1
|
Shtyrov Y, Perikova E, Filippova M, Kirsanov A, Blagovechtchenski E, Shcherbakova O. Transcranial direct-current stimulation of core language areas facilitates novel word acquisition. Neurobiol Learn Mem 2024; 216:107992. [PMID: 39414128 DOI: 10.1016/j.nlm.2024.107992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that can alter the state of the stimulated brain area and thereby affect neurocognitive processes and resulting behavioural performance. Previous studies using tDCS to address the language function have shown disparate results, particularly with respect to language learning and word acquisition. To fill this gap, this study aimed at systematically addressing the effects of tDCS of core left-hemispheric language cortices on the brain mechanisms underpinning two main neurocognitive strategies of word learning: implicit inference-based Fast Mapping (FM) and direct instruction-based Explicit Encoding (EE). Prior to a word-learning session, 160 healthy participants were given 15 min of either anodal or cathodal tDCS of Wernicke's or Broca's areas, or a control sham (placebo) stimulation, in a between-group design. Each participant then learned sixteen novel words (eight through FM and eight through EE) in a contextual word-picture association session. Moreover, these words were learnt either perceptually via auditory exposure combined with a graphical image of the novel object, or in an articulatory mode, where the participants additionally had to overtly articulate the novel items. These learning conditions were fully counterbalanced across participants, stimuli and tDCS groups. Learning outcomes were tested at both lexical and semantic levels using two tasks: recognition and word-picture matching. EE and FM conditions produced similar outcomes, indicating comparable efficiency of the respective learning strategies. At the same time, articulatory learning produced generally better results than non-articulatory exposure, yielding higher recognition accuracies and shorter latencies in both tasks. Crucially, real tDCS led to global outcome improvements, demonstrated by faster (compared to sham) reactions, as well as some accuracy changes. There was also evidence of more specific tDCS effects: better word-recognition accuracy for EE vs. FM following cathodal stimulation as well as more expressed improvements in recognition accuracy and reaction times for anodal Broca's and cathodal Wernicke's stimulation, particularly for unarticulated FM items. These learning mode-specific effects support the notion of partially distinct brain mechanisms underpinning these two learning strategies. Overall, numerically largest improvements were observed for anodal Broca's tDCS, whereas the least expressed benefits of tDCS for learning were measured after anodal Wernicke stimulation. Finally, we did not find any inhibitory effects of either tDCS polarity in any of the comparisons. We conclude that tDCS of core language areas exerts a general facilitatory effect on new word acquisition with some limited specificity to learning protocols - the result that may be of potential applied value for future research aimed at ameliorating learning deficits and language disorders.
Collapse
Affiliation(s)
- Yury Shtyrov
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark.
| | - Ekaterina Perikova
- The Gestalt Centre London & London Metropolitan University, London, United Kingdom
| | - Margarita Filippova
- N.P. Bekhtereva Institute of the Human Brain, Russian Academy of Sciences, St. Petersburg, Russia
| | | | - Evgeny Blagovechtchenski
- Center for Cognition & Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
| | - Olga Shcherbakova
- Center for Cognition & Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
| |
Collapse
|
2
|
Guo F, Niu M, Hanson NJ, Guo J, Zhou K, Zhao T, Ren Y. Enhancing motor skill learning through multiple sessions of online high-definition transcranial direct current stimulation in healthy adults: insights from EEG power spectrum. Cereb Cortex 2024; 34:bhae395. [PMID: 39367728 DOI: 10.1093/cercor/bhae395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024] Open
Abstract
The purpose of this study was to evaluate the influence of high-definition transcranial direct current stimulation (HD-tDCS) on finger motor skill acquisition. Thirty-one healthy adult males were randomly assigned to one of three groups: online HD-tDCS (administered during motor skill learning), offline HD-tDCS (delivered before motor skill learning), and a sham group. Participants engaged in a visual isometric pinch task for three consecutive days. Overall motor skill learning and speed-accuracy tradeoff function were used to evaluate the efficacy of tDCS. Electroencephalography was recorded and power spectral density was calculated. Both online and offline HD-tDCS total motor skill acquisition was significantly higher than the sham group (P < 0.001 and P < 0.05, respectively). Motor skill acquisition in the online group was higher than offline (P = 0.132, Cohen's d = 1.46). Speed-accuracy tradeoff function in the online group was higher than both offline and sham groups in the post-test. The online group exhibited significantly lower electroencephalography activity in the frontal, fronto-central, and centro-parietal alpha band regions compared to the sham (P < 0.05). The findings suggest that HD-tDCS application can boost finger motor skill acquisition, with online HD-tDCS displaying superior facilitation. Furthermore, online HD-tDCS reduces the power of alpha rhythms during motor skill execution, enhancing information processing and skill learning efficiency.
Collapse
Affiliation(s)
- Feng Guo
- College of Exercise and Health, Shenyang Sport University, No. 36, Jinqiansong East Road, Sujiatun District, Shenyang 110102, China
| | - Maolin Niu
- College of Exercise and Health, Shenyang Sport University, No. 36, Jinqiansong East Road, Sujiatun District, Shenyang 110102, China
- Department of Rehabilitation, Shandong Rongjun General Hospital, No. 23, Jiefang Road, Lixia District, Jinan 250014, China
| | - Nicholas J Hanson
- Department of Human Performance and Health Education, College of Education and Human Development, Western Michigan University, Kalamazoo, MI 49008-5242, United States
| | - Jianrui Guo
- Laboratory Management Center, Shenyang Sport University, No. 36, Jinqiansong East Road, Sujiatun District, Shenyang 110102, China
| | - Kuo Zhou
- College of Exercise and Health, Shenyang Sport University, No. 36, Jinqiansong East Road, Sujiatun District, Shenyang 110102, China
| | - Tan Zhao
- College of Exercise and Health, Shenyang Sport University, No. 36, Jinqiansong East Road, Sujiatun District, Shenyang 110102, China
| | - Yinghui Ren
- College of Exercise and Health, Shenyang Sport University, No. 36, Jinqiansong East Road, Sujiatun District, Shenyang 110102, China
| |
Collapse
|
3
|
Zhang X, Chen Z, Li Y, Xie C, Liu Z, Wu Q, Kuang M, Yan R, Wu F, Liu H. Volume development changes in the occipital lobe gyrus assessed by MRI in fetuses with isolated ventriculomegaly correlate with neurological development in infancy and early childhood. J Perinatol 2024; 44:1178-1185. [PMID: 38802655 DOI: 10.1038/s41372-024-02012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE This study was to systematically assess the occipital lobe gray and white matter volume of isolated ventriculomegaly (IVM) fetuses with MRI and to follow up the neurodevelopment of participants. METHOD MRI was used to evaluate 37 IVM fetuses and 37 control fetuses. The volume of gray and white matter in each fetal occipital gyrus was manually segmented and compared, and neurodevelopment was followed up and assessed in infancy and early childhood. RESULT Compared with the control group, the volume of gray matter in occipital lobe increased in the IVM group, and the incidence of neurodevelopmental delay increased. CONCLUSION We tested the hypothesis that prenatal diagnosis IVM represents a biological marker for development in fetal occipital lobe. Compared with the control group, the IVM group showed differences in occipital gray matter development and had a higher risk of neurodevelopmental delay.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Zhaoji Chen
- Department of Radiology, Hexian Memorial Hospital of PanYu District, Guangzhou, China
| | - Yuchao Li
- Department of Radiology, Longhua District People's Hospital, Shenzhen, China
| | - Chenxin Xie
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Zhenqing Liu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Qianqian Wu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Minwei Kuang
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Ren Yan
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Fan Wu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China.
| | - Hongsheng Liu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China.
| |
Collapse
|
4
|
Santander T, Leslie S, Li LJ, Skinner HE, Simonson JM, Sweeney P, Deen KP, Miller MB, Brunye TT. Towards optimized methodological parameters for maximizing the behavioral effects of transcranial direct current stimulation. Front Hum Neurosci 2024; 18:1305446. [PMID: 39015825 PMCID: PMC11250584 DOI: 10.3389/fnhum.2024.1305446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) administers low-intensity direct current electrical stimulation to brain regions via electrodes arranged on the surface of the scalp. The core promise of tDCS is its ability to modulate brain activity and affect performance on diverse cognitive functions (affording causal inferences regarding regional brain activity and behavior), but the optimal methodological parameters for maximizing behavioral effects remain to be elucidated. Here we sought to examine the effects of 10 stimulation and experimental design factors across a series of five cognitive domains: motor performance, visual search, working memory, vigilance, and response inhibition. The objective was to identify a set of optimal parameter settings that consistently and reliably maximized the behavioral effects of tDCS within each cognitive domain. Methods We surveyed tDCS effects on these various cognitive functions in healthy young adults, ultimately resulting in 721 effects across 106 published reports. Hierarchical Bayesian meta-regression models were fit to characterize how (and to what extent) these design parameters differentially predict the likelihood of positive/negative behavioral outcomes. Results Consistent with many previous meta-analyses of tDCS effects, extensive variability was observed across tasks and measured outcomes. Consequently, most design parameters did not confer consistent advantages or disadvantages to behavioral effects-a domain-general model suggested an advantage to using within-subjects designs (versus between-subjects) and the tendency for cathodal stimulation (relative to anodal stimulation) to produce reduced behavioral effects, but these associations were scarcely-evident in domain-specific models. Discussion These findings highlight the urgent need for tDCS studies to more systematically probe the effects of these parameters on behavior to fulfill the promise of identifying causal links between brain function and cognition.
Collapse
Affiliation(s)
- Tyler Santander
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Sara Leslie
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Luna J. Li
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Henri E. Skinner
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Jessica M. Simonson
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Patrick Sweeney
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Kaitlyn P. Deen
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Michael B. Miller
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Tad T. Brunye
- U. S. Army DEVCOM Soldier Center, Natick, MA, United States
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| |
Collapse
|
5
|
La Malva P, Di Crosta A, Prete G, Ceccato I, Gatti M, D'Intino E, Tommasi L, Mammarella N, Palumbo R, Di Domenico A. The effects of prefrontal tDCS and hf-tRNS on the processing of positive and negative emotions evoked by video clips in first- and third-person. Sci Rep 2024; 14:8064. [PMID: 38580697 PMCID: PMC10997595 DOI: 10.1038/s41598-024-58702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
The causal role of the cerebral hemispheres in positive and negative emotion processing remains uncertain. The Right Hemisphere Hypothesis proposes right hemispheric superiority for all emotions, while the Valence Hypothesis suggests the left/right hemisphere's primary involvement in positive/negative emotions, respectively. To address this, emotional video clips were presented during dorsolateral prefrontal cortex (DLPFC) electrical stimulation, incorporating a comparison of tDCS and high frequency tRNS stimulation techniques and manipulating perspective-taking (first-person vs third-person Point of View, POV). Four stimulation conditions were applied while participants were asked to rate emotional video valence: anodal/cathodal tDCS to the left/right DLPFC, reverse configuration (anodal/cathodal on the right/left DLPFC), bilateral hf-tRNS, and sham (control condition). Results revealed significant interactions between stimulation setup, emotional valence, and POV, implicating the DLPFC in emotions and perspective-taking. The right hemisphere played a crucial role in both positive and negative valence, supporting the Right Hemisphere Hypothesis. However, the complex interactions between the brain hemispheres and valence also supported the Valence Hypothesis. Both stimulation techniques (tDCS and tRNS) significantly modulated results. These findings support both hypotheses regarding hemispheric involvement in emotions, underscore the utility of video stimuli, and emphasize the importance of perspective-taking in this field, which is often overlooked.
Collapse
Affiliation(s)
- Pasquale La Malva
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via dei Vestini, 66100, Chieti, Italy
| | - Adolfo Di Crosta
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via dei Vestini, 66100, Chieti, Italy
| | - Giulia Prete
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via dei Vestini, 66100, Chieti, Italy.
| | - Irene Ceccato
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via dei Vestini, 66100, Chieti, Italy
| | - Matteo Gatti
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via dei Vestini, 66100, Chieti, Italy
| | - Eleonora D'Intino
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via dei Vestini, 66100, Chieti, Italy
| | - Luca Tommasi
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via dei Vestini, 66100, Chieti, Italy
| | - Nicola Mammarella
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via dei Vestini, 66100, Chieti, Italy
| | - Rocco Palumbo
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via dei Vestini, 66100, Chieti, Italy
| | - Alberto Di Domenico
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, 31, Via dei Vestini, 66100, Chieti, Italy
| |
Collapse
|
6
|
Radecke JO, Sprenger A, Stöckler H, Espeter L, Reichhardt MJ, Thomann LS, Erdbrügger T, Buschermöhle Y, Borgwardt S, Schneider TR, Gross J, Wolters CH, Lencer R. Normative tDCS over V5 and FEF reveals practice-induced modulation of extraretinal smooth pursuit mechanisms, but no specific stimulation effect. Sci Rep 2023; 13:21380. [PMID: 38049419 PMCID: PMC10695990 DOI: 10.1038/s41598-023-48313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
The neural networks subserving smooth pursuit eye movements (SPEM) provide an ideal model for investigating the interaction of sensory processing and motor control during ongoing movements. To better understand core plasticity aspects of sensorimotor processing for SPEM, normative sham, anodal or cathodal transcranial direct current stimulation (tDCS) was applied over visual area V5 and frontal eye fields (FEF) in sixty healthy participants. The identical within-subject paradigm was used to assess SPEM modulations by practice. While no specific tDCS effects were revealed, within- and between-session practice effects indicate plasticity of top-down extraretinal mechanisms that mainly affect SPEM in the absence of visual input and during SPEM initiation. To explore the potential of tDCS effects, individual electric field simulations were computed based on calibrated finite element head models and individual functional localization of V5 and FEF location (using functional MRI) and orientation (using combined EEG/MEG) was conducted. Simulations revealed only limited electric field target intensities induced by the applied normative tDCS montages but indicate the potential efficacy of personalized tDCS for the modulation of SPEM. In sum, results indicate the potential susceptibility of extraretinal SPEM control to targeted external neuromodulation (e.g., personalized tDCS) and intrinsic learning protocols.
Collapse
Affiliation(s)
- Jan-Ole Radecke
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany.
| | - Andreas Sprenger
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
- Department of Neurology, University of Lübeck, 23562, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, 23562, Lübeck, Germany
| | - Hannah Stöckler
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
| | - Lisa Espeter
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
| | - Mandy-Josephine Reichhardt
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, 23562, Lübeck, Germany
| | - Lara S Thomann
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
| | - Tim Erdbrügger
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149, Münster, Germany
| | - Yvonne Buschermöhle
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562, Lübeck, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
- Institute for Translational Psychiatry, University of Münster, 48149, Münster, Germany
| |
Collapse
|
7
|
Anoushiravani S, Alizadehgoradel J, Iranpour A, Yousefi Bilehsavar O, Pouresmali A, Nitsche MA, Salehinejad MA, Mosayebi-Samani M, Zoghi M. The impact of bilateral anodal transcranial direct current stimulation of the premotor and cerebellar cortices on physiological and performance parameters of gymnastic athletes: a randomized, cross-over, sham-controlled study. Sci Rep 2023; 13:10611. [PMID: 37391555 PMCID: PMC10313825 DOI: 10.1038/s41598-023-37843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023] Open
Abstract
Professional sports performance relies critically on the interaction between the brain and muscles during movement. Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique which modulates cortical excitability and can be used to improve motor performance in athletes. The present study aimed to investigate the effect of bilateral anodal tDCS (2 mA, 20 min) over the premotor cortex or cerebellum on motor and physiological functions and peak performance of professional gymnastics athletes. Seventeen professional gymnastics athletes participated in a randomized, sham-controlled, crossover study. In this study, we assessed the efficacy of two anodal tDCS protocols (2 mA, 20 min) with stimulation over the bilateral premotor cortex or cerebellum with the return electrodes placed over the opposite supraorbital areas. Power speed, strength coordination, endurance, static and dynamic strength, static and dynamic flexibility, and rating of perceived exertion were measured before and immediately after tDCS interventions (bilateral anodal tDCS over premotor cortices, anodal tDCS over the cerebellum, and sham tDCS). Additionally, physiological muscle performance parameters, including maximum voluntary isometric contraction (MVIC) of upper body muscles, were assessed during tDCS. Bilateral anodal tDCS over the premotor cortex, compared to anodal tDCS over the cerebellum and sham tDCS conditions, significantly improved power speed, strength coordination, and static and dynamic strength variables of professional gymnastics athletes. Furthermore, bilateral anodal tDCS over the cerebellum, compared to sham tDCS, significantly improved strength coordination. Moreover, bilateral premotor anodal tDCS significantly increased MVIC of all upper body muscles during stimulation, while anodal tDCS over the cerebellum increased MVIC in only some muscles. Bilateral anodal tDCS over the premotor cortex, and to a minor degree over the cerebellum, might be suited to improve some aspects of motor and physiological functions and peak performance levels of professional gymnastics athletes.Clinical Trial Registration ID: IRCT20180724040579N2.
Collapse
Affiliation(s)
- Sajjad Anoushiravani
- Department of Sports Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Jaber Alizadehgoradel
- Department of Psychology, Faculty of Humanities, University of Zanjan, Zanjan, Iran.
| | - Asgar Iranpour
- Department of Sports Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Omid Yousefi Bilehsavar
- Department of Sports Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Asghar Pouresmali
- Department of Family Health, Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld University, Bielefeld, Germany
| | - Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Mohsen Mosayebi-Samani
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Maryam Zoghi
- Discipline of Physiotherapy, Institute of Health and Wellbeing, Federation University, Victoria, Australia
| |
Collapse
|
8
|
Di W, Yifan W, Na L, Pan Z. Dissociable effects of transcranial direct current stimulation (tDCS) on early and later stages of visual motion perceptual learning. Brain Res Bull 2023; 199:110669. [PMID: 37196735 DOI: 10.1016/j.brainresbull.2023.110669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Transcranial direct current stimulation (tDCS) has the potential to benefit visual perceptual learning (VPL). However, previous studies investigated the effect of tDCS on VPL within early sessions, and the influence of tDCS on learning effects at later stages (plateau level) is unclear. Here, participants completed 9 days of training on coherent motion direction identification to reach a plateau (stage 1) and then continued training for 3 days (stage 2). The coherent thresholds were measured before training, after stage 1 and after stage 2. In the first group, anodal tDCS was applied when participants trained over a period of 12 days (stage 1+ stage 2). In the second group, participants completed a 9-day training period without any stimulation to reach a plateau (stage 1); after that, participants completed a 3-day training period while anodal tDCS was administered (stage 2). The third group was treated the same as the second group except that anodal tDCS was replaced by sham tDCS. The results showed that anodal tDCS did not improve posttest performance after the plateau was reached. The comparison of learning curves between the first and third groups showed that anodal tDCS decreased the threshold at the early stage, but it did not improve the plateau level. For the second and third groups, anodal tDCS did not further enhance the plateau level after a continued 3-day training period. These results suggest that anodal tDCS boosts VLP during the early period of training sessions, but it fails to facilitate later learning effects. This study contributed to a deep understanding of the dissociable tDCS effects at distinct temporal stages, which may be due to the dynamic change in brain regions during the time course of VPL.
Collapse
Affiliation(s)
- Wu Di
- Department of Medical Psychology, Air Force Medical University, Xi'an, China; Department of Neurobiology, Basic Medical School, Air Force Medical University, Xi'an, China
| | - Wang Yifan
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Liu Na
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Zhang Pan
- Department of Psychology, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
9
|
Wu D, Wang Y, Liu N, Wang P, Sun K, Zhang P. Posttraining anodal tDCS improves early consolidation of visual perceptual learning. Clin Neurophysiol 2023; 146:89-96. [PMID: 36563555 DOI: 10.1016/j.clinph.2022.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE We aimed to investigate the transcranial direct current stimulation (tDCS)-induced facilitation of early consolidation over a period of extended training sessions and explored the effect of tDCS on visual perceptual learning (VPL) improvement during online learning and offline consolidation. METHODS In the current double-blind sham-controlled study, twenty-four healthy participants were trained on coherent motion direction identification for 5 consecutive sessions. Performance was assessed at the pre- and posttests. Anodal or sham tDCS of the left human middle temporal region (hMT+) was applied immediately after the completion of daily training (termed early consolidation). RESULTS The magnitude of improvement between anodal and sham tDCS was marginally significant, supporting the beneficial effect of anodal tDCS on VPL by stimulating early consolidation. Additionally, anodal tDCS induced a larger improvement between the first two training sessions than sham tDCS. No effect of anodal tDCS was found on the within-session improvement. CONCLUSIONS The above results indicated that anodal tDCS facilitates offline consolidation during the early period of the whole training series, not online learning. The possible neural mechanisms and limitations (sample size and persistent effects) were discussed. SIGNIFICANCE Our findings support the use of the combination of tDCS and behavioral training in facilitating visual rehabilitation and contribute to a deeper understanding of learning processes by neuromodulation procedures.
Collapse
Affiliation(s)
- Di Wu
- Department of Medical Psychology, Air Force Medical University, Xi'an, China; Department of Neurobiology, Basic Medical School, Air Force Medical University, Xi'an, China
| | - Yifan Wang
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Na Liu
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Panhui Wang
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Kewei Sun
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Pan Zhang
- Department of Psychology, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
10
|
Wu D, Zhang P, Wang Y, Liu N, Sun K, Wang P, Xiao W. Anodal online transcranial direct current stimulation facilitates visual motion perceptual learning. Eur J Neurosci 2023; 57:479-489. [PMID: 36511948 DOI: 10.1111/ejn.15895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Visual perceptual learning (VPL) has great potential implications for clinical populations, but adequate improvement often takes weeks to months to obtain; therefore, practical applications of VPL are limited. Strategies that enhance visual performance acquisition make great practical sense. Transcranial direct current stimulation (tDCS) could be beneficial to VPL, but thus far, the results are inconsistent. The current study had two objectives: (1) to investigate the effect of anodal tDCS on VPL and (2) to determine whether the timing sequence of anodal tDCS and training influences VPL. Anodal tDCS was applied on the left human middle temporal (hMT+) during training on a coherent motion discrimination task (online), anodal tDCS was also applied before training (offline) and sham tDCS was applied during training (sham). The coherent thresholds were measured without stimulation before, 2 days after and 1 month after training. All participants trained for five consecutive days. Anodal tDCS resulted in more performance improvement when applied during daily training but not when applied before training. Additionally, neither within-session improvement nor between-session improvement differed among the online, offline and sham tDCS conditions. These findings contribute to the development of efficient stimulation protocols and a deep understanding of the mechanisms underlying the effect of tDCS on VPL.
Collapse
Affiliation(s)
- Di Wu
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
- Department of Neurobiology, Basic Medical School, Air Force Medical University, Xi'an, China
| | - Pan Zhang
- Department of Psychology, Hebei Normal University, Shijiazhuang, China
| | - Yifan Wang
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Na Liu
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Kewei Sun
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Panhui Wang
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Wei Xiao
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| |
Collapse
|
11
|
Bello UM, Wang J, Park ASY, Tan KWS, Cheung BWS, Thompson B, Cheong AMY. Can visual cortex non-invasive brain stimulation improve normal visual function? A systematic review and meta-analysis. Front Neurosci 2023; 17:1119200. [PMID: 36937668 PMCID: PMC10017867 DOI: 10.3389/fnins.2023.1119200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Objective Multiple studies have explored the use of visual cortex non-invasive brain stimulation (NIBS) to enhance visual function. These studies vary in sample size, outcome measures, and methodology. We conducted a systematic review and meta-analyses to assess the effects of NIBS on visual functions in human participants with normal vision. Methods We followed the PRISMA guidelines, and a review protocol was registered with PROSPERO before study commencement (CRD42021255882). We searched Embase, Medline, PsychInfo, PubMed, OpenGrey and Web of Science using relevant keywords. The search covered the period from 1st January 2000 until 1st September 2021. Comprehensive meta-analysis (CMA) software was used for quantitative analysis. Results Fifty studies were included in the systematic review. Only five studies utilized transcranial magnetic stimulation (TMS) and no TMS studies met our pre-specified criteria for meta-analysis. Nineteen transcranial electrical stimulation studies (tES, 38%) met the criteria for meta-analysis and were the focus of our review. Meta-analysis indicated acute effects (Hedges's g = 0.232, 95% CI: 0.023-0.442, p = 0.029) and aftereffects (0.590, 95% CI: 0.182-0.998, p = 0.005) of tES on contrast sensitivity. Visual evoked potential (VEP) amplitudes were significantly enhanced immediately after tES (0.383, 95% CI: 0.110-0.665, p = 0.006). Both tES (0.563, 95% CI: 0.230-0.896, p = 0.001) and anodal-transcranial direct current stimulation (a-tDCS) alone (0.655, 95% CI: 0.273-1.038, p = 0.001) reduced crowding in peripheral vision. The effects of tES on visual acuity, motion perception and reaction time were not statistically significant. Conclusion There are significant effects of visual cortex tES on contrast sensitivity, VEP amplitude, an index of cortical excitability, and crowding among normally sighted individuals. Additional studies are required to enable a comparable meta-analysis of TMS effects. Future studies with robust experimental designs are needed to extend these findings to populations with vision loss. Clinical trial registration ClinicalTrials.gov/, identifier CRD42021255882.
Collapse
Affiliation(s)
- Umar M. Bello
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- Department of Physiotherapy and Paramedicine, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Jingying Wang
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Adela S. Y. Park
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Ken W. S. Tan
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Blossom W. S. Cheung
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
| | - Benjamin Thompson
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Allen M. Y. Cheong
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, Hong Kong SAR, China
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- *Correspondence: Allen M. Y. Cheong,
| |
Collapse
|
12
|
Kunaratnam N, Saumer TM, Kuan G, Holmes Z, Swarbrick D, Kiss A, Mochizuki G, Chen JL. Transcranial direct current stimulation leads to faster acquisition of motor skills, but effects are not maintained at retention. PLoS One 2022; 17:e0269851. [PMID: 36099260 PMCID: PMC9469971 DOI: 10.1371/journal.pone.0269851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/29/2022] [Indexed: 11/28/2022] Open
Abstract
Practice is required to improve one’s shooting technique in basketball or to play a musical instrument well. Learning these motor skills may be further enhanced by transcranial direct current stimulation (tDCS). We aimed to investigate whether tDCS leads to faster attainment of a motor skill, and to confirm prior work showing it improves skill acquisition and retention performance. Fifty-two participants were tested; half received tDCS with the anode on primary motor cortex and cathode on the contralateral forehead while concurrently practicing a sequential visuomotor isometric pinch force task on Day 1, while the other half received sham tDCS during practice. On Day 2, retention of the skill was tested. Results from a Kaplan-Meier survival analysis showed that participants in the anodal group attained a pre-defined target level of skill faster than participants in the sham group (χ2 = 9.117, p = 0.003). Results from a nonparametric rank-based regression analysis showed that the rate of improvement was greater in the anodal versus sham group during skill acquisition (F(1,249) = 5.90, p = 0.016), but there was no main effect of group or time. There was no main effect of group or time, or group by time interaction when comparing performance at the end of acquisition to retention. These findings suggest anodal tDCS improves performance more quickly during skill acquisition but does not have additional benefits on motor learning after a period of rest.
Collapse
Affiliation(s)
- Nirsan Kunaratnam
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Tyler M. Saumer
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Giovanna Kuan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Zacharie Holmes
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Dana Swarbrick
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Alex Kiss
- Evaluative Clinical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - George Mochizuki
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Joyce L. Chen
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
13
|
Explainable AI: A Neurally-Inspired Decision Stack Framework. Biomimetics (Basel) 2022; 7:biomimetics7030127. [PMID: 36134931 PMCID: PMC9496620 DOI: 10.3390/biomimetics7030127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
European law now requires AI to be explainable in the context of adverse decisions affecting the European Union (EU) citizens. At the same time, we expect increasing instances of AI failure as it operates on imperfect data. This paper puts forward a neurally inspired theoretical framework called "decision stacks" that can provide a way forward in research to develop Explainable Artificial Intelligence (X-AI). By leveraging findings from the finest memory systems in biological brains, the decision stack framework operationalizes the definition of explainability. It then proposes a test that can potentially reveal how a given AI decision was made.
Collapse
|
14
|
Wu D, Wang Y, Liu N, Wang P, Sun K, Xiao W. High-definition transcranial direct current stimulation of the left middle temporal complex does not affect visual motion perception learning. Front Neurosci 2022; 16:988590. [PMID: 36117616 PMCID: PMC9474993 DOI: 10.3389/fnins.2022.988590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Visual perceptual learning (VPL) refers to the improvement in visual perceptual abilities through training and has potential implications for clinical populations. However, improvements in perceptual learning often require hundreds or thousands of trials over weeks to months to attain, limiting its practical application. Transcranial direct current stimulation (tDCS) could potentially facilitate perceptual learning, but the results are inconsistent thus far. Thus, this research investigated the effect of tDCS over the left human middle temporal complex (hMT+) on learning to discriminate visual motion direction. Twenty-seven participants were randomly assigned to the anodal, cathodal and sham tDCS groups. Before and after training, the thresholds of motion direction discrimination were assessed in one trained condition and three untrained conditions. Participants were trained over 5 consecutive days while receiving 4 × 1 ring high-definition tDCS (HD-tDCS) over the left hMT+. The results showed that the threshold of motion direction discrimination significantly decreased after training. However, no obvious differences in the indicators of perceptual learning, such as the magnitude of improvement, transfer indexes, and learning curves, were noted among the three groups. The current study did not provide evidence of a beneficial effect of tDCS on VPL. Further research should explore the impact of the learning task characteristics, number of training sessions and the sequence of stimulation.
Collapse
Affiliation(s)
- Di Wu
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Yifan Wang
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Na Liu
- Department of Nursing, Air Force Medical University, Xi’an, China
| | - Panhui Wang
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Kewei Sun
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
| | - Wei Xiao
- Department of Medical Psychology, Air Force Medical University, Xi’an, China
- *Correspondence: Wei Xiao,
| |
Collapse
|
15
|
Amer A, Martin JH. Repeated motor cortex theta-burst stimulation produces persistent strengthening of corticospinal motor output and durable spinal cord structural changes in the rat. Brain Stimul 2022; 15:1013-1022. [PMID: 35850438 PMCID: PMC10164459 DOI: 10.1016/j.brs.2022.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The strength of connections between motor cortex (MCX) and muscle can be augmented with a variety of stimulation protocols. Augmenting MCX-to-muscle connection strength by neuromodulation may be a way to enhance the intact motor system's capacity for acquiring motor skills and promote function after injury to strengthen spared connections. But this enhancement must be maintained for functional improvements. OBJECTIVE We determined if brief MCX muscle evoked potential (MEP) enhancement produced by intermittent theta burst stimulation (iTBS) can be converted into a longer and structurally durable form of response enhancement with repeated daily and longer-term application. METHODS Electrical iTBS was delivered through an implanted MCX epidural electrode and MEPs were recorded using implanted EMG electrodes in awake naïve rats. MCX activity was modulated further using chemogenetic (DREADDs) excitation and inhibition. Corticospinal tract (CST) axons were traced and immunochemistry used to measure CST synapses. RESULTS A single MCX iTBS block (600 pulses) produced MEP LTP lasting ∼30-45 min. Concatenating five iTBS blocks within a 30-min session produced MEP LTP lasting 24-48 h, which could be strengthened or weakened by bidirectional MCX activity modulation. Effect duration was not changed. Finally, daily induction of this persistent MEP LTP with daily iTBS for 10-days produced MEP enhancement outlasting the stimulation period by at least 10 days, and accompanied by CST axonal outgrowth and structural changes at the CST-spinal interneuron synapse. CONCLUSION Our findings inform the mechanisms of iTBS and provide a framework for designing neuromodulatory strategies to promote durable enhancement of cortical motor actions.
Collapse
Affiliation(s)
- Alzahraa Amer
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA; Neuroscience Program, Graduate Center of the City University of New York, New York, NY, USA
| | - John H Martin
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA; Neuroscience Program, Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
16
|
Wang W, Lei X, Gong W, Liang K, Chen L. Facilitation and inhibition effects of anodal and cathodal tDCS over areas MT+ on the flash-lag effect. J Neurophysiol 2022; 128:239-248. [PMID: 35766444 DOI: 10.1152/jn.00091.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The perceived position of a moving object in vision entails an accumulation of neural signals over space and time. Due to neural signal transmission delays, the visual system can not acquire immediate information about the moving object's position. Although physiological and psychophysical studies on the flash-lag effect (FLE), a moving object is perceived ahead of a flash even they are aligned at the same location, have shown that the visual system develops the mechanisms of predicting the object's location to compensate for the neural delays, the neural mechanisms of motion-induced location prediction are not still understood well. Here, we investigated the role of neural activity changes in areas MT+ (specialized for motion processing) and the potential contralateral processing preference of MT+ in modulating the FLE. Using transcranial direct current stimulations (tDCS) over the left and right MT+ between pre-and post-tests of the FLE in different motion directions, we measured the effects of tDCS on the FLE. The results found that anodal and cathodal tDCS enhanced and reduced the FLE with the moving object heading to but not deviating from the side of the brain stimulated, respectively, compared to sham tDCS. These findings suggest a causal role of area MT+ in motion-induced location prediction, which may involve the integration of position information.
Collapse
Affiliation(s)
- Wu Wang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Xiao Lei
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wenxiao Gong
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Kun Liang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Lihan Chen
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
17
|
Van der Cruijsen J, Jonker ZD, Andrinopoulou ER, Wijngaarden JE, Tangkau DA, Tulen JHM, Frens MA, Ribbers GM, Selles RW. Transcranial Direct Current Stimulation Targeting the Entire Motor Network Does Not Increase Corticospinal Excitability. Front Hum Neurosci 2022; 16:842954. [PMID: 35601898 PMCID: PMC9114302 DOI: 10.3389/fnhum.2022.842954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) over the contralateral primary motor cortex of the target muscle (conventional tDCS) has been described to enhance corticospinal excitability, as measured with transcranial magnetic stimulation. Recently, tDCS targeting the brain regions functionally connected to the contralateral primary motor cortex (motor network tDCS) was reported to enhance corticospinal excitability more than conventional tDCS. We compared the effects of motor network tDCS, 2 mA conventional tDCS, and sham tDCS on corticospinal excitability in 21 healthy participants in a randomized, single-blind within-subject study design. We applied tDCS for 12 min and measured corticospinal excitability with TMS before tDCS and at 0, 15, 30, 45, and 60 min after tDCS. Statistical analysis showed that neither motor network tDCS nor conventional tDCS significantly increased corticospinal excitability relative to sham stimulation. Furthermore, the results did not provide evidence for superiority of motor network tDCS over conventional tDCS. Motor network tDCS seems equally susceptible to the sources of intersubject and intrasubject variability previously observed in response to conventional tDCS.
Collapse
Affiliation(s)
- Joris Van der Cruijsen
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Zeb D. Jonker
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Rijndam Rehabilitation Centre, Rotterdam, Netherlands
| | - Eleni-Rosalina Andrinopoulou
- Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jessica E. Wijngaarden
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Ditte A. Tangkau
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joke H. M. Tulen
- Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Maarten A. Frens
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gerard M. Ribbers
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Rijndam Rehabilitation Centre, Rotterdam, Netherlands
| | - Ruud W. Selles
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
18
|
Sevilla-Sanchez M, Hortobágyi T, Carballeira E, Fogelson N, Fernandez-del-Olmo M. A lack of timing-dependent effects of transcranial direct current stimulation (tDCS) on the performance of a choice reaction time task. Neurosci Lett 2022; 782:136691. [DOI: 10.1016/j.neulet.2022.136691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
|
19
|
Early Application of Ipsilateral Cathodal-tDCS in a Mouse Model of Brain Ischemia Results in Functional Improvement and Perilesional Microglia Modulation. Biomolecules 2022; 12:biom12040588. [PMID: 35454177 PMCID: PMC9027610 DOI: 10.3390/biom12040588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Early stroke therapeutic approaches rely on limited options, further characterized by a narrow therapeutic time window. In this context, the application of transcranial direct current stimulation (tDCS) in the acute phases after brain ischemia is emerging as a promising non-invasive tool. Despite the wide clinical application of tDCS, the cellular mechanisms underlying its positive effects are still poorly understood. Here, we explored the effects of cathodal tDCS (C-tDCS) 6 h after focal forelimb M1 ischemia in Cx3CR1GFP/+ mice. C-tDCS improved motor functionality of the affected forelimb, as assessed by the cylinder and foot-fault tests at 48 h, though not changing the ischemic volume. In parallel, histological analysis showed that motor recovery is associated with decreased microglial cell density in the area surrounding the ischemic core, while astrocytes were not affected. Deeper analysis of microglia morphology within the perilesional area revealed a shift toward a more ramified healthier state, with increased processes’ complexity and a less phagocytic anti-inflammatory activity. Taken together, our findings suggest a positive role for early C-tDCS after ischemia, which is able to modulate microglia phenotype and morphology in parallel to motor recovery.
Collapse
|
20
|
Simpson MW, Mak M. Single session transcranial direct current stimulation to the primary motor cortex fails to enhance early motor sequence learning in Parkinson's disease. Behav Brain Res 2022; 418:113624. [PMID: 34634239 DOI: 10.1016/j.bbr.2021.113624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/15/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Explicit motor sequence learning is impaired in Parkinson's disease (PD). Transcranial direct current stimulation (tDCS) applied over the motor cortex in healthy can improve explicit motor learning, but comparative effects in PD are unknown. This exploratory study aims to examine the effect of single session tDCS on explicit motor sequence learning in PD. METHODS Thirty-three people with mild to moderate PD learnt a short and long finger tapping sequence with their right hand. Participants received either anodal, cathodal, or sham tDCS applied over the left primary motor cortex during task practice. Single- and dual-task finger tapping performance was assessed before and after task practice and functional near-infrared spectroscopy used to measure task related changes of oxygenated haemoglobin. RESULTS Finger tapping performance of short and long sequences under single-task conditions significantly improved following practice (p = 0.010 and p < 0.001, respectively). A condition-by-time interaction trend was observed for the long finger tapping sequence (p = 0.069) driven by improved performance in the cathodal (p = 0.001) and sham (p < 0.001) tDCS conditions, but not anodal tDCS (p = 0.198). The primary and premotor cortex and supplementary motor area were active in all tasks. No interaction or main effects were observed for task related changes of oxygenated haemoglobin. CONCLUSIONS PD patients retain the capacity to learn an explicit sequence of movements. Motor cortex tDCS does not improve explicit motor learning in PD and anodal tDCS may even suppress the rate of learning.
Collapse
Affiliation(s)
- Michael William Simpson
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Margaret Mak
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| |
Collapse
|
21
|
Rebec GV, Koceja DM, Bunner KD. Measuring Movement in Health and Disease. Brain Res Bull 2022; 181:167-174. [PMID: 35122899 DOI: 10.1016/j.brainresbull.2022.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/15/2022] [Accepted: 01/29/2022] [Indexed: 01/07/2023]
Abstract
Evaluating and quantifying the many aspects of movement -- from open-field locomotion and stepping patterns in rodent models to stride trajectory and postural sway in human patients -- are key to understanding brain function. Various experimental approaches have been used in applying these lines of research to investigate the brain mechanisms underlying neurodegenerative disease. Although valuable, data on movement are often limited by the shortcomings inherent in the data collection process itself. Steve Fowler and his research group have been instrumental in pioneering a technology that both minimizes these pitfalls in studies of rodent behavior and has applications to research on human patients. At the center of this technology is the force-plate actometer, developed by the Fowler group to assess multiple aspects of movement in rodent models. Our review highlights how use of the actometer and related behavioral measurements provides valuable insight into Huntington's disease (HD), an autosomal dominant condition of progressively deteriorating behavioral control. HD typically emerges in mid-life and has been replicated in multiple genetically engineered mouse models. The actometer also can be a valuable addition to cutting-edge neuronal and synaptic technologies that are now increasingly applied to studies of behaving animals. In short, the impact of the Fowler contribution to the neuroscience of movement is both meaningful and ongoing.
Collapse
Affiliation(s)
- George V Rebec
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States; Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States.
| | - David M Koceja
- Department of Kinesiology, Indiana University, Bloomington, IN 47405, United States; Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States
| | - Kendra D Bunner
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
22
|
Repeated Use of Transcranial Direct Current Stimulation Over the Dorsolateral Prefrontal Cortex Before Training Changes Visual Search and Improves Decision-Making Response Time in Soccer Athletes. JOURNAL OF CLINICAL SPORT PSYCHOLOGY 2022. [DOI: 10.1123/jcsp.2021-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The study aimed to analyze the effect of anodal transcranial direct current stimulation (a-tDCS) over the left dorsolateral prefrontal cortex on soccer athletes’ decision making and visual search behavior. It was a single-blind, randomized, and experimental investigation. The 23 soccer athletes were pair-matched according to decision-making skill and then randomized into two groups: a-tDCS and sham. The decision making (during small-sided game and screen task) and visual search behavior were measured before and after the 8-week intervention. Only the a-tDCS group reduced response time in the decision-making screen task (p < .05). The a-tDCS group showed a higher number of fixations than sham group (p < .05) during the small-sided game. The a-tDCS group showed a lower duration of fixation than sham group (p < .05) during the small-sided game. Our results indicated that using a-tDCS over left dorsolateral prefrontal cortex changed visual search behavior and improved the response time of decision-making skill.
Collapse
|
23
|
Cavendish BA, de Lima MFR, Perícoli L, Buratto LG. Effects of combining retrieval practice and tDCS over long-term memory: A randomized controlled trial. Brain Cogn 2021; 156:105807. [PMID: 34949566 DOI: 10.1016/j.bandc.2021.105807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/15/2021] [Accepted: 09/26/2021] [Indexed: 11/30/2022]
Abstract
The ability to retain new information is important in daily life. In particular, two techniques have shown promise for improving long-term retention: retrieval practice (RP), which consists of actively retrieving information from long-term memory to make it more accessible in the future; and transcranial direct current stimulation (tDCS), which consists of non-invasive brain stimulation that modulates cognitive processes by increasing and decreasing neuronal excitability. Previous studies have implicated the left dorsolateral prefrontal cortex (l-dlPFC) in memory encoding and memory organization. We examined whether RP associated with a single 20-min tDCS session over the l-dlPFC could improve long-term memory retention. Participants (N = 119) repeatedly studied a list of related words either via RP or via restudy, while undergoing either anodal or sham stimulation. Participants returned 2 days later for a free-recall test. Results showed that the RP group outperformed the restudy group in all measures, regardless of stimulation type. Also, recall organization was higher in the RP group than in the restudy group. The data support previous findings and indicate that RP may enhance performance by improving the organization of the to-be-remembered list items.
Collapse
Affiliation(s)
- Beatriz Araújo Cavendish
- Department of Basic Psychological Processes, Institute of Psychology, University of Brasília, Brasília 70.910-900, Brazil.
| | | | - Lara Perícoli
- Department of Basic Psychological Processes, Institute of Psychology, University of Brasília, Brasília 70.910-900, Brazil
| | - Luciano Grüdtner Buratto
- Department of Basic Psychological Processes, Institute of Psychology, University of Brasília, Brasília 70.910-900, Brazil
| |
Collapse
|
24
|
Missey F, Botzanowski B, Migliaccio L, Acerbo E, Głowacki ED, Williamson A. Organic electrolytic photocapacitors for stimulation of the mouse somatosensory cortex. J Neural Eng 2021; 18. [PMID: 34749345 DOI: 10.1088/1741-2552/ac37a6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022]
Abstract
Objective.For decades electrical stimulation has been used in neuroscience to investigate brain networks and been deployed clinically as a mode of therapy. Classically, all methods of electrical stimulation require implanted electrodes to be connected in some manner to an apparatus which provides power for the stimulation itself.Approach. We show the use of novel organic electronic devices, specifically organic electrolytic photocapacitors (OEPCs), which can be activated when illuminated with deep-red wavelengths of light and correspondingly do not require connections with external wires or power supplies when implanted at various depthsin vivo. Main results. We stimulated cortical brain tissue of mice with devices implanted subcutaneously, as well as beneath both the skin and skull to demonstrate a wireless stimulation of the whisker motor cortex. Devices induced both a behavior response (whisker movement) and a sensory response in the corresponding sensory cortex. Additionally, we showed that coating OEPCs with a thin layer of a conducting polymer formulation (PEDOT:PSS) significantly increases their charge storage capacity, and can be used to further optimize the applied photoelectrical stimulation.Significance. Overall, this new technology can provide an on-demand electrical stimulation by simply using an OEPC and a deep-red wavelength illumination. Wires and interconnects to provide power to implanted neurostimulation electrodes are often problematic in freely-moving animal research and with implanted electrodes for long-term therapy in patients. Our wireless brain stimulation opens new perspectives for wireless electrical stimulation for applications in fundamental neurostimulation and in chronic therapy.
Collapse
Affiliation(s)
- Florian Missey
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France
| | - Boris Botzanowski
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France
| | - Ludovico Migliaccio
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Emma Acerbo
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France
| | - Eric Daniel Głowacki
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.,Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Adam Williamson
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France.,Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden.,Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Hadi Z, Umbreen A, Anwar MN, Navid MS. The effects of unilateral transcranial direct current stimulation on unimanual laparoscopic peg-transfer task. Brain Res 2021; 1771:147656. [PMID: 34508672 DOI: 10.1016/j.brainres.2021.147656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Efficient training methods are required for laparoscopic surgical skills training to reduce the time needed for proficiency. Transcranial direct current stimulation (tDCS) is widely used to enhance motor skill acquisition and can be used to supplement the training of laparoscopic surgical skill acquisition. The aim of this study was to investigate the effect of anodal tDCS over the primary motor cortex (M1) on the performance of a unimanual variant of the laparoscopic peg-transfer task. METHODS Fifteen healthy subjects participated in this randomized, double-blinded crossover study involving an anodal tDCS and a sham tDCS intervention separated by 48 h. On each intervention day, subjects performed a unimanual variant of laparoscopic peg-transfer task in three sessions (baseline, tDCS, post-tDCS). The tDCS session consisted of 10 min of offline tDCS followed by 10 min of online tDCS. The scores based on the task completion time and the number of errors in each session were used as a primary outcome measure. A linear mixed-effects model was used for the analysis. RESULTS We found that the scores increased over sessions (p < 0.01). However, we found no effects of stimulation (anodal tDCS vs. sham tDCS) and no interaction of stimulation and sessions. CONCLUSION This study suggests that irrespective of the type of current stimulation (anodal and sham) over M1, there was an improvement in the performance of the unimanual peg-transfer task, implying that there was motor learning over time. The results would be useful in designing efficient training paradigms and further investigating the effects of tDCS on laparoscopic peg-transfer tasks.
Collapse
Affiliation(s)
- Zaeem Hadi
- Human Systems Lab, Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan; Brain and Vestibular Group, Neuro-otology Unit, Department of Brain Sciences, Faculty of Medicine, Imperial College London, UK
| | - Aysha Umbreen
- Human Systems Lab, Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Nabeel Anwar
- Human Systems Lab, Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Samran Navid
- Human Systems Lab, Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan; Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
26
|
Jo NG, Kim GW, Won YH, Park SH, Seo JH, Ko MH. Timing-Dependent Effects of Transcranial Direct Current Stimulation on Hand Motor Function in Healthy Individuals: A Randomized Controlled Study. Brain Sci 2021; 11:1325. [PMID: 34679390 PMCID: PMC8534210 DOI: 10.3390/brainsci11101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022] Open
Abstract
The timing of transcranial direct current stimulation (tDCS) is essential for enhancing motor skill learning. Previously, tDCS, before or concurrently, with motor training was evaluated in healthy volunteers or elderly patients, but the optimal timing of stimulation has not been determined. In this study, we aimed to optimize the existing tDCS protocols by exploring the timing-dependent stimulation effects on finger movements in healthy individuals. We conducted a single-center, prospective, randomized controlled trial. The study participants (n = 39) were randomly assigned into three groups: tDCS concurrently with finger tapping training (CON), tDCS prior to finger tapping training (PRI), and SHAM-tDCS simultaneously with finger tapping training (SHAM). In all groups, the subjects participated in five 40-min training sessions for one week. Motor performance was measured before and after treatment using the finger-tapping task (FTT), the grooved pegboard test (GPT), and hand strength tests. tDCS treatment prior to finger tapping training significantly improved motor skill learning, as indicated by the GPT and hand strength measurements. In all groups, the treatment improved the FTT performance. Our results indicate that applying tDCS before training could be optimal for enhancing motor skill learning. Further research is required to confirm these findings.
Collapse
Affiliation(s)
- Nam-Gyu Jo
- Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Geonjiro 20, Deokjin-gu, Jeonju 54097, Korea; (N.-G.J.); (G.-W.K.); (Y.H.W.); (S.-H.P.); (J.-H.S.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Geonjiro 20, Deokjin-gu, Jeonju 54907, Korea
| | - Gi-Wook Kim
- Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Geonjiro 20, Deokjin-gu, Jeonju 54097, Korea; (N.-G.J.); (G.-W.K.); (Y.H.W.); (S.-H.P.); (J.-H.S.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Geonjiro 20, Deokjin-gu, Jeonju 54907, Korea
| | - Yu Hui Won
- Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Geonjiro 20, Deokjin-gu, Jeonju 54097, Korea; (N.-G.J.); (G.-W.K.); (Y.H.W.); (S.-H.P.); (J.-H.S.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Geonjiro 20, Deokjin-gu, Jeonju 54907, Korea
| | - Sung-Hee Park
- Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Geonjiro 20, Deokjin-gu, Jeonju 54097, Korea; (N.-G.J.); (G.-W.K.); (Y.H.W.); (S.-H.P.); (J.-H.S.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Geonjiro 20, Deokjin-gu, Jeonju 54907, Korea
| | - Jeong-Hwan Seo
- Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Geonjiro 20, Deokjin-gu, Jeonju 54097, Korea; (N.-G.J.); (G.-W.K.); (Y.H.W.); (S.-H.P.); (J.-H.S.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Geonjiro 20, Deokjin-gu, Jeonju 54907, Korea
| | - Myoung-Hwan Ko
- Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Geonjiro 20, Deokjin-gu, Jeonju 54097, Korea; (N.-G.J.); (G.-W.K.); (Y.H.W.); (S.-H.P.); (J.-H.S.)
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Geonjiro 20, Deokjin-gu, Jeonju 54907, Korea
| |
Collapse
|
27
|
Hoshi H, Kojima S, Otsuru N, Onishi H. Effects of transcranial random noise stimulation timing on corticospinal excitability and motor function. Behav Brain Res 2021; 414:113479. [PMID: 34302882 DOI: 10.1016/j.bbr.2021.113479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/07/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Although transcranial random noise stimulation (tRNS) to the primary motor cortex (M1) increases corticospinal excitability and improves motor function, the effects of tRNS timing have not been clarified when combined with motor training. The purpose of this study was to clarify the effects of different tRNS timing on corticospinal excitability and motor function. We applied tRNS to the left M1 using a frequency of 0.1-640 Hz for 10 min to 15 healthy subjects. Subjects performed visuomotor tracking tasks with right hand for 10 min and participated in the following four conditions based on the timing of tRNS: (1) "before" condition, tRNS was performed before motor training; (2) "during" condition, tRNS was performed during motor training; (3) "after" condition, tRNS was performed after motor training; and (4) sham condition, the control group. Motor evoked potential (MEP) amplitudes were recorded from the right first dorsal interosseous muscle using transcranial magnetic stimulation. MEP amplitudes were assessed by baseline followed by three sessions at 10 min intervals. The motor function was assessed before and after tRNS and motor training. The MEP amplitude increased after tRNS in the before and during conditions but not in the after condition. Motor function after motor training improved in all conditions, but there were no significant differences between these conditions. The present study revealed that the timing of tRNS affects corticospinal excitability but not motor learning.
Collapse
Affiliation(s)
- Haruki Hoshi
- Graduate School of Health and Welfare, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata-City, Niigata 950-3198, Japan; TMG Asaka Medical Center, 1340-1 Mizonuma, Asaka-City, Saitama 351-0023, Japan.
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata-City, Niigata 950-3198, Japan.
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata-City, Niigata 950-3198, Japan.
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata-City, Niigata 950-3198, Japan.
| |
Collapse
|
28
|
Doerig N, Seinsche RJ, Moisa M, Seifritz E, Ruff CC, Kleim B. Enhancing reappraisal of negative emotional memories with transcranial direct current stimulation. Sci Rep 2021; 11:14760. [PMID: 34285247 PMCID: PMC8292314 DOI: 10.1038/s41598-021-93647-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
Reappraisal of negative memories and experiences is central for mental health and well-being. Deficiency of reappraisal lies at the core of many psychiatric disorders and is a key target for treatment. Here we apply transcranial direct current stimulation (tDCS) to enhance reappraisal of negative emotional memories. In a randomised, sham-controlled, 2 × 2 between-subject and double-blinded study, we applied single sessions of anodal and sham tDCS over the right dorsolateral prefrontal cortex (dlPFC) of 101 healthy participants while reappraising a personal negative memory or engaging in a control task. We hypothesised that (i) reappraisal decreases negative valence, arousal and evaluations of the memory and leads to improved decision making, and (ii) tDCS leads to additional changes in these reappraisal outcomes. In line with these hypotheses, participants’ personal memories were rated as less negative and less arousing following reappraisal. Anodal tDCS during reappraisal was associated with significant short-term reductions in negative valence compared to sham stimulation. Our results indicate that tDCS may enhance some of the effects of reappraisal. If replicated, our findings suggest potential benefits elicited by tDCS stimulation that may help optimise current treatment approaches for psychiatric disorders.
Collapse
Affiliation(s)
- Nadja Doerig
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland.,Department of Psychology, University of Zurich, Binzmühlesatrsse 14, Box 8, 8050, Zurich, Switzerland
| | - Rosa J Seinsche
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland.,Department of Psychology, University of Zurich, Binzmühlesatrsse 14, Box 8, 8050, Zurich, Switzerland.,Department of Psychotherapy and Systems Neuroscience, University of Giessen, Giessen, Germany
| | - Marius Moisa
- Department of Economics, Urich Center for Neuroeconomics (ZNE), University of Zurich, Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), University of Zurich, Zurich, Switzerland
| | - Christian C Ruff
- Department of Economics, Urich Center for Neuroeconomics (ZNE), University of Zurich, Zurich, Switzerland.,Zurich Neuroscience Center (ZNZ), University of Zurich, Zurich, Switzerland
| | - Birgit Kleim
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland. .,Department of Psychology, University of Zurich, Binzmühlesatrsse 14, Box 8, 8050, Zurich, Switzerland. .,Zurich Neuroscience Center (ZNZ), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
29
|
Flix-Díez L, Delicado-Miralles M, Gurdiel-Álvarez F, Velasco E, Galán-Calle M, Lerma Lara S. Reversed Polarity bi-tDCS over M1 during a Five Days Motor Task Training Did Not Influence Motor Learning. A Triple-Blind Clinical Trial. Brain Sci 2021; 11:brainsci11060691. [PMID: 34070256 PMCID: PMC8225177 DOI: 10.3390/brainsci11060691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 12/04/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been investigated as a way of improving motor learning. Our purpose was to explore the reversal bilateral tDCS effects on manual dexterity training, during five days, with the retention component measured after 5 days to determine whether somatosensory effects were produced. In this randomized, triple-blind clinical trial, 28 healthy subjects (14 women) were recruited and randomized into tDCS and placebo groups, although only 23 participants (13 women) finished the complete protocol. Participants received the real or placebo treatment during five consecutive days, while performing a motor dexterity training program of 20 min. The motor dexterity and the sensitivity of the hand were assessed pre- and post-day 1, post 5 days of training, and 5 days after training concluded. Training improved motor dexterity, but tDCS only produced a tendency to improve retention. The intervention did not produce changes in the somatosensory variables assessed. Thus, reversal bi-tDCS had no effects during motor learning on healthy subjects, but it could favor the retention of the motor skills acquired. These results do not support the cooperative inter-hemispheric model.
Collapse
Affiliation(s)
- Laura Flix-Díez
- Department of Physical Therapy, University of Valencia (UV), 46003 Valencia, Spain;
| | - Miguel Delicado-Miralles
- Instituto de Neurociencias de Alicante (UMH-CSIC), 03550 Sant Joant d’Alacant, Spain; (M.D.-M.); (E.V.)
| | - Francisco Gurdiel-Álvarez
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine University of Rey Juan Carlos, 28922 Alcorcón, Spain;
| | - Enrique Velasco
- Instituto de Neurociencias de Alicante (UMH-CSIC), 03550 Sant Joant d’Alacant, Spain; (M.D.-M.); (E.V.)
| | - María Galán-Calle
- Health Sciences Faculty, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
| | - Sergio Lerma Lara
- Health Sciences Faculty, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
- Motion in Brains Research Group, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain
- Correspondence: ; Tel.: +34-91-5035900 (ext. 255)
| |
Collapse
|
30
|
Lu PY, Huang YL, Huang PC, Liu YC, Wei SY, Hsu WY, Chen KC, Chen PS, Wu WC, Yang YK, Tseng HH. Association of visual motor processing and social cognition in schizophrenia. NPJ SCHIZOPHRENIA 2021; 7:21. [PMID: 33850147 PMCID: PMC8044174 DOI: 10.1038/s41537-021-00150-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Patients with schizophrenia have difficulties in social cognitive domains including emotion recognition and mentalization, and in sensorimotor processing and learning. The relationship between social cognitive deficits and sensorimotor function in patients with schizophrenia remains largely unexplored. With the hypothesis that impaired visual motor processing may decelerate information processing and subsequently affects various domains of social cognition, we examined the association of nonverbal emotion recognition, mentalization, and visual motor processing in schizophrenia. The study examined mentalization using the verbal subset of the Chinese version of Theory of Mind (CToM) Task, an equivalent task of the Faux Pas Test; emotion recognition using the Diagnostic Analysis of Nonverbal Accuracy 2-Taiwan version (DANVA-2-TW), and visual motor processing using a joystick tracking task controlled for basic motor function in 34 individuals with chronic schizophrenia in the community and 42 healthy controls. Patients with schizophrenia had significantly worse performance than healthy controls in social cognition, including facial, prosodic emotion recognition, and mentalization. Visual motor processing was also significantly worse in patients with schizophrenia. Only in patients with schizophrenia, both emotion recognition (mainly in prosodic modality, happy, and sad emotions) and mentalization were positively associated with their learning capacity of visual motor processing. These findings suggest a prospective role of sensorimotor function in their social cognitive deficits. Despite that the underlying neural mechanism needs further research, our findings may provide a new direction for restoration of social cognitive function in schizophrenia by enhancing visual motor processing ability.
Collapse
Affiliation(s)
- Pin-Yen Lu
- Jianan Psychiatric Center, Ministry of Health and Welfare, Tainan, Taiwan
| | - Yu-Lien Huang
- Department of Psychology, Fo Guang University, Yilan, Taiwan
| | - Pai-Chuan Huang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Chia Liu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shyh-Yuh Wei
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yun Hsu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kao Chin Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, National Cheng Kung University Hospital Dou-Liou Branch, Yunlin, Taiwan
| | - Wen-Chen Wu
- Jianan Psychiatric Center, Ministry of Health and Welfare, Tainan, Taiwan.,School of Medicine and School of Law, Fu Jen Catholic University, New Taipei, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
31
|
Donati F, Sian V, Biasini GM, de la Torre X, Folchitto F, Botrè F. Serum Levels of Brain-Derived Neurotrophic Factor and Other Neurotrophins in Elite Athletes: Potential Markers of the Use of Transcranial Direct Current Stimulation in Sport. Front Sports Act Living 2021; 3:619573. [PMID: 33912829 PMCID: PMC8071936 DOI: 10.3389/fspor.2021.619573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is a non-invasive brain stimulation that may enhance mental and physical performance in sports, representing a potential new form of doping (“brain doping” or “electromagnetic doping”). This study aims to identify diagnostic biomarkers for detecting the possible abuse of tDCS in sport. Brain-Derived Neurotrophic Factor (BDNF) and other neurotrophins (NT, such as beta nerve growth factor, NGF) were pre-selected as potential candidates since their serum values have been observed to change following tDCS. Neurotrophins were measured using ELISA assays in 92 serum samples collected from elite athletes, classified by sex (males = 74; females = 18), age (range 17–25 n = 27, 26–35 n = 36, and over 35 n = 14; age not known n = 15), type of sports practiced (endurance n = 74; power n = 18), and type of sample collection (“in competition” n = 24; “out of competition” n = 68). Single nucleotide polymorphisms (rs6265, rs11030099, and rs11030100) were genotyped on 88 samples to determine their influence on the analytes' basal levels. Athletes older than 35 presented higher BDNF values than younger individuals (p < 0.05). Samples collected “in competition” showed higher BDNF concentrations than those collected “out of competition” (p < 0.05). The studied polymorphisms appeared to affect only on proBDNF, not altering BDNF serum concentrations. NT-3 and NT-4 were poorly detectable in serum. Our results suggest that BDNF can be considered as a first biomarker to detect the abuse of tDCS in sport doping. Further studies are necessary to assess whether proBDNF and beta NGF can also be considered suitable biomarkers to detect the recourse to electromagnetic brain stimulation in sports, especially in the case their serum levels can be monitored longitudinally. To the best of our knowledge, this is the first study aimed to pre-select serum biomarkers to identify the use of tDCS, and represents the first step toward the development of an indirect strategy, preferably based on the longitudinal monitoring of individual data, for the future detection of “brain doping” in sports.
Collapse
Affiliation(s)
- Francesco Donati
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Veronica Sian
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | | | - Xavier de la Torre
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Fabrizia Folchitto
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy.,REDs - Research and Expertise in anti-Doping Sciences, ISSUL - Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
32
|
Motor Sequence Learning across Multiple Sessions Is Not Facilitated by Targeting Consolidation with Posttraining tDCS in Patients with Progressive Multiple Sclerosis. Neural Plast 2021; 2021:6696341. [PMID: 33790962 PMCID: PMC7984928 DOI: 10.1155/2021/6696341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/27/2021] [Indexed: 11/18/2022] Open
Abstract
Compared to relapsing-remitting multiple sclerosis (MS), progressive MS is characterized by a lack of spontaneous recovery and a poor response to pharmaceutical immunomodulatory treatment. These patients may, therefore, particularly benefit from interventions that augment training-induced plasticity of the central nervous system. In this cross-sectional double-blind cross-over pilot study, effects of transcranial direct current stimulation (tDCS) on motor sequence learning were examined across four sessions on days 1, 3, 5, and 8 in 16 patients with progressive MS. Active or sham anodal tDCS of the primary motor cortex was applied immediately after each training session. Participants took part in two experiments separated by at least four weeks, which differed with respect to the type of posttraining tDCS (active or sham). While task performance across blocks of training and across sessions improved significantly in both the active and sham tDCS experiment, neither online nor offline motor learning was modulated by the type of tDCS. Accordingly, the primary endpoint (task performance on day 8) did not differ between stimulation conditions. In sum, patients with progressive MS are able to improve performance in an ecologically valid motor sequence learning task through training. However, even multisession posttraining tDCS fails to promote motor learning in progressive MS.
Collapse
|
33
|
Pollok B, Schmitz-Justen C, Krause V. Cathodal Transcranial Direct Current Stimulation (tDCS) Applied to the Left Premotor Cortex Interferes with Explicit Reproduction of a Motor Sequence. Brain Sci 2021; 11:207. [PMID: 33572164 PMCID: PMC7914983 DOI: 10.3390/brainsci11020207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that allows the modulation of cortical excitability. TDCS effects can outlast the stimulation period presumably due to changes of GABA concentration which play a critical role in use-dependent plasticity. Consequently, tDCS and learning-related synaptic plasticity are assumed to share common mechanisms. Motor sequence learning has been related to activation changes within a cortico-subcortical network and findings from a meta-analysis point towards a core network comprising the cerebellum as well as the primary motor (M1) and the dorsolateral premotor cortex (dPMC). The latter has been particularly related to explicit motor learning by means of brain imaging techniques. We here test whether tDCS applied to the left dPMC affects the acquisition and reproduction of an explicitly learned motor sequence. To this end, 18 healthy volunteers received anodal, cathodal and sham tDCS to the left dPMC and were then trained on a serial reaction time task (SRTT) with their right hand. Immediately after the training and after overnight sleep, reproduction of the learned sequence was tested by means of reaction times as well as explicit recall. Regression analyses suggest that following cathodal tDCS reaction times at the end of the SRTT training-block explained a significant proportion of the number of correctly reported sequence items after overnight sleep. The present data suggest the left premotor cortex as one possible target for the application of non-invasive brain stimulation techniques in explicit motor sequence learning with the right hand.
Collapse
Affiliation(s)
- Bettina Pollok
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany; (C.S.-J.); (V.K.)
| | - Claire Schmitz-Justen
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany; (C.S.-J.); (V.K.)
| | - Vanessa Krause
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany; (C.S.-J.); (V.K.)
- Department of Neuropsychology, Mauritius Hospital and Neurorehabilitation Center Meerbusch, 40670 Meerbusch, Germany
| |
Collapse
|
34
|
TDCS effects on pointing task learning in young and old adults. Sci Rep 2021; 11:3421. [PMID: 33564052 PMCID: PMC7873227 DOI: 10.1038/s41598-021-82275-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/14/2021] [Indexed: 01/19/2023] Open
Abstract
Skill increase in motor performance can be defined as explicitly measuring task success but also via more implicit measures of movement kinematics. Even though these measures are often related, there is evidence that they represent distinct concepts of learning. In the present study, the effect of multiple tDCS-sessions on both explicit and implicit measures of learning are investigated in a pointing task in 30 young adults (YA) between 27.07 ± 3.8 years and 30 old adults (OA) between 67.97 years ± 5.3 years. We hypothesized, that OA would show slower explicit skill learning indicated by higher movement times/lower accuracy and slower implicit learning indicated by higher spatial variability but profit more from anodal tDCS compared with YA. We found age-related differences in movement time but not in accuracy or spatial variability. TDCS did not skill learning facilitate learning neither in explicit nor implicit parameters. However, contrary to our hypotheses, we found tDCS-associated higher accuracy only in YA but not in spatial variability. Taken together, our data shows limited overlapping of tDCS effects in explicit and implicit skill parameters. Furthermore, it supports the assumption that tDCS is capable of producing a performance-enhancing brain state at least for explicit skill acquisition.
Collapse
|
35
|
Tallent J, Woodhead A, Frazer AK, Hill J, Kidgell DJ, Howatson G. Corticospinal and spinal adaptations to motor skill and resistance training: Potential mechanisms and implications for motor rehabilitation and athletic development. Eur J Appl Physiol 2021; 121:707-719. [PMID: 33389142 DOI: 10.1007/s00421-020-04584-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/12/2020] [Indexed: 12/12/2022]
Abstract
Optimal strategies for enhancing strength and improving motor skills are vital in athletic performance and clinical rehabilitation. Initial increases in strength and the acquisition of new motor skills have long been attributed to neurological adaptations. However, early increases in strength may be predominantly due to improvements in inter-muscular coordination rather than the force-generating capacity of the muscle. Despite the plethora of research investigating neurological adaptations from motor skill or resistance training in isolation, little effort has been made in consolidating this research to compare motor skill and resistance training adaptations. The findings of this review demonstrated that motor skill and resistance training adaptations show similar short-term mechanisms of adaptations, particularly at a cortical level. Increases in corticospinal excitability and a release in short-interval cortical inhibition occur as a result of the commencement of both resistance and motor skill training. Spinal changes show evidence of task-specific adaptations from the acquired motor skill, with an increase or decrease in spinal reflex excitability, dependant on the motor task. An increase in synaptic efficacy of the reticulospinal projections is likely to be a prominent mechanism for driving strength adaptations at the subcortical level, though more research is needed. Transcranial electric stimulation has been shown to increase corticospinal excitability and augment motor skill adaptations, but limited evidence exists for further enhancing strength adaptations from resistance training. Despite the logistical challenges, future work should compare the longitudinal adaptations between motor skill and resistance training to further optimise exercise programming.
Collapse
Affiliation(s)
- Jamie Tallent
- Faculty of Sport, Health and Applied Sciences, St Mary's University, Waldgrave Road, Twickenham, TW1 4SX, UK.
| | - Alex Woodhead
- Faculty of Sport, Health and Applied Sciences, St Mary's University, Waldgrave Road, Twickenham, TW1 4SX, UK
| | - Ashlyn K Frazer
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Jessica Hill
- Faculty of Sport, Health and Applied Sciences, St Mary's University, Waldgrave Road, Twickenham, TW1 4SX, UK
| | - Dawson J Kidgell
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK.,Water Research Group, Faculty of Natural and Agricultural Sciences, North West University, Potchefstroom, South Africa
| |
Collapse
|
36
|
Pyke W, Vostanis A, Javadi AH. Electrical Brain Stimulation During a Retrieval-Based Learning Task Can Impair Long-Term Memory. JOURNAL OF COGNITIVE ENHANCEMENT 2020. [DOI: 10.1007/s41465-020-00200-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractAnodal transcranial direct current stimulation (tDCS) to the left dorsolateral prefrontal cortex (DLPFC) has been shown to improve performance on a multitude of cognitive tasks. These are, however, often simple tasks, testing only one cognitive domain at a time. Therefore, the efficacy of brain stimulation for complex tasks has yet to be understood. Using a task designed to increase learning efficiency, this study investigates whether anodal tDCS over the left DLPFC can modulate both learning ability and subsequent long-term memory retention. Using a within-subject design, participants (N = 25) took part in 6 training sessions over consecutive days in which active or sham stimulation was administered randomly (3 of each). A computer-based task was used, containing flags from countries unknown to the participants. Each training session consisted of the repetition of 8 pairs of flag/country names. Subsequently, in three testing sessions, free, cued, and timed cued recall, participants were assessed on all 48 flags they had learnt. No difference in learning speed between active and sham tDCS was found. Furthermore, in the timed cued recall phase, flags learnt in the sham tDCS sessions were recalled significantly better than flags learnt in the active tDCS sessions. This effect was stronger in the second testing session. It was also found that for the flags answered incorrectly; thus, meaning they were presented more frequently, subsequent long-term retention was improved. These results suggest that for a complex task, anodal tDCS is ineffective at improving learning speed and potentially detrimental to long-term retention when employed during encoding. This serves to highlight the complex nature of brain stimulation, providing a greater understanding of its limitations and drawbacks.
Collapse
|
37
|
Besson P, Muthalib M, De Vassoigne C, Rothwell J, Perrey S. Effects of Multiple Sessions of Cathodal Priming and Anodal HD-tDCS on Visuo Motor Task Plateau Learning and Retention. Brain Sci 2020; 10:E875. [PMID: 33228236 PMCID: PMC7699517 DOI: 10.3390/brainsci10110875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/24/2020] [Accepted: 11/18/2020] [Indexed: 01/18/2023] Open
Abstract
A single session of priming cathodal transcranial direct current stimulation (tDCS) prior to anodal tDCS (c-a-tDCS) allows cumulative effects on motor learning and retention. However, the impact of multiple sessions of c-a-tDCS priming on learning and retention remains unclear. Here, we tested whether multiple sessions of c-a-tDCS (over 3 consecutive days) applied over the left sensorimotor cortex can further enhance motor learning and retention of an already learned visuo-motor task as compared to anodal tDCS (a-tDCS) or sham. In a between group and randomized double-blind sham-controlled study design, 25 participants separated in 3 independent groups underwent 2 days of baseline training without tDCS followed by 3-days of training with both online and offline tDCS, and two retention tests (1 and 14 days later). Each training block consisted of five trials of a 60 s circular-tracing task intersected by 60 s rest, and performance was assessed in terms of speed-accuracy trade-off represented notably by an index of performance (IP). The main findings of this exploratory study were that multiple sessions of c-a-tDCS significantly further enhanced IP above baseline training levels over the 3 training days that were maintained over the 2 retention days, but these learning and retention performance changes were not significantly different from the sham group. Subtle differences in the changes in speed-accuracy trade-off (components of IP) between c-a-tDCS (maintenance of accuracy over increasing speed) and a-tDCS (increasing speed over maintenance of accuracy) provide preliminary insights to a mechanistic modulation of motor performance with priming and polarity of tDCS.
Collapse
Affiliation(s)
- Pierre Besson
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, 34090 Montpellier, France; (P.B.); (M.M.); (C.D.V.)
| | - Makii Muthalib
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, 34090 Montpellier, France; (P.B.); (M.M.); (C.D.V.)
- SilverLine Research, 4127 Brisbane, Australia
| | - Christophe De Vassoigne
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, 34090 Montpellier, France; (P.B.); (M.M.); (C.D.V.)
| | - Jonh Rothwell
- Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Stephane Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, 34090 Montpellier, France; (P.B.); (M.M.); (C.D.V.)
| |
Collapse
|
38
|
Solomons CD, Shanmugasundaram V. Transcranial direct current stimulation: A review of electrode characteristics and materials. Med Eng Phys 2020; 85:63-74. [PMID: 33081965 DOI: 10.1016/j.medengphy.2020.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/10/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022]
Abstract
Electrode characteristics are crucial in transcranial direct current stimulation (tDCS) since electrode design and placement determine the cortical area being modulated, current density and spatial resolution of stimulation. Early research on tDCS sought to determine optimal parameters for stimulation by specifying maximum current, duration and sizes of electrodes. Further research focused on determining efficient ways to deliver stimulation to targeted regions on the cortex with minimal discomfort to the user by altering electrode size, placement, shape and material. This review aims to give an insight on the main characteristics of electrodes used in tDCS and on the variability found in electrode parameters and placements from tDCS to high definition tDCS (HD-tDCS) applications and beyond.
Collapse
Affiliation(s)
- Cassandra D Solomons
- School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, India
| | | |
Collapse
|
39
|
Sehatpour P, Dondé C, Hoptman MJ, Kreither J, Adair D, Dias E, Vail B, Rohrig S, Silipo G, Lopez-Calderon J, Martinez A, Javitt DC. Network-level mechanisms underlying effects of transcranial direct current stimulation (tDCS) on visuomotor learning. Neuroimage 2020; 223:117311. [PMID: 32889116 PMCID: PMC7778833 DOI: 10.1016/j.neuroimage.2020.117311] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/15/2020] [Accepted: 08/18/2020] [Indexed: 02/02/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation approach in which low level currents are administered over the scalp to influence underlying brain function. Prevailing theories of tDCS focus on modulation of excitation-inhibition balance at the local stimulation location. However, network level effects are reported as well, and appear to depend upon differential underlying mechanisms. Here, we evaluated potential network-level effects of tDCS during the Serial Reaction Time Task (SRTT) using convergent EEG- and fMRI-based connectivity approaches. Motor learning manifested as a significant (p <.0001) shift from slow to fast responses and corresponded to a significant increase in beta-coherence (p <.0001) and fMRI connectivity (p <.01) particularly within the visual-motor pathway. Differential patterns of tDCS effect were observed within different parametric task versions, consistent with network models. Overall, these findings demonstrate objective physiological effects of tDCS at the network level that result in effective behavioral modulation when tDCS parameters are matched to network-level requirements of the underlying task.
Collapse
Affiliation(s)
- Pejman Sehatpour
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University/New York State Psychiatric Institute, New York, NY, USA; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Clément Dondé
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut des Neurosciences, CHU Grenoble-Alpes, F-38000 Grenoble, France
| | - Matthew J Hoptman
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Johanna Kreither
- PIA Ciencias Cognitivas, Centro de Investigación en Ciencias Cognitivas, Centro de Psicología Aplicada, Facultad de Psicología, Universidad de Talca, Chile
| | - Devin Adair
- Department of Biomedical Engineering, The City College of New York, CUNY, NY, USA
| | - Elisa Dias
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Blair Vail
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University/New York State Psychiatric Institute, New York, NY, USA
| | - Stephanie Rohrig
- Department of Psychology, Hofstra University, New Hempstead, NY, USA
| | - Gail Silipo
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | | | - Antigona Martinez
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University/New York State Psychiatric Institute, New York, NY, USA; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Daniel C Javitt
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University/New York State Psychiatric Institute, New York, NY, USA; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
40
|
Transcranial direct current stimulation and working memory: Comparison of effect on learning shapes and English letters. PLoS One 2020; 15:e0222688. [PMID: 32706780 PMCID: PMC7380606 DOI: 10.1371/journal.pone.0222688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 06/25/2020] [Indexed: 11/25/2022] Open
Abstract
We present the results of a study investigating whether there is an effect of Anodal-Transcranial Direct Current Stimulation (A-tDCS) on working memory (WM) performance. The relative effectiveness of A-tDCS on WM is investigated using a 2-back test protocol using two commonly used memory visual stimuli (shapes and letters). In a double-blinded, randomised, crossover, sham-controlled experiment, real A-tDCS and sham A-tDCS were applied separately to the left dorsolateral prefrontal cortex (L-DLPFC) of twenty healthy subjects. There was a minimal interval of one week between sham and real A-tDCS sessions. For the letters based stimulus experiment, 2-back test recall accuracy was measured for a set of English letters (A-L) which were presented individually in a randomised order where each was separated by a blank interval. A similar 2-back protocol was used for the shapes based stimuli experiment where instead of letters, a set of 12 geometric shapes were used. The working memory accuracy scores measured appeared to be significantly affected by memory stimulus type used and by the application of A-tDCS (repeated measures ANOVA p<0.05). A large effect size (d = 0.98) and statistical significance between sham and real A-tDCS WM scores (p = 0.01) was found when shapes were used as a visual testing stimulus, while low (d = 0.38) effect size and insignificant difference (p = 0.15) was found when letters were used. This results are important as they show that recollection different stimuli used in working memory can be affected differently by A-tDCS application. This highlights the importance of considering using multiple methods of WM testing when assessing the effectiveness of A-tDCS.
Collapse
|
41
|
Zhuang W, Yin K, Zi Y, Liu Y. Non-Invasive Brain Stimulation: Augmenting the Training and Performance Potential in Esports Players. Brain Sci 2020; 10:brainsci10070454. [PMID: 32679797 PMCID: PMC7407750 DOI: 10.3390/brainsci10070454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 11/16/2022] Open
Abstract
During the last two decades, esports, a highly competitive sporting activity, has gained increasing popularity. Both performance and competition in esports require players to have fine motor skills and physical and cognitive abilities in controlling and manipulating digital activities in a virtual environment. While strategies for building and improving skills and abilities are crucial for successful gaming performance, few effective training approaches exist in the fast-growing area of competitive esports. In this paper, we describe a non-invasive brain stimulation (NIBS) approach and highlight the relevance and potential areas for research while being cognizant of various technical, safety, and ethical issues related to NIBS when applied to esports.
Collapse
Affiliation(s)
| | | | | | - Yu Liu
- Correspondence: ; Tel.: +86-21-65507860
| |
Collapse
|
42
|
Mostafavi SA, Khaleghi A, Mohammadi MR. Noninvasive brain stimulation in alcohol craving: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109938. [PMID: 32234509 DOI: 10.1016/j.pnpbp.2020.109938] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alcohol dependence (AD) is characterized by a set of physical and behavioral symptoms, which may include withdrawal, tolerance and craving. Recently, noninvasive brain stimulation (NIBS) methods, namely transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), have been investigated as possible new therapeutic approaches for adjusting the pathological neuroplasticity involved in alcohol dependence. Therefore, we conducted a systematic review and meta-analysis on the therapeutic uses of tDCS and rTMS in AD patients. METHODS A systematic search was performed on Scopus, Web of Science, PubMed, Cochrane library and ProQuest. Search terms presented the diagnoses of interest (alcohol dependence, alcohol craving, alcohol use disorders and hazardous drinkers) and the intervention of interest (NIBS, TMS, rTMS, TBS, tDCS, tACS and transcranial). Original articles reporting the use of tDCS or rTMS to treat AD were screened and studied by two researchers independently based on PRISMA guidelines. Next, in the meta-analysis step, random-effects model was utilized to measure the pooled effect size. RESULTS We found 34 eligible studies including 11 tDCS trials and 23 rTMS trials. Three of these studies were case-reports, four were open label trials and the remaining 27 were controlled trials which assessed tDCS/rTMS effects on the three cognitive, behavioral and biological dimensions in AD. The pooled standardized mean differences for the effects of tDCS and rTMS on alcohol cravings were - 0.13 [-0.34, 0.08] and - 0.43 [-1.02, 0.17], respectively. CONCLUSION There is no evidence for a positive effect of tDCS/rTMS on various dimensions of AD. We need more randomized, double blind, sham controlled trials with enough follow-up periods to evaluate the efficacy of tDCS/rTMS for alcohol dependence treatment.
Collapse
Affiliation(s)
- Seyed-Ali Mostafavi
- Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Khaleghi
- Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Mohammadi
- Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Pollok B, Keitel A, Foerster M, Moshiri G, Otto K, Krause V. The posterior parietal cortex mediates early offline-rather than online-motor sequence learning. Neuropsychologia 2020; 146:107555. [PMID: 32653440 DOI: 10.1016/j.neuropsychologia.2020.107555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/23/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Learning of new motor skills occurs particularly during training on a task (i.e. online) but has been observed between training-blocks lasting up to days after the end of the training (i.e. offline). Offline-learning occurs as further improvement in task performance indicated by increased accuracy and/or faster responses as well as less interference with respect to a distracting condition. Successful motor learning requires the functional interplay between cortical as well as subcortical brain areas. While the involvement of the primary motor cortex in online-as well as early offline-learning is well established, the functional significance of the posterior parietal cortex (PPC) is less clear. Since the PPC may act as sensory-motor interface, a causal involvement in motor learning is conceivable. In order to characterize the functional significance of the left PPC for motor sequence learning, transcranial direct current stimulation (tDCS) was applied either immediately prior to, during or immediately after training on a serial reaction time task (SRTT) in a total of 54 healthy volunteers. While the analysis did not provide evidence for a significant modulation of reaction times during SRTT training (i.e. online-learning), cathodal tDCS decelerated reaction times of the learned sequences as compared to anodal and sham stimulation 30 min after the end of training. The findings suggest that cathodal tDCS over the left parietal cortex interferes with the reproduction of learned sequences.
Collapse
Affiliation(s)
- Bettina Pollok
- Heinrich-Heine University Duesseldorf, Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Germany.
| | - Ariane Keitel
- Heinrich-Heine University Duesseldorf, Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Germany
| | - Maike Foerster
- Heinrich-Heine University Duesseldorf, Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Germany
| | - Geraldine Moshiri
- Heinrich-Heine University Duesseldorf, Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Germany
| | - Katharina Otto
- Heinrich-Heine University Duesseldorf, Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Germany
| | - Vanessa Krause
- Heinrich-Heine University Duesseldorf, Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Germany; Mauritius Hospital Meerbusch, Department of Neuropsychology, Germany
| |
Collapse
|
44
|
Chen PS, Jamil A, Liu LC, Wei SY, Tseng HH, Nitsche MA, Kuo MF. Nonlinear Effects of Dopamine D1 Receptor Activation on Visuomotor Coordination Task Performance. Cereb Cortex 2020; 30:5346-5355. [DOI: 10.1093/cercor/bhaa116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract
Dopamine plays an important role in the modulation of neuroplasticity, which serves as the physiological basis of cognition. The physiological effects of dopamine depend on receptor subtypes, and the D1 receptor is critically involved in learning and memory formation. Evidence from both animal and human studies shows a dose-dependent impact of D1 activity on performance. However, the direct association between physiology and behavior in humans remains unclear. In this study, four groups of healthy participants were recruited, and each group received placebo or medication inducing a low, medium, or high amount of D1 activation via the combination of levodopa and a D2 antagonist. After medication, fMRI was conducted during a visuomotor learning task. The behavioral results revealed an inverted U-shaped effect of D1 activation on task performance, where medium-dose D1 activation led to superior learning effects, as compared to placebo as well as low- and high-dose groups. A respective dose-dependent D1 modulation was also observed for cortical activity revealed by fMRI. Further analysis demonstrated a positive correlation between task performance and cortical activation at the left primary motor cortex. Our results indicate a nonlinear curve of D1 modulation on motor learning in humans and the respective physiological correlates in corresponding brain areas.
Collapse
Affiliation(s)
- Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Asif Jamil
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund 44139, Germany
| | - Lin-Cho Liu
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund 44139, Germany
| | - Shyh-Yuh Wei
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund 44139, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Ruhr University Bochum, Bochum 44789, Germany
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund 44139, Germany
| |
Collapse
|
45
|
Bhattacharjee S, Kashyap R, Abualait T, Annabel Chen SH, Yoo WK, Bashir S. The Role of Primary Motor Cortex: More Than Movement Execution. J Mot Behav 2020; 53:258-274. [PMID: 32194004 DOI: 10.1080/00222895.2020.1738992] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The predominant role of the primary motor cortex (M1) in motor execution is well acknowledged. However, additional roles of M1 are getting evident in humans owing to advances in noninvasive brain stimulation (NIBS) techniques. This review collates such studies in humans and proposes that M1 also plays a key role in higher cognitive processes. The review commences with the studies that have investigated the nature of connectivity of M1 with other cortical regions in light of studies based on NIBS. The review then moves on to discuss the studies that have demonstrated the role of M1 in higher cognitive processes such as attention, motor learning, motor consolidation, movement inhibition, somatomotor response, and movement imagery. Overall, the purpose of the review is to highlight the additional role of M1 in motor cognition besides motor control, which remains unexplored.
Collapse
Affiliation(s)
| | - Rajan Kashyap
- Center for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore
| | - Turki Abualait
- Physical Therapy Department, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Shen-Hsing Annabel Chen
- Lee Kong Chian School of Medicine (LKC Medicine), Nanyang Technological University, Singapore.,Office of Educational Research, National Institute of Education, Nanyang Technological University, Singapore
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University Sacred Heart Hospital, Anyang, South Korea
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia.,Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Gibson BC, Mullins TS, Heinrich MD, Witkiewitz K, Yu AB, Hansberger JT, Clark VP. Transcranial direct current stimulation facilitates category learning. Brain Stimul 2020; 13:393-400. [PMID: 31848068 DOI: 10.1016/j.brs.2019.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/06/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND After two decades of transcranial direct current stimulation (tDCS) research, it is still unclear which applications benefit most from which tDCS protocols. One prospect is the acceleration of learning, where previous work has demonstrated that anodal tDCS applied to the right ventrolateral prefrontal cortex (rVLPFC) is capable of doubling the rate of learning in a visual camouflaged threat detection and category learning task. GOALS Questions remain as to the specific cognitive mechanisms underlying this learning enhancement, and whether it generalizes to other tasks. The goal of the current project was to expand previous findings by employing a novel category learning task. METHODS Participants learned to classify pictures of European streets within a discovery learning paradigm. In a double-blind design, 54 participants were randomly assigned to 30 min of tDCS using either 2.0 mA anodal (n = 18), cathodal (n = 18), or 0.1 mA sham (n = 18) tDCS over the rVLPFC. RESULTS A linear mixed-model revealed a significant effect of tDCS condition on classification accuracy across training (p = 0.001). Compared to a 4.2% increase in sham participants, anodal tDCS over F10 increased performance by 20.6% (d = 1.71) and cathodal tDCS by 14.4% (d = 1.16). CONCLUSIONS These results provide further evidence for the capacity of tDCS applied to rVLPFC to enhance learning, showing a greater than quadrupling of test performance after training (491% of sham) in a difficult category learning task. Combined with our previous studies, these results suggest a generalized performance enhancement. Other tasks requiring sustained attention, insight and/or category learning may also benefit from this protocol.
Collapse
Affiliation(s)
- Benjamin C Gibson
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Teagan S Mullins
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Melissa D Heinrich
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Katie Witkiewitz
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; Center on Alcoholism, Substance Abuse, & Addictions, Albuquerque, NM, 87106, USA
| | - Alfred B Yu
- CCDC, Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, MD, 21005, USA
| | - Jeffrey T Hansberger
- CCDC, Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, MD, 21005, USA; U.S. Army Research Laboratory, Huntsville, AL, 35898, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; The Mind Research Network of the Lovelace Biomedical Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA.
| |
Collapse
|
47
|
Kirby KM, Pillai SR, Carmichael OT, Van Gemmert AWA. Brain functional differences in visuo-motor task adaptation between dominant and non-dominant hand training. Exp Brain Res 2019; 237:3109-3121. [PMID: 31542802 DOI: 10.1007/s00221-019-05653-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/14/2019] [Indexed: 01/30/2023]
Abstract
Although learning and adapting to visuo-motor tasks is critical to child development and health conditions requiring rehabilitation, the neural processes involved in learning a new visuo-motor task and adapting it to novel conditions such as execution with an untrained limb are not fully understood. Therefore, we trained 27 healthy, right-hand-dominant individuals aged 18-35 years to perform a multidirectional point-to-point visually rotated aiming task with a joystick during functional magnetic resonance imaging, with 13 participants learning the task with the dominant (D) and 14 with the non-dominant (ND) hand. All individuals performed the task with the trained and untrained hand before and after training. As expected, performance of both the trained and the untrained hand improved significantly over the course of task acquisition. Brain functional changes associated with adaptation to the demands of the task, and execution differed significantly between D and ND groups. In particular, the ND group showed greater recruitment of visual and motor regions (left middle occipital and left precentral gyri) than the D group during task acquisition. In addition, the D group exhibited greater recruitment of motor planning regions (left precuneus) that contribute to performance with the trained hand, even after bilateral transfer-switching from the trained to non-trained hand. The D group showed more persistence of activation in sensorimotor regions-greater activation when returning to the rotated task after a switching to a simpler, non-rotated aiming task for a short interval. Finally, the D group showed more activation after-effects-increases in simpler task activation after training on the visually rotated task. The findings suggest that brain functional changes associated with adaptation to a visuo-motor skill may differ substantially depending on whether the dominant or non-dominant hand is trained, with non-dominant-hand training associated with greater activation during acquisition, and dominant-hand training associated with greater activation during bilateral transfer, persistence, and after-effects.
Collapse
Affiliation(s)
- Krystal M Kirby
- Fine Motor Control and Learning Laboratory, School of Kinesiology, Louisiana State University, Baton Rouge, LA, 70803, USA.
- Biomedical Imaging Center, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| | | | - Owen T Carmichael
- Biomedical Imaging Center, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Arend W A Van Gemmert
- Fine Motor Control and Learning Laboratory, School of Kinesiology, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
48
|
Bhattacharjee S, Kashyap R, Rapp B, Oishi K, Desmond JE, Chen SHA. Simulation Analyses of tDCS Montages for the Investigation of Dorsal and Ventral Pathways. Sci Rep 2019; 9:12178. [PMID: 31434911 PMCID: PMC6704077 DOI: 10.1038/s41598-019-47654-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 07/17/2019] [Indexed: 01/11/2023] Open
Abstract
Modulating higher cognitive functions like reading with transcranial direct current stimulation (tDCS) can be challenging as reading involves regions in the dorsal and ventral cortical areas that lie in close proximity. If the two pathways are stimulated simultaneously, the function of dorsal pathway (predominantly used for graphophonological conversion) might interfere with the function of the ventral pathway (used for semantics), and vice-versa. To achieve functional specificity in tDCS for investigating the two pathways of reading, it is important to stimulate each pathway per session such that the spread of current across the cortical areas due to the two montages has minimal overlap. The present study intends to achieve this by introducing a systematic approach for tDCS analysis. We employed the COMETS2 software to simulate 10 montage configurations (5 for each pathway) for three electrode sizes: 5 × 5, 3 × 3, and 5 × 7 cm2. This diversity in montage configuration is chosen since previous studies found the position and the size of anode and cathode to play an important role. The values of the magnitude of current density (MCD) obtained from the configuration were used to calculate: (i) average MCD in each cortical lobe, (ii) number of overlapping coordinates, and (iii) cortical areas with high MCD. The measures (i) and (iii) ascertained the current spread by each montage within a cortical lobe, and (ii) verified the overlap of the spread of current between a pair of montages. The analyses show that a montage using the electrode size of 5 × 5 cm2 with the anode at CP5 and cathode at CZ, and another with anode at TP7 and cathode at nape of the neck are optimal choices for dorsal and ventral pathways, respectively. To verify, we cross-validated the results with ROAST. This systematic approach was helpful in reducing the ambiguity of montage selection prior to conducting a tDCS study.
Collapse
Affiliation(s)
| | - Rajan Kashyap
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore, Singapore
| | - Brenda Rapp
- The Johns Hopkins University, Kreiger School of Arts and Sciences, Baltimore, United States
| | - Kenichi Oishi
- The Johns Hopkins University, School of Medicine, Baltimore, United States
| | - John E Desmond
- Department of Neurology, The Johns Hopkins University, School of Medicine, Baltimore, United States.
| | - S H Annabel Chen
- Psychology, Nanyang Technological University, Singapore, Singapore.
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore, Singapore.
- Lee Kong Chian School of Medicine (LKC Medicine), Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
49
|
Fehring DJ, Illipparampil R, Acevedo N, Jaberzadeh S, Fitzgerald PB, Mansouri FA. Interaction of task-related learning and transcranial direct current stimulation of the prefrontal cortex in modulating executive functions. Neuropsychologia 2019; 131:148-159. [DOI: 10.1016/j.neuropsychologia.2019.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/08/2019] [Accepted: 05/10/2019] [Indexed: 01/24/2023]
|
50
|
Doost MY, Orban de Xivry JJ, Herman B, Vanthournhout L, Riga A, Bihin B, Jamart J, Laloux P, Raymackers JM, Vandermeeren Y. Learning a Bimanual Cooperative Skill in Chronic Stroke Under Noninvasive Brain Stimulation: A Randomized Controlled Trial. Neurorehabil Neural Repair 2019; 33:486-498. [PMID: 31088342 DOI: 10.1177/1545968319847963] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background. Transcranial direct current stimulation (tDCS) has been suggested to improve poststroke recovery. However, its effects on bimanual motor learning after stroke have not previously been explored. Objective. We investigated whether dual-tDCS of the primary motor cortex (M1), with cathodal and anodal tDCS applied over undamaged and damaged hemispheres, respectively, improves learning and retention of a new bimanual cooperative motor skill in stroke patients. Method. Twenty-one chronic hemiparetic patients were recruited for a randomized, double-blinded, cross-over, sham-controlled trial. While receiving real or sham dual-tDCS, they trained on a bimanual cooperative task called CIRCUIT. Changes in performance were quantified via bimanual speed/accuracy trade-off (Bi-SAT) and bimanual coordination factor (Bi-Co) before, during, and 0, 30, and 60 minutes after dual-tDCS, as well as one week later to measure retention. A generalization test then followed, where patients were asked to complete a new CIRCUIT layout. Results. The patients were able to learn and retain the bimanual cooperative skill. However, a general linear mixed model did not detect a significant difference in retention between the real and sham dual-tDCS conditions for either Bi-SAT or Bi-Co. Similarly, no difference in generalization was detected for Bi-SAT or Bi-Co. Conclusion. The chronic hemiparetic stroke patients learned and retained the complex bimanual cooperative task and generalized the newly acquired skills to other tasks, indicating that bimanual CIRCUIT training is promising as a neurorehabilitation approach. However, bimanual motor skill learning was not enhanced by dual-tDCS in these patients.
Collapse
Affiliation(s)
- Maral Yeganeh Doost
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium.,2 Université catholique de Louvain (UCLouvain), Institute of NeuroScience (IoNS), NEUR division, Brussels, Belgium.,3 Université catholique de Louvain (UCLouvain), Louvain Bionics, Louvain-la-Neuve, Belgium
| | - Jean-Jacques Orban de Xivry
- 4 Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Belgium.,5 Leuven Brain Institute, KU Leuven, Belgium
| | - Benoît Herman
- 3 Université catholique de Louvain (UCLouvain), Louvain Bionics, Louvain-la-Neuve, Belgium.,6 Université catholique de Louvain (UCLouvain), Institute of Mechanics, Materials and Civil Engineering (iMMC), Louvain-la-Neuve, Belgium
| | - Léna Vanthournhout
- 3 Université catholique de Louvain (UCLouvain), Louvain Bionics, Louvain-la-Neuve, Belgium.,6 Université catholique de Louvain (UCLouvain), Institute of Mechanics, Materials and Civil Engineering (iMMC), Louvain-la-Neuve, Belgium
| | - Audrey Riga
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium.,2 Université catholique de Louvain (UCLouvain), Institute of NeuroScience (IoNS), NEUR division, Brussels, Belgium.,3 Université catholique de Louvain (UCLouvain), Louvain Bionics, Louvain-la-Neuve, Belgium
| | - Benoît Bihin
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium
| | - Jacques Jamart
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium
| | - Patrice Laloux
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium.,2 Université catholique de Louvain (UCLouvain), Institute of NeuroScience (IoNS), NEUR division, Brussels, Belgium
| | | | - Yves Vandermeeren
- 1 Université catholique de Louvain (UCLouvain), CHU UCL Namur (Mont-Godinne), Yvoir, Belgium.,2 Université catholique de Louvain (UCLouvain), Institute of NeuroScience (IoNS), NEUR division, Brussels, Belgium.,3 Université catholique de Louvain (UCLouvain), Louvain Bionics, Louvain-la-Neuve, Belgium
| |
Collapse
|