1
|
Gauthier V, Kyriazi M, Nefla M, Pucino V, Raza K, Buckley CD, Alsaleh G. Fibroblast heterogeneity: Keystone of tissue homeostasis and pathology in inflammation and ageing. Front Immunol 2023; 14:1137659. [PMID: 36926329 PMCID: PMC10011104 DOI: 10.3389/fimmu.2023.1137659] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Fibroblasts, derived from the embryonic mesenchyme, are a diverse array of cells with roles in development, homeostasis, repair, and disease across tissues. In doing so, fibroblasts maintain micro-environmental homeostasis and create tissue niches by producing a complex extracellular matrix (ECM) including various structural proteins. Although long considered phenotypically homogenous and functionally identical, the emergence of novel technologies such as single cell transcriptomics has allowed the identification of different phenotypic and cellular states to be attributed to fibroblasts, highlighting their role in tissue regulation and inflammation. Therefore, fibroblasts are now recognised as central actors in many diseases, increasing the need to discover new therapies targeting those cells. Herein, we review the phenotypic heterogeneity and functionality of these cells and their roles in health and disease.
Collapse
Affiliation(s)
- Vincent Gauthier
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maria Kyriazi
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Meriam Nefla
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Valentina Pucino
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Karim Raza
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Department of Rheumatology, Sandwell and West, Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| | - Christopher D Buckley
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ghada Alsaleh
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Importance of lymphocyte-stromal cell interactions in autoimmune and inflammatory rheumatic diseases. Nat Rev Rheumatol 2021; 17:550-564. [PMID: 34345021 DOI: 10.1038/s41584-021-00665-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Interactions between lymphocytes and stromal cells have an important role in immune cell development and responses. During inflammation, stromal cells contribute to inflammation, from induction to chronicity or resolution, through direct cell interactions and through the secretion of pro-inflammatory and anti-inflammatory mediators. Stromal cells are imprinted with tissue-specific phenotypes and contribute to site-specific lymphocyte recruitment. During chronic inflammation, the modified pro-inflammatory microenvironment leads to changes in the stromal cells, which acquire a pathogenic phenotype. At the site of inflammation, infiltrating B cells and T cells interact with stromal cells. These interactions induce a plasma cell-like phenotype in B cells and T cells, associated with secretion of immunoglobulins and inflammatory cytokines, respectively. B cells and T cells also influence the stromal cells, inducing cell proliferation, molecular changes and cytokine production. This positive feedback loop contributes to disease chronicity. This Review describes the importance of these cell interactions in chronic inflammation, with a focus on human disease, using three selected autoimmune and inflammatory diseases: rheumatoid arthritis, psoriatic arthritis (and psoriasis) and systemic lupus erythematosus. Understanding the importance and disease specificity of these interactions could provide new therapeutic options.
Collapse
|
3
|
Correa-Gallegos D, Jiang D, Rinkevich Y. Fibroblasts as confederates of the immune system. Immunol Rev 2021; 302:147-162. [PMID: 34036608 DOI: 10.1111/imr.12972] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022]
Abstract
Fibroblastic stromal cells are as diverse, in origin and function, as the niches they fashion in the mammalian body. This cellular variety impacts the spectrum of responses elicited by the immune system. Fibroblast influence on the immune system keeps evolving our perspective on fibroblast roles and functions beyond just a passive structural part of organs. This review discusses the foundations of fibroblastic stromal-immune crosstalk, under the scope of stromal heterogeneity as a basis for tissue-specific tutoring of the immune system. Focusing on the skin as a relevant immunological organ, we detail the complex interactions between distinct fibroblast populations and immune cells that occur during homeostasis, injury repair, scarring, and disease. We further review the relevance of fibroblastic stromal cell heterogeneity and how this heterogeneity is central to regulate the immune system from its inception during embryonic development into adulthood.
Collapse
Affiliation(s)
- Donovan Correa-Gallegos
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich, Germany
| | - Dongsheng Jiang
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
4
|
Manresa MC, Chiang AWT, Kurten RC, Dohil R, Brickner H, Dohil L, Herro R, Akuthota P, Lewis NE, Croft M, Aceves SS. Increased Production of LIGHT by T Cells in Eosinophilic Esophagitis Promotes Differentiation of Esophageal Fibroblasts Toward an Inflammatory Phenotype. Gastroenterology 2020; 159:1778-1792.e13. [PMID: 32712105 PMCID: PMC7726704 DOI: 10.1053/j.gastro.2020.07.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/07/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Eosinophilic esophagitis (EoE) is an antigen-mediated eosinophilic disease of the esophagus that involves fibroblast activation and progression to fibrostenosis. Cytokines produced by T-helper type 2 cells and transforming growth factor beta 1 (TGFβ1) contribute to the development of EoE, but other cytokines involved in pathogenesis are unknown. We investigate the effects of tumor necrosis factor superfamily member 14 (TNFSF14, also called LIGHT) on fibroblasts in EoE. METHODS We analyzed publicly available esophageal CD3+ T-cell single-cell sequencing data for expression of LIGHT. Esophageal tissues were obtained from pediatric patients with EoE or control individuals and analyzed by immunostaining. Human primary esophageal fibroblasts were isolated from esophageal biopsy samples of healthy donors or patients with active EoE. Fibroblasts were cultured; incubated with TGFβ1 and/or LIGHT; and analyzed by RNA sequencing, flow cytometry, immunoblots, immunofluorescence, or reverse transcription polymerase chain reaction. Eosinophils were purified from peripheral blood of healthy donors, incubated with interleukin 5, cocultured with fibroblasts, and analyzed by immunohistochemistry. RESULTS LIGHT was up-regulated in the esophageal tissues from patients with EoE, compared with control individuals, and expressed by several T-cell populations, including T-helper type 2 cells. TNF receptor superfamily member 14 (TNFRSF14, also called HVEM) and lymphotoxin beta receptor are receptors for LIGHT that were expressed by fibroblasts from healthy donors or patients with active EoE. Stimulation of esophageal fibroblasts with LIGHT induced inflammatory gene transcription, whereas stimulation with TGFβ1 induced transcription of genes associated with a myofibroblast phenotype. Stimulation of fibroblasts with TGFβ1 increased expression of HVEM; subsequent stimulation with LIGHT resulted in their differentiation into cells that express markers of myofibroblasts and inflammatory chemokines and cytokines. Eosinophils tethered to esophageal fibroblasts after LIGHT stimulation via intercellular adhesion molecule-1. CONCLUSIONS T cells in esophageal tissues from patients with EoE express increased levels of LIGHT compared with control individuals, which induces differentiation of fibroblasts into cells with inflammatory characteristics. TGFβ1 increases fibroblast expression of HVEM, a receptor for LIGHT. LIGHT mediates interactions between esophageal fibroblasts and eosinophils via ICAM1. This pathway might be targeted for the treatment of EoE.
Collapse
Affiliation(s)
- Mario C Manresa
- Department of Pediatrics, University of California, San Diego, San Diego; Division of Allergy Immunology; La Jolla Institute for Immunology, La Jolla, California
| | - Austin W T Chiang
- Department of Pediatrics, University of California, San Diego, San Diego; Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, San Diego, California
| | - Richard C Kurten
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas
| | | | - Howard Brickner
- Department of Medicine, University of California, San Diego, San Diego, California
| | - Lucas Dohil
- Department of Pediatrics, University of California, San Diego, San Diego
| | - Rana Herro
- Cincinnati Children's Hospital Medical Center, Immunobiology Division, Cincinnati, Ohio
| | - Praveen Akuthota
- Division of Gastroenterology, Department of Pediatrics, University of California, San Diego; Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, California
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, San Diego; Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, San Diego, California; Department of Bioengineering, University of California, San Diego, San Diego, California
| | - Michael Croft
- La Jolla Institute for Immunology, La Jolla, California; Division of Gastroenterology, Department of Pediatrics, University of California, San Diego
| | - Seema S Aceves
- Department of Pediatrics, University of California, San Diego, San Diego; Division of Allergy Immunology; Rady Children's Hospital, San Diego; Division of Gastroenterology, Department of Pediatrics, University of California, San Diego.
| |
Collapse
|
5
|
Endogenous Galectin-9 Suppresses Apoptosis in Human Rheumatoid Arthritis Synovial Fibroblasts. Sci Rep 2018; 8:12887. [PMID: 30150656 PMCID: PMC6110759 DOI: 10.1038/s41598-018-31173-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/30/2018] [Indexed: 01/10/2023] Open
Abstract
Galectin-9 (Gal9) has been postulated to have anti-inflammatory properties based on the ability of exogenous Gal9 to induce apoptosis in synovial fibroblasts in animal models of rheumatoid arthritis (RA). Here we aimed to assess the potential role of endogenous Galectins, including Gal9, in the inflammatory pathology of the RA synovium in humans. Firstly expression of Galectins 1–9 was determined in synovial fibroblasts (RASF) and dermal fibroblasts (DF) isolated from RA patients, the latter representing a non-inflamed site. We then further challenged the cells with pro-inflammatory TLR agonists and cytokines and assessed Galectin expression. Gal9 was found to be differentially and abundantly expressed in RASF compared to DF. Agonists of TLR3 and TLR4, along with IFNgamma were also found to induce Gal9 expression in RASF. siRNA was then used to knock-down Gal9 expression in RASF and the effects of this on apoptosis and cell viability were assessed. Increased apoptosis was observed in RASF following Gal9 knock-down. We conclude that, unlike exogenous Gal9, endogenous Gal9 is protective against apoptosis and enhances synovial fibroblast viability suggesting that its role in RA is both pathogenic and pro-inflammatory.
Collapse
|
6
|
Munir H, Ward LSC, McGettrick HM. Mesenchymal Stem Cells as Endogenous Regulators of Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1060:73-98. [PMID: 30155623 DOI: 10.1007/978-3-319-78127-3_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter discusses the regulatory role of endogenous mesenchymal stem cells (MSC) during an inflammatory response. MSC are a heterogeneous population of multipotent cells that normally contribute towards tissue maintenance and repair but have garnered significant scientific interest for their potent immunomodulatory potential. It is through these physicochemical interactions that MSC are able to exert an anti-inflammatory response on neighbouring stromal and haematopoietic cells. However, the impact of the chronic inflammatory environment on MSC function remains to be determined. Understanding the relationship of MSC between resolution of inflammation and autoimmunity will both offer new insights in the use of MSC as a therapeutic, and also their involvement in the pathogenesis of inflammatory disorders.
Collapse
Affiliation(s)
- Hafsa Munir
- MRC Cancer Unit/Hutchison, University of Cambridge, Cambridge, UK
| | | | - Helen M McGettrick
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| |
Collapse
|
7
|
Filer A, Ward LSC, Kemble S, Davies CS, Munir H, Rogers R, Raza K, Buckley CD, Nash GB, McGettrick HM. Identification of a transitional fibroblast function in very early rheumatoid arthritis. Ann Rheum Dis 2017; 76:2105-2112. [PMID: 28847766 PMCID: PMC5705853 DOI: 10.1136/annrheumdis-2017-211286] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/02/2017] [Accepted: 08/05/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Synovial fibroblasts actively regulate the inflammatory infiltrate by communicating with neighbouring endothelial cells (EC). Surprisingly, little is known about how the development of rheumatoid arthritis (RA) alters these immunomodulatory properties. We examined the effects of phase of RA and disease outcome (resolving vs persistence) on fibroblast crosstalk with EC and regulation of lymphocyte recruitment. METHODS Fibroblasts were isolated from patients without synovitis, with resolving arthritis, very early RA (VeRA; symptom ≤12 weeks) and established RA undergoing joint replacement (JRep) surgery. Endothelial-fibroblast cocultures were formed on opposite sides of porous filters. Lymphocyte adhesion from flow, secretion of soluble mediators and interleukin 6 (IL-6) signalling were assessed. RESULTS Fibroblasts from non-inflamed and resolving arthritis were immunosuppressive, inhibiting lymphocyte recruitment to cytokine-treated endothelium. This effect was lost very early in the development of RA, such that fibroblasts no longer suppressed recruitment. Changes in IL-6 and transforming growth factor beta 1 (TGF-β1) signalling appeared critical for the loss of the immunosuppressive phenotype. In the absence of exogenous cytokines, JRep, but not VeRA, fibroblasts activated endothelium to support lymphocyte. CONCLUSIONS In RA, fibroblasts undergo two distinct changes in function: first a loss of immunosuppressive responses early in disease development, followed by the later acquisition of a stimulatory phenotype. Fibroblasts exhibit a transitional functional phenotype during the first 3 months of symptoms that contributes to the accumulation of persistent infiltrates. Finally, the role of IL-6 and TGF-β1 changes from immunosuppressive in resolving arthritis to stimulatory very early in the development of RA. Early interventions targeting 'pathogenic' fibroblasts may be required in order to restore protective regulatory processes.
Collapse
Affiliation(s)
- Andrew Filer
- Rheumatology Research Group, Arthritis Research UK Centre of Excellence in the Pathogenesis of Rheumatoid Arthritis, Institute of Inflammation and Ageing, Birmingham, UK
- Department of Rheumatology, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Lewis S C Ward
- Rheumatology Research Group, Arthritis Research UK Centre of Excellence in the Pathogenesis of Rheumatoid Arthritis, Institute of Inflammation and Ageing, Birmingham, UK
| | - Samuel Kemble
- Rheumatology Research Group, Arthritis Research UK Centre of Excellence in the Pathogenesis of Rheumatoid Arthritis, Institute of Inflammation and Ageing, Birmingham, UK
| | | | - Hafsa Munir
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Rebekah Rogers
- Rheumatology Research Group, Arthritis Research UK Centre of Excellence in the Pathogenesis of Rheumatoid Arthritis, Institute of Inflammation and Ageing, Birmingham, UK
| | - Karim Raza
- Rheumatology Research Group, Arthritis Research UK Centre of Excellence in the Pathogenesis of Rheumatoid Arthritis, Institute of Inflammation and Ageing, Birmingham, UK
- Department of Rheumatology, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Christopher Dominic Buckley
- Rheumatology Research Group, Arthritis Research UK Centre of Excellence in the Pathogenesis of Rheumatoid Arthritis, Institute of Inflammation and Ageing, Birmingham, UK
- Department of Rheumatology, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Gerard B Nash
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Helen M McGettrick
- Rheumatology Research Group, Arthritis Research UK Centre of Excellence in the Pathogenesis of Rheumatoid Arthritis, Institute of Inflammation and Ageing, Birmingham, UK
| |
Collapse
|
8
|
Weckmann M, Becker T, Nissen G, Pech M, Kopp MV. SiMA: A simplified migration assay for analyzing neutrophil migration. Cytometry A 2017; 91:675-685. [DOI: 10.1002/cyto.a.23114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/12/2017] [Accepted: 03/29/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Markus Weckmann
- Department of Pediatric Allergy and Pulmonology; Children's Hospital at the University of Lübeck; Lübeck Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL); Lübeck Germany
| | - Tim Becker
- Department of Pediatric Allergy and Pulmonology; Children's Hospital at the University of Lübeck; Lübeck Germany
- Fraunhofer Institute for Marine Biotechnology (Fraunhofer EMB); Lübeck Germany
| | - Gyde Nissen
- Department of Pediatric Allergy and Pulmonology; Children's Hospital at the University of Lübeck; Lübeck Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL); Lübeck Germany
| | - Martin Pech
- Department of Pediatric Allergy and Pulmonology; Children's Hospital at the University of Lübeck; Lübeck Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL); Lübeck Germany
| | - Matthias V. Kopp
- Department of Pediatric Allergy and Pulmonology; Children's Hospital at the University of Lübeck; Lübeck Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL); Lübeck Germany
| |
Collapse
|
9
|
Munir H, Ward LSC, Sheriff L, Kemble S, Nayar S, Barone F, Nash GB, McGettrick HM. Adipogenic Differentiation of Mesenchymal Stem Cells Alters Their Immunomodulatory Properties in a Tissue-Specific Manner. Stem Cells 2017; 35:1636-1646. [PMID: 28376564 PMCID: PMC6052434 DOI: 10.1002/stem.2622] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/08/2017] [Accepted: 03/10/2017] [Indexed: 12/27/2022]
Abstract
Chronic inflammation is associated with formation of ectopic fat deposits that might represent damage-induced aberrant mesenchymal stem cell (MSC) differentiation. Such deposits are associated with increased levels of inflammatory infiltrate and poor prognosis. Here we tested the hypothesis that differentiation from MSC to adipocytes in inflamed tissue might contribute to chronicity through loss of immunomodulatory function. We assessed the effects of adipogenic differentiation of MSC isolated from bone marrow or adipose tissue on their capacity to regulate neutrophil recruitment by endothelial cells and compared the differentiated cells to primary adipocytes from adipose tissue. Bone marrow derived MSC were immunosuppressive, inhibiting neutrophil recruitment to TNFα-treated endothelial cells (EC), but MSC-derived adipocytes were no longer able to suppress neutrophil adhesion. Changes in IL-6 and TGFβ1 signalling appeared critical for the loss of the immunosuppressive phenotype. In contrast, native stromal cells, adipocytes derived from them, and mature adipocytes from adipose tissue were all immunoprotective. Thus disruption of normal tissue stroma homeostasis, as occurs in chronic inflammatory diseases, might drive "abnormal" adipogenesis which adversely influences the behavior of MSC and contributes to pathogenic recruitment of leukocytes. Interestingly, stromal cells programmed in native fat tissue retain an immunoprotective phenotype. Stem Cells 2017;35:1636-1646.
Collapse
Affiliation(s)
- Hafsa Munir
- Institute for Cardiovascular Sciences, College of Medical and Dental Sciences
| | - Lewis S C Ward
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lozan Sheriff
- Institute for Cardiovascular Sciences, College of Medical and Dental Sciences
| | - Samuel Kemble
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Saba Nayar
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Francesca Barone
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gerard B Nash
- Institute for Cardiovascular Sciences, College of Medical and Dental Sciences
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
10
|
Crowley T, O'Neil JD, Adams H, Thomas AM, Filer A, Buckley CD, Clark AR. Priming in response to pro-inflammatory cytokines is a feature of adult synovial but not dermal fibroblasts. Arthritis Res Ther 2017; 19:35. [PMID: 28187781 PMCID: PMC5303242 DOI: 10.1186/s13075-017-1248-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/27/2017] [Indexed: 12/29/2022] Open
Abstract
Background It has been hypothesized that chronic inflammatory diseases such as rheumatoid arthritis (RA) may be caused by a failure of negative feedback mechanisms. This study sought to examine negative feedback mechanisms in fibroblast-like synoviocytes (FLS), one of the most abundant cell types in the joint. We hypothesized that prior exposure of healthy FLS to an inflammatory stimulus would attenuate their responses to a second inflammatory stimulus, in the same way that negative feedback mechanisms desensitize macrophages to repeated stimulation by lipopolysaccharide. We further hypothesized that such negative feedback mechanisms would be defective in FLS derived from the joints in RA. Methods Synovial fibroblasts and dermal fibroblasts from non-inflamed joints and joints affected by RA and a fibroblast cell line from neonatal foreskin were stimulated twice with tumour necrosis factor (TNF) α or interleukin (IL)-1α, with a 24-h rest period between the two 24-h stimulations. Differences between response to the first and second dose of cytokine were examined by assessing secretion of inflammatory factors and intracellular signalling activity. Results FLS from both non-inflamed joints and joints affected by RA mounted an augmented response to re-stimulation. This response was site-specific, as primary dermal fibroblasts did not alter their response between doses. The fibroblast priming was also gene-specific and transient. Assessment of signalling events and nuclear localization showed prolonged activation of nuclear factor (NF)-κB during the second stimulation. Conclusion This study aimed to examine mechanisms of negative regulation of inflammatory responses in FLS. Instead, we found a pro-inflammatory stromal memory in FLS obtained from both non-inflamed joints and joints affected by RA. This suggests the joint is an area at high risk of chronic inflammation, and may provide a piece in the puzzle of how chronic inflammation is established in RA. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1248-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Crowley
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - John D O'Neil
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Holly Adams
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Andrew M Thomas
- Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham, B31 2AP, UK
| | - Andrew Filer
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Christopher D Buckley
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Andrew R Clark
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK.
| |
Collapse
|
11
|
Abstract
Lymphocyte recruitment in inflammation can be influenced by many molecules including cytokines, chemokines, and adipokines. In our lab, we have examined the effects of the adipokines leptin and adiponectin on lymphocyte migration, and observed modulation of this process. Lymphocyte behavior can be assessed in the lab under static conditions, or can be studied under flow, simulating in vivo conditions. In this chapter, in vitro methods for analyzing adhesion and migration of lymphocytes isolated from blood are described in detail. In static adhesion and migration assays, lymphocytes are allowed to settle on top of endothelial cell monolayers cultured in plates for a desired period of time. In the flow-based assay, lymphocytes are perfused over the endothelium at a continuous rate through microchannels which are commercially available. Depending on the choice of method employed, the efficiency of lymphocytes to adhere to and migrate across the endothelial cell monolayer under different conditions can be evaluated. Static assays are less complex and are of higher throughput. However, these assays provide less detailed information regarding lymphocyte behaviors. On the other hand, the flow-based assays are more difficult to perform, but are more physiologically relevant due to the presence of flow and yield more detailed information about lymphocyte activities such as capture, immobilization, and migration in real-time.
Collapse
|
12
|
Abe A, Nagatsuma AK, Higuchi Y, Nakamura Y, Yanagihara K, Ochiai A. Site-specific fibroblasts regulate site-specific inflammatory niche formation in gastric cancer. Gastric Cancer 2017; 20:92-103. [PMID: 26694715 DOI: 10.1007/s10120-015-0584-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/28/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Fibroblasts are the commonest type of cancer stromal cells. Inflammation occurs in cancer tissue, and the inflammatory process has been suggested to be caused by interactions between immune cells and cancer cells. In this study, we clarified that site-specific fibroblasts regulate the formation of a site-specific inflammatory niche according to the depth of gastric cancer cell invasion. METHODS Immunohistochemistry was performed with paraffin-embedded tissues. The numbers of immune cells and the fibroblast area were calculated according to the cancer depth. The gene expression patterns of submucosal fibroblasts and subperitoneal fibroblasts stimulated with HSC44PE-conditioned medium were analyzed with a microarray. To examine the effects on the cancer microenvironment of differences in gene expressions between HSC44PE-stimulated submucosal fibroblasts and subperitoneal fibroblasts, assays of HSC44PE proliferation, T cell migration, and M2-like macrophage differentiation were performed. RESULTS The distributions of immune cells differed between the submucosal layer and the subserosal layer. The number of M2 macrophages was significantly higher and the fibroblast area was significantly larger in the subserosal layer compared with the submucosal layer. High expression levels of IL1B, TNFSF15, and CCL13 were observed in HSC44PE-stimulated submucosal fibroblasts, and higher expression levels of TGFB2, CSF1, CCL8, and CXCL5 were found in HSC44PE-stimulated subperitoneal fibroblasts. HSC44PE-stimulated subperitoneal fibroblast medium promoted the differentiation of monocytes into M2-like macrophages, whereas HSC44PE-stimulated submucosal fibroblasts significantly induced the migration of Jurkat cells and the growth of HSC44PE cells. CONCLUSION The dynamic states of immune cells differ between the submucosal and subserosal layers in cancer tissues. Site-specific fibroblasts regulate site-specific inflammatory niche formation according to the depth of cancer cell invasion.
Collapse
Affiliation(s)
- Anna Abe
- Laboratory of Cancer Biology, Department of Integrated Bioscience, Graduate School of Frontier Science, University of Tokyo, Kashiwa, Chiba, Japan
- Pathology Division, Exploratory Oncology Research and Clinical Trial Center, Research Center for Innovative Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Akiko Kawano Nagatsuma
- Pathology Division, Exploratory Oncology Research and Clinical Trial Center, Research Center for Innovative Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Youichi Higuchi
- Laboratory of Cancer Biology, Department of Integrated Bioscience, Graduate School of Frontier Science, University of Tokyo, Kashiwa, Chiba, Japan
- Pathology Division, Exploratory Oncology Research and Clinical Trial Center, Research Center for Innovative Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Yuka Nakamura
- Pathology Division, Exploratory Oncology Research and Clinical Trial Center, Research Center for Innovative Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Kazuyoshi Yanagihara
- Pathology Division, Exploratory Oncology Research and Clinical Trial Center, Research Center for Innovative Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Atsushi Ochiai
- Laboratory of Cancer Biology, Department of Integrated Bioscience, Graduate School of Frontier Science, University of Tokyo, Kashiwa, Chiba, Japan.
- Pathology Division, Exploratory Oncology Research and Clinical Trial Center, Research Center for Innovative Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| |
Collapse
|
13
|
Williamson JD, Sadofsky LR, Crooks MG, Greenman J, Hart SP. Bleomycin increases neutrophil adhesion to human vascular endothelial cells independently of upregulation of ICAM-1 and E-selectin. Exp Lung Res 2016; 42:397-407. [DOI: 10.1080/01902148.2016.1243742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- James D. Williamson
- Academic Respiratory Medicine, Centre for Cardiovascular and Metabolic Research, Hull York Medical School, Castle Hill Hospital, Cottingham, United Kingdom
| | - Laura R. Sadofsky
- Academic Respiratory Medicine, Centre for Cardiovascular and Metabolic Research, Hull York Medical School, Castle Hill Hospital, Cottingham, United Kingdom
| | - Michael G. Crooks
- Academic Respiratory Medicine, Centre for Cardiovascular and Metabolic Research, Hull York Medical School, Castle Hill Hospital, Cottingham, United Kingdom
| | - John Greenman
- School of Biological, Biomedical & Environmental Sciences, University of Hull, Hull, United Kingdom
| | - Simon P. Hart
- Academic Respiratory Medicine, Centre for Cardiovascular and Metabolic Research, Hull York Medical School, Castle Hill Hospital, Cottingham, United Kingdom
| |
Collapse
|
14
|
Munir H, Luu NT, Clarke LSC, Nash GB, McGettrick HM. Comparative Ability of Mesenchymal Stromal Cells from Different Tissues to Limit Neutrophil Recruitment to Inflamed Endothelium. PLoS One 2016; 11:e0155161. [PMID: 27171357 PMCID: PMC4865100 DOI: 10.1371/journal.pone.0155161] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/25/2016] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stromal cells (MSC) are tissue-resident stromal cells capable of modulating immune responses, including leukocyte recruitment by endothelial cells (EC). However, the comparative potency of MSC from different sources in suppressing recruitment, and the necessity for close contact with endothelium remain uncertain, although these factors have implications for use of MSC in therapy. We thus compared the effects of MSC isolated from bone marrow, Wharton's jelly, and trabecular bone on neutrophil recruitment to cytokine-stimulated EC, using co-culture models with different degrees of proximity between MSC and EC. All types of MSC suppressed neutrophil adhesion to inflamed endothelium but not neutrophil transmigration, whether directly incorporated into endothelial monolayers or separated from them by thin micropore filters. Further increase in the separation of the two cell types tended to reduce efficacy, although this diminution was least for the bone marrow MSC. Immuno-protective effects of MSC were also diminished with repeated passage; with BMMSC, but not WJMSC, completing losing their suppressive effect by passage 7. Conditioned media from all co-cultures suppressed neutrophil recruitment, and IL-6 was identified as a common bioactive mediator. These results suggest endogenous MSC have a homeostatic role in limiting inflammatory leukocyte infiltration in a range of tissues. Since released soluble mediators might have effects locally or remotely, infusion of MSC into blood or direct injection into target organs might be efficacious, but in either case, cross-talk between EC and MSC appears necessary.
Collapse
Affiliation(s)
- Hafsa Munir
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Nguyet-Thin Luu
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Lewis S. C. Clarke
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Gerard B. Nash
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Helen M. McGettrick
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Synovial fibroblasts continue to grow in prominence both as the subjects of research into the pathogenesis of rheumatoid arthritis and as novel therapeutic targets. This timely review aims to integrate the most recent findings with existing paradigms of fibroblast-related mechanisms of disease. RECENT FINDINGS Linking the role of synovial fibroblasts as innate sentinels expressing pattern recognition receptors such as toll-like receptors to their effector roles in joint damage and interactions with leukocyte subpopulations has continued to advance. Understanding of the mechanisms underlying increased fibroblast survival in the inflamed synovium has led to therapeutic strategies such as cyclin-dependent kinase inhibition. Major advances have taken place in understanding of the interactions between epigenetic and micro-RNA regulation of transcription in synovial fibroblasts, improving our understanding of the unique pathological phenotype of these cells. Finally, the impact of new markers for fibroblast subpopulations is beginning to become apparent, offering the potential for targeting of pathological cells as the roles of different populations become clearer. SUMMARY Over the past 2 years, major advances have continued to emerge in understanding of the relationship between synovial fibroblasts and the regulation of inflammatory pathways in the rheumatoid arthritis synovium.
Collapse
|
16
|
Luu NT, McGettrick HM, Buckley CD, Newsome PN, Rainger GE, Frampton J, Nash GB. Crosstalk between mesenchymal stem cells and endothelial cells leads to downregulation of cytokine-induced leukocyte recruitment. Stem Cells 2015; 31:2690-702. [PMID: 23939932 DOI: 10.1002/stem.1511] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSC) have immunomodulatory properties, but their effects on endothelial cells (EC) and recruitment of leukocytes are unknown. We cocultured human bone marrow-derived MSC with EC and found that MSC could downregulate adhesion of flowing neutrophils or lymphocytes and their subsequent transendothelial migration. This applied for EC treated with tumor necrosis factor-α (TNF), interleukin-1β (IL-1), or TNF and interferon-γ combined. Supernatant from cocultures also inhibited endothelial responses. This supernatant had much higher levels of IL-6 than supernatant from cultures of the individual cells, which also lacked inhibitory functions. Addition of neutralizing antibody against IL-6 removed the bioactivity of the supernatant and also the immunomodulatory effects of coculture. Studies using siRNA showed that IL-6 came mainly from the MSC in coculture, and reduction in production in MSC alone was sufficient to impair the protective effects of coculture. Interestingly, siRNA knockdown of IL-6-receptor expression in MSC as well as EC inhibited anti-inflammatory effects. This was explained when we detected soluble IL-6R receptor in supernatants and showed that receptor removal reduced the potency of supernatant. Neutralization of transforming growth factor-β indicated that activation of this factor in coculture contributed to IL-6 production. Thus, crosstalk between MSC and EC caused upregulation of production of IL-6 by MSC which in turn downregulated the response of EC to inflammatory cytokines, an effect potentiated by MSC release of soluble IL-6R. These studies establish a novel mechanism by which MSC might have protective effects against inflammatory pathology and cardiovascular disease.
Collapse
Affiliation(s)
- N Thin Luu
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
17
|
Munir H, Rainger GE, Nash GB, McGettrick H. Analyzing the effects of stromal cells on the recruitment of leukocytes from flow. J Vis Exp 2015:e52480. [PMID: 25590557 DOI: 10.3791/52480] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stromal cells regulate the recruitment of circulating leukocytes during inflammation through cross-talk with neighboring endothelial cells. Here we describe two in vitro "vascular" models for studying the recruitment of circulating neutrophils from flow by inflamed endothelial cells. A major advantage of these models is the ability to analyze each step in the leukocyte adhesion cascade in order, as would occur in vivo. We also describe how both models can be adapted to study the role of stromal cells, in this case mesenchymal stem cells (MSC), in regulating leukocyte recruitment. Primary endothelial cells were cultured alone or together with human MSC in direct contact on Ibidi microslides or on opposite sides of a Transwell filter for 24 hr. Cultures were stimulated with tumor necrosis factor alpha (TNFα) for 4 hr and incorporated into a flow-based adhesion assay. A bolus of neutrophils was perfused over the endothelium for 4 min. The capture of flowing neutrophils and their interactions with the endothelium was visualized by phase-contrast microscopy. In both models, cytokine-stimulation increased endothelial recruitment of flowing neutrophils in a dose-dependent manner. Analysis of the behavior of recruited neutrophils showed a dose-dependent decrease in rolling and a dose-dependent increase in transmigration through the endothelium. In co-culture, MSC suppressed neutrophil adhesion to TNFα-stimulated endothelium. Our flow based-adhesion models mimic the initial phases of leukocyte recruitment from the circulation. In addition to leukocytes, they can be used to examine the recruitment of other cell types, such as therapeutically administered MSC or circulating tumor cells. Our multi-layered co-culture models have shown that MSC communicate with endothelium to modify their response to pro-inflammatory cytokines, altering the recruitment of neutrophils. Further research using such models is required to fully understand how stromal cells from different tissues and conditions (inflammatory disorders or cancer) influence the recruitment of leukocytes during inflammation.
Collapse
Affiliation(s)
- Hafsa Munir
- School of Clinical and Experimental Medicine, University of Birmingham; College of Medical and Dental Sciences, University of Birmingham
| | - G Ed Rainger
- School of Clinical and Experimental Medicine, University of Birmingham; College of Medical and Dental Sciences, University of Birmingham
| | - Gerard B Nash
- School of Clinical and Experimental Medicine, University of Birmingham; College of Medical and Dental Sciences, University of Birmingham
| | - Helen McGettrick
- College of Medical and Dental Sciences, University of Birmingham; School of Immunity and Infection, University of Birmingham;
| |
Collapse
|
18
|
Patel R, Filer A, Barone F, Buckley CD. Stroma: fertile soil for inflammation. Best Pract Res Clin Rheumatol 2014; 28:565-76. [PMID: 25481550 DOI: 10.1016/j.berh.2014.10.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Biological therapies for the management of immune mediated inflammatory diseases such as rheumatoid arthritis have proven to be extremely successful in recent years. Despite these successes, even the most effective of therapies do not lead to cure. Why chronic inflammation persists indefinitely within the rheumatoid synovium despite an absence of continuous stimulation, and why some patients with early synovitis progress to persistent disease whilst others do not, has remained unexplained. In contrast to the paradigm that stromal cells are biochemically active but immunologically passive, there is now growing evidence that stromal components from the rheumatoid synovium play a crucial part in the immunopathology of rheumatoid arthritis. Stromal cells play a central role in the transformation of an acute, resolving to a chronic inflammatory process, and to the persistence of synovial inflammation and joint destruction through a variety of immune mechanisms. Therapeutic manipulation of the stroma is a largely unexplored, yet potentially vital area of research. Targeting pathogenic stromal cells has the potential to provide a cure for chronic inflammatory disorders such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Rikesh Patel
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Andrew Filer
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Francesca Barone
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christopher D Buckley
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
19
|
Kuravi SJ, McGettrick HM, Satchell SC, Saleem MA, Harper L, Williams JM, Rainger GE, Savage COS. Podocytes regulate neutrophil recruitment by glomerular endothelial cells via IL-6-mediated crosstalk. THE JOURNAL OF IMMUNOLOGY 2014; 193:234-43. [PMID: 24872191 PMCID: PMC4067868 DOI: 10.4049/jimmunol.1300229] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stromal cells actively modulate the inflammatory process, in part by influencing the ability of neighboring endothelial cells to support the recruitment of circulating leukocytes. We hypothesized that podocytes influence the ability of glomerular endothelial cells (GEnCs) to recruit neutrophils during inflammation. To address this, human podocytes and human GEnCs were cultured on opposite sides of porous inserts and then treated with or without increasing concentrations of TNF-α prior to addition of neutrophils. The presence of podocytes significantly reduced neutrophil recruitment to GEnCs by up to 50% when cultures were treated with high-dose TNF-α (100 U/ml), when compared with GEnC monocultures. Importantly, this phenomenon was dependent on paracrine actions of soluble IL-6, predominantly released by podocytes. A similar response was absent when HUVECs were cocultured with podocytes, indicating a tissue-specific phenomenon. Suppressor of cytokine signaling 3 elicited the immunosuppressive actions of IL-6 in a process that disrupted the presentation of chemokines on GEnCs by altering the expression of the duffy Ag receptor for chemokines. Interestingly, suppressor of cytokine signaling 3 knockdown in GEnCs upregulated duffy Ag receptor for chemokines and CXCL5 expression, thereby restoring the neutrophil recruitment. In summary, these studies reveal that podocytes can negatively regulate neutrophil recruitment to inflamed GEnCs by modulating IL-6 signaling, identifying a potential novel anti-inflammatory role of IL-6 in renal glomeruli.
Collapse
Affiliation(s)
- Sahithi J Kuravi
- Centre for Translational Inflammation Research, School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| | - Helen M McGettrick
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Simon C Satchell
- Academic Renal Unit, Southmead Hospital, Bristol BS10 5NB, United Kingdom
| | - Moin A Saleem
- Academic Renal Unit, Southmead Hospital, Bristol BS10 5NB, United Kingdom
| | - Lorraine Harper
- Centre for Translational Inflammation Research, School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Julie M Williams
- Wellcome Trust Clinical Research Facility, University Hospital Birmingham Foundation Trust, Birmingham B15 2TH, United Kingdom; and
| | - George Ed Rainger
- Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Caroline O S Savage
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
20
|
Regulation of chemokine CCL5 synthesis in human peritoneal fibroblasts: a key role of IFN-γ. Mediators Inflamm 2014; 2014:590654. [PMID: 24523572 PMCID: PMC3913084 DOI: 10.1155/2014/590654] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/08/2013] [Accepted: 12/12/2013] [Indexed: 01/11/2023] Open
Abstract
Peritonitis is characterized by a coordinated influx of various leukocyte subpopulations. The pattern of leukocyte recruitment is controlled by chemokines secreted primarily by peritoneal mesothelial cells and macrophages. We have previously demonstrated that some chemokines may be also produced by human peritoneal fibroblasts (HPFB). Aim of our study was to assess the potential of HPFB in culture to release CCL5, a potent chemoattractant for mononuclear leukocytes. Quiescent HPFB released constitutively no or trace amounts of CCL5. Stimulation of HPFB with IL-1β and TNF-α resulted in a time- (up to 96 h) and dose-dependent increase in CCL5 expression and release. IFN-γ alone did not induce CCL5 secretion over a wide range of concentrations (0.01–100 U/mL). However, it synergistically amplified the effects of TNF-α and IL-1β through upregulation of CCL5 mRNA. Moreover, pretreatment of cells with IFN-γ upregulated CD40 receptor, which enabled HPFB to respond to a recombinant ligand of CD40 (CD40L). Exposure of IFN-γ-treated HPFB, but not of control cells, to CD40L resulted in a dose-dependent induction of CCL5. These data demonstrate that HPFB synthesise CCL5 in response to inflammatory mediators present in the inflamed peritoneal cavity. HPFB-derived CCL5 may thus contribute to the intraperitoneal recruitment of mononuclear leukocytes during peritonitis.
Collapse
|
21
|
Bapu D, Khadim M, Brooks SA. Rocking adhesion assay system to study adhesion and transendothelial migration of cancer cells. Methods Mol Biol 2014; 1070:37-45. [PMID: 24092430 DOI: 10.1007/978-1-4614-8244-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Adhesion of metastatic cancer cells to the vascular endothelium of the target organs and their subsequent transendothelial migration is one of the critical, yet poorly understood, steps of the metastatic cascade. Conventionally, the mechanisms of this complex process have been studied using static adhesion systems or flow assay systems. Static assay systems are easy to set up and perform but do not mimic the physiological conditions of blood flow. Flow assays closely mimic physiological conditions of flow but are time consuming and require specialist equipment. In this chapter we describe the rocking adhesion system which incorporates the key advantages of both the static and flow assay systems and not only is easy to set up and perform but also mimics conditions of blood flow.
Collapse
Affiliation(s)
- Deepashree Bapu
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | | | | |
Collapse
|
22
|
Jeffery HC, Buckley CD, Moss P, Rainger GE, Nash GB, McGettrick HM. Analysis of the effects of stromal cells on the migration of lymphocytes into and through inflamed tissue using 3-D culture models. J Immunol Methods 2013; 400-401:45-57. [PMID: 24140419 PMCID: PMC3878567 DOI: 10.1016/j.jim.2013.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/19/2013] [Accepted: 10/08/2013] [Indexed: 12/22/2022]
Abstract
Stromal cells may regulate the recruitment and behaviour of leukocytes during an inflammatory response, potentially through interaction with the endothelial cells (EC) and the leukocytes themselves. Here we describe new in vitro methodologies to characterise the effects of stromal cells on the migration of lymphocytes through endothelium and its underlying matrix. Three-dimensional tissue-like constructs were created in which EC were cultured above a stromal layer incorporating fibroblasts either as a monolayer on a porous filter or dispersed within a matrix of collagen type 1. A major advantage of these constructs is that they enable each step in leukocyte migration to be analysed in sequence (migration through EC and then stroma), as would occur in vivo. Migrated cells can also be retrieved from the constructs to identify which subsets traffic more effectively and how their functional responses evolve during migration. We found that culture of EC with dermal fibroblasts promoted lymphocyte transendothelial migration but not onward transit through matrix. A critical factor influencing the effect of fibroblasts on recruitment proved to be their proximity to the EC, with direct contact tending to disrupt migration. Comparison of the different approaches indicates that choice of an appropriate 3-D model enables the steps in lymphocyte entry into tissue to be studied in sequence, the regulatory mechanism to be dissected, and the effects of changes in stroma to be investigated.
Collapse
Affiliation(s)
- Hannah C. Jeffery
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Christopher D. Buckley
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Paul Moss
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - G. Ed. Rainger
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Gerard B. Nash
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Helen M. McGettrick
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
23
|
Cieslik KA, Trial J, Crawford JR, Taffet GE, Entman ML. Adverse fibrosis in the aging heart depends on signaling between myeloid and mesenchymal cells; role of inflammatory fibroblasts. J Mol Cell Cardiol 2013; 70:56-63. [PMID: 24184998 DOI: 10.1016/j.yjmcc.2013.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/02/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022]
Abstract
Aging has been associated with adverse fibrosis. Here we formulate a new hypothesis and present new evidence that unresponsiveness of mesenchymal stem cells (MSC) and fibroblasts to transforming growth factor beta (TGF-β), due to reduced expression of TGF-β receptor I (TβRI), provides a foundation for cardiac fibrosis in the aging heart via two mechanisms. 1) TGF-β promotes expression of Nanog, a transcription factor that retains MSC in a primitive state. In MSC derived from the aging heart, Nanog expression is reduced and therefore MSC gradually differentiate and the number of mesenchymal fibroblasts expressing collagen increases. 2) As TGF-β signaling pathway components negatively regulate transcription of monocyte chemoattractant protein-1 (MCP-1), a reduced expression of TβRI prevents aging mesenchymal cells from shutting down their own MCP-1 expression. Elevated MCP-1 levels that originated from MSC attract transendothelial migration of mononuclear leukocytes from blood to the tissue. MCP-1 expressed by mesenchymal fibroblasts promotes further migration of monocytes and T lymphocytes away from the endothelial barrier and supports the monocyte transition into macrophages and finally into myeloid fibroblasts. Both myeloid and mesenchymal fibroblasts contribute to fibrosis in the aging heart via collagen synthesis. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium ".
Collapse
Affiliation(s)
- Katarzyna A Cieslik
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, and Houston Methodist, Houston, TX 77030, USA.
| | - JoAnn Trial
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, and Houston Methodist, Houston, TX 77030, USA
| | - Jeffrey R Crawford
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, and Houston Methodist, Houston, TX 77030, USA
| | - George E Taffet
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, and Houston Methodist, Houston, TX 77030, USA
| | - Mark L Entman
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, and Houston Methodist, Houston, TX 77030, USA.
| |
Collapse
|
24
|
The fibroblast as a therapeutic target in rheumatoid arthritis. Curr Opin Pharmacol 2013; 13:413-9. [PMID: 23562164 DOI: 10.1016/j.coph.2013.02.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 02/24/2013] [Indexed: 01/08/2023]
Abstract
Significant advances have been made in the last 5 years that have finally allowed investigators to start targeting stromal cells such as fibroblasts in inflammatory disease. Rheumatoid arthritis is a prototype inflammatory disease, in which fibroblasts maintain the persistence of inflammation in the joint underpinned by a unique pathological phenotype driven by multiple epigenetic modifications. The step changes that are enabling the development of such therapies are an improved understanding of the mechanisms by which fibroblasts mediate persistence and the discovery of new markers that identify discrete functional subsets of fibroblast cells that have potential as disease-specific therapeutic targets.
Collapse
|
25
|
McGettrick HM, Butler LM, Buckley CD, Ed Rainger G, Nash GB. Tissue stroma as a regulator of leukocyte recruitment in inflammation. J Leukoc Biol 2012; 91:385-400. [DOI: 10.1189/jlb.0911458] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
26
|
Burton VJ, Butler LM, McGettrick HM, Stone PC, Jeffery HC, Savage CO, Rainger GE, Nash GB. Delay of migrating leukocytes by the basement membrane deposited by endothelial cells in long-term culture. Exp Cell Res 2010; 317:276-92. [PMID: 21056557 PMCID: PMC3025349 DOI: 10.1016/j.yexcr.2010.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 10/25/2010] [Accepted: 10/27/2010] [Indexed: 12/25/2022]
Abstract
We investigated the migration of human leukocytes through endothelial cells (EC), and particularly their underlying basement membrane (BM). EC were cultured for 20 days on 3 μm-pore filters or collagen gels to form a distinct BM, and then treated with tumour necrosis factor-α, interleukin-1β or interferon-γ. Neutrophil migration through the cytokine-treated EC and BM was delayed for 20-day compared to 4-day cultures. The BM alone obstructed chemotaxis of neutrophils, and if fresh EC were briefly cultured on stripped BM, there was again a hold-up in migration. In studies with lymphocytes and monocytes, we could detect little hold-up of migration for 20-day versus 4-day cultures, in either the filter- or gel-based models. Direct microscopic observations showed that BM also held-up neutrophil migration under conditions of flow. Treatment of upper and/or lower compartments of filters with antibodies against integrins, showed that neutrophil migration through the endothelial monolayer was dependent on β2-integrins, but not β1- or β3-integrins. Migration from the subendothelial compartment was supported by β1- and β2-integrins for all cultures, but blockade of β3-integrin only inhibited migration effectively for 20-day cultures. Flow cytometry indicated that there was no net increase in expression of β1- or β3-integrins during neutrophil migration, and that their specific subendothelial function was likely dependent on turnover of integrins during migration. These studies show that BM is a distinct barrier to migration of human neutrophils, and that β3-integrins are particularly important in crossing this barrier. The lesser effect of BM on lymphocytes and monocytes supports the concept that crossing the BM is a separate, leukocyte-specific, regulated step in migration.
Collapse
Affiliation(s)
- Victoria J Burton
- Centre for Cardiovascular Sciences and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, The University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|