Kale J, Andrews DW. The C-terminal sequences of Bcl-2 family proteins mediate interactions that regulate cell death. Biochem J 2024; 481:903-922. [PMID: 38985308 PMCID: PMC11346437 DOI: 10.1042/bcj20210352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Programmed cell death via the both intrinsic and extrinsic pathways is regulated by interactions of the Bcl-2 family protein members that determine whether the cell commits to apoptosis via mitochondrial outer membrane permeabilization (MOMP). Recently the conserved C-terminal sequences (CTSs) that mediate localization of Bcl-2 family proteins to intracellular membranes, have been shown to have additional protein-protein binding functions that contribute to the functions of these proteins in regulating MOMP. Here we review the pivotal role of CTSs in Bcl-2 family interactions including: (1) homotypic interactions between the pro-apoptotic executioner proteins that cause MOMP, (2) heterotypic interactions between pro-apoptotic and anti-apoptotic proteins that prevent MOMP, and (3) heterotypic interactions between the pro-apoptotic executioner proteins and the pro-apoptotic direct activator proteins that promote MOMP.
Collapse
Affiliation(s)
- Dang Nguyen
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
- Biological Sciences Platform, Odette Cancer Program, Sunnybrook Research Institute, Toronto, Canada
| | - Elizabeth Osterlund
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Science, McMaster University, Hamilton, Canada
| | - Justin Kale
- Biological Sciences Platform, Odette Cancer Program, Sunnybrook Research Institute, Toronto, Canada
| | - David W. Andrews
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
- Biological Sciences Platform, Odette Cancer Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
King LE, Hohorst L, García-Sáez AJ. Expanding roles of BCL-2 proteins in apoptosis execution and beyond. J Cell Sci 2023; 136:jcs260790. [PMID: 37994778 DOI: 10.1242/jcs.260790] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Abstract
The proteins of the BCL-2 family are known as key regulators of apoptosis, with interactions between family members determining permeabilisation of the mitochondrial outer membrane (MOM) and subsequent cell death. However, the exact mechanism through which they form the apoptotic pore responsible for MOM permeabilisation (MOMP), the structure and specific components of this pore, and what roles BCL-2 proteins play outside of directly regulating MOMP are incompletely understood. Owing to the link between apoptosis dysregulation and disease, the BCL-2 proteins are important targets for drug development. With the development and clinical use of drugs targeting BCL-2 proteins showing success in multiple haematological malignancies, enhancing the efficacy of these drugs, or indeed developing novel drugs targeting BCL-2 proteins is of great interest to treat cancer patients who have developed resistance or who suffer other disease types. Here, we review our current understanding of the molecular mechanism of MOMP, with a particular focus on recently discovered roles of BCL-2 proteins in apoptosis and beyond, and discuss what implications these functions might have in both healthy tissues and disease.
Collapse
Affiliation(s)
- Louise E King
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne 50931, Germany
| | - Lisa Hohorst
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne 50931, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne 50931, Germany
| |
Collapse
|
4
|
Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat Rev Mol Cell Biol 2023; 24:732-748. [PMID: 37438560 DOI: 10.1038/s41580-023-00629-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
The proteins of the BCL-2 family are key regulators of mitochondrial apoptosis, acting as either promoters or inhibitors of cell death. The functional interplay and balance between the opposing BCL-2 family members control permeabilization of the outer mitochondrial membrane, leading to the release of activators of the caspase cascade into the cytosol and ultimately resulting in cell death. Despite considerable research, our knowledge about the mechanisms of the BCL-2 family of proteins remains insufficient, which complicates cell fate predictions and does not allow us to fully exploit these proteins as targets for drug discovery. Detailed understanding of the formation and molecular architecture of the apoptotic pore in the outer mitochondrial membrane remains a holy grail in the field, but new studies allow us to begin constructing a structural model of its arrangement. Recent literature has also revealed unexpected activities for several BCL-2 family members that challenge established concepts of how they regulate mitochondrial permeabilization. In this Review, we revisit the most important advances in the field and integrate them into a new structure-function-based classification of the BCL-2 family members that intends to provide a comprehensive model for BCL-2 action in apoptosis. We close this Review by discussing the potential of drugging the BCL-2 family in diseases characterized by aberrant apoptosis.
Collapse
Affiliation(s)
- Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Ana J Garcia-Saez
- Membrane Biophysics, Institute of Genetics, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Shalaby R, Diwan A, Flores-Romero H, Hertlein V, Garcia-Saez AJ. Visualization of BOK pores independent of BAX and BAK reveals a similar mechanism with differing regulation. Cell Death Differ 2023; 30:731-741. [PMID: 36289446 PMCID: PMC9607731 DOI: 10.1038/s41418-022-01078-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
BOK is a poorly understood member of the BCL-2 family of proteins that has been proposed to function as a pro-apoptotic, BAX-like effector. However, the molecular mechanism and structural properties of BOK pores remain enigmatic. Here, we show that the thermal stability and pore activity of BOK depends on the presence of its C-terminus as well as on the mitochondrial lipid cardiolipin. We directly visualized BOK pores in liposomes by electron microscopy, which appeared similar to those induced by BAX, in line with comparable oligomerization properties quantified by single molecule imaging. In addition, super-resolution STED imaging revealed that BOK organized into dots and ring-shaped assemblies in apoptotic mitochondria, also reminiscent of those found for BAX and BAK. Yet, unlike BAX and BAK, the apoptotic activity of BOK was limited by partial mitochondrial localization and was independent of and unaffected by other BCL-2 proteins. These results suggest that, while BOK activity is kept in check by subcellular localization instead of interaction with BCL-2 family members, the resulting pores are structurally similar to those of BAX and BAK.
Collapse
Affiliation(s)
- Raed Shalaby
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Arzoo Diwan
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Hector Flores-Romero
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Vanessa Hertlein
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Ana J Garcia-Saez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany.
| |
Collapse
|
6
|
Bonzerato CG, Wojcikiewicz RJH. Bok: real killer or bystander with non-apoptotic roles? Front Cell Dev Biol 2023; 11:1161910. [PMID: 37123400 PMCID: PMC10130511 DOI: 10.3389/fcell.2023.1161910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Bcl-2-related ovarian killer, Bok, was first labeled "pro-apoptotic" due to its ability to cause cell death when over-expressed. However, it has become apparent that this is not a good name, since Bok is widely expressed in tissues other than ovaries. Further, there is serious doubt as to whether Bok is a real "killer," due to disparities in the ability of over-expressed versus endogenous Bok to trigger apoptosis. In this brief review, we rationalize these disparities and argue that endogenous Bok is very different from the pro-apoptotic, mitochondrial outer membrane permeabilization mediators, Bak and Bax. Instead, Bok is a stable, endoplasmic reticulum-located protein bound to inositol 1,4,5 trisphosphate receptors. From this location, Bok plays a variety of roles, including regulation of endoplasmic reticulum/mitochondria contact sites and mitochondrial dynamics. Therefore, categorizing Bok as a "killer" may well be misleading and instead, endogenous Bok would better be considered an endoplasmic reticulum-located "bystander", with non-apoptotic roles.
Collapse
|
7
|
Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat Rev Mol Cell Biol 2022; 24:312-333. [PMID: 36543934 DOI: 10.1038/s41580-022-00564-w] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Regulated cell death (RCD) relies on activation and recruitment of pore-forming proteins (PFPs) that function as executioners of specific cell death pathways: apoptosis regulator BAX (BAX), BCL-2 homologous antagonist/killer (BAK) and BCL-2-related ovarian killer protein (BOK) for apoptosis, gasdermins (GSDMs) for pyroptosis and mixed lineage kinase domain-like protein (MLKL) for necroptosis. Inactive precursors of PFPs are converted into pore-forming entities through activation, membrane recruitment, membrane insertion and oligomerization. These mechanisms involve protein-protein and protein-lipid interactions, proteolytic processing and phosphorylation. In this Review, we discuss the structural rearrangements incurred by RCD-related PFPs and describe the mechanisms that manifest conversion from autoinhibited to membrane-embedded molecular states. We further discuss the formation and maturation of membrane pores formed by BAX/BAK/BOK, GSDMs and MLKL, leading to diverse pore architectures. Lastly, we highlight commonalities and differences of PFP mechanisms involving BAX/BAK/BOK, GSDMs and MLKL and conclude with a discussion on how, in a population of challenged cells, the coexistence of cell death modalities may have profound physiological and pathophysiological implications.
Collapse
|
8
|
Bonzerato CG, Keller KR, Schulman JJ, Gao X, Szczesniak LM, Wojcikiewicz RJH. Endogenous Bok is stable at the endoplasmic reticulum membrane and does not mediate proteasome inhibitor-induced apoptosis. Front Cell Dev Biol 2022; 10:1094302. [PMID: 36601536 PMCID: PMC9806350 DOI: 10.3389/fcell.2022.1094302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Controversy surrounds the cellular role of the Bcl-2 family protein Bok. On one hand, it has been shown that all endogenous Bok is bound to inositol 1,4,5-trisphosphate receptors (IP3Rs), while other data suggest that Bok can act as a pro-apoptotic mitochondrial outer membrane permeabilization mediator, apparently kept at very low and non-apoptotic levels by efficient proteasome-mediated degradation. Here we show that 1) endogenous Bok is expressed at readily-detectable levels in key cultured cells (e.g., mouse embryonic fibroblasts and HCT116 cells) and is not constitutively degraded by the proteasome, 2) proteasome inhibitor-induced apoptosis is not mediated by Bok, 3) endogenous Bok expression level is critically dependent on the presence of IP3Rs, 4) endogenous Bok is rapidly degraded by the ubiquitin-proteasome pathway in the absence of IP3Rs at the endoplasmic reticulum membrane, and 5) charged residues in the transmembrane region of Bok affect its stability, ability to interact with Mcl-1, and pro-apoptotic activity when over-expressed. Overall, these data indicate that endogenous Bok levels are not governed by proteasomal activity (except when IP3Rs are deleted) and that while endogenous Bok plays little or no role in apoptotic signaling, exogenous Bok can mediate apoptosis in a manner dependent on its transmembrane domain.
Collapse
|
9
|
Flores‐Romero H, Hohorst L, John M, Albert M, King LE, Beckmann L, Szabo T, Hertlein V, Luo X, Villunger A, Frenzel LP, Kashkar H, Garcia‐Saez AJ. BCL-2-family protein tBID can act as a BAX-like effector of apoptosis. EMBO J 2022; 41:e108690. [PMID: 34931711 PMCID: PMC8762556 DOI: 10.15252/embj.2021108690] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
During apoptosis, the BCL-2-family protein tBID promotes mitochondrial permeabilization by activating BAX and BAK and by blocking anti-apoptotic BCL-2 members. Here, we report that tBID can also mediate mitochondrial permeabilization by itself, resulting in release of cytochrome c and mitochondrial DNA, caspase activation and apoptosis even in absence of BAX and BAK. This previously unrecognized activity of tBID depends on helix 6, homologous to the pore-forming regions of BAX and BAK, and can be blocked by pro-survival BCL-2 proteins. Importantly, tBID-mediated mitochondrial permeabilization independent of BAX and BAK is physiologically relevant for SMAC release in the immune response against Shigella infection. Furthermore, it can be exploited to kill leukaemia cells with acquired venetoclax resistance due to lack of active BAX and BAK. Our findings define tBID as an effector of mitochondrial permeabilization in apoptosis and provide a new paradigm for BCL-2 proteins, with implications for anti-bacterial immunity and cancer therapy.
Collapse
Affiliation(s)
- Hector Flores‐Romero
- Institute for GeneticsUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Interfaculty Institute of BiochemistryEberhard‐Karls‐Universität TübingenTübingenGermany
| | - Lisa Hohorst
- Institute for GeneticsUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Malina John
- Interfaculty Institute of BiochemistryEberhard‐Karls‐Universität TübingenTübingenGermany
| | - Marie‐Christine Albert
- Institute for Molecular Immunology, and Center for Molecular Medicine Cologne (CMMC)Faculty of MedicineUniversity Hospital of CologneUniversity of CologneCologneGermany
| | - Louise E King
- Institute for GeneticsUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Laura Beckmann
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Department I of Internal MedicineUniversity Hospital of CologneCologneGermany
- Center of Integrated Oncology ABCDUniversity Hospital of CologneCologneGermany
| | - Tamas Szabo
- Division of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Vanessa Hertlein
- Interfaculty Institute of BiochemistryEberhard‐Karls‐Universität TübingenTübingenGermany
- Present address:
Children Cancer Research Institute (CCRI)ViennaAustria
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied DiseasesFred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaMEUSA
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Andreas Villunger
- Division of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
| | - Lukas P Frenzel
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Department I of Internal MedicineUniversity Hospital of CologneCologneGermany
- Center of Integrated Oncology ABCDUniversity Hospital of CologneCologneGermany
| | - Hamid Kashkar
- Institute for Molecular Immunology, and Center for Molecular Medicine Cologne (CMMC)Faculty of MedicineUniversity Hospital of CologneUniversity of CologneCologneGermany
| | - Ana J Garcia‐Saez
- Institute for GeneticsUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Interfaculty Institute of BiochemistryEberhard‐Karls‐Universität TübingenTübingenGermany
| |
Collapse
|
10
|
Walter F, D’Orsi B, Jagannathan A, Dussmann H, Prehn JHM. BOK controls ER proteostasis and physiological ER stress responses in neurons. Front Cell Dev Biol 2022; 10:915065. [PMID: 36060797 PMCID: PMC9434404 DOI: 10.3389/fcell.2022.915065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The Bcl-2 family proteins BAK and BAX control the crucial step of pore formation in the mitochondrial outer membrane during intrinsic apoptosis. Bcl-2-related ovarian killer (BOK) is a Bcl-2 family protein with a high sequence similarity to BAK and BAX. However, intrinsic apoptosis can proceed in the absence of BOK. Unlike BAK and BAX, BOK is primarily located on the endoplasmic reticulum (ER) and Golgi membranes, suggesting a role for BOK in regulating ER homeostasis. In this study, we report that BOK is required for a full ER stress response. Employing previously characterized fluorescent protein-based ER stress reporter cell systems, we show that BOK-deficient cells have an attenuated response to ER stress in all three signaling branches of the unfolded protein response. Fluo-4-based confocal Ca2+ imaging revealed that disruption of ER proteostasis in BOK-deficient cells was not linked to altered ER Ca2+ levels. Fluorescence recovery after photobleaching (FRAP) experiments using GRP78/BiP-eGFP demonstrated that GRP78 motility was significantly lower in BOK-deficient cells. This implied that less intraluminal GRP78 was freely available and more of the ER chaperone bound to unfolded proteins. Collectively, these experiments suggest a new role for BOK in the protection of ER proteostasis and cellular responses to ER stress.
Collapse
Affiliation(s)
- Franziska Walter
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Beatrice D’Orsi
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- Institute of Neuroscience, Italian National Research Council, Pisa, Italy
| | - Anagha Jagannathan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Heiko Dussmann
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Jochen H. M. Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- *Correspondence: Jochen H. M. Prehn,
| |
Collapse
|
11
|
Yang Y, Wu Y, Meng X, Wang Z, Younis M, Liu Y, Wang P, Huang X. SARS-CoV-2 membrane protein causes the mitochondrial apoptosis and pulmonary edema via targeting BOK. Cell Death Differ 2022; 29:1395-1408. [PMID: 35022571 PMCID: PMC8752586 DOI: 10.1038/s41418-022-00928-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Deaths caused by coronavirus disease 2019 (COVID-19) are largely due to the lungs edema resulting from the disruption of the lung alveolo-capillary barrier, induced by SARS-CoV-2-triggered pulmonary cell apoptosis. However, the molecular mechanism underlying the proapoptotic role of SARS-CoV-2 is still unclear. Here, we revealed that SARS-CoV-2 membrane (M) protein could induce lung epithelial cells mitochondrial apoptosis. Notably, M protein stabilized B-cell lymphoma 2 (BCL-2) ovarian killer (BOK) via inhibiting its ubiquitination and promoted BOK mitochondria translocation. The endodomain of M protein was required for its interaction with BOK. Knockout of BOK by CRISPR/Cas9 increased cellular resistance to M protein-induced apoptosis. BOK was rescued in the BOK-knockout cells, which led to apoptosis induced by M protein. M protein induced BOK to trigger apoptosis in the absence of BAX and BAK. Furthermore, the BH2 domain of BOK was required for interaction with M protein and proapoptosis. In vivo M protein recombinant lentivirus infection induced caspase-associated apoptosis and increased alveolar-capillary permeability in the mouse lungs. BOK knockdown improved the lung edema due to lentivirus-M protein infection. Overall, M protein activated the BOK-dependent apoptotic pathway and thus exacerbated SARS-CoV-2 associated lung injury in vivo. These findings proposed a proapoptotic role for M protein in SARS-CoV-2 pathogenesis, which may provide potential targets for COVID-19 treatments.
Collapse
Affiliation(s)
- Yang Yang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, 511518, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, 511518, China
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaojun Meng
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Zhiying Wang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Muhammad Younis
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Ye Liu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Peihui Wang
- Cheeloo College of Medicine, Advanced Medical Research Institute, Shandong University, Jinan, Shandong Province, 250012, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, 511518, China.
- Key Laboratory of Tropical Diseases Control, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
12
|
Dadsena S, King LE, García-Sáez AJ. Apoptosis regulation at the mitochondria membrane level. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183716. [PMID: 34343535 DOI: 10.1016/j.bbamem.2021.183716] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/05/2023]
Abstract
Mitochondrial outer membrane permeabilization (MOMP) is a key checkpoint in apoptosis that activates the caspase cascade and irreversibly causes the majority of cells to die. The proteins of the Bcl-2 family are master regulators of apoptosis that form a complex interaction network within the mitochondrial membrane that determines the induction of MOMP. This culminates in the activation of the effector members Bax and Bak, which permeabilize the mitochondrial outer membrane to mediate MOMP. Although the key role of Bax and Bak has been established, many questions remain unresolved regarding molecular mechanisms that control the apoptotic pore. In this review, we discuss the recent progress in our understanding of the regulation of Bax/Bak activity within the mitochondrial membrane.
Collapse
Affiliation(s)
- Shashank Dadsena
- Institute for Genetics, CECAD Research Center, University of Cologne, Germany
| | - Louise E King
- Institute for Genetics, CECAD Research Center, University of Cologne, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD Research Center, University of Cologne, Germany.
| |
Collapse
|
13
|
Pogmore JP, Uehling D, Andrews DW. Pharmacological Targeting of Executioner Proteins: Controlling Life and Death. J Med Chem 2021; 64:5276-5290. [PMID: 33939407 DOI: 10.1021/acs.jmedchem.0c02200] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Small-molecule mediated modulation of protein interactions of Bcl-2 (B-cell lymphoma-2) family proteins was clinically validated in 2015 when Venetoclax, a selective inhibitor of the antiapoptotic protein BCL-2, achieved breakthrough status designation by the FDA for treatment of lymphoid malignancies. Since then, substantial progress has been made in identifying inhibitors of other interactions of antiapoptosis proteins. However, targeting their pro-apoptotic counterparts, the "executioners" BAX, BAK, and BOK that both initiate and commit the cell to dying, has lagged behind. However, recent publications demonstrate that these proteins can be positively or negatively regulated using small molecule tool compounds. The results obtained with these molecules suggest that pharmaceutical regulation of apoptosis will have broad implications that extend beyond activating cell death in cancer. We review recent advances in identifying compounds and their utility in the exogenous control of life and death by regulating executioner proteins, with emphasis on the prototype BAX.
Collapse
Affiliation(s)
- Justin P Pogmore
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1J7, Canada.,Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 1M1, Canada
| | - David W Andrews
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1J7, Canada.,Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
14
|
Intrinsically Connected: Therapeutically Targeting the Cathepsin Proteases and the Bcl-2 Family of Protein Substrates as Co-regulators of Apoptosis. Int J Mol Sci 2021; 22:ijms22094669. [PMID: 33925117 PMCID: PMC8124540 DOI: 10.3390/ijms22094669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
Taken with the growing importance of cathepsin-mediated substrate proteolysis in tumor biology and progression, the focus and emphasis placed on therapeutic design and development is coming into fruition. Underpinning this approach is the invariable progression from the direction of fully characterizing cathepsin protease members and their substrate targets, towards targeting such an interaction with tangible therapeutics. The two groups of such substrates that have gained much attention over the years are the pro- and anti- apoptotic protein intermediates from the extrinsic and intrinsic signaling arms of the apoptosis pathway. As proteins that are central to determining cellular fate, some of them present themselves as very favorable candidates for therapeutic targeting. However, considering that both anti- and pro- apoptotic signaling intermediates have been reported to be downstream substrates for certain activated cathepsin proteases, therapeutic targeting approaches based on greater selectivity do need to be given greater consideration. Herein, we review the relationships shared by the cathepsin proteases and the Bcl-2 homology domain proteins, in the context of how the topical approach of adopting 'BH3-mimetics' can be explored further in modulating the relationship between the anti- and pro- apoptotic signaling intermediates from the intrinsic apoptosis pathway and their upstream cathepsin protease regulators. Based on this, we highlight important future considerations for improved therapeutic design.
Collapse
|
15
|
Mechanisms of mitochondrial cell death. Biochem Soc Trans 2021; 49:663-674. [PMID: 33704419 DOI: 10.1042/bst20200522] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/23/2022]
Abstract
Mitochondria are double-membrane bound organelles that not only provide energy for intracellular metabolism, but also play a key role in the regulation of cell death. Mitochondrial outer membrane permeabilization (MOMP), allowing the release of intermembrane space proteins like cytochrome c, is considered a point of no return in apoptosis. MOMP is controlled by the proteins of the B-cell lymphoma 2 (BCL-2) family, including pro-and anti-apoptotic members, whose balance determines the decision between cell death and survival. Other factors such as membrane lipid environment, membrane dynamics, and inter-organelle communications are also known to influence this process. MOMP and apoptosis have been acknowledged as immunologically silent. Remarkably, a growing body of evidence indicates that MOMP can engage in various pro-inflammatory signaling functions. In this mini-review, we discuss about our current knowledge on the mechanisms of mitochondrial apoptosis, as well as the involvement of mitochondria in other kinds of programmed cell death pathways.
Collapse
|
16
|
Li Q, Shi N, Cai C, Zhang M, He J, Tan Y, Fu W. The Role of Mitochondria in Pyroptosis. Front Cell Dev Biol 2021; 8:630771. [PMID: 33553170 PMCID: PMC7859326 DOI: 10.3389/fcell.2020.630771] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/28/2020] [Indexed: 11/25/2022] Open
Abstract
Pyroptosis is a recently discovered aspartic aspart-specific cysteine protease (Caspase-1/4/5/11) dependent mode of gene-regulated cell death cell death, which is represented by the rupture of cell membrane perforations and the production of proinflammatory mediaters like interleukin-18(IL-18) and interleukin-1β (IL-1β). Mitochondria also play an important role in apoptotic cell death. When it comes to apoptosis of mitochondrion, mitochondrial outer membrane permeabilization (MOMP) is commonly known to cause cell death. As a downstream pathological process of apoptotic signaling, MOMP participates in the leakage of cytochrome-c from mitochondrion to the cytosol and subsequently activate caspase proteases. Hence, targeting MOMP for the sake of manipulating cell death presents potential therapeutic effects among various types of diseases, such as autoimmune disorders, neurodegenerative diseases, and cancer. In this review, we highlights the roles and significance of mitochondria in pyroptosis to provide unexplored strategies that target the mitochondria to regulate cell death for clinical benefits.
Collapse
Affiliation(s)
- Qian Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nengxian Shi
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingming Zhang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing He
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weijun Fu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Morris DL, Johnson S, Bleck CKE, Lee DY, Tjandra N. Humanin selectively prevents the activation of pro-apoptotic protein BID by sequestering it into fibers. J Biol Chem 2020; 295:18226-18238. [PMID: 33106313 PMCID: PMC11843584 DOI: 10.1074/jbc.ra120.013023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/23/2020] [Indexed: 03/01/2024] Open
Abstract
Members of the B-cell lymphoma (BCL-2) protein family regulate mitochondrial outer membrane permeabilization (MOMP), a phenomenon in which mitochondria become porous and release death-propagating complexes during the early stages of apoptosis. Pro-apoptotic BCL-2 proteins oligomerize at the mitochondrial outer membrane during MOMP, inducing pore formation. Of current interest are endogenous factors that can inhibit pro-apoptotic BCL-2 mitochondrial outer membrane translocation and oligomerization. A mitochondrial-derived peptide, Humanin (HN), was reported being expressed from an alternate ORF in the mitochondrial genome and inhibiting apoptosis through interactions with the pro-apoptotic BCL-2 proteins. Specifically, it is known to complex with BAX and BID. We recently reported the fibrillation of HN and BAX into β-sheets. Here, we detail the fibrillation between HN and BID. These fibers were characterized using several spectroscopic techniques, protease fragmentation with mass analysis, and EM. Enhanced fibrillation rates were detected with rising temperatures or pH values and the presence of a detergent. BID fibers are similar to those produced using BAX; however, the structures differ in final conformations of the BCL-2 proteins. BID fibers display both types of secondary structure in the fiber, whereas BAX was converted entirely to β-sheets. The data show that two distinct segments of BID are incorporated into the fiber structure, whereas other portions of BID remain solvent-exposed and retain helical structure. Similar analyses show that anti-apoptotic BCL-xL does not form fibers with humanin. These results support a general mechanism of sequestration of pro-apoptotic BCL-2 proteins into fibers by HN to inhibit MOMP.
Collapse
Affiliation(s)
- Daniel L Morris
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Sabrina Johnson
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher K E Bleck
- Electron Microscopy Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Duck-Yeon Lee
- Biochemistry Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
18
|
The Mysteries around the BCL-2 Family Member BOK. Biomolecules 2020; 10:biom10121638. [PMID: 33291826 PMCID: PMC7762061 DOI: 10.3390/biom10121638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
BOK is an evolutionarily conserved BCL-2 family member that resembles the apoptotic effectors BAK and BAX in sequence and structure. Based on these similarities, BOK has traditionally been classified as a BAX-like pro-apoptotic protein. However, the mechanism of action and cellular functions of BOK remains controversial. While some studies propose that BOK could replace BAK and BAX to elicit apoptosis, others attribute to this protein an indirect way of apoptosis regulation. Adding to the debate, BOK has been associated with a plethora of non-apoptotic functions that makes this protein unpredictable when dictating cell fate. Here, we compile the current knowledge and open questions about this paradoxical protein with a special focus on its structural features as the key aspect to understand BOK biological functions.
Collapse
|
19
|
Naim S, Kaufmann T. The Multifaceted Roles of the BCL-2 Family Member BOK. Front Cell Dev Biol 2020; 8:574338. [PMID: 33043006 PMCID: PMC7523462 DOI: 10.3389/fcell.2020.574338] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
BCL-2-related ovarian killer (BOK) is-despite its identification over 20 years ago-an incompletely understood member of the BCL-2 family. BCL-2 family proteins are best known for their critical role in the regulation of mitochondrial outer membrane permeabilization during the intrinsic apoptotic pathway. Based on sequence and structural similarities to BAX and BAK, BOK is grouped with these "killers" within the effector subgroup of the family. However, the mechanism of how exactly BOK exerts apoptosis is not clear and controversially discussed. Furthermore, and in accordance with reports on several other BCL-2 family members, BOK seems to be involved in the regulation of a variety of other, "apoptosis-independent" cellular functions, including the unfolded protein response, cellular proliferation, metabolism, and autophagy. Of note, compared with other proapoptotic BCL-2 family members, BOK levels are often reduced in cancer by various means, and there is increasing evidence for BOK modulating tumorigenesis. In this review, we summarize and discuss apoptotic- and non-apoptotic-related functions of BOK, its regulation as well as its physiological and pathophysiological roles.
Collapse
Affiliation(s)
- Samara Naim
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Gökalp FD, Doğanlar O, Doğanlar ZB, Güner U. The genotoxic effects of mixture of aluminum, arsenic, cadmium, cobalt, and chromium on the gill tissue of adult zebrafish ( Danio rerio, Hamilton 1822). Drug Chem Toxicol 2020; 45:1158-1167. [PMID: 32847431 DOI: 10.1080/01480545.2020.1810260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study is to investigate the genotoxic effects of mixtures of five metals on zebrafish at two different concentrations; at the permissible maximum contamination levels in drinking water and irrigation waters. The drinking water limits are as follows: 300 µg/L for Aluminum (Al+3), 10 µg/L for Arsenic (As+3), 5 µg/L for Cadmium (Cd+2), 10 µg/L for Cobalt (Co+2), and 50 µg/L for Chromium (Cr+2). The irrigation water limits: 5000 µg/L for Al+3, 100 µg/L for As+3, 10 µg/L for Cd+2, 50 µg/L for Co+2, and 100 µg/L for Cr+2. The zebrafish underwent chronic exposure for periods of 5, 10, and 20 days. The gene expressions for mitochondrial superoxide dismutase (SOD2), stress-specific receptor protein NCCRP1, the heat shock proteins: Hsp9, Hsp14, Hsp60, Hsp70, DNA repair (XRCC1 and EXO1), and apoptosis (BOK and BAX) were evaluated. It was found that exposure to the low- and high-concentrations of the heavy metal mixtures caused cell stress, an increased expression of the antioxidant genes, and repair proteins. As the duration of exposure was increased, the cells progressed through the apoptotic pathway. This was more evident in the high-concentration exposure groups. The results demonstrated the necessity for a reevaluation of the maximum values of heavy metal and toxic element concentrations as prescribed by the Local Standing Rules of Water Pollution Control Regulation, as well as a reevaluation of the limitations of heavy metal mixture interactions with respect to ecological balance and environmental health.HighlightsThe purpose of this study was to investigate the genotoxic effects of a mixture of Aluminum, Arsenic, Cadmium, Cobalt, Chromium on zebrafish, within drinking water, and irrigation water limits determining the concentration.The zebrafish were exposed to two different concentrations of each metal mixture for 5-, 10-, and 20-day periods. Following exposure, gene expressions of the zebrafish's gill tissues were examined.As a result of the exposure to the metal mixtures, the following occurred: cell stress, increased antioxidant gene activity, and attempts to protect cell viability. However, the cells progressed through the apoptotic pathway after prolonged exposure.The results demonstrated the necessity for a reevaluation of the maximum limits of metal and toxic element concentrations as stated in the Standing Rules of Water Pollution Control Regulation.
Collapse
Affiliation(s)
- Fulya Dilek Gökalp
- Science Faculty, Department of Biology, Trakya University, Edirne, Turkey
| | - Oğuzhan Doğanlar
- Medicine Faculty, Department of Medicine Biology, Trakya University, Edirne, Turkey
| | - Zeynep Banu Doğanlar
- Medicine Faculty, Department of Medicine Biology, Trakya University, Edirne, Turkey
| | - Utku Güner
- Science Faculty, Department of Biology, Trakya University, Edirne, Turkey
| |
Collapse
|
21
|
Moldoveanu T, Czabotar PE. BAX, BAK, and BOK: A Coming of Age for the BCL-2 Family Effector Proteins. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036319. [PMID: 31570337 DOI: 10.1101/cshperspect.a036319] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The BCL-2 family of proteins control a key checkpoint in apoptosis, that of mitochondrial outer membrane permeabilization or, simply, mitochondrial poration. The family consists of three subgroups: BH3-only initiators that respond to apoptotic stimuli; antiapoptotic guardians that protect against cell death; and the membrane permeabilizing effectors BAX, BAK, and BOK. On activation, effector proteins are converted from inert monomers into membrane permeabilizing oligomers. For many years, this process has been poorly understood at the molecular level, but a number of recent advances have provided important insights. We review the regulation of these effectors, their activation, subsequent conformational changes, and the ensuing oligomerization events that enable mitochondrial poration, which initiates apoptosis through release of key signaling factors such as cytochrome c We highlight the mysteries that remain in understanding these important proteins in an endeavor to provide a comprehensive picture of where the field currently sits and where it is moving toward.
Collapse
Affiliation(s)
- Tudor Moldoveanu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.,Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis Tennessee 38105, USA
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, Victoria 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
22
|
Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 2020; 21:85-100. [PMID: 31636403 DOI: 10.1038/s41580-019-0173-8] [Citation(s) in RCA: 1417] [Impact Index Per Article: 283.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2019] [Indexed: 12/12/2022]
Abstract
Through their many and varied metabolic functions, mitochondria power life. Paradoxically, mitochondria also have a central role in apoptotic cell death. Upon induction of mitochondrial apoptosis, mitochondrial outer membrane permeabilization (MOMP) usually commits a cell to die. Apoptotic signalling downstream of MOMP involves cytochrome c release from mitochondria and subsequent caspase activation. As such, targeting MOMP in order to manipulate cell death holds tremendous therapeutic potential across different diseases, including neurodegenerative diseases, autoimmune disorders and cancer. In this Review, we discuss new insights into how mitochondria regulate apoptotic cell death. Surprisingly, recent data demonstrate that besides eliciting caspase activation, MOMP engages various pro-inflammatory signalling functions. As we highlight, together with new findings demonstrating cell survival following MOMP, this pro-inflammatory role suggests that mitochondria-derived signalling downstream of pro-apoptotic cues may also have non-lethal functions. Finally, we discuss the importance and roles of mitochondria in other forms of regulated cell death, including necroptosis, ferroptosis and pyroptosis. Collectively, these new findings offer exciting, unexplored opportunities to target mitochondrial regulation of cell death for clinical benefit.
Collapse
Affiliation(s)
- Florian J Bock
- Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
23
|
Zheng JH, Grace CR, Guibao CD, McNamara DE, Llambi F, Wang YM, Chen T, Moldoveanu T. Intrinsic Instability of BOK Enables Membrane Permeabilization in Apoptosis. Cell Rep 2019; 23:2083-2094.e6. [PMID: 29768206 PMCID: PMC6500462 DOI: 10.1016/j.celrep.2018.04.060] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/21/2018] [Accepted: 04/14/2018] [Indexed: 11/26/2022] Open
Abstract
The effector B cell lymphoma-2 (BCL-2) protein BCL-2 ovarian killer (BOK) induces mitochondrial outer membrane permeabilization (MOMP) to initiate apoptosis upon inhibition of the proteasome. How BOK mediates MOMP is mechanistically unknown. The NMR structure of the BCL-2 core of human BOK reveals a conserved architecture with an atypical hydrophobic groove that undergoes conformational exchange. Remarkably, the BCL-2 core of BOK spontaneously associates with purified mitochondria to release cytochrome c in MOMP assays. Alanine substitution of a unique glycine in helix α1 stabilizes BOK, as shown by thermal shift and urea denaturation analyses, and significantly inhibits MOMP, liposome permeabilization, and cell death. Activated BID does not activate WT BOK or the stabilized alanine mutant to promote cell death. We propose that BOK-mediated membrane permeabilization is governed in part by its unique metastability of the hydrophobic groove and helix α1 and not through activation by BH3 ligands.
Collapse
Affiliation(s)
- Janet H Zheng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christy R Grace
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cristina D Guibao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dan E McNamara
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Yue-Ming Wang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tudor Moldoveanu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
24
|
Zhang F, Ren L, Zhou S, Duan P, Xue J, Chen H, Feng Y, Yue X, Yuan P, Liu Q, Yang P, Lei Y. Role of B-Cell Lymphoma 2 Ovarian Killer (BOK) in Acute Toxicity of Human Lung Epithelial Cells Caused by Cadmium Chloride. Med Sci Monit 2019; 25:5356-5368. [PMID: 31323016 PMCID: PMC6660808 DOI: 10.12659/msm.913706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background B-cell lymphoma 2 (BCL-2) ovarian killer (BOK) is a Bcl-2 family member with sequence homology to pro-apoptotic BAX and BAK, but its physiological and pathological roles remain largely unclear. Exposure of cells to cadmium may cause DNA damage, decrease DNA repair capacity, and increase genomic instability. Material/Methods The present study investigated the effects of BOK on the toxicity of cadmium chloride (CdCl2) to human bronchial epithelial (16HBE) cells. We constructed BOK over-expressing (16HBE-BOK) cells and BOK knockdown (16HBE-shBOK) cells using the BOK-ORF plasmid and BOK-siRNA. qRT-PCR for BOK mRNA expression. We used Trypan blue exclusion assay for cell growth, MTT colorimetric assays for cells inhibition rate, and Comet assays for detecting damaged DNA. Results CdCl2, at various concentrations and exposure times, increased BOK mRNA. 16HBE-BOK cells (BOK over-expressing) proliferated more than 16HBE cells after 72 h; 16HBE-shBOK (BOK knockdown) cells proliferated less. In addition, BOK deficiency enhanced cell death induced by CdCl2. Similarly, CdCl2- and H2O2-induced DNA damage was greater in BOK-deficient cells. Conclusions These findings support a role for BOK in CdCl2-induced DNA damage and cell death.
Collapse
Affiliation(s)
- Fang Zhang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Liang Ren
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Shanshan Zhou
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Peng Duan
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Junchao Xue
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Haiqin Chen
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yufeng Feng
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Xiaoxuan Yue
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Piaofan Yuan
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Qizhan Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Ping Yang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yixiong Lei
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
25
|
Bok regulates mitochondrial fusion and morphology. Cell Death Differ 2019; 26:2682-2694. [PMID: 30976095 DOI: 10.1038/s41418-019-0327-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Bok (Bcl-2-related ovarian killer) is a member of the Bcl-2 protein family that governs the intrinsic apoptosis pathway, but the cellular role that Bok plays is controversial. Remarkably, endogenous Bok is constitutively bound to inositol 1,4,5-trisphosphate receptors (IP3Rs) and is stabilized by this interaction. Here we report that despite the strong association with IP3Rs, deletion of Bok expression by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease)-mediated gene editing does not alter calcium mobilization via IP3Rs or calcium influx into the mitochondria. Rather, Bok deletion significantly reduces mitochondrial fusion rate, resulting in mitochondrial fragmentation. This phenotype is reversed by exogenous wild-type Bok and by an IP3R binding-deficient Bok mutant, and may result from a decrease in mitochondrial motility. Bok deletion also enhances mitochondrial spare respiratory capacity and membrane potential. Finally, Bok does not play a major role in apoptotic signaling, since Bok deletion does not alter responsiveness to various apoptotic stimuli. Overall, despite binding to IP3Rs, Bok does not alter IP3R-mediated Ca2+ signaling, but is required to maintain normal mitochondrial fusion, morphology, and bioenergetics.
Collapse
|
26
|
Ke FFS, Vanyai HK, Cowan AD, Delbridge ARD, Whitehead L, Grabow S, Czabotar PE, Voss AK, Strasser A. Embryogenesis and Adult Life in the Absence of Intrinsic Apoptosis Effectors BAX, BAK, and BOK. Cell 2019; 173:1217-1230.e17. [PMID: 29775594 DOI: 10.1016/j.cell.2018.04.036] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/31/2018] [Accepted: 04/25/2018] [Indexed: 12/01/2022]
Abstract
Intrinsic apoptosis, reliant on BAX and BAK, has been postulated to be fundamental for morphogenesis, but its precise contribution to this process has not been fully explored in mammals. Our structural analysis of BOK suggests close resemblance to BAX and BAK structures. Notably, Bok-/-Bax-/-Bak-/- animals exhibited more severe defects and died earlier than Bax-/-Bak-/- mice, implying that BOK has overlapping roles with BAX and BAK during developmental cell death. By analyzing Bok-/-Bax-/-Bak-/- triple-knockout mice whose cells are incapable of undergoing intrinsic apoptosis, we identified tissues that formed well without this process. We provide evidence that necroptosis, pyroptosis, or autophagy does not substantially substitute for the loss of apoptosis. Albeit very rare, unexpected attainment of adult Bok-/-Bax-/-Bak-/- mice suggests that morphogenesis can proceed entirely without apoptosis mediated by these proteins and possibly without cell death in general.
Collapse
Affiliation(s)
- Francine F S Ke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia.
| | - Hannah K Vanyai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Angus D Cowan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Alex R D Delbridge
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Stephanie Grabow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia.
| |
Collapse
|
27
|
Fernandez-Marrero Y, Bachmann D, Lauber E, Kaufmann T. Negative Regulation of BOK Expression by Recruitment of TRIM28 to Regulatory Elements in Its 3' Untranslated Region. iScience 2018; 9:461-474. [PMID: 30471638 PMCID: PMC6260365 DOI: 10.1016/j.isci.2018.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/23/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023] Open
Abstract
BCL-2-related ovarian killer (BOK) is a pro-apoptotic BAX-like member of the BCL-2 family with suggested tumor suppressor activity. The molecular mechanisms regulating BOK expression are poorly understood and fail to explain a frequent lack of concordance between protein and transcript levels. Here, we describe a potent post-transcriptional mechanism that negatively regulates BOK expression mediated by conserved (AU/U)-rich elements within its 3’ UTR. Using proteomics approaches we identified TRIM28 as a key component associating with U-rich elements in the human BOK 3’ UTR, resulting in a dramatic reduction of BOK expression. TRIM28 is overexpressed in several cancers, correlating with poor patient outcome, whereas the BOK locus is frequently deleted or its expression downregulated in human cancers. Data mining indicated that, for certain cancers, high TRIM28 and low BOK expression are significantly correlated in the stratum of patients with the worst survival, suggesting that this mechanism might be of potential therapeutic value. BOK mRNA is destabilized by AU-(mouse) or U-rich (human) elements within its 3’ UTR Mutation of these ARE/URE sequences results in increased BOK RNA and protein levels TRIM28 represses BOK expression by associating with the UREs of human BOK mRNA Inverse correlation of TRIM28 and BOK levels predicts survival in selected cancers
Collapse
Affiliation(s)
- Yuniel Fernandez-Marrero
- Institute of Pharmacology, Faculty of Medicine, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland
| | - Daniel Bachmann
- Institute of Pharmacology, Faculty of Medicine, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland
| | - Emanuel Lauber
- Institute of Pharmacology, Faculty of Medicine, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, Faculty of Medicine, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland.
| |
Collapse
|
28
|
Topology of active, membrane-embedded Bax in the context of a toroidal pore. Cell Death Differ 2018; 25:1717-1731. [PMID: 30185826 DOI: 10.1038/s41418-018-0184-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/20/2018] [Accepted: 05/21/2018] [Indexed: 01/18/2023] Open
Abstract
Bax is a Bcl-2 protein critical for apoptosis induction. In healthy cells, Bax is mostly a monomeric, cytosolic protein, while upon apoptosis initiation it inserts into the outer mitochondrial membrane, oligomerizes, and forms pores that release proapoptotic factors like Cytochrome c into the cytosol. The structures of active Bax and its homolog Bak are only partially understood and the topology of the proteins with respect to the membrane bilayer is controversially described in the literature. Here, we systematically review and examine the protein-membrane, protein-water, and protein-protein contacts of the nine helices of active Bax and Bak, and add a new set of topology data obtained by fluorescence and EPR methods. We conclude based on the consistent part of the datasets that the core/dimerization domain of Bax (Bak) is water exposed with only helices 4 and 5 in membrane contact, whereas the piercing/latch domain is in peripheral membrane contact, with helix 9 being transmembrane. Among the available structural models, those considering the dimerization/core domain at the rim of a toroidal pore are the most plausible to describe the active state of the proteins, although the structural flexibility of the piercing/latch domain does not allow unambiguous discrimination between the existing models.
Collapse
|
29
|
Stehle D, Grimm M, Einsele-Scholz S, Ladwig F, Johänning J, Fischer G, Gillissen B, Schulze-Osthoff K, Essmann F. Contribution of BH3-domain and Transmembrane-domain to the Activity and Interaction of the Pore-forming Bcl-2 Proteins Bok, Bak, and Bax. Sci Rep 2018; 8:12434. [PMID: 30127460 PMCID: PMC6102298 DOI: 10.1038/s41598-018-30603-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
Central to intrinsic apoptosis signaling is the release of cytochrome c from mitochondria, which depends on the pro-apoptotic effector proteins Bax, Bak or Bok. These pore-forming effector proteins share four Bcl-2 homology (BH) domains, a functionally essential and conserved sequence of hydrophobic amino acids in their BH3-domain and a C-terminal transmembrane-domain whose specific function remains rather unknown. To elucidate the molecular basis of Bok-mediated apoptosis we analyzed apoptosis induction by transmembrane-domain deficient BokΔTM compared to the respective Bax and Bak proteins and proteins in which the first leucine in the BH3-stretch was mutated to glutamic acid. We show that deletion of the C-terminal transmembrane-domain reduces the pro-apoptotic function of each protein. Mutation of the first leucine in the BH3-domain (L78E) blocks activity of Bak, while mutation of the homologue residues in Bax or Bok (L63E and L70E respectively) does not affect apoptosis induction. Unexpectedly, combined mutation of the BH3-domain and deletion of the transmembrane-domain enhances the pro-apoptotic activity of Bok(L70E)ΔTM by abolishing the interaction with anti-apoptotic proteins, especially the primary Bok-inhibitory protein Mcl-1. These results therefore suggest a specific contribution of the transmembrane-domain to the pro-apoptotic function and interaction of Bok.
Collapse
Affiliation(s)
- Daniel Stehle
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tübingen, 72076, Tübingen, Germany
| | - Melanie Grimm
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tübingen, 72076, Tübingen, Germany
| | - Stephanie Einsele-Scholz
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tübingen, 72076, Tübingen, Germany
| | - Friederike Ladwig
- Department of Plant Physiology, Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Janina Johänning
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology (IKP), 70376, Stuttgart, Germany
| | - Gerd Fischer
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tübingen, 72076, Tübingen, Germany
| | - Bernhard Gillissen
- Clinical and Molecular Oncology, University Medical Center Charité, 13125, Berlin, Germany
| | - Klaus Schulze-Osthoff
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tübingen, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Frank Essmann
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
30
|
Moldoveanu T, Zheng JH. Metastability, an emerging concept governing BOK-mediated apoptosis initiation. Oncotarget 2018; 9:30944-30945. [PMID: 30123418 PMCID: PMC6089559 DOI: 10.18632/oncotarget.25801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 07/12/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- Tudor Moldoveanu
- Tudor Moldoveanu: Departments of Structural Biology & Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Janet H Zheng
- Tudor Moldoveanu: Departments of Structural Biology & Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
31
|
Rabachini T, Fernandez-Marrero Y, Montani M, Loforese G, Sladky V, He Z, Bachmann D, Wicki S, Villunger A, Stroka D, Kaufmann T. BOK promotes chemical-induced hepatocarcinogenesis in mice. Cell Death Differ 2018; 25:708-720. [PMID: 29229991 PMCID: PMC5864194 DOI: 10.1038/s41418-017-0008-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/27/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022] Open
Abstract
BCL-2-related ovarian killer (BOK) is a conserved and widely expressed BCL-2 family member with sequence homology to pro-apoptotic BAX and BAK, but with poorly understood pathophysiological function. Since several members of the BCL-2 family are critically involved in the regulation of hepatocellular apoptosis and carcinogenesis we aimed to establish whether loss of BOK affects diethylnitrosamine (DEN)-induced hepatocarcinogenesis in mice. Short-term exposure to DEN lead to upregulation of BOK mRNA and protein in the liver. Of note, induction of CHOP and the pro-apoptotic BH3-only proteins PUMA and BIM by DEN was strongly reduced in the absence of BOK. Accordingly, Bok -/- mice were significantly protected from DEN-induced acute hepatocellular apoptosis and associated inflammation. As a consequence, Bok -/- animals were partially protected against chemical-induced hepatocarcinogenesis showing fewer and, surprisingly, also smaller tumors than WT controls. Gene expression profiling revealed that downregulation of BOK results in upregulation of genes involved in cell cycle arrest. Bok -/- hepatocellular carcinoma (HCC) displayed higher expression levels of the cyclin kinase inhibitors p19INK4d and p21cip1. Accordingly, hepatocellular carcinoma in Bok -/- animals, BOK-deficient human HCC cell lines, as well as non-transformed cells, showed significantly less proliferation than BOK-proficient controls. We conclude that BOK is induced by DEN, contributes to DEN-induced hepatocellular apoptosis and resulting hepatocarcinogenesis. In line with its previously reported predominant localization at the endoplasmic reticulum, our findings support a role of BOK that links the cell cycle and cell death machineries upstream of mitochondrial damage.
Collapse
Affiliation(s)
- Tatiana Rabachini
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010, Bern, Switzerland
| | | | - Matteo Montani
- Institute of Pathology, University of Bern, Murtenstrasse 31, CH-3008, Bern, Switzerland
| | - Giulio Loforese
- Department of Clinical Research, Visceral and Transplantation Surgery, University of Bern, Murtenstrasse 35, CH-3008, Bern, Switzerland
| | - Valentina Sladky
- Division of Developmental Immunology, BIOCENTER, Medical University of Innsbruck, Innrain 80/II, 6020, Innsbruck, Austria
| | - Zhaoyue He
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010, Bern, Switzerland
| | - Daniel Bachmann
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010, Bern, Switzerland
| | - Simone Wicki
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010, Bern, Switzerland
| | - Andreas Villunger
- Division of Developmental Immunology, BIOCENTER, Medical University of Innsbruck, Innrain 80/II, 6020, Innsbruck, Austria
- Tyrolean Cancer Research Institute, Innrain 66, 6020, Innsbruck, Austria
| | - Deborah Stroka
- Department of Clinical Research, Visceral and Transplantation Surgery, University of Bern, Murtenstrasse 35, CH-3008, Bern, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010, Bern, Switzerland.
| |
Collapse
|
32
|
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 2018; 25:486-541. [PMID: 29362479 PMCID: PMC5864239 DOI: 10.1038/s41418-017-0012-4] [Citation(s) in RCA: 4190] [Impact Index Per Article: 598.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Paris Descartes/Paris V University, Paris, France.
| | - Ilio Vitale
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institute of Immunology, Kiel University, Kiel, Germany
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Ivano Amelio
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Alexey V Antonov
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Francesca Bernassola
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Katiuscia Bianchi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Center for Biological Investigation (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Catherine Brenner
- INSERM U1180, Châtenay Malabry, France
- University of Paris Sud/Paris Saclay, Orsay, France
| | - Michelangelo Campanella
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- University College London Consortium for Mitochondrial Research, London, UK
| | - Eleonora Candi
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - Francesco Cecconi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francis K-M Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Aaron Ciechanover
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gerald M Cohen
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Juan R Cubillos-Ruiz
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vincenzo D'Angiolella
- Cancer Research UK and Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vincenzo De Laurenzi
- Department of Medical, Oral and Biotechnological Sciences, CeSI-MetUniversity of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Nicola Di Daniele
- Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Colin S Duckett
- Baylor Scott & White Research Institute, Baylor College of Medicine, Dallas, TX, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - John W Elrod
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University School of Medicine, Philadelphia, PA, USA
| | - Gian Maria Fimia
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, Tübingen University, Tübingen, Germany
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM U1231 "Lipides Nutrition Cancer", Dijon, France
- Faculty of Medicine, University of Burgundy France Comté, Dijon, France
- Cancer Centre Georges François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pierre Golstein
- Immunology Center of Marseille-Luminy, Aix Marseille University, Marseille, France
| | - Eyal Gottlieb
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Hinrich Gronemeyer
- Team labeled "Ligue Contre le Cancer", Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR 7104, Illkirch, France
- INSERM U964, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Gyorgy Hajnoczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Isaac S Harris
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bertrand Joseph
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Philipp J Jost
- III Medical Department for Hematology and Oncology, Technical University Munich, Munich, Germany
| | - Philippe P Juin
- Team 8 "Stress adaptation and tumor escape", CRCINA-INSERM U1232, Nantes, France
- University of Nantes, Nantes, France
- University of Angers, Angers, France
- Institute of Cancer Research in Western France, Saint-Herblain, France
| | - William J Kaiser
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Oliver Kepp
- Paris Descartes/Paris V University, Paris, France
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France
- INSERM U1138, Paris, France
- Pierre et Marie Curie/Paris VI University, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Richard A Knight
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Sam W Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - John J Lemasters
- Center for Cell Death, Injury and Regeneration, Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
- Center for Cell Death, Injury and Regeneration, Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Linkermann
- Division of Nephrology, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Stuart A Lipton
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- Neuroscience Translational Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Richard A Lockshin
- Department of Biology, St. John's University, Queens, NY, USA
- Queens College of the City University of New York, Queens, NY, USA
| | - Carlos López-Otín
- Departament of Biochemistry and Molecular Biology, Faculty of Medicine, University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Scott W Lowe
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tom Luedde
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Aachen, Germany
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marion MacFarlane
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Frank Madeo
- Department Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Michal Malewicz
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Walter Malorni
- National Centre for Gender Medicine, Italian National Institute of Health (ISS), Rome, Italy
| | - Gwenola Manic
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Seamus J Martin
- Departments of Genetics, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Cancer Genomics Center, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer and Development laboratory, CRCL, Lyon, France
- Team labeled "La Ligue contre le Cancer", Lyon, France
- LabEx DEVweCAN, Lyon, France
- INSERM U1052, Lyon, France
- CNRS UMR5286, Lyon, France
- Department of Translational Research and Innovation, Léon Bérard Cancer Center, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, London, UK
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffery D Molkentin
- Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Cell Death Regulation Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Gabriel Nuñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Disease, Seattle, WA, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute, Rehovot, Israel
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michele Pagano
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Manolis Pasparakis
- Institute for Genetics, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Campus Vienna BioCentre, Vienna, Austria
| | - David M Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- National University Cancer Institute, National University Health System (NUHS), Singapore, Singapore
| | - Marcus E Peter
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- LTTA center, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Health Science Foundation, Cotignola, Italy
| | - Jochen H M Prehn
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine (IBYME), National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
- Department of Biological Chemistry, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, Stuttgart, Germany
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Emre Sayan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China
| | - Yufang Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, China
- Jiangsu Key Laboratory of Stem Cells and Medicinal Biomaterials, Institutes for Translational Medicine, Soochow University, Suzhou, China
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - John Silke
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Division of Inflammation, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Antonella Sistigu
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, University College London Consortium for Mitochondrial Research, London, UK
- Francis Crick Institute, London, UK
| | | | - Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Center for DAMP Biology, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Protein Modification and Degradation of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Medical School, University of Crete, Heraklion, Greece
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado, Aurora, CO, USA
| | | | - Boris Turk
- Department Biochemistry and Molecular Biology, "Jozef Stefan" Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Tom Vanden Berghe
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Andreas Villunger
- Division of Developmental Immunology, Innsbruck Medical University, Innsbruck, Austria
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Erwin F Wagner
- Genes, Development and Disease Group, Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ying Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Will Wood
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Department of Biology, Queens College of the City University of New York, Queens, NY, USA
| | - Boris Zhivotovsky
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Laurence Zitvogel
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Gerry Melino
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Guido Kroemer
- Paris Descartes/Paris V University, Paris, France.
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France.
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France.
- INSERM U1138, Paris, France.
- Pierre et Marie Curie/Paris VI University, Paris, France.
- Biology Pole, European Hospital George Pompidou, AP-HP, Paris, France.
| |
Collapse
|
33
|
Kalkavan H, Green DR. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ 2018; 25:46-55. [PMID: 29053143 PMCID: PMC5729535 DOI: 10.1038/cdd.2017.179] [Citation(s) in RCA: 439] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Apoptosis shapes development and differentiation, has a key role in tissue homeostasis, and is deregulated in cancer. In most cases, successful apoptosis is triggered by mitochondrial outer membrane permeabilization (MOMP), which defines the mitochondrial or intrinsic pathway and ultimately leads to caspase activation and protein substrate cleavage. The mitochondrial apoptotic pathway centered on MOMP is controlled by an intricate network of events that determine the balance of the cell fate choice between survival and death. Here we will review how MOMP proceeds and how the main effectors cytochrome c, a heme protein that has a crucial role in respiration, and second mitochondria-derived activator of caspase (SMAC), as well as other intermembrane space proteins, orchestrate caspase activation. Moreover, we discuss recent insights on the interplay of the upstream coordinators and initiators of MOMP, the BCL-2 family. This review highlights how our increasing knowledge on the regulation of critical checkpoints of apoptosis integrates with understanding of cancer development and has begun to translate into therapeutic clinical benefit.
Collapse
Affiliation(s)
- Halime Kalkavan
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
34
|
Peña‐Blanco A, García‐Sáez AJ. Bax, Bak and beyond — mitochondrial performance in apoptosis. FEBS J 2017; 285:416-431. [DOI: 10.1111/febs.14186] [Citation(s) in RCA: 340] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/12/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Aida Peña‐Blanco
- Interfaculty Institute of Biochemistry Tübingen University Germany
| | - Ana J. García‐Sáez
- Interfaculty Institute of Biochemistry Tübingen University Germany
- Max‐Planck Institute for Intelligent Systems Stuttgart Germany
| |
Collapse
|
35
|
Abstract
Fernández-Marrero and colleagues show in their work that the proapoptotic BCL-2 family member BOK can form large, stable pores in artificial liposomes. This can be enhanced by the proapoptotic protein cBID and is unaffected by the antiapoptotic BCL-XL . Although BOK can bind to isolated mitochondria, it is unable to cause cytochrome c release even with the help of cBID.
Collapse
Affiliation(s)
- Manuel D Haschka
- Division of Developmental Immunology, BIOCENTER, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, BIOCENTER, Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| |
Collapse
|
36
|
Moravcikova E, Krepela E, Donnenberg VS, Donnenberg AD, Benkova K, Rabachini T, Fernandez-Marrero Y, Bachmann D, Kaufmann T. BOK displays cell death-independent tumor suppressor activity in non-small-cell lung carcinoma. Int J Cancer 2017; 141:2050-2061. [PMID: 28744854 DOI: 10.1002/ijc.30906] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 06/30/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022]
Abstract
As the genomic region containing the Bcl-2-related ovarian killer (BOK) locus is frequently deleted in certain human cancers, BOK is hypothesized to have a tumor suppressor function. In the present study, we analyzed primary non-small-cell lung carcinoma (NSCLC) tumors and matched lung tissues from 102 surgically treated patients. We show that BOK protein levels are significantly downregulated in NSCLC tumors as compared to lung tissues (p < 0.001). In particular, we found BOK downregulation in NSCLC tumors of grades two (p = 0.004, n = 35) and three (p = 0.031, n = 39) as well as in tumors with metastases to hilar (pN1) (p = 0.047, n = 31) and mediastinal/subcarinal lymph nodes (pN2) (p = 0.021, n = 18) as opposed to grade one tumors (p = 0.688, n = 7) and tumors without lymph node metastases (p = 0.112, n = 51). Importantly, in lymph node-positive patients, BOK expression greater than the median value was associated with longer survival (p = 0.002, Mantel test). Using in vitro approaches, we provide evidence that BOK overexpression is inefficient in inducing apoptosis but that it inhibits TGFβ-induced migration and epithelial-to-mesenchymal transition (EMT) in lung adenocarcinoma-derived A549 cells. We have identified epigenetic mechanisms, in particular BOK promoter methylation, as an important means to silence BOK expression in NSCLC cells. Taken together, our data point toward a novel mechanism by which BOK acts as a tumor suppressor in NSCLC by inhibiting EMT. Consequently, the restoration of BOK levels in low-BOK-expressing tumors might favor the overall survival of NSCLC patients.
Collapse
Affiliation(s)
- Erika Moravcikova
- Institute of Pharmacology, Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Cardiothoracic Surgery, School of Medicine, University of Pittsburgh, PA
| | - Evzen Krepela
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vera S Donnenberg
- Department of Cardiothoracic Surgery, School of Medicine, University of Pittsburgh, PA
| | | | - Kamila Benkova
- Department of Pathology, Hospital Bulovka, Prague, Czech Republic
| | - Tatiana Rabachini
- Institute of Pharmacology, Faculty of Medicine, University of Bern, Bern, Switzerland
| | | | - Daniel Bachmann
- Institute of Pharmacology, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, Faculty of Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
37
|
Birkinshaw RW, Czabotar PE. The BCL-2 family of proteins and mitochondrial outer membrane permeabilisation. Semin Cell Dev Biol 2017; 72:152-162. [PMID: 28396106 DOI: 10.1016/j.semcdb.2017.04.001] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/03/2017] [Accepted: 04/06/2017] [Indexed: 01/24/2023]
Abstract
Apoptosis is a form of programmed cell death critical for the development and homeostasis of multicellular organisms. A key event within the mitochondrial pathway to apoptosis is the permeabilisation of the mitochondrial outer membrane (MOM), a point of no return in apoptotic progression. This event is governed by a complex interplay of interactions between BCL-2 family members. Here we discuss the roles of opposing factions within the family. We focus on the structural details of these interactions, how they promote or prevent apoptosis and recent developments towards understanding the conformational changes of BAK and BAX that lead to MOM permeabilisation. These interactions and structural insights are of particular interest for drug discovery, as highlighted by the development of therapeutics that target pro-survival family members and restore apoptosis in cancer cells.
Collapse
Affiliation(s)
- Richard W Birkinshaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|