1
|
Smart K, Sharp DJ. The fidgetin family: Shaking things up among the microtubule-severing enzymes. Cytoskeleton (Hoboken) 2024; 81:151-166. [PMID: 37823563 DOI: 10.1002/cm.21799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
The microtubule cytoskeleton is required for several crucial cellular processes, including chromosome segregation, cell polarity and orientation, and intracellular transport. These functions rely on microtubule stability and dynamics, which are regulated by microtubule-binding proteins (MTBPs). One such type of regulator is the microtubule-severing enzymes (MSEs), which are ATPases Associated with Diverse Cellular Activities (AAA+ ATPases). The most recently identified family are the fidgetins, which contain three members: fidgetin, fidgetin-like 1 (FL1), and fidgetin-like 2 (FL2). Of the three known MSE families, the fidgetins have the most diverse range of functions in the cell, spanning mitosis/meiosis, development, cell migration, DNA repair, and neuronal function. Furthermore, they offer intriguing novel therapeutic targets for cancer, cardiovascular disease, and wound healing. In the two decades since their first report, there has been great progress in our understanding of the fidgetins; however, there is still much left unknown about this unusual family. This review aims to consolidate the present body of knowledge of the fidgetin family of MSEs and to inspire deeper exploration into the fidgetins and the MSEs as a whole.
Collapse
Affiliation(s)
- Karishma Smart
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David J Sharp
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
- Microcures, Inc., Bronx, New York, USA
| |
Collapse
|
2
|
Choi DH, Kang SK, Lee KE, Jung J, Kim EJ, Kim WH, Kwon YG, Kim KP, Jo I, Park YS, Park SI. Nitrosylation of β2-Tubulin Promotes Microtubule Disassembly and Differentiated Cardiomyocyte Beating in Ischemic Mice. Tissue Eng Regen Med 2023; 20:921-937. [PMID: 37679590 PMCID: PMC10519925 DOI: 10.1007/s13770-023-00582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Beating cardiomyocyte regeneration therapies have revealed as alternative therapeutics for heart transplantation. Nonetheless, the importance of nitric oxide (NO) in cardiomyocyte regeneration has been widely suggested, little has been reported concerning endogenous NO during cardiomyocyte differentiation. METHODS Here, we used P19CL6 cells and a Myocardiac infarction (MI) model to confirm NO-induced protein modification and its role in cardiac beating. Two tyrosine (Tyr) residues of β2-tubulin (Y106 and Y340) underwent nitrosylation (Tyr-NO) by endogenously generated NO during cardiomyocyte differentiation from pre-cardiomyocyte-like P19CL6 cells. RESULTS Tyr-NO-β2-tubulin mediated the interaction with Stathmin, which promotes microtubule disassembly, and was prominently observed in spontaneously beating cell clusters and mouse embryonic heart (E11.5d). In myocardial infarction mice, Tyr-NO-β2-tubulin in transplanted cells was closely related with cardiac troponin-T expression with their functional recovery, reduced infarct size and thickened left ventricular wall. CONCLUSION This is the first discovery of a new target molecule of NO, β2-tubulin, that can promote normal cardiac beating and cardiomyocyte regeneration. Taken together, we suggest therapeutic potential of Tyr-NO-β2-tubulin, for ischemic cardiomyocyte, which can reduce unexpected side effect of stem cell transplantation, arrhythmogenesis.
Collapse
Affiliation(s)
- Da Hyeon Choi
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Seong Ki Kang
- Division of Intractable Diseases, Center for Biomedical Sciences, Korea National Institute of Health (KNIH), Cheongju, Republic of Korea
- Department of Laboratory Medicine, Green Cross Laboratories, Yongin, Republic of Korea
| | - Kyeong Eun Lee
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Jongsun Jung
- AI Drug Platform Center, Syntekabio, Daejeon, Republic of Korea
| | - Eun Ju Kim
- Department of Applied Chemistry, Kyung Hee University, Yongin, Republic of Korea
| | - Won-Ho Kim
- Division of Cardiovascular and Rare Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Kyung Hee University, Yongin, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, College of Ewha Womans University, Seoul, Republic of Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Yoon Shin Park
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea.
| | - Sang Ick Park
- Division of Intractable Diseases, Center for Biomedical Sciences, Korea National Institute of Health (KNIH), Cheongju, Republic of Korea.
| |
Collapse
|
3
|
Pero ME, Chowdhury F, Bartolini F. Role of tubulin post-translational modifications in peripheral neuropathy. Exp Neurol 2023; 360:114274. [PMID: 36379274 PMCID: PMC11320756 DOI: 10.1016/j.expneurol.2022.114274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Peripheral neuropathy is a common disorder that results from nerve damage in the periphery. The degeneration of sensory axon terminals leads to changes or loss of sensory functions, often manifesting as debilitating pain, weakness, numbness, tingling, and disability. The pathogenesis of most peripheral neuropathies remains to be fully elucidated. Cumulative evidence from both early and recent studies indicates that tubulin damage may provide a common underlying mechanism of axonal injury in various peripheral neuropathies. In particular, tubulin post-translational modifications have been recently implicated in both toxic and inherited forms of peripheral neuropathy through regulation of axonal transport and mitochondria dynamics. This knowledge forms a new area of investigation with the potential for developing therapeutic strategies to prevent or delay peripheral neuropathy by restoring tubulin homeostasis.
Collapse
Affiliation(s)
- Maria Elena Pero
- Department of Pathology and Cell Biology, Columbia University, New York, USA; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Italy
| | - Farihah Chowdhury
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, USA.
| |
Collapse
|
4
|
Triptolide exposure induces oxidative stress and decrease oocyte quality in mice. Toxicon 2022; 221:106964. [DOI: 10.1016/j.toxicon.2022.106964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
5
|
Bromoacetic acid impairs mouse oocyte in vitro maturation through affecting cytoskeleton architecture and epigenetic modification. Chem Biol Interact 2022; 368:110192. [PMID: 36174739 DOI: 10.1016/j.cbi.2022.110192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
As a major public health achievement, disinfection of drinking water significantly decreases outbreaks of waterborne disease, but produces drinking water disinfection by-products (DBPs) unfortunately. The haloacetic acids (HAAs) including bromoacetic acid (BAA), the second major class of DBPs, are considered as a global public health concern. BAA has been identified as cytotoxic, genotoxic, mutagenic, carcinogenic, and teratogenic in somatic cells. However, the toxic effects of BAA on oocyte maturation remain obscure. Herein, we documented that exposure to BAA compromised mouse oocyte maturation in vitro, causing blocked polar body extrusion (PBE). Meiotic progression analysis demonstrated that exposure to BAA induced the activated spindle assembly checkpoint (SAC) mediated metaphase I (MI) arrest in oocytes. Further study revealed that exposure to BAA resulted in the hyperacetylation of α-tubulin, disrupting spindle assembly and chromosome alignment, which is responsible for the activation of SAC. Besides, the organization of actin, the other major component of cytoskeleton in oocytes, was disturbed after BAA exposure. In addition, exposure to BAA altered the status of histone H3 methylation and 5 mC, indicative of the damaged epigenetic modifications. Moreover, we found that exposure to BAA induced DNA damage in a dose-dependent manner in oocytes. Collectively, our study evidenced that exposure to BAA intervened mouse oocyte maturation via disrupting cytoskeletal dynamics, damaging epigenetic modifications and inducing accumulation of DNA damage.
Collapse
|
6
|
Shi X, Jiang X, Chen C, Zhang Y, Sun X. The interconnections between the microtubules and mitochondrial networks in cardiocerebrovascular diseases: Implications for therapy. Pharmacol Res 2022; 184:106452. [PMID: 36116706 DOI: 10.1016/j.phrs.2022.106452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Microtubules, a highly dynamic cytoskeleton, participate in many cellular activities including mechanical support, organelles interactions, and intracellular trafficking. Microtubule organization can be regulated by modification of tubulin subunits, microtubule-associated proteins (MAPs) or agents modulating microtubule assembly. Increasing studies demonstrate that microtubule disorganization correlates with various cardiocerebrovascular diseases including heart failure and ischemic stroke. Microtubules also mediate intracellular transport as well as intercellular transfer of mitochondria, a power house in cells which produce ATP for various physiological activities such as cardiac mechanical function. It is known to all that both microtubules and mitochondria participate in the progression of cancer and Parkinson's disease. However, the interconnections between the microtubules and mitochondrial networks in cardiocerebrovascular diseases remain unclear. In this paper, we will focus on the roles of microtubules in cardiocerebrovascular diseases, and discuss the interplay of mitochondria and microtubules in disease development and treatment. Elucidation of these issues might provide significant diagnostic value as well as potential targets for cardiocerebrovascular diseases.
Collapse
Affiliation(s)
- Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| | - Xuan Jiang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Congwei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yu Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
7
|
Lafanechère L. The microtubule cytoskeleton: An old validated target for novel therapeutic drugs. Front Pharmacol 2022; 13:969183. [PMID: 36188585 PMCID: PMC9521402 DOI: 10.3389/fphar.2022.969183] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Compounds targeting microtubules are widely used in cancer therapy with a proven efficacy. However, because they also target non-cancerous cells, their administration leads to numerous adverse effects. With the advancement of knowledge on the structure of tubulin, the regulation of microtubule dynamics and their deregulation in pathological processes, new therapeutic strategies are emerging, both for the treatment of cancer and for other diseases, such as neuronal or even heart diseases and parasite infections. In addition, a better understanding of the mechanism of action of well-known drugs such as colchicine or certain kinase inhibitors contributes to the development of these new therapeutic approaches. Nowadays, chemists and biologists are working jointly to select drugs which target the microtubule cytoskeleton and have improved properties. On the basis of a few examples this review attempts to depict the panorama of these recent advances.
Collapse
|
8
|
Ojha R, Prajapati VK. Cognizance of posttranslational modifications in vaccines: A way to enhanced immunogenicity. J Cell Physiol 2021; 236:8020-8034. [PMID: 34170014 PMCID: PMC8427110 DOI: 10.1002/jcp.30483] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022]
Abstract
Vaccination is a significant advancement or preventative strategy for controlling the spread of various severe infectious and noninfectious diseases. The purpose of vaccination is to stimulate or activate the immune system by injecting antigens, i.e., either whole microorganisms or using the pathogen's antigenic part or macromolecules. Over time, researchers have made tremendous efforts to reduce vaccine side effects or failure by developing different strategies combining with immunoinformatic and molecular biology. These newly designed vaccines are composed of single or several antigenic molecules derived from a pathogenic organism. Although, whole‐cell vaccines are still in use against various diseases but due to their ineffectiveness, other vaccines like DNA‐based, RNA‐based, and protein‐based vaccines, with the addition of immunostimulatory agents, are in the limelight. Despite this, many researchers escape the most common fundamental phenomenon of protein posttranslational modifications during the development of vaccines, which regulates protein functional behavior, evokes immunogenicity and stability, etc. The negligence about post translational modification (PTM) during vaccine development may affect the vaccine's efficacy and immune responses. Therefore, it becomes imperative to consider these modifications of macromolecules before finalizing the antigenic vaccine construct. Here, we have discussed different types of posttranslational/transcriptional modifications that are usually considered during vaccine construct designing: Glycosylation, Acetylation, Sulfation, Methylation, Amidation, SUMOylation, Ubiquitylation, Lipidation, Formylation, and Phosphorylation. Based on the available research information, we firmly believe that considering these modifications will generate a potential and highly immunogenic antigenic molecule against communicable and noncommunicable diseases compared to the unmodified macromolecules.
Collapse
Affiliation(s)
- Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
9
|
Chen J, Chu Z, Han H, Patterson E, Yu Q, Powles S. Diversity of α-tubulin transcripts in Lolium rigidum. PEST MANAGEMENT SCIENCE 2021; 77:970-977. [PMID: 32991064 DOI: 10.1002/ps.6109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Tubulin, the target site of dinitroaniline herbicides, is encoded by small gene families in plants. To better characterize the mechanisms of target-site resistance to dinitroaniline herbicides in the globally important weedy species Lolium rigidum, attempts were made to amplify and sequence α-tubulin transcripts. RESULTS Four α-tubulin isoforms (TUA1, TUA2, TUA3 and TUA4) were identified in L. rigidum. Variations in the number and sequence of transcripts encoding these α-tubulin proteins were found in individuals from the two L. rigidum populations examined. Within and among populations, differences in the 5'- and 3'-untranslated regions of cDNA in TUA3 and TUA4 were identified. Furthermore, a novel double mutation, Arg-390-Cys+Asp-442-Glu, in the TUA3 transcript was identified and has the potential to confer dinitroaniline resistance. CONCLUSION This research reveals the complexity of the α-tubulin gene family in individuals/populations of the cross-pollinated weedy species L. rigidum, and highlights the need for better understanding of the molecular architecture of tubulin gene families for detecting resistance point mutations. Although TUA4 is a commonly expressed α-tubulin isoform containing most frequently reported resistance mutations, other mutant tubulin isoforms may also have a role in conferring dinitroaniline resistance.
Collapse
Affiliation(s)
- Jinyi Chen
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, Western Australia, Australia
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Zhizhan Chu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Heping Han
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, Western Australia, Australia
| | - Eric Patterson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Qin Yu
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, Western Australia, Australia
| | - Stephen Powles
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
10
|
Li XH, Ju JQ, Pan ZN, Wang HH, Wan X, Pan MH, Xu Y, Sun MH, Sun SC. PRC1 is a critical regulator for anaphase spindle midzone assembly and cytokinesis in mouse oocyte meiosis. FEBS J 2020; 288:3055-3067. [PMID: 33206458 DOI: 10.1111/febs.15634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/13/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Protein regulator of cytokinesis 1 (PRC1) is a microtubule bundling protein that is involved in the regulation of the central spindle bundle and spindle orientation during mitosis. However, the functions of PRC1 during meiosis have rarely been studied. In this study, we explored the roles of PRC1 during meiosis using an oocyte model. Our results found that PRC1 was expressed at all stages of mouse oocyte meiosis, and PRC1 accumulated in the midzone/midbody during anaphase/telophase I. Moreover, depleting PRC1 caused defects in polar body extrusion during mouse oocyte maturation. Further analysis found that PRC1 knockdown did not affect meiotic spindle formation or chromosome segregation; however, deleting PRC1 prevented formation of the midzone and midbody at the anaphase/telophase stage of meiosis I, which caused cytokinesis defects and further induced the formation of two spindles in the oocytes. PRC1 knockdown increased the level of tubulin acetylation, indicating that microtubule stability was affected. Furthermore, KIF4A and PRC1 showed similar localization in the midzone/midbody of oocytes at anaphase/telophase I, while the depletion of KIF4A affected the expression and localization of PRC1. The PRC1 mRNA injection rescued the defects caused by PRC1 knockdown in oocytes. In summary, our results suggest that PRC1 is critical for midzone/midbody formation and cytokinesis under regulation of KIF4A in mouse oocytes.
Collapse
Affiliation(s)
- Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Hong-Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Yao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Ming-Hong Sun
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, China
| |
Collapse
|
11
|
Li X, Zhang D, Ren C, Bai Y, Ijaz M, Hou C, Chen L. Effects of protein posttranslational modifications on meat quality: A review. Compr Rev Food Sci Food Saf 2020; 20:289-331. [PMID: 33443799 DOI: 10.1111/1541-4337.12668] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/14/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Meat quality plays an important role in the purchase decision of consumers, affecting producers and retailers. The formation mechanisms determining meat quality are intricate, as several endogenous and exogenous factors contribute during antemortem and postmortem periods. Abundant research has been performed on meat quality; however, unexpected variation in meat quality remains an issue in the meat industry. Protein posttranslational modifications (PTMs) regulate structures and functions of proteins in living tissues, and recent reports confirmed their importance in meat quality. The objective of this review was to provide a summary of the research on the effects of PTMs on meat quality. The effects of four common PTMs, namely, protein phosphorylation, acetylation, S-nitrosylation, and ubiquitination, on meat quality were discussed, with emphasis on the effects of protein phosphorylation on meat tenderness, color, and water holding capacity. The mechanisms and factors that may affect the function of protein phosphorylation are also discussed. The current research confirms that meat quality traits are regulated by multiple PTMs. Cross talk between different PTMs and interactions of PTMs with postmortem biochemical processes need to be explored to improve our understanding on factors affecting meat quality.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dequan Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chi Ren
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuqiang Bai
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muawuz Ijaz
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengli Hou
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Chen
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Karpov PA, Sheremet YA, Blume YB, Yemets AI. Studying the Role of Protein Kinases CK1 in Organization of Cortical Microtubules in Arabidopsis thaliana Root Cells. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452719060033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Wenzel ED, Speidell A, Flowers SA, Wu C, Avdoshina V, Mocchetti I. Histone deacetylase 6 inhibition rescues axonal transport impairments and prevents the neurotoxicity of HIV-1 envelope protein gp120. Cell Death Dis 2019; 10:674. [PMID: 31515470 PMCID: PMC6742654 DOI: 10.1038/s41419-019-1920-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/25/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
Despite successful antiretroviral drug therapy, a subset of human immunodeficiency virus-1 (HIV)-positive individuals still display synaptodendritic simplifications and functional cognitive impairments referred to as HIV-associated neurocognitive disorders (HANDs). The neurological damage observed in HAND subjects can be experimentally reproduced by the HIV envelope protein gp120. However, the complete mechanism of gp120-mediated neurotoxicity is not entirely understood. Gp120 binds to neuronal microtubules and decreases the level of tubulin acetylation, suggesting that it may impair axonal transport. In this study, we utilized molecular and pharmacological approaches, in addition to microscopy, to examine the relationship between gp120-mediated tubulin deacetylation, axonal transport, and neuronal loss. Using primary rat cortical neurons, we show that gp120 decreases acetylation of tubulin and increases histone deacetylase 6 (HDAC6), a cytoplasmic enzyme that regulates tubulin deacetylation. We also demonstrate that the selective HDAC6 inhibitors tubacin and ACY-1215, which prevented gp120-mediated deacetylation of tubulin, inhibited the ability of gp120 to promote neurite shortening and cell death. We further observed by co-immunoprecipitation and confirmed with mass spectroscopy that exposure of neurons to gp120 decreases the association between tubulin and motor proteins, a well-established consequence of tubulin deacetylation. To assess the physiological consequences of this effect, we examined the axonal transport of brain-derived neurotrophic factor (BDNF). We report that gp120 decreases the velocity of BDNF transport, which was restored to baseline levels when neurons were exposed to HDAC6 inhibitors. Overall, our data suggest that gp120-mediated tubulin deacetylation causes impairment of axonal transport through alterations to the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Erin D Wenzel
- Department of Pharmacology and Physiology, Washington, DC, 20057, USA
| | - Andrew Speidell
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC, 20057, USA
| | - Sarah A Flowers
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC, 20057, USA
| | - Chengbiao Wu
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Valeria Avdoshina
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC, 20057, USA
| | - Italo Mocchetti
- Department of Pharmacology and Physiology, Washington, DC, 20057, USA. .,Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC, 20057, USA.
| |
Collapse
|
14
|
D'Amore C, Salizzato V, Borgo C, Cesaro L, Pinna LA, Salvi M. A Journey through the Cytoskeleton with Protein Kinase CK2. Curr Protein Pept Sci 2019; 20:547-562. [PMID: 30659536 DOI: 10.2174/1389203720666190119124846] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/21/2018] [Accepted: 01/09/2019] [Indexed: 01/15/2023]
Abstract
Substrate pleiotropicity, a very acidic phosphorylation consensus sequence, and an apparent uncontrolled activity, are the main features of CK2, a Ser/Thr protein kinase that is required for a plethora of cell functions. Not surprisingly, CK2 appears to affect cytoskeletal structures and correlated functions such as cell shape, mechanical integrity, cell movement and division. This review outlines our current knowledge of how CK2 regulates cytoskeletal structures, and discusses involved pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Claudio D'Amore
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy
| | - Valentina Salizzato
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy.,CNR Institute of Neurosciences, Via U. Bassi 58/B, Padova, Italy
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy
| | - Luca Cesaro
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy.,CNR Institute of Neurosciences, Via U. Bassi 58/B, Padova, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy
| |
Collapse
|
15
|
Tang F, Pan MH, Lu Y, Wan X, Zhang Y, Sun SC. Involvement of Kif4a in Spindle Formation and Chromosome Segregation in Mouse Oocytes. Aging Dis 2018; 9:623-633. [PMID: 30090651 PMCID: PMC6065292 DOI: 10.14336/ad.2017.0901] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/01/2017] [Indexed: 12/31/2022] Open
Abstract
Kif4a, a member of the kinesin superfamily, has been reported to participate in a series of cellular processes such as chromosome condensation and cytokinesis during mitosis. However, the roles of KIF4a in meiosis are still unknown. In present study we found that the Kif4a protein expression decreased in maternal aged mouse oocytes. We then explored the roles of Kif4a in mouse oocyte meiosis by knockdown analysis. Kif4a was enriched at the spindle during mouse oocyte maturation. By specific knock down of the Kif4a using morpholino microinjection, we found that the disruption of Kif4a caused the failure of polar body extrusion. Further analysis indicated that Kif4a might affect the spindle morphology and chromosome alignment in the mouse oocytes, and this might be due to the regulation of tubulin acetylation. Moreover, our results showed that an increased proportion of aneuploidy in the Kif4a knock down oocytes, and this might be due to the loss of kinetochore-microtubule attachment. Taken together, these results suggested that Kif4a possibly regulated mouse oocyte meiosis through its effects on the spindle organization and accurate chromosome segregation, and the loss of Kif4a might be related with aneuploidy of aging oocytes.
Collapse
Affiliation(s)
- Feng Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Lee MN, Kweon HY, Oh GT. N-α-acetyltransferase 10 (NAA10) in development: the role of NAA10. Exp Mol Med 2018; 50:1-11. [PMID: 30054454 PMCID: PMC6063908 DOI: 10.1038/s12276-018-0105-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 01/07/2023] Open
Abstract
N-α-acetyltransferase 10 (NAA10) is a subunit of Nα-terminal protein acetyltransferase that plays a role in many biological processes. Among the six N-α-acetyltransferases (NATs) in eukaryotes, the biological significance of the N-terminal acetyl-activity of Naa10 has been the most studied. Recent findings in a few species, including humans, indicate that loss of N-terminal acetylation by NAA10 is associated with developmental defects. However, very little is known about the role of NAA10, and more research is required in relation to the developmental process. This review summarizes recent studies to understand the function of NAA10 in the development of multicellular organisms. Further investigations are needed into the role of a key enzyme in biological development and its encoding gene. The enzyme N-α-acetyltransferase 10 (NAA10), encoded by the NAA10 gene, plays a role in multiple biological processes. While the function of NAA10 has been studied in cancer, less is known about the roles of the gene and the enzyme during development, according to a review by Goo Taeg Oh and co-workers at the Ewha Womans University in Seoul, South Korea. Mutations in NAA10 are found in patients with developmental delay, cardiac problems and skeletal abnormalities, while reduced enzyme activity is associated with developmental defects. Mouse studies suggest a role for NAA10 in neuronal development, bone formation and healthy sperm generation. The impact of variable NAA10 expression in different organs at different developmental stages needs clarification.
Collapse
Affiliation(s)
- Mi-Ni Lee
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Hyae Yon Kweon
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Liu CW, Lin YC, Hung CM, Liu BL, Kuo SC, Ho CT, Way TD, Hung CH. CHM-1, a novel microtubule-destabilizing agent exhibits antitumor activity via inducing the expression of SIRT2 in human breast cancer cells. Chem Biol Interact 2018; 289:98-108. [PMID: 29679549 DOI: 10.1016/j.cbi.2018.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/05/2018] [Accepted: 04/05/2018] [Indexed: 11/28/2022]
Abstract
Breast cancer is a major public health problem throughout the world. In this report, we investigated whether CHM-1, a novel synthetic antimitotic agent could be developed into a potent antitumor agent for treating human breast cancer. CHM-1 induced growth inhibition in MDA-MB-231, MDA-MB-453 and MCF-7 cells in a concentration-dependent manner. Importantly, CHM-1 is less toxic to normal breast (HBL-100) cells. CHM-1 interacted with tubulin, markedly inhibited tubulin polymerization, and disrupted microtubule organization. Proteins from control and CHM-1-treated animal tumor specimens were analyzed by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Our results indicated that CHM-1 increased the expression of SIRT2 protein, an NAD-dependent tubulin deacetylase. A prodrug strategy was also investigated to address the problem of low aqueous solubility and low bioavailability of the antitumor agent CHM-1. The water-soluble prodrug of CHM-1 (CHM-1-P) was synthesized. After oral and intravenous administration, CHM-1-P induced a dose-dependent inhibition of tumor growth. The aforementioned excellent anti-tumor activity profiles of CHM-1 and its prodrug CHM-1-P, suggests that CHM-1-P deserves to further develop as a clinical trial candidate for treating human breast carcinoma.
Collapse
Affiliation(s)
- Chin-Wei Liu
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Ying-Chao Lin
- Division of Neurosurgery, Buddhist Tzu Chi General Hospital, Taichung Branch, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan; Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chao-Ming Hung
- Department of General Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Bing-Lan Liu
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan
| | - Sheng-Chu Kuo
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Tzong-Der Way
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.
| | - Chih-Hsin Hung
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan.
| |
Collapse
|
18
|
Ling L, Hu F, Ying X, Ge J, Wang Q. HDAC6 inhibition disrupts maturational progression and meiotic apparatus assembly in mouse oocytes. Cell Cycle 2018; 17:550-556. [PMID: 28598228 DOI: 10.1080/15384101.2017.1329067] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Histone deacetylases (HDACs) have been implicated in diverse biologic processes including transcriptional regulation, signal transduction, and developmental control. However, the role of HDAC6 in mammalian oocytes remains unknown. In the present study, by using Tubastatin A (TubA), a selective HDAC6 inhibitor, we examined the effects of HDAC6 on maturational progression and meiotic apparatus in mouse oocytes. We found that HDAC6 inhibition results in maturation arrest and disruption of spindle morphology and chromosome alignment. In line with this observation, confocal microscopy revealed that kinetochore-microtubule attachment, a critical mechanism controlling chromosome movement, is compromised in TubA-treated oocytes markedly. Moreover, we noted that HDAC6 inhibition significantly increases the acetylation levels of α-tubulin in mouse oocytes, which may be associated with the defective phenotypes of TubA-treated oocytes by altering microtubule stability and dynamics. In sum, we discover a novel function of HDAC6 during oocyte maturation and suggest a potential pathway modulating meiotic apparatus assembly.
Collapse
Affiliation(s)
- Li Ling
- a State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing , China
| | - Feifei Hu
- b Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Xiaoyan Ying
- b Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Nanjing Medical University , Nanjing , China
| | - Juan Ge
- a State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing , China
| | - Qiang Wang
- a State Key Laboratory of Reproductive Medicine , Nanjing Medical University , Nanjing , China
| |
Collapse
|
19
|
Huzil JT, Chen K, Kurgan L, Tuszynski JA. The Roles of β-Tubulin Mutations and Isotype Expression in Acquired Drug Resistance. Cancer Inform 2017. [DOI: 10.1177/117693510700300028] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The antitumor drug paclitaxel stabilizes microtubules and reduces their dynamicity, promoting mitotic arrest and eventually apoptosis. Upon assembly of the α/β-tubulin heterodimer, GTP becomes bound to both the α and β-tubulin monomers. During microtubule assembly, the GTP bound to β-tubulin is hydrolyzed to GDP, eventually reaching steady-state equilibrium between free tubulin dimers and those polymerized into microtubules. Tubulin-binding drugs such as paclitaxel interact with β-tubulin, resulting in the disruption of this equilibrium. In spite of several crystal structures of tubulin, there is little biochemical insight into the mechanism by which anti-tubulin drugs target microtubules and alter their normal behavior. The mechanism of drug action is further complicated, as the description of altered β-tubulin isotype expression and/or mutations in tubulin genes may lead to drug resistance as has been described in the literature. Because of the relationship between β-tubulin isotype expression and mutations within β-tubulin, both leading to resistance, we examined the properties of altered residues within the taxane, colchicine and Vinca binding sites. The amount of data now available, allows us to investigate common patterns that lead to microtubule disruption and may provide a guide to the rational design of novel compounds that can inhibit microtubule dynamics for specific tubulin isotypes or, indeed resistant cell lines. Because of the vast amount of data published to date, we will only provide a broad overview of the mutational results and how these correlate with differences between tubulin isotypes. We also note that clinical studies describe a number of predictive factors for the response to anti-tubulin drugs and attempt to develop an understanding of the features within tubulin that may help explain how they may affect both microtubule assembly and stability.
Collapse
Affiliation(s)
- J. Torin Huzil
- Department of Oncology, University of Alberta, Edmonton, Alberta
| | - Ke Chen
- Department of Computer and Electrical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Lukasz Kurgan
- Department of Computer and Electrical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
20
|
Hu H, Gu X, Xue LJ, Swamy PS, Harding SA, Tsai CJ. Tubulin C-terminal Post-translational Modifications Do Not Occur in Wood Forming Tissue of Populus. FRONTIERS IN PLANT SCIENCE 2016; 7:1493. [PMID: 27790223 PMCID: PMC5061773 DOI: 10.3389/fpls.2016.01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/20/2016] [Indexed: 05/03/2023]
Abstract
Cortical microtubules (MTs) are evolutionarily conserved cytoskeletal components with specialized roles in plants, including regulation of cell wall biogenesis. MT functions and dynamics are dictated by the composition of their monomeric subunits, α- (TUA) and β-tubulins (TUB), which in animals and protists are subject to both transcriptional regulation and post-translational modifications (PTM). While spatiotemporal regulation of tubulin gene expression has been reported in plants, whether and to what extent tubulin PTMs occur in these species remain poorly understood. We chose the woody perennial Populus for investigation of tubulin PTMs in this study, with a particular focus on developing xylem where high tubulin transcript levels support MT-dependent secondary cell wall deposition. Mass spectrometry and immunodetection concurred that detyrosination, non-tyrosination and glutamylation were essentially absent in tubulins isolated from wood-forming tissues of P. deltoides and P. tremula ×alba. Label-free quantification of tubulin isotypes and RNA-Seq estimation of tubulin transcript abundance were largely consistent with transcriptional regulation. However, two TUB isotypes were detected at noticeably lower levels than expected based on RNA-Seq transcript abundance in both Populus species. These findings led us to conclude that MT composition during wood formation depends exclusively on transcriptional and, to a lesser extent, translational regulation of tubulin isotypes.
Collapse
Affiliation(s)
- Hao Hu
- Daniel B. Warnell School of Forestry and Natural Resources, University of GeorgiaAthens, GA, USA
- Department of Genetics, University of GeorgiaAthens, GA, USA
| | - Xi Gu
- Institute of Bioinformatics, University of GeorgiaAthens, GA, USA
| | - Liang-Jiao Xue
- Daniel B. Warnell School of Forestry and Natural Resources, University of GeorgiaAthens, GA, USA
- Department of Genetics, University of GeorgiaAthens, GA, USA
- Institute of Bioinformatics, University of GeorgiaAthens, GA, USA
| | - Prashant S. Swamy
- Daniel B. Warnell School of Forestry and Natural Resources, University of GeorgiaAthens, GA, USA
| | - Scott A. Harding
- Daniel B. Warnell School of Forestry and Natural Resources, University of GeorgiaAthens, GA, USA
- Department of Genetics, University of GeorgiaAthens, GA, USA
| | - Chung-Jui Tsai
- Daniel B. Warnell School of Forestry and Natural Resources, University of GeorgiaAthens, GA, USA
- Department of Genetics, University of GeorgiaAthens, GA, USA
- Institute of Bioinformatics, University of GeorgiaAthens, GA, USA
| |
Collapse
|
21
|
Bodaleo FJ, Gonzalez-Billault C. The Presynaptic Microtubule Cytoskeleton in Physiological and Pathological Conditions: Lessons from Drosophila Fragile X Syndrome and Hereditary Spastic Paraplegias. Front Mol Neurosci 2016; 9:60. [PMID: 27504085 PMCID: PMC4958632 DOI: 10.3389/fnmol.2016.00060] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/11/2016] [Indexed: 11/21/2022] Open
Abstract
The capacity of the nervous system to generate neuronal networks relies on the establishment and maintenance of synaptic contacts. Synapses are composed of functionally different presynaptic and postsynaptic compartments. An appropriate synaptic architecture is required to provide the structural basis that supports synaptic transmission, a process involving changes in cytoskeletal dynamics. Actin microfilaments are the main cytoskeletal components present at both presynaptic and postsynaptic terminals in glutamatergic synapses. However, in the last few years it has been demonstrated that microtubules (MTs) transiently invade dendritic spines, promoting their maturation. Nevertheless, the presence and functions of MTs at the presynaptic site are still a matter of debate. Early electron microscopy (EM) studies revealed that MTs are present in the presynaptic terminals of the central nervous system (CNS) where they interact with synaptic vesicles (SVs) and reach the active zone. These observations have been reproduced by several EM protocols; however, there is empirical heterogeneity in detecting presynaptic MTs, since they appear to be both labile and unstable. Moreover, increasing evidence derived from studies in the fruit fly neuromuscular junction proposes different roles for MTs in regulating presynaptic function in physiological and pathological conditions. In this review, we summarize the main findings that support the presence and roles of MTs at presynaptic terminals, integrating descriptive and biochemical analyses, and studies performed in invertebrate genetic models.
Collapse
Affiliation(s)
- Felipe J Bodaleo
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO)Santiago, Chile
| | - Christian Gonzalez-Billault
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO)Santiago, Chile; The Buck Institute for Research on Aging, NovatoCA, USA
| |
Collapse
|
22
|
De Deurwaerdère P, Di Giovanni G, Millan MJ. Expanding the repertoire of L-DOPA's actions: A comprehensive review of its functional neurochemistry. Prog Neurobiol 2016; 151:57-100. [PMID: 27389773 DOI: 10.1016/j.pneurobio.2016.07.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/18/2016] [Accepted: 07/03/2016] [Indexed: 01/11/2023]
Abstract
Though a multi-facetted disorder, Parkinson's disease is prototypically characterized by neurodegeneration of nigrostriatal dopaminergic neurons of the substantia nigra pars compacta, leading to a severe disruption of motor function. Accordingly, L-DOPA, the metabolic precursor of dopamine (DA), is well-established as a treatment for the motor deficits of Parkinson's disease despite long-term complications such as dyskinesia and psychiatric side-effects. Paradoxically, however, despite the traditional assumption that L-DOPA is transformed in residual striatal dopaminergic neurons into DA, the mechanism of action of L-DOPA is neither simple nor entirely clear. Herein, focussing on its influence upon extracellular DA and other neuromodulators in intact animals and experimental models of Parkinson's disease, we highlight effects other than striatal generation of DA in the functional profile of L-DOPA. While not excluding a minor role for glial cells, L-DOPA is principally transformed into DA in neurons yet, interestingly, with a more important role for serotonergic than dopaminergic projections. Moreover, in addition to the striatum, L-DOPA evokes marked increases in extracellular DA in frontal cortex, nucleus accumbens, the subthalamic nucleus and additional extra-striatal regions. In considering its functional profile, it is also important to bear in mind the marked (probably indirect) influence of L-DOPA upon cholinergic, GABAergic and glutamatergic neurons in the basal ganglia and/or cortex, while anomalous serotonergic transmission is incriminated in the emergence of L-DOPA elicited dyskinesia and psychosis. Finally, L-DOPA may exert intrinsic receptor-mediated actions independently of DA neurotransmission and can be processed into bioactive metabolites. In conclusion, L-DOPA exerts a surprisingly complex pattern of neurochemical effects of much greater scope that mere striatal transformation into DA in spared dopaminergic neurons. Their further experimental and clinical clarification should help improve both L-DOPA-based and novel strategies for controlling the motor and other symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- CNRS (Centre National de la Recherche Scientifique), Institut des Maladies Neurodégénératives, UMR CNRS 5293, F-33000 Bordeaux, France.
| | - Giuseppe Di Giovanni
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK; Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Mark J Millan
- Institut de Recherche Servier, Pole for Therapeutic Innovation in Neuropsychiatry, 78290 Croissy/Seine,Paris, France
| |
Collapse
|
23
|
Inhibition of microtubule dynamics impedes repair of kidney ischemia/reperfusion injury and increases fibrosis. Sci Rep 2016; 6:27775. [PMID: 27270990 PMCID: PMC4897697 DOI: 10.1038/srep27775] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/23/2016] [Indexed: 11/08/2022] Open
Abstract
The microtubule cytoskeleton is composed of α-tubulin and β-tubulin heterodimers, and it serves to regulate the shape, motility, and division of a cell. Post-translational modifications including acetylation are closely associated with the functional aspects of the microtubule, involving in a number of pathological diseases. However, the role of microtubule acetylation in acute kidney injury (AKI) and progression of AKI to chronic kidney disease have yet to be understood. In this study, ischemia/reperfusion (I/R), a major cause of AKI, resulted in deacetylation of the microtubules with a decrease in α-tubulin acetyltransferase 1 (α-TAT1). Paclitaxel (taxol), an agent that stabilizes microtubules by tubulin acetylation, treatment during the recovery phase following I/R injury inhibited tubular cell proliferation, impaired renal functional recovery, and worsened fibrosis. Taxol induced α-tubulin acetylation and post-I/R cell cycle arrest. Taxol aggregated the microtubule in the cytoplasm, resulting in suppression of microtubule dynamics. Our studies have demonstrated for the first time that I/R induced deacetylation of the microtubules, and that inhibition of microtubule dynamics retarded repair of injured tubular epithelial cells leading to an acceleration of fibrosis. This suggests that microtubule dynamics plays an important role in the processes of repair and fibrosis after AKI.
Collapse
|
24
|
Majhi RK, Kumar A, Yadav M, Kumar P, Maity A, Giri SC, Goswami C. Light and electron microscopic study of mature spermatozoa from White Pekin duck (Anas platyrhynchos): an ultrastructural and molecular analysis. Andrology 2016; 4:232-44. [DOI: 10.1111/andr.12130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/30/2015] [Accepted: 10/12/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Rakesh Kumar Majhi
- School of Biological Sciences; National Institute of Science Education and Research; Bhubaneswar India
| | - Ashutosh Kumar
- School of Biological Sciences; National Institute of Science Education and Research; Bhubaneswar India
| | - Manoj Yadav
- School of Biological Sciences; National Institute of Science Education and Research; Bhubaneswar India
| | | | - Apratim Maity
- Department of Biochemistry; OVC; Orissa University of Agriculture and Technology; Bhubaneswar India
| | | | - Chandan Goswami
- School of Biological Sciences; National Institute of Science Education and Research; Bhubaneswar India
| |
Collapse
|
25
|
Welte MA. As the fat flies: The dynamic lipid droplets of Drosophila embryos. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1156-85. [PMID: 25882628 DOI: 10.1016/j.bbalip.2015.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 01/09/2023]
Abstract
Research into lipid droplets is rapidly expanding, and new cellular and organismal roles for these lipid-storage organelles are continually being discovered. The early Drosophila embryo is particularly well suited for addressing certain questions in lipid-droplet biology and combines technical advantages with unique biological phenomena. This review summarizes key features of this experimental system and the techniques available to study it, in order to make it accessible to researchers outside this field. It then describes the two topics most heavily studied in this system, lipid-droplet motility and protein sequestration on droplets, discusses what is known about the molecular players involved, points to open questions, and compares the results from Drosophila embryo studies to what it is known about lipid droplets in other systems.
Collapse
Affiliation(s)
- Michael A Welte
- Department of Biology University of Rochester, RC Box 270211, 317 Hutchison Hall, Rochester, NY 14627, USA.
| |
Collapse
|
26
|
Schneider N, Ludwig H, Nick P. Suppression of tubulin detyrosination by parthenolide recruits the plant-specific kinesin KCH to cortical microtubules. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2001-11. [PMID: 25779700 PMCID: PMC4378638 DOI: 10.1093/jxb/erv012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Detyrosination of α-tubulin seems to be conserved in all eukaryotes. However, its biological function in plants has remained obscure. A conserved C-terminal tyrosine is removed by a still unidentified tubulin-tyrosine carboxypeptidase (TTC) and can be religated by a tubulin-tyrosine ligase (TTL). To obtain insight into the still elusive biological function of this detyrosination-tyrosination cycle, the effects of the TTC inhibitor parthenolide were analysed in BY-2 tobacco cells. Parthenolide caused a depletion of detyrosinated α-tubulin, whereas the level of tyrosinated tubulin was elevated. This biochemical effect was accompanied by growth inhibition in cycling BY-2 cells and alteration of microtubule-dependent events that define division and expansion geometry such as cell plate alignment or axial expansion. Furthermore, parthenolide triggered an apoplastic alkalinization indicative of activation of defence-related calcium influx channels. At the same time, parthenolide promoted the association of the plant-specific kinesin KCH with cortical microtubules. These observations are integrated into a working model, where detyrosination acts as signal to modulate the binding of kinesin motors involved in structural and sensory functions of the microtubular cytoskeleton.
Collapse
Affiliation(s)
- Natalie Schneider
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology, Kaiserstraße 2, D-76131 Karlsruhe, Germany
| | - Holger Ludwig
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology, Kaiserstraße 2, D-76131 Karlsruhe, Germany
| | - Peter Nick
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology, Kaiserstraße 2, D-76131 Karlsruhe, Germany
| |
Collapse
|
27
|
Sadoul K. New explanations for old observations: marginal band coiling during platelet activation. J Thromb Haemost 2015; 13:333-46. [PMID: 25510620 DOI: 10.1111/jth.12819] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 12/07/2014] [Indexed: 11/26/2022]
Abstract
Blood platelets are tiny cell fragments derived from megakaryocytes. Their primary function is to control blood vessel integrity and ensure hemostasis if a vessel wall is damaged. Circulating quiescent platelets have a flat, discoid shape maintained by a circumferential microtubule bundle, called the marginal band (MB). In the case of injury platelets are activated and rapidly adopt a spherical shape due to microtubule motor-induced elongation and subsequent coiling of the MB. Platelet activation and shape change can be transient or become irreversible. This depends on the strength of the activation stimulus, which is translated into a cytoskeletal crosstalk between microtubules, their motors and the actomyosin cortex, ensuring stimulus-response coupling. Following microtubule motor-driven disc-to-sphere transition, a strong stimulus will lead to compression of the sphere through actomyosin cortex contraction. This will concentrate the granules in the center of the platelet and accelerate their exocytosis. Once granules are released, platelets have crossed the point of no return to irreversible activation. This review summarizes the current knowledge of the molecular mechanism leading to platelet shape change, with a special emphasis on microtubules, and refers to previously published observations, which have been essential for generating an integrated view of cytoskeletal rearrangements during platelet activation.
Collapse
Affiliation(s)
- K Sadoul
- University Grenoble Alpes, IAB, Grenoble, France; INSERM, IAB, Grenoble, France; CHU de Grenoble, IAB, Grenoble, France
| |
Collapse
|
28
|
Gzyl J, Chmielowska-Bąk J, Przymusiński R, Gwóźdź EA. Cadmium affects microtubule organization and post-translational modifications of tubulin in seedlings of soybean (Glycine max L.). FRONTIERS IN PLANT SCIENCE 2015; 6:937. [PMID: 26594217 PMCID: PMC4635210 DOI: 10.3389/fpls.2015.00937] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/15/2015] [Indexed: 05/05/2023]
Abstract
Cadmium (Cd) is a non-essential heavy metal, toxic to all living organisms. The microtubule (MT) cytoskeleton appears to be one of the main targets of Cd action. In this study we present, with the use of various immunological approaches, the effect of Cd at moderate (85 μM) and high (170 μM) concentrations on the structure and functioning of the MT cytoskeleton in the root cells of soybean seedlings. As the result of heavy metal action, root growth was significantly diminished and was accompanied by a reduction in mitotic activity and disturbance in the structure of the MT arrays, including randomization of the cortical MT arrangement, distorted mitotic arrays and complete depolymerization of the MTs. Biochemical analysis revealed decreased levels of various α- and β-tubulin isoforms with a parallel down-regulation of most examined α-tubulin genes. Simultaneously, Cd treatment led to differentiated changes in the level of tubulin post-translational modifications, including tyrosination, detyrosination, acetylation, and polyglutamylation. Decreased tyrosination and polyglutamylation of particular tubulin isoforms accompanied by increase in the level of specific detyrosinated and acetylated isoforms implies augmented stability and reduced turnover of the MTs during stress conditions. Taken together, the obtained results indicate the significant impact of Cd on gene expression levels and subsequent post-translational processing of tubulin, which may be related to the impairment of MT cytoskeleton functioning in root cells.
Collapse
|
29
|
Thirunavukarasou A, Govindarajalu G, Singh P, Bandi V, Muthu K, Baluchamy S. Cullin 4A and 4B ubiquitin ligases interact with γ-tubulin and induce its polyubiquitination. Mol Cell Biochem 2014; 401:219-28. [DOI: 10.1007/s11010-014-2309-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/20/2014] [Indexed: 11/27/2022]
|
30
|
Sainath R, Gallo G. The dynein inhibitor Ciliobrevin D inhibits the bidirectional transport of organelles along sensory axons and impairs NGF-mediated regulation of growth cones and axon branches. Dev Neurobiol 2014; 75:757-77. [PMID: 25404503 DOI: 10.1002/dneu.22246] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/11/2022]
Abstract
The axonal transport of organelles is critical for the development, maintenance, and survival of neurons, and its dysfunction has been implicated in several neurodegenerative diseases. Retrograde axon transport is mediated by the motor protein dynein. In this study, using embryonic chicken dorsal root ganglion neurons, we investigate the effects of Ciliobrevin D, a pharmacological dynein inhibitor, on the transport of axonal organelles, axon extension, nerve growth factor (NGF)-induced branching and growth cone expansion, and axon thinning in response to actin filament depolymerization. Live imaging of mitochondria, lysosomes, and Golgi-derived vesicles in axons revealed that both the retrograde and anterograde transport of these organelles was inhibited by treatment with Ciliobrevin D. Treatment with Ciliobrevin D reversibly inhibits axon extension and transport, with effects detectable within the first 20 min of treatment. NGF induces growth cone expansion, axonal filopodia formation and branching. Ciliobrevin D prevented NGF-induced formation of axonal filopodia and branching but not growth cone expansion. Finally, we report that the retrograde reorganization of the axonal cytoplasm which occurs on actin filament depolymerization is inhibited by treatment with Ciliobrevin D, indicating a role for microtubule based transport in this process, as well as Ciliobrevin D accelerating Wallerian degeneration. This study identifies Ciliobrevin D as an inhibitor of the bidirectional transport of multiple axonal organelles, indicating this drug may be a valuable tool for both the study of dynein function and a first pass analysis of the role of axonal transport.
Collapse
Affiliation(s)
- Rajiv Sainath
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, 3500 N Broad St, Philadelphia, Pennsylvania, 19140
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, 3500 N Broad St, Philadelphia, Pennsylvania, 19140
| |
Collapse
|
31
|
Esteves AR, G-Fernandes M, Santos D, Januário C, Cardoso SM. The Upshot of LRRK2 Inhibition to Parkinson’s Disease Paradigm. Mol Neurobiol 2014; 52:1804-1820. [DOI: 10.1007/s12035-014-8980-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/31/2014] [Indexed: 12/13/2022]
|
32
|
Hayashi S, Mikami T, Murai Y, Takano Y, Imura J. Α-tubulin nuclear overexpression is an indicator of poor prognosis in patients with non-Hodgkin's lymphoma. Int J Mol Med 2014; 34:483-90. [PMID: 24898903 DOI: 10.3892/ijmm.2014.1793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/16/2014] [Indexed: 11/05/2022] Open
Abstract
In the present study, the newly established mouse monoclonal antibody, Y-49, binding to a specific epitope of α-tubulin, was used to examine immunohistochemical reactivity in 116 patients with non-Hodgkin's lymphoma (NHL). The protein was detected at elevated levels in the nuclei of human proliferating cells by western blot analysis, flow cytometry and immunohistochemical analysis. The relatively weak binding in the cytoplasm was evident in almost all cases. The investigation of the correlation between immuno-histochemical positivity and clinicopathological variables revealed links with the MIB-1 proliferation index and poor survival. Nuclear positivity with Y-49 was more frequent in older-aged patients, those with nodal NHL and in those who harbored the diffuse large B-cell histological subtype, and was strongly associated with high MIB-1 labeling indices (LIs). Survival analysis by the Kaplan-Meier method revealed statistically significant differences between patients with high and low Y-49 LIs (p=0.0181), even in the group with advanced (stage III/IV) disease (p=0.0327). Multivariate analysis revealed that overexpression of α-tubulin is an independent prognostic factor in NHL with a relative risk of 2.786.
Collapse
Affiliation(s)
- Shinichi Hayashi
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Tetsuo Mikami
- Department of Pathology, Toho University School of Medicine, Ota, Tokyo 143-8540, Japan
| | - Yoshihiro Murai
- Department of Nursing, Toyama College of Welfare Science, Imizu 939-0341, Japan
| | - Yasuo Takano
- Kanagawa Cancer Center Research Institute, Asahi, Yokohama 241-8515, Japan
| | - Johji Imura
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
33
|
Parrotta L, Cresti M, Cai G. Accumulation and post-translational modifications of plant tubulins. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:521-7. [PMID: 24112714 DOI: 10.1111/plb.12104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/08/2013] [Indexed: 05/03/2023]
Abstract
The microtubular cytoskeleton of plant cells provides support for several functions (including the anchoring of proteins, assembly of the mitotic spindle, cytoplasmic streaming and construction of cell walls). Both α- and β-tubulins are encoded through multigene families that are differentially expressed in different organs and tissues. To increase the variability of expression, both protein subunits are subjected to post-translational modifications, which could contribute to the assembly of specific microtubule structures. This review aims to highlight the role of specific post-translational modifications of tubulin in plant cells. We initially describe the expression and accumulation of α- and β-tubulin isoforms in different plants and at different stages of plant development. Second, we discuss the different types of post-translational modifications that, by adding or removing specific functional groups, increase the isoform heterogeneity and functional variability of tubulin. Modifications are proposed to form a 'code' that can be read by proteins interacting with microtubules. Therefore, the subpopulations of microtubules may bind to different associated proteins (motor and non-motor), thus creating the physical support for various microtubule functions.
Collapse
Affiliation(s)
- L Parrotta
- Dipartimento Scienze della Vita, Università di Siena, Siena, Italy
| | | | | |
Collapse
|
34
|
Zhang L, Hou X, Ma R, Moley K, Schedl T, Wang Q. Sirt2 functions in spindle organization and chromosome alignment in mouse oocyte meiosis. FASEB J 2013; 28:1435-45. [PMID: 24334550 DOI: 10.1096/fj.13-244111] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sirtuins have been widely reported to be involved in multiple biological processes; however, their function in oocyte meiosis has not been. Here, by confocal scanning and quantitative analysis, we show that specific depletion of Sirt2 in mouse oocytes results in spindle defects and chromosome disorganization (35.5±8.7 vs. 9.6±3.8% control; P<0.05), with impaired microtubule-kinetochore interaction. Moreover, knockdown and overexpression experiments reveal that Sirt2 modulates the acetylation status of histone H4K16 and α-tubulin in oocytes, which may in part mediate the defective phenotypes described above by influencing microtubule dynamics and kinetochore function. Finally, we find lower Sirt2 protein level in oocytes from aged mice by immunoblotting and that maternal age-associated meiotic defects can be ameliorated through overexpression of Sirt2 (33.2±5.1% old vs.12.7±5.2% old+Sirt2; P<0.05), providing support for the hypothesis that decreased Sirt2 is one of a number of factors contributing to oocyte age-dependent deficits. In summary, our data indicate a role for Sirt2 during oocyte meiosis and uncover a striking beneficial effect of increased Sirt2 expression on aged oocytes.
Collapse
Affiliation(s)
- Liang Zhang
- 2State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 140 Hanzhong Rd, Nanjing, Jiangsu, 210029 China,
| | | | | | | | | | | |
Collapse
|
35
|
Ledda FD, Ramoino P, Ravera S, Perino E, Bianchini P, Diaspro A, Gallus L, Pronzato R, Manconi R. Tubulin posttranslational modifications induced by cadmium in the sponge Clathrina clathrus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:98-105. [PMID: 23765032 DOI: 10.1016/j.aquatox.2013.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 05/09/2023]
Abstract
As sessile filter feeders, sponges are exposed to environmental stress due to pollutants of both anthropogenic and natural origins and are able to accumulate harmful substances. Thus, sponges are considered a good tool for the biomonitoring of coastal areas. In this study, we used biochemical and immunocytochemical analyses to provide new data on the cadmium-related changes in sponge cells. In particular, we analyzed the effects of different concentrations of cadmium on the microtubule network in the calcisponge Clathrina clathrus. Quantitative densitometry of the immunoblots showed that, while the levels of α- and β-tubulin remained relatively constant in C. clathrus when exposed to 1 and 5 μM CdCl2, there were progressive shifts in the levels of some tubulin isoforms. Exposure for 24h to sublethal concentrations of cadmium reduced the level of tyrosinated α-tubulin and enhanced the levels of acetylated and detyrosinated α-tubulin relative to the levels in controls. Confocal microscopy analysis of immunolabeled tissue sections showed that the inhibitory effect of cadmium was associated with a decrease in the labeling of the cells with a monoclonal antibody that recognizes tyrosinated α-tubulin. By contrast, the reactivity with a monoclonal antibody that recognizes acetylated α-tubulin and with a polyclonal antibody specific for detyrosinated α-tubulin was enhanced at the same time points. Because the acetylation and detyrosination of α-tubulin occur on stable microtubules, the marked enhancement of α-tubulin acetylation and detyrosination in Cd(2+)-treated cells indicates that divalent Cd ions stabilize microtubules. The possibility that Cd(2+) may increase the stability of cytoplasmic microtubules was tested by exposing Cd(2+)-treated cells to a cold temperature (0°C). As shown, the microtubule bundles induced by Cd(2+), which were labeled by the monoclonal antibodies against acetylated and detyrosinated α-tubulin, were resistant to cold.
Collapse
Affiliation(s)
- F D Ledda
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Spiegelberg BD. G protein coupled-receptor signaling and reversible lysine acetylation. J Recept Signal Transduct Res 2013; 33:261-6. [PMID: 23895385 DOI: 10.3109/10799893.2013.822889] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Emerging data suggest that interaction with reversible protein acetylation is an important mediator of GPCR-initiated changes in transcription and other processes. Alteration of acetylation downstream of GPCR activation occurs through a variety of mechanisms, including kinase-dependent and -independent regulation of histone deacetylases (HDACs) and histone acetyltransferases (HATs). The prominence of both GPCR and acetylation in pathology and drug development efforts highlights the importance of understanding cross-talk between these two signaling mechanisms.
Collapse
Affiliation(s)
- Bryan D Spiegelberg
- Department of Chemistry and Biochemistry, Rider University , New Jersey , USA
| |
Collapse
|
37
|
Breviario D, Gianì S, Morello L. Multiple tubulins: evolutionary aspects and biological implications. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:202-18. [PMID: 23662651 DOI: 10.1111/tpj.12243] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 05/03/2013] [Accepted: 05/09/2013] [Indexed: 05/05/2023]
Abstract
Plant tubulin is a dimeric protein that contributes to formation of microtubules, major intracellular structures that are involved in the control of fundamental processes such as cell division, polarity of growth, cell-wall deposition, intracellular trafficking and communications. Because it is a structural protein whose function is confined to the role of microtubule formation, tubulin may be perceived as an uninteresting gene product, but such a perception is incorrect. In fact, tubulin represents a key molecule for studying fundamental biological issues such as (i) microtubule evolution (also with reference to prokaryotic precursors and the formation of cytomotive filaments), (ii) protein structure with reference to the various biochemical features of members of the FstZ/tubulin superfamily, (iii) isoform variations contributed by the existence of multi-gene families and various kinds of post-translational modifications, (iv) anti-mitotic drug interactions and mode of action, (v) plant and cell symmetry, as determined using a series of tubulin mutants, (vi) multiple and sophisticated mechanisms of gene regulation, and (vii) intron molecular evolution. In this review, we present and discuss many of these issues, and offer an updated interpretation of the multi-tubulin hypothesis.
Collapse
Affiliation(s)
- Diego Breviario
- Istituto Biologia e Biotecnologia Agraria, Via Bassini 15, 20133 Milano, Italy.
| | | | | |
Collapse
|
38
|
Ban Y, Kobayashi Y, Hara T, Hamada T, Hashimoto T, Takeda S, Hattori T. α-tubulin is rapidly phosphorylated in response to hyperosmotic stress in rice and Arabidopsis. PLANT & CELL PHYSIOLOGY 2013; 54:848-58. [PMID: 23628996 DOI: 10.1093/pcp/pct065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
By using high-resolution two-dimensional PAGE followed by phosphoprotein-specific staining and peptide mass fingerprint analysis along with other assays, we found that α-tubulin is phosphorylated in response to hyperosmotic stress in rice and Arabidopsis. The onset of the phosphorylation response was as early as 2 min after hyperosmotic stress treatment, and a major proportion of α-tubulin was phosphorylated after 60 min in root tissues. However, the phosphorylated form of α-tubulin was readily dephosphorylated upon stress removal. The phosphorylation site was identified as Thr349 by comprehensive mutagenesis of serine/threonine residues in a rice α-tubulin isoform followed by evaluation in cultured cell protoplasts. This residue is located at the surface for the interaction with β-tubulin in polymerized α-β tubulin dimers and has been proposed to be directly involved in this interaction. Thus, α-tubulin phosphorylation was considered to occur on free tubulin dimers in response to hyperosmotic stress. The incorporation of green fluorescent protein (GFP)-α-tubulin into cortical microtubules was completely inhibited in transgenic Arabidopsis when Thr349 was substituted with glutamate or aspartate. Using transgenic Arabidopsis plants expressing GFP-α-tubulin, we found that hyperosmotic stress causes extensive cortical microtubule depolymerization. Microtubule-destabilizing treatments such as propyzamide or oryzalin and temperature stresses resulted in α-tubulin phosphorylation, whereas hyperosmotic stress-induced α-tubulin phosphorylation was partially inhibited by taxol, which stabilizes microtubules. These results and the three-dimensional location of the phosphorylation site suggested that microtubules are depolymerized in response to hyperosmotic stress via α-tubulin phosphorylation. Together, the results of the present study reveal a novel mechanism that globally regulates the microtubule polymerization.
Collapse
Affiliation(s)
- Yoshinori Ban
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Márquez-Navarro A, Pérez-Reyes A, Zepeda-Rodríguez A, Reynoso-Ducoing O, Hernández-Campos A, Hernández-Luis F, Castillo R, Yépez-Mulia L, Ambrosio JR. RCB20, an experimental benzimidazole derivative, affects tubulin expression and induces gross anatomical changes in Taenia crassiceps cysticerci. Parasitol Res 2013; 112:2215-26. [DOI: 10.1007/s00436-013-3379-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 03/03/2013] [Indexed: 02/07/2023]
|
40
|
Sheremet YA, Yemets AI, Azmi A, Vissenberg K, Verbelen JP, Blume YB. Effects of tyrosine kinase and phosphatase inhibitors on mitosis progression in synchronized tobacco BY-2 cells. CYTOL GENET+ 2012. [DOI: 10.3103/s0095452712050088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Mattos EC, Schumacher RI, Colli W, Alves MJM. Adhesion of Trypanosoma cruzi trypomastigotes to fibronectin or laminin modifies tubulin and paraflagellar rod protein phosphorylation. PLoS One 2012; 7:e46767. [PMID: 23056443 PMCID: PMC3465109 DOI: 10.1371/journal.pone.0046767] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 09/05/2012] [Indexed: 12/21/2022] Open
Abstract
Background The unicellular parasite Trypanosoma cruzi is the causative agent of Chagaś disease in humans. Adherence of the infective stage to elements of the extracellular matrix (ECM), as laminin and fibronectin, is an essential step in host cell invasion. Although members of the gp85/TS, as Tc85, were identified as laminin and fibronectin ligands, the signaling events triggered on the parasite upon binding to these molecules are largely unexplored. Methodology/Principal Findings Viable infective parasites were incubated with laminin, fibronectin or bovine serum albumin for different periods of time and the proteins were separated by bidimensional gels. The phosphoproteins were envisaged by specific staining and the spots showing phosphorylation levels significantly different from the control were excised and identified by MS/MS. The results of interest were confirmed by immunoblotting or immunoprecipitation and the localization of proteins in the parasite was determined by immunofluorescence. Using a host cell-free system, our data indicate that the phosphorylation contents of T. cruzi proteins encompassing different cellular functions are modified upon incubation of the parasite with fibronectin or laminin. Conclusions/Significance Herein it is shown, for the first time, that paraflagellar rod proteins and α-tubulin, major structural elements of the parasite cytoskeleton, are predominantly dephosphorylated during the process, probably involving the ERK1/2 pathway. It is well established that T. cruzi binds to ECM elements during the cell infection process. The fact that laminin and fibronectin induce predominantly dephosphorylation of the main cytoskeletal proteins of the parasite suggests a possible correlation between cytoskeletal modifications and the ability of the parasite to internalize into host cells.
Collapse
Affiliation(s)
- Eliciane C. Mattos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Robert I. Schumacher
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Walter Colli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Julia M. Alves
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
42
|
Baek JH, Moon CH, Cha SJ, Lee HS, Noh EK, Kim H, Won JH, Min YJ. Arsenic trioxide induces depolymerization of microtubules in an acute promyelocytic leukemia cell line. THE KOREAN JOURNAL OF HEMATOLOGY 2012; 47:105-12. [PMID: 22783356 PMCID: PMC3389058 DOI: 10.5045/kjh.2012.47.2.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/07/2012] [Accepted: 05/16/2012] [Indexed: 11/19/2022]
Abstract
Background Arsenic trioxide (As2O3) is a well-known and effective treatment that can result in clinical remission for patients diagnosed with acute promyelocytic leukemia (APL). The biologic efficacy of As2O3 in APL and solid tumor cells has been explained through its actions on anti-proliferation, anti-angiogenesis, and apoptotic signaling pathways. We theorize that As2O3 activates a pathway that disrupts microtubule dynamics forming abnormal, nonfunctioning mitotic spindles, thus preventing cellular division. In this study, we investigated how As2O3 induces apoptosis by causing microtubule dysfunction. Methods Cultured NB4 cells were treated with As2O3, paclitaxel, and vincristine. Flow cytometric analysis was then performed. An MTT assay was used to determine drug-mediated cytotoxicity. For tubulin polymerization assay, each polymerized or soluble tubulin was measured. Microtubule assembly-disassembly was measured using a tubulin polymerization kit. Cellular microtubules were also observed with fluorescence microscopy. Results As2O3 treatment disrupted tubulin assembly resulting in dysfunctional microtubules that cause death in APL cells. As2O3 markedly enhanced the amount of depolymerized microtubules. The number of microtubule posttranslational modifications on an individual tubulin decreased with As2O3 concentration. Immunocytochemistry revealed changes in the cellular microtubule network and formation of polymerized microtubules in As2O3-treated cells. Conclusion The microtubules alterations found with As2O3 treatment suggest that As2O3 increases the depolymerized forms of tubulin in cells and that this is potentially due to arsenite's negative effects on spindle dynamics.
Collapse
Affiliation(s)
- Jin Ho Baek
- Division of Hematology and Oncology, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Li J, Song J, Cassidy MG, Rychahou P, Starr ME, Liu J, Li X, Epperly G, Weiss HL, Townsend CM, Gao T, Evers BM. PI3K p110α/Akt signaling negatively regulates secretion of the intestinal peptide neurotensin through interference of granule transport. Mol Endocrinol 2012; 26:1380-93. [PMID: 22700584 DOI: 10.1210/me.2012-1024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Neurotensin (NT), an intestinal peptide secreted from N cells in the small bowel, regulates a variety of physiological functions of the gastrointestinal tract, including secretion, gut motility, and intestinal growth. The class IA phosphatidylinositol 3-kinase (PI3K) family, which comprised of p110 catalytic (α, β and δ) and p85 regulatory subunits, has been implicated in the regulation of hormone secretion from endocrine cells. However, the underlying mechanisms remain poorly understood. In particular, the role of PI3K in intestinal peptide secretion is not known. Here, we show that PI3K catalytic subunit, p110α, negatively regulates NT secretion in vitro and in vivo. We demonstrate that inhibition of p110α, but not p110β, induces NT release in BON, a human endocrine cell line, which expresses NT mRNA and produces NT peptide in a manner analogous to N cells, and QGP-1, a pancreatic endocrine cell line that produces NT peptide. In contrast, overexpression of p110α decreases NT secretion. Consistently, p110α-inhibition increases plasma NT levels in mice. To further delineate the mechanisms contributing to this effect, we demonstrate that inhibition of p110α increases NT granule trafficking by up-regulating α-tubulin acetylation; NT secretion is prevented by overexpression of HDAC6, an α-tubulin deacetylase. Moreover, ras-related protein Rab27A (a small G protein) and kinase D-interacting substrate of 220 kDa (Kidins220), which are associated with NT granules, play a negative and positive role, respectively, in p110α-inhibition-induced NT secretion. Our findings identify the critical role and novel mechanisms for the PI3K signaling pathway in the control of intestinal hormone granule transport and release.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lou B, Engler D, Dubinsky W, Wu J, Vigneswaran N. Acquiring Metastatic Competence by Oral Squamous Cell Carcinoma Cells Is Associated with Differential Expression of α-Tubulin Isoforms. JOURNAL OF ONCOLOGY 2012; 2012:491685. [PMID: 22719762 PMCID: PMC3376782 DOI: 10.1155/2012/491685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/17/2012] [Indexed: 12/24/2022]
Abstract
We performed comparative global proteomics analyses of patient-matched primary (686Tu) and metastatic (686Ln) OSCC cells. The metastatic OSCC 686Ln cells showed greater in vitro migratory/invasive potential and distinct cell shape from their parental primary 686Tu cells. Ettan DIGE analysis revealed 1316 proteins spots in both cell lines with >85% to be quantitatively similar (<2 folds) between the two cell lines. However, two protein spots among four serial spots were highly dominant in 686Ln cells. Mass spectrometry sequencing demonstrated all four spots to be α-tubulin isotypes. Further analysis showed no significant quantitative difference in the α-tubulin between the two cell lines either at mRNA or protein levels. Thus, two distinct isoforms of α-tubulin, probably due to posttranslational modification, were associated with metastatic 686Ln cells. Immunofluorescence demonstrated remarkable differences in the cytosolic α-tubulin distribution patterns between the two cells. In 686Tu cells, α-tubulin proteins formed a normal network composed of filaments. In contrast, α-tubulin in 686Ln cells exhibited only partial cytoskeletal distribution with the majority of the protein diffusely distributed within the cytosol. Since α-tubulin is critical for cell shape and mobility, our finding suggests a role of α-tubulin isoforms in acquisition of metastatic phenotype and represents potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Becky Lou
- New York Medical College, 40 Sunshine Cottage Road, Valhalla, NY 10595, USA
| | - David Engler
- The Methodist Hospital Research Institute, 6670, Bertner Street, Houston, TX 77030, USA
| | - William Dubinsky
- Department of Diagnostic and Biomedical Sciences, The University of Texas School of Dentistry at Houston, 7500, Cambridge Street, Houston, TX 77054, USA
| | - Jean Wu
- Department of Diagnostic and Biomedical Sciences, The University of Texas School of Dentistry at Houston, 7500, Cambridge Street, Houston, TX 77054, USA
| | - Nadarajah Vigneswaran
- Department of Diagnostic and Biomedical Sciences, The University of Texas School of Dentistry at Houston, 7500, Cambridge Street, Houston, TX 77054, USA
| |
Collapse
|
45
|
Sheremet YA, Emets AI, Azmi A, Vissenberg K, Verbelen JP, Blume YB. Effect of serine/threonine protein kinases and protein phosphatases inhibitors on mitosis progression in a synchronized tobacco BY-2 culture. CYTOL GENET+ 2012. [DOI: 10.3103/s009545271202003x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Osman AM, van Loveren H. Phosphoproteomic analysis of mouse thymoma cells treated with tributyltin oxide: TBTO affects proliferation and energy sensing pathways. Toxicol Sci 2011; 126:84-100. [PMID: 22174045 DOI: 10.1093/toxsci/kfr333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the results of phosphoproteomic analysis of mouse thymoma cells treated with tributyltin oxide (TBTO), an immunotoxic compound. After cell lysis, phosphoproteins were isolated using Phosphoprotein Purification Kit, separated by SDS-PAGE and subsequently digested with trypsin. Phosphopeptides were enriched employing titanium dioxide, and the obtained fractions were analyzed by nano-LC-MS/MS. A total of 160 phosphoproteins and 328 phosphorylation sites were identified in thymoma cells. Among the differentially phosphorylated proteins identified in TBTO-treated cells were key enzymes, which catalyze rate-limiting steps in pathways that are sensitive to cellular energy status. These proteins included acetyl-CoA carboxylase isoform 1, which catalyzes the rate-limiting step of fatty acid synthesis. Another enzyme was glutamine: fructose-6-phosphate amidotransferase, GFAT1, the first and rate-limiting enzyme for the hexoamine synthesis pathway. Pyruvate dehydrogenase (PDH), a multicomplex enzyme that catalyzes the rate-limiting step of aerobic oxidation of fuel carbohydrates, was identified in both TBTO-treated and control cells; however, phosphorylation at residue S293, known to inhibit PDH activity, was identified only in control cells. A lower expression level of ribosomal protein S6 kinase 1, a downstream kinase of the mammalian target of rapamycin signaling pathway implicated in protein synthesis through phosphorylation of 40 ribosomal S6, was observed in the treated cells. Giant kinases like AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKAR1A), which are known to mediate the phosphorylation of these enzymes, were identified in TBTO-treated cells. Downregulation of proteins, such as MAPK, matrin-3 and ribonucleotide reductase, subunit RRM2, which are implicated in cell proliferation, was also observed in TBTO-treated cells. Together, the results show that TBTO affects proliferation and energy sensor pathways.
Collapse
Affiliation(s)
- Ahmed M Osman
- National Institute for Public Health and the Environment (RIVM), NL-3720 BA Bilthoven, The Netherlands.
| | | |
Collapse
|
47
|
Parisiadou L, Cai H. LRRK2 function on actin and microtubule dynamics in Parkinson disease. Commun Integr Biol 2011; 3:396-400. [PMID: 21057624 DOI: 10.4161/cib.3.5.12286] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 05/05/2010] [Indexed: 01/11/2023] Open
Abstract
The mutations in the LRRK2 gene cause clinically typical, late-onset Parkinson disease, strengthening the idea that the familial forms of the disease represent an important tool for the study of the idiopathic forms. Despite the great effort to describe and functionally characterize the LRRK2 gene product, its physiological role remains elusive. In this article, we will discuss along with other references, our recent findings that assigned a critical role of LRRK2 protein on cytosleketal dynamics and how this direction could provide a valuable platform to further appreciate the mechanism underlying LRRK2-mediated pathophysiology of the disease.
Collapse
Affiliation(s)
- Loukia Parisiadou
- Unit of Transgenesis; Laboratory of Neurogenetics; National Institute on Aging; National Institutes of Health; Bethesda, MD USA
| | | |
Collapse
|
48
|
Manca P, Chisu V. Testosterone attenuates morpho-functional alterations by 2-methoxyestradiol exposure and induces differentiation in C6 cells. J Cell Physiol 2011; 226:1510-8. [DOI: 10.1002/jcp.22480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Fullston T, Gabb B, Callen D, Ullmann R, Woollatt E, Bain S, Ropers HH, Cooper M, Chandler D, Carter K, Jablensky A, Kalaydjieva L, Gecz J. Inherited balanced translocation t(9;17)(q33.2;q25.3) concomitant with a 16p13.1 duplication in a patient with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2011; 156:204-14. [PMID: 21302349 DOI: 10.1002/ajmg.b.31157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 11/30/2010] [Indexed: 11/08/2022]
Abstract
We report two rare genetic aberrations in a schizophrenia patient that may act together to confer disease susceptibility. A previously unreported balanced t(9;17)(q33.2;q25.3) translocation was observed in two schizophrenia-affected members of a small family with diverse psychiatric disorders. The proband also carried a 1.5 Mbp microduplication at 16p13.1 that could not be investigated in other family members. The duplication has been reported to predispose to schizophrenia, autism and mental retardation, with incomplete penetrance and variable expressivity. The t(9;17) (q33.2;q25.3) translocation breakpoint occurs within the open reading frames of KIAA1618 on 17q25.3, and TTLL11 (tyrosine tubulin ligase like 11) on 9q33.2, causing no change in the expression level of KIAA1618 but leading to loss of expression of one TTLL11 allele. TTLL11 belongs to a family of enzymes catalyzing polyglutamylation, an unusual neuron-specific post-translational modification of microtubule proteins, which modulates microtubule development and dynamics. The 16p13.1 duplication resulted in increased expression of NDE1, encoding a DISC1 protein partner mediating DISC1 functions in microtubule dynamics. We hypothesize that concomitant TTLL11-NDE1 deregulation may increase mutation load, among others, also on the DISC1 pathway, which could contribute to disease pathogenesis through multiple effects on neuronal development, synaptic plasticity, and neurotransmission. Our data illustrate the difficulties in interpreting the contribution of multiple potentially pathogenic changes likely to emerge in future next-generation sequencing studies, where access to extended families will be increasingly important.
Collapse
Affiliation(s)
- Tod Fullston
- SA Pathology, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Malcos JL, Hancock WO. Engineering tubulin: microtubule functionalization approaches for nanoscale device applications. Appl Microbiol Biotechnol 2011; 90:1-10. [PMID: 21327409 DOI: 10.1007/s00253-011-3140-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 11/28/2022]
Abstract
With the emergences of engineered devices at microscale and nanoscale dimensions, there is a growing need for controlled actuation and transport at these length scales. The kinesin-microtubule system provides a highly evolved biological transport system well suited for these tasks. Accordingly, there is an ongoing effort to create hybrid nanodevices that integrate biological components with engineered materials for applications such as biological separations, nanoscale assembly, and sensing. Adopting microtubules for these applications generally requires covalent attachment of biotin, fluorophores, or other biomolecules to tubulin enable surface or cargo attachment, or visualization. This review summarizes different strategies for functionalizing microtubules for application-focused as well as basic biological research. These functionalization strategies must maintain the integrity of microtubule proteins so that they do not depolymerize and can be transported by kinesin motors, while adding utility such as the ability to reversibly bind cargo. The relevant biochemical and electrical properties of microtubules are discussed, as well as strategies for microtubule stabilization and long-term storage. Next, attachment strategies, such as antibodies and DNA hybridization that have proven useful to date, are discussed in the context of ongoing hybrid nanodevice research. The review concludes with a discussion of less explored opportunities, such as harnessing the utility of tubulin posttranslational modifications and the use of recombinant tubulin that may enable future progress in nanodevice development.
Collapse
Affiliation(s)
- Jennelle L Malcos
- Department of Biology, The Pennsylvania State University, 208 Muller Lab, University Park, PA 16802, USA
| | | |
Collapse
|