1
|
Bulseco AN, Murphy AE, Giblin AE, Tucker J, Sanderman J, Bowen JL. Marsh sediments chronically exposed to nitrogen enrichment contain degraded organic matter that is less vulnerable to decomposition via nitrate reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169681. [PMID: 38163591 DOI: 10.1016/j.scitotenv.2023.169681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Blue carbon habitats, including salt marshes, can sequester carbon at rates that are an order of magnitude greater than terrestrial forests. This ecosystem service may be under threat from nitrate (NO3-) enrichment, which can shift the microbial community and stimulate decomposition of organic matter. Despite efforts to mitigate nitrogen loading, salt marshes continue to experience chronic NO3- enrichment, however, the long-term consequence of this enrichment on carbon storage remains unclear. To investigate the effect of chronic NO3- exposure on salt marsh organic matter decomposition, we collected sediments from three sites across a range of prior NO3- exposure: a relatively pristine marsh, a marsh enriched to ~70 μmol L-1 NO3- in the flooding seawater for 13 years, and a marsh enriched between 100 and 1000 μmol L-1 for 40 years from wastewater treatment effluent. We collected sediments from 20 to 25 cm depth and determined that sediments from the most chronically enriched site had less bioavailable organic matter and a distinct assemblage of active microbial taxa compared to the other two sites. We also performed a controlled anaerobic decomposition experiment to test whether the legacy of NO3- exposure influenced the functional response to additional NO3-. We found significant changes to microbial community composition resulting from experimental NO3- addition. Experimental NO3- addition also increased microbial respiration in sediments collected from all sites. However, sediments from the most chronically enriched site exhibited the smallest increase, the lowest rates of total NO3- reduction by dissimilatory nitrate reduction to ammonium (DNRA), and the highest DNF:DNRA ratios. Our results suggest that chronic exposure to elevated NO3- may lead to residual pools of organic matter that are less biologically available for decomposition. Thus, it is important to consider the legacy of nutrient exposure when examining the carbon cycle of salt marsh sediments.
Collapse
Affiliation(s)
- Ashley N Bulseco
- Marine Science Center, Northeastern University, Nahant, MA, USA; Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| | - Anna E Murphy
- Marine Science Center, Northeastern University, Nahant, MA, USA; INSPIRE Environmental, Newport, RI, USA
| | - Anne E Giblin
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Jane Tucker
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | | | - Jennifer L Bowen
- Marine Science Center, Northeastern University, Nahant, MA, USA.
| |
Collapse
|
2
|
Pérez Castro S, Peredo EL, Mason OU, Vineis J, Bowen JL, Mortazavi B, Ganesh A, Ruff SE, Paul BG, Giblin AE, Cardon ZG. Diversity at single nucleotide to pangenome scales among sulfur cycling bacteria in salt marshes. Appl Environ Microbiol 2023; 89:e0098823. [PMID: 37882526 PMCID: PMC10686091 DOI: 10.1128/aem.00988-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/04/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Salt marshes are known for their significant carbon storage capacity, and sulfur cycling is closely linked with the ecosystem-scale carbon cycling in these ecosystems. Sulfate reducers are key for the decomposition of organic matter, and sulfur oxidizers remove toxic sulfide, supporting the productivity of marsh plants. To date, the complexity of coastal environments, heterogeneity of the rhizosphere, high microbial diversity, and uncultured majority hindered our understanding of the genomic diversity of sulfur-cycling microbes in salt marshes. Here, we use comparative genomics to overcome these challenges and provide an in-depth characterization of sulfur-cycling microbial diversity in salt marshes. We characterize communities across distinct sites and plant species and uncover extensive genomic diversity at the taxon level and specific genomic features present in MAGs affiliated with uncultivated sulfur-cycling lineages. Our work provides insights into the partnerships in salt marshes and a roadmap for multiscale analyses of diversity in complex biological systems.
Collapse
Affiliation(s)
- Sherlynette Pérez Castro
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
- Crop and Soil Sciences, University of Georgia, Athens, USA
| | - Elena L. Peredo
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Olivia U. Mason
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USA
| | - Joseph Vineis
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
| | - Jennifer L. Bowen
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, Massachusetts, USA
| | - Behzad Mortazavi
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Anakha Ganesh
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - S. Emil Ruff
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Blair G. Paul
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Anne E. Giblin
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Zoe G. Cardon
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
3
|
Rolando JL, Kolton M, Song T, Kostka JE. The core root microbiome of Spartina alterniflora is predominated by sulfur-oxidizing and sulfate-reducing bacteria in Georgia salt marshes, USA. MICROBIOME 2022; 10:37. [PMID: 35227326 PMCID: PMC8886783 DOI: 10.1186/s40168-021-01187-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/25/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Salt marshes are dominated by the smooth cordgrass Spartina alterniflora on the US Atlantic and Gulf of Mexico coastlines. Although soil microorganisms are well known to mediate important biogeochemical cycles in salt marshes, little is known about the role of root microbiomes in supporting the health and productivity of marsh plant hosts. Leveraging in situ gradients in aboveground plant biomass as a natural laboratory, we investigated the relationships between S. alterniflora primary productivity, sediment redox potential, and the physiological ecology of bulk sediment, rhizosphere, and root microbial communities at two Georgia barrier islands over two growing seasons. RESULTS A marked decrease in prokaryotic alpha diversity with high abundance and increased phylogenetic dispersion was found in the S. alterniflora root microbiome. Significantly higher rates of enzymatic organic matter decomposition, as well as the relative abundances of putative sulfur (S)-oxidizing, sulfate-reducing, and nitrifying prokaryotes correlated with plant productivity. Moreover, these functional guilds were overrepresented in the S. alterniflora rhizosphere and root core microbiomes. Core microbiome bacteria from the Candidatus Thiodiazotropha genus, with the metabolic potential to couple S oxidation with C and N fixation, were shown to be highly abundant in the root and rhizosphere of S. alterniflora. CONCLUSIONS The S. alterniflora root microbiome is dominated by highly active and competitive species taking advantage of available carbon substrates in the oxidized root zone. Two microbially mediated mechanisms are proposed to stimulate S. alterniflora primary productivity: (i) enhanced microbial activity replenishes nutrients and terminal electron acceptors in higher biomass stands, and (ii) coupling of chemolithotrophic S oxidation with carbon (C) and nitrogen (N) fixation by root- and rhizosphere-associated prokaryotes detoxifies sulfide in the root zone while potentially transferring fixed C and N to the host plant. Video Abstract.
Collapse
Affiliation(s)
- Jose L Rolando
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA
| | - Max Kolton
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion, University of the Negev, Beer Sheva, Israel
| | - Tianze Song
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA
| | - Joel E Kostka
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA.
- Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, GA, 30332, USA.
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
4
|
Marlow J, Spietz R, Kim K, Ellisman M, Girguis P, Hatzenpichler R. Spatially resolved correlative microscopy and microbial identification reveal dynamic depth- and mineral-dependent anabolic activity in salt marsh sediment. Environ Microbiol 2021; 23:4756-4777. [PMID: 34346142 PMCID: PMC8456820 DOI: 10.1111/1462-2920.15667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 07/08/2021] [Indexed: 01/04/2023]
Abstract
Coastal salt marshes are key sites of biogeochemical cycling and ideal systems in which to investigate the community structure of complex microbial communities. Here, we clarify structural-functional relationships among microorganisms and their mineralogical environment, revealing previously undescribed metabolic activity patterns and precise spatial arrangements within salt marsh sediment. Following 3.7-day in situ incubations with a non-canonical amino acid that was incorporated into new biomass, samples were resin-embedded and analysed by correlative fluorescence and electron microscopy to map the microscale arrangements of anabolically active and inactive organisms alongside mineral grains. Parallel sediment samples were examined by fluorescence-activated cell sorting and 16S rRNA gene sequencing to link anabolic activity to taxonomic identity. Both approaches demonstrated a rapid decline in the proportion of anabolically active cells with depth into salt marsh sediment, from ~60% in the top centimetre to 9.4%-22.4% between 2 and 10 cm. From the top to the bottom, the most prominent active community members shifted from sulfur cycling phototrophic consortia, to putative sulfate-reducing bacteria likely oxidizing organic compounds, to fermentative lineages. Correlative microscopy revealed more abundant (and more anabolically active) organisms around non-quartz minerals including rutile, orthoclase and plagioclase. Microbe-mineral relationships appear to be dynamic and context-dependent arbiters of biogeochemical cycling.
Collapse
Affiliation(s)
- Jeffrey Marlow
- Department of Organismic and Evolutionary BiologyHarvard University16 Divinity AveCambridgeMassachusetts02138USA
| | - Rachel Spietz
- Department of Chemistry and Biochemistry, Department of Microbiology and Cell Biology, Thermal Biology Institute, and Center for Biofilm EngineeringMontana State UniversityBozemanMontana59717USA
| | - Keun‐Young Kim
- Department of NeurosciencesUniversity of California at San Diego School of Medicine and National Center for Microscopy and Imaging Research, University of CaliforniaSan DiegoLa JollaCalifornia92093USA
| | - Mark Ellisman
- Department of NeurosciencesUniversity of California at San Diego School of Medicine and National Center for Microscopy and Imaging Research, University of CaliforniaSan DiegoLa JollaCalifornia92093USA
- Department of PharmacologyUniversity of CaliforniaSan DiegoLa JollaCalifornia92161USA
| | - Peter Girguis
- Department of Organismic and Evolutionary BiologyHarvard University16 Divinity AveCambridgeMassachusetts02138USA
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Department of Microbiology and Cell Biology, Thermal Biology Institute, and Center for Biofilm EngineeringMontana State UniversityBozemanMontana59717USA
| |
Collapse
|
5
|
Rajbongshi A, Gogoi SB. A review on anaerobic microorganisms isolated from oil reservoirs. World J Microbiol Biotechnol 2021; 37:111. [PMID: 34076736 DOI: 10.1007/s11274-021-03080-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/26/2021] [Indexed: 11/25/2022]
Abstract
The Role of microorganisms in the petroleum industry is wide-ranging. To understand the role of microorganisms in hydrocarbon transformation, identification of such microorganisms is vital, especially the ones capable of in situ degradation. Microorganisms play a pivotal role in the degradation of hydrocarbons and remediation of heavy metals. Anaerobic microorganisms such as Sulphate Reducing Bacteria (SRB), responsible for the production of hydrogen sulphide (H2S) within the reservoir, reduces the oil quality by causing reservoir souring and reduction in oil viscosity. This paper reviews the diversity of SRB, methanogens, Nitrogen Reducing Bacteria (NRB), and fermentative bacteria present in oil reservoirs. It also reviews the extensive diversity of these microorganisms, their applications in petroleum industries, characteristics and adaptability to survive in different conditions, the potential to alter the petroleum hydrocarbons properties, the propensity to petroleum hydrocarbon degradation, and remediation of metals.
Collapse
Affiliation(s)
- Amarjit Rajbongshi
- Brahmaputra Valley Fertilizer Corporation Limited, Namrup, Assam, India.
| | | |
Collapse
|
6
|
Bin Hudari MS, Vogt C, Richnow HH. Effect of Temperature on Acetate Mineralization Kinetics and Microbial Community Composition in a Hydrocarbon-Affected Microbial Community During a Shift From Oxic to Sulfidogenic Conditions. Front Microbiol 2021; 11:606565. [PMID: 33391229 PMCID: PMC7773710 DOI: 10.3389/fmicb.2020.606565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/23/2020] [Indexed: 01/04/2023] Open
Abstract
Aquifer thermal energy storage (ATES) allows for the seasonal storage and extraction of heat in the subsurface thus reducing reliance on fossil fuels and supporting decarbonization of the heating and cooling sector. However, the impacts of higher temperatures toward biodiversity and ecosystem services in the subsurface environment remain unclear. Here, we conducted a laboratory microcosm study comprising a hydrocarbon-degrading microbial community from a sulfidic hydrocarbon-contaminated aquifer spiked with 13C-labeled acetate and incubated at temperatures between 12 and 80°C to evaluate (i) the extent and rates of acetate mineralization and (ii) the resultant temperature-induced shifts in the microbial community structure. We observed biphasic mineralization curves at 12, 25, 38, and 45°C, arising from immediate and fast aerobic mineralization due to an initial oxygen exposure, followed by slower mineralization at sulfidogenic conditions. At 60°C and several replicates at 45°C, acetate was only aerobically mineralized. At 80°C, no mineralization was observed within 178 days. Rates of acetate mineralization coupled to sulfate reduction at 25 and 38°C were six times faster than at 12°C. Distinct microbial communities developed in oxic and strictly anoxic phases of mineralization as well as at different temperatures. Members of the Alphaproteobacteria were dominant in the oxic mineralization phase at 12–38°C, succeeded by a more diverse community in the anoxic phase composed of Deltaproteobacteria, Clostridia, Spirochaetia, Gammaproteobacteria and Anaerolinea, with varying abundances dependent on the temperature. In the oxic phases at 45 and 60°C, phylotypes affiliated to spore-forming Bacilli developed. In conclusion, temperatures up to 38°C allowed aerobic and anaerobic acetate mineralization albeit at varying rates, while mineralization occurred mainly aerobically between 45 and 60°C; thermophilic sulfate reducers being active at temperatures > 45°C were not detected. Hence, temperature may affect dissolved organic carbon mineralization rates in ATES while the variability in the microbial community composition during the transition from micro-oxic to sulfidogenic conditions highlights the crucial role of electron acceptor availability when combining ATES with bioremediation.
Collapse
Affiliation(s)
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Hans Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
7
|
Kolton M, Rolando JL, Kostka JE. Elucidation of the rhizosphere microbiome linked to Spartina alterniflora phenotype in a salt marsh on Skidaway Island, Georgia, USA. FEMS Microbiol Ecol 2020; 96:5813622. [PMID: 32227167 DOI: 10.1093/femsec/fiaa026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/23/2020] [Indexed: 01/04/2023] Open
Abstract
Smooth cordgrass, Spartina alterniflora, dominates salt marshes on the east coast of the United States. While the physicochemical cues affecting S. alterniflora productivity have been studied intensively, the role of plant-microbe interactions in ecosystem functioning remains poorly understood. Thus, in this study, the effects of S. alterniflora phenotype on the composition of archaeal, bacterial, diazotrophic and fungal communities were investigated. Overall, prokaryotic communities were more diverse and bacteria were more abundant in the areas colonized by the tall plant phenotype in comparison to those of short plant phenotype. Diazotrophic methanogens (Methanomicrobia) preferentially colonized the area of the short plant phenotype. Putative iron-oxidizing Zetaproteobacteria and sulfur-oxidizing Campylobacteria were identified as indicator species in the rhizosphere of tall and short plant phenotypes, respectively. Finally, while diazotrophic populations shaped microbial interactions in the areas colonized by the tall plant phenotype, fungal populations filled this role in the areas occupied by the short plant phenotype. The results here demonstrate that S. alterniflora phenotype and proximity to the root zone are selective forces dictating microbial community assembly. Results further reveal that reduction-oxidation chemistry is a major factor driving the selection of belowground microbial populations in salt marsh habitats.
Collapse
Affiliation(s)
- Max Kolton
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - José L Rolando
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Joel E Kostka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
8
|
Bulseco AN, Giblin AE, Tucker J, Murphy AE, Sanderman J, Hiller-Bittrolff K, Bowen JL. Nitrate addition stimulates microbial decomposition of organic matter in salt marsh sediments. GLOBAL CHANGE BIOLOGY 2019; 25:3224-3241. [PMID: 31317634 DOI: 10.1111/gcb.14726] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 02/21/2019] [Accepted: 04/16/2019] [Indexed: 06/10/2023]
Abstract
Salt marshes sequester carbon at rates more than an order of magnitude greater than their terrestrial counterparts, helping to mitigate climate change. As nitrogen loading to coastal waters continues, primarily in the form of nitrate, it is unclear what effect it will have on carbon storage capacity of these highly productive systems. This uncertainty is largely driven by the dual role nitrate can play in biological processes, where it can serve as a nutrient-stimulating primary production or a thermodynamically favorable electron acceptor fueling heterotrophic metabolism. Here, we used a controlled flow-through reactor experiment to test the role of nitrate as an electron acceptor, and its effect on organic matter decomposition and the associated microbial community in salt marsh sediments. Organic matter decomposition significantly increased in response to nitrate, even at sediment depths typically considered resistant to decomposition. The use of isotope tracers suggests that this pattern was largely driven by stimulated denitrification. Nitrate addition also significantly altered the microbial community and decreased alpha diversity, selecting for taxa belonging to groups known to reduce nitrate and oxidize more complex forms of organic matter. Fourier Transform-Infrared Spectroscopy further supported these results, suggesting that nitrate facilitated decomposition of complex organic matter compounds into more bioavailable forms. Taken together, these results suggest the existence of organic matter pools that only become accessible with nitrate and would otherwise remain stabilized in the sediment. The existence of such pools could have important implications for carbon storage, since greater decomposition rates as N loading increases may result in less overall burial of organic-rich sediment. Given the extent of nitrogen loading along our coastlines, it is imperative that we better understand the resilience of salt marsh systems to nutrient enrichment, especially if we hope to rely on salt marshes, and other blue carbon systems, for long-term carbon storage.
Collapse
Affiliation(s)
- Ashley N Bulseco
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, Massachusetts
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Anne E Giblin
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Jane Tucker
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Anna E Murphy
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, Massachusetts
| | | | | | - Jennifer L Bowen
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, Massachusetts
| |
Collapse
|
9
|
Thomas F, Morris JT, Wigand C, Sievert SM. Short-term effect of simulated salt marsh restoration by sand-amendment on sediment bacterial communities. PLoS One 2019; 14:e0215767. [PMID: 31034478 PMCID: PMC6488055 DOI: 10.1371/journal.pone.0215767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/08/2019] [Indexed: 01/23/2023] Open
Abstract
Coastal climate adaptation strategies are needed to build salt marsh resiliency and maintain critical ecosystem services in response to impacts caused by climate change. Although resident microbial communities perform crucial biogeochemical cycles for salt marsh functioning, their response to restoration practices is still understudied. One promising restoration strategy is the placement of sand or sediment onto the marsh platform to increase marsh resiliency. A previous study examined the above- and below-ground structure, soil carbon dioxide emissions, and pore water constituents in Spartina alterniflora-vegetated natural marsh sediments and sand-amended sediments at varying inundation regimes. Here, we analyzed samples from the same experiment to test the effect of sand-amendments on the microbial communities after 5 months. Along with the previously observed changes in biogeochemistry, sand amendments drastically modified the bacterial communities, decreasing richness and diversity. The dominant sulfur-cycling bacterial community found in natural sediments was replaced by one dominated by iron oxidizers and aerobic heterotrophs, the abundance of which correlated with higher CO2-flux. In particular, the relative abundance of iron-oxidizing Zetaproteobacteria increased in the sand-amended sediments, possibly contributing to acidification by the formation of iron oxyhydroxides. Our data suggest that the bacterial community structure can equilibrate if the inundation regime is maintained within the optimal range for S. alterniflora. While long-term effects of changes in bacterial community on the growth of S. alterniflora are not clear, our results suggest that analyzing the microbial community composition could be a useful tool to monitor climate adaptation and restoration efforts.
Collapse
Affiliation(s)
- François Thomas
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - James T. Morris
- Belle Baruch Institute for Marine & Coastal Sciences, University of South Carolina, Columbia, SC, United States of America
| | - Cathleen Wigand
- U.S. EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, Narragansett, RI, United States of America
| | - Stefan M. Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| |
Collapse
|
10
|
Hiller-Bittrolff K, Foreman K, Bulseco-McKim AN, Benoit J, Bowen JL. Effects of mercury addition on microbial community composition and nitrate removal inside permeable reactive barriers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:797-806. [PMID: 30032076 DOI: 10.1016/j.envpol.2018.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Permeable reactive barriers (PRBs) remove nitrogen from groundwater by enhancing microbial denitrification. The PRBs consist of woodchips that provide carbon for denitrifiers, but these woodchips also support other anaerobic microbes, including sulfate-reducing bacteria. Some of these anaerobes have the ability to methylate inorganic mercury present in groundwater. Methylmercury is hazardous to human health, so it is essential to understand whether PRBs promote mercury methylation. We examined microbial communities and geochemistry in fresh water and sulfate-enriched PRB flow-through columns by spiking replicates of both treatments with mercuric chloride. We hypothesized that mercury addition could alter bacterial community composition to favor higher abundances of genera containing known methylating taxa and that the sulfate-rich columns would produce more methylmercury after mercury addition, due mainly to an increase in abundance of sulfate reducing bacteria (SRB). However, methylmercury output at the end of the experiment was not different from output at the beginning, due in part to coupled Hg methylation and demethylation. There was a transient reduction in nitrate removal after mercury addition in the sulfate enriched columns, but nitrate removal returned to initial rates after two weeks, demonstrating resilience of the denitrifying community. Since methylmercury output did not increase and nitrate removal was not permanently affected, PRBs could be a low cost approach to combat eutrophication.
Collapse
Affiliation(s)
- Kenly Hiller-Bittrolff
- University of Massachusetts Boston Biology Department, 100 Morrissey Blvd, Boston, MA, USA.
| | - Kenneth Foreman
- Marine Biological Laboratory, Ecosystems Center, 7 MBL Street, Woods Hole, MA, USA.
| | - Ashley N Bulseco-McKim
- Northeastern University, Department of Marine and Environmental Sciences, Marine Science Center, 430 Nahant Road, Nahant, MA, USA.
| | - Janina Benoit
- Wheaton College, Chemistry Department, 26 E Main Street, Norton, MA, USA.
| | - Jennifer L Bowen
- Northeastern University, Department of Marine and Environmental Sciences, Marine Science Center, 430 Nahant Road, Nahant, MA, USA.
| |
Collapse
|
11
|
Zogg GP, Travis SE, Brazeau DA. Strong associations between plant genotypes and bacterial communities in a natural salt marsh. Ecol Evol 2018; 8:4721-4730. [PMID: 29760911 PMCID: PMC5938472 DOI: 10.1002/ece3.4105] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/24/2018] [Indexed: 01/06/2023] Open
Abstract
Although microbial communities have been shown to vary among plant genotypes in a number of experiments in terrestrial ecosystems, relatively little is known about this relationship under natural conditions and outside of select model systems. We reasoned that a salt marsh ecosystem, which is characterized by twice‐daily flooding by tides, would serve as a particularly conservative test of the strength of plant–microbial associations, given the high degree of abiotic regulation of microbial community assembly resulting from alternating periods of inundation and exposure. Within a salt marsh in the northeastern United States, we characterized genotypes of the foundational plant Spartina alterniflora using microsatellite markers, and bacterial metagenomes within marsh soil based on pyrosequencing. We found significant differences in bacterial community composition and diversity between bulk and rhizosphere soil, and that the structure of rhizosphere communities varied depending on the growth form of, and genetic variation within, the foundational plant S. alterniflora. Our results indicate that there are strong plant–microbial associations within a natural salt marsh, thereby contributing to a growing body of evidence for a relationship between plant genotypes and microbial communities from terrestrial ecosystems and suggest that principles of community genetics apply to this wetland type.
Collapse
Affiliation(s)
- Gregory P Zogg
- Department of Biology University of New England Biddeford Maine
| | - Steven E Travis
- Department of Biology University of New England Biddeford Maine
| | - Daniel A Brazeau
- Department of Biomedical Sciences University of New England Biddeford Maine
| |
Collapse
|
12
|
Chaudhary DR, Kim J, Kang H. Influences of Different Halophyte Vegetation on Soil Microbial Community at Temperate Salt Marsh. MICROBIAL ECOLOGY 2018; 75:729-738. [PMID: 28986657 DOI: 10.1007/s00248-017-1083-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
Salt marshes are transitional zone between terrestrial and aquatic ecosystems, occupied mainly by halophytic vegetation which provides numerous ecological services to coastal ecosystem. Halophyte-associated microbial community plays an important role in the adaptation of plants to adverse condition and also affected habitat characteristics. To explore the relationship between halophytes and soil microbial community, we studied the soil enzyme activities, soil microbial community structure, and functional gene abundance in halophytes- (Carex scabrifolia, Phragmites australis, and Suaeda japonica) covered and un-vegetated (mud flat) soils at Suncheon Bay, South Korea. Higher concentrations of total, Gram-positive, Gram-negative, total bacterial, and actinomycetes PLFAs (phospholipid fatty acids) were observed in the soil underneath the halophytes compared with mud flat soil and were highest in Carex soil. Halophyte-covered soils had different microbial community composition due to higher abundance of Gram-negative bacteria than mud flat soil. Similar to PLFA concentrations, the increased activities of β-glucosidase, cellulase, phosphatase, and sulfatase enzymes were observed under halophyte soil compared to mud flat soil and Carex exhibited highest activities. The abundance of archaeal 16S rRNA, fungal ITS, and denitrifying genes (nirK, nirS, and nosZ) were not influenced by the halophytes. Abundance bacterial 16S rRNA and dissimilatory (bi)sulfite (dsrA) genes were highest in Carex-covered soil. The abundance of functional genes involved in methane cycle (mcrA and pmoA) was not affected by the halophytes. However, the ratios of mcrA/pmoA and mcrA/dsrA increased in halophyte-covered soils which indicate higher methanogenesis activities. The finding of the study also suggests that halophytes had increased the microbial and enzyme activities, and played a pivotal role in shaping microbial community structure.
Collapse
Affiliation(s)
- Doongar R Chaudhary
- Marine Biotechnology and Ecology Division, Central Salt and Marine Chemicals Research Institute (CSIR), Bhavnagar, Gujarat, 364 002, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, India.
| | - Jinhyun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Hojeong Kang
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
13
|
Liu P, Pommerenke B, Conrad R. Identification ofSyntrophobacteraceaeas major acetate-degrading sulfate reducing bacteria in Italian paddy soil. Environ Microbiol 2017; 20:337-354. [DOI: 10.1111/1462-2920.14001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/26/2017] [Accepted: 11/16/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Pengfei Liu
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10; Marburg 35043 Germany
| | - Bianca Pommerenke
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10; Marburg 35043 Germany
| | - Ralf Conrad
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10; Marburg 35043 Germany
| |
Collapse
|
14
|
Qin K, Struewing I, Domingo JS, Lytle D, Lu J. Opportunistic Pathogens and Microbial Communities and Their Associations with Sediment Physical Parameters in Drinking Water Storage Tank Sediments. Pathogens 2017; 6:pathogens6040054. [PMID: 29072631 PMCID: PMC5715195 DOI: 10.3390/pathogens6040054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/26/2022] Open
Abstract
The occurrence and densities of opportunistic pathogens (OPs), the microbial community structure, and their associations with sediment elements from eight water storage tanks in Ohio, West Virginia, and Texas were investigated. The elemental composition of sediments was measured through X-ray fluorescence (XRF) spectra. The occurrence and densities of OPs and amoeba hosts (i.e., Legionella spp. and L. pneumophila, Mycobacterium spp., P. aeruginosa, V. vermiformis, Acanthamoeba spp.) were determined using genus- or species-specific qPCR assays. Microbial community analysis was performed using next generation sequencing on the Illumina Miseq platform. Mycobacterium spp. were most frequently detected in the sediments and water samples (88% and 88%), followed by Legionella spp. (50% and 50%), Acanthamoeba spp. (63% and 13%), V. vermiformis (50% and 25%), and P. aeruginosa (0 and 50%) by qPCR method. Comamonadaceae (22.8%), Sphingomonadaceae (10.3%), and Oxalobacteraceae (10.1%) were the most dominant families by sequencing method. Microbial communities in water samples were mostly separated with those in sediment samples, suggesting differences of communities between two matrices even in the same location. There were associations of OPs with microbial communities. Both OPs and microbial community structures were positively associated with some elements (Al and K) in sediments mainly from pipe material corrosions. Opportunistic pathogens presented in both water and sediments, and the latter could act as a reservoir of microbial contamination. There appears to be an association between potential opportunistic pathogens and microbial community structures. These microbial communities may be influenced by constituents within storage tank sediments. The results imply that compositions of microbial community and elements may influence and indicate microbial water quality and pipeline corrosion, and that these constituents may be important for optimal storage tank management within a distribution system.
Collapse
Affiliation(s)
- Ke Qin
- ORISE, Office of Research and Development, U. S. Environmental Protection Agency, Cincinnati, OH 45268, USA.
| | | | - Jorge Santo Domingo
- Office of Research and Development, U. S. Environmental Protection Agency, Cincinnati, OH 45268, USA.
| | - Darren Lytle
- Office of Research and Development, U. S. Environmental Protection Agency, Cincinnati, OH 45268, USA.
| | - Jingrang Lu
- Office of Research and Development, U. S. Environmental Protection Agency, Cincinnati, OH 45268, USA.
| |
Collapse
|
15
|
Gentès S, Taupiac J, Colin Y, André JM, Guyoneaud R. Bacterial periphytic communities related to mercury methylation within aquatic plant roots from a temperate freshwater lake (South-Western France). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19223-19233. [PMID: 28664497 DOI: 10.1007/s11356-017-9597-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Macrophyte floating roots are considered as hotspots for methylmercury (MeHg) production in aquatic ecosystems through microbial activity. Nevertheless, very little is known about periphyton bacterial communities and mercury (Hg) methylators in such ecological niches. The ability to methylate inorganic Hg is broadly distributed among prokaryotes; however, sulfate-reducers have been reported to be the most important MeHg producers in macrophyte floating roots. In the present work, the periphyton bacterial communities colonizing Ludwigia sp. floating roots were investigated through molecular methods. Among the 244 clones investigated, anaerobic microorganisms associated with the sulfur biogeochemical cycle were identified. Notably, members of the sulfur-oxidizing prokaryotes and the anoxygenic, purple non-sulfur bacteria (Rhodobacteraceae, Comamonadaceae, Rhodocyclaceae, Hyphomicrobiaceae) and the sulfate reducers (Desulfobacteraceae, Syntrophobacteraceae, and Desulfobulbaceae) were detected. In addition, 15 sulfate-reducing strains related to the Desulfovibrionaceae family were isolated and their Hg-methylation capacity was tested using a biosensor. The overall results confirmed that Hg methylation is a strain-specific process since the four strains identified as new Hg-methylators were closely related to non-methylating isolates. This study highlights the potential involvement of periphytic bacteria in Hg methylation when favorable environmental conditions are present in such ecological micro-niches.
Collapse
Affiliation(s)
- Sophie Gentès
- Equipe Environnement et Microbiologie, UMR IPREM5254 Université de Pau et des Pays de l'Adour, Bâtiment IBEAS, BP1153, 64013, Pau Cedex, France.
- Université de Bordeaux, EPOC, UMR CNRS 5805, 33120, Arcachon, France.
| | - Julie Taupiac
- Equipe Environnement et Microbiologie, UMR IPREM5254 Université de Pau et des Pays de l'Adour, Bâtiment IBEAS, BP1153, 64013, Pau Cedex, France
| | - Yannick Colin
- Equipe Environnement et Microbiologie, UMR IPREM5254 Université de Pau et des Pays de l'Adour, Bâtiment IBEAS, BP1153, 64013, Pau Cedex, France
| | - Jean-Marc André
- Equipe CIH, IMS UMR 5218, Ecole Nationale Supérieure de Cognitique, 109 Avenue Roul, 33400, Talence, France
| | - Rémy Guyoneaud
- Equipe Environnement et Microbiologie, UMR IPREM5254 Université de Pau et des Pays de l'Adour, Bâtiment IBEAS, BP1153, 64013, Pau Cedex, France
| |
Collapse
|
16
|
Motlagh AM, Bhattacharjee AS, Coutinho FH, Dutilh BE, Casjens SR, Goel RK. Insights of Phage-Host Interaction in Hypersaline Ecosystem through Metagenomics Analyses. Front Microbiol 2017; 8:352. [PMID: 28316597 PMCID: PMC5334351 DOI: 10.3389/fmicb.2017.00352] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/20/2017] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages, as the most abundant biological entities on Earth, place significant predation pressure on their hosts. This pressure plays a critical role in the evolution, diversity, and abundance of bacteria. In addition, phages modulate the genetic diversity of prokaryotic communities through the transfer of auxiliary metabolic genes. Various studies have been conducted in diverse ecosystems to understand phage-host interactions and their effects on prokaryote metabolism and community composition. However, hypersaline environments remain among the least studied ecosystems and the interaction between the phages and prokaryotes in these habitats is poorly understood. This study begins to fill this knowledge gap by analyzing bacteriophage-host interactions in the Great Salt Lake, the largest prehistoric hypersaline lake in the Western Hemisphere. Our metagenomics analyses allowed us to comprehensively identify the bacterial and phage communities with Proteobacteria, Firmicutes, and Bacteroidetes as the most dominant bacterial species and Siphoviridae, Myoviridae, and Podoviridae as the most dominant viral families found in the metagenomic sequences. We also characterized interactions between the phage and prokaryotic communities of Great Salt Lake and determined how these interactions possibly influence the community diversity, structure, and biogeochemical cycles. In addition, presence of prophages and their interaction with the prokaryotic host was studied and showed the possibility of prophage induction and subsequent infection of prokaryotic community present in the Great Salt Lake environment under different environmental stress factors. We found that carbon cycle was the most susceptible nutrient cycling pathways to prophage induction in the presence of environmental stresses. This study gives an enhanced snapshot of phage and prokaryote abundance and diversity as well as their interactions in a hypersaline complex ecosystem, which can pave the way for further research studies.
Collapse
Affiliation(s)
- Amir Mohaghegh Motlagh
- Department of Civil and Environmental Engineering, University of Utah Salt Lake, UT, USA
| | - Ananda S Bhattacharjee
- Department of Civil and Environmental Engineering, University of Utah Salt Lake, UT, USA
| | - Felipe H Coutinho
- Instituto de Biologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil; Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics, Radboud University Medical CentreNijmegen, Netherlands
| | - Bas E Dutilh
- Instituto de Biologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil; Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics, Radboud University Medical CentreNijmegen, Netherlands; Theoretical Biology and Bioinformatics, Utrecht UniversityUtrecht, Netherlands
| | | | - Ramesh K Goel
- Department of Civil and Environmental Engineering, University of Utah Salt Lake, UT, USA
| |
Collapse
|
17
|
Dranguet P, Le Faucheur S, Cosio C, Slaveykova VI. Influence of chemical speciation and biofilm composition on mercury accumulation by freshwater biofilms. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:38-49. [PMID: 27942649 DOI: 10.1039/c6em00493h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mercury (Hg) is a pollutant of high concern for aquatic systems due to the biomagnification of its methylated form along the food chain. However, in contrast to other metals, gaining knowledge of its bioavailable forms for aquatic microorganisms remains challenging, making Hg risk assessment difficult. Ubiquitous and sessile freshwater biofilms are well known to accumulate and to transform Hg present in their ambient environment. The present study thus aims to evaluate whether non-extractable (proxy of intracellular) Hg accumulated by biofilms could be a good indicator of Hg bioavailability for microorganisms in freshwater. To that end, the link between Hg concentration and speciation, as well as biofilm composition (percentage of abiotic, biotic, chlorophyll and phycocyanin-fractions and abundance of dsrA, gcs, merA and hgcA bacterial genes) and biofilm Hg accumulation was examined. The studied biofilms were grown on artificial substrata in four reservoirs along the Olt River (Romania), which was contaminated by Hg coming from chlor-alkali plant effluents. The 0.45 μm-filterable Hg concentrations in ambient waters were measured and inorganic IHg speciation was modelled. Biofilms were analyzed for their non-extractable IHg and methylmercury (MeHg) contents as well as for their composition. The non-extractable IHg content was related, but not significantly, to the concentration of total IHg (r2 = 0.88, p = 0.061) whereas a significant correlation was found with the predicted IHg concentration that is not bound to dissolved organic matter (r2 = 0.95, p = 0.027), despite its extremely low concentrations (10-25 M), showing a limitation of the thermodynamic Hg modelling to predict Hg bioavailability. The studied biofilms were different in biomass and composition and a principal component analysis showed that the non-extractable IHg content correlated with the abundance of the merA and hgcA genes, while MeHg accumulation was only linked with the abundance of the rRNA 16S gene. The present study suggests that non-extractable IHg concentrations in biofilms are a useful proxy of IHg bioavailable forms in waters whereas the hgcA and merA genes are good biomarkers of both biofilm IHg exposure and bioavailability.
Collapse
Affiliation(s)
- P Dranguet
- University of Geneva, Faculty of Science, Earth and Environmental Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Uni Carl Vogt, 66 Bvd. Carl Vogt, CH-1211 Geneva, Switzerland.
| | - S Le Faucheur
- University of Geneva, Faculty of Science, Earth and Environmental Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Uni Carl Vogt, 66 Bvd. Carl Vogt, CH-1211 Geneva, Switzerland.
| | - C Cosio
- University of Geneva, Faculty of Science, Earth and Environmental Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Uni Carl Vogt, 66 Bvd. Carl Vogt, CH-1211 Geneva, Switzerland.
| | - V I Slaveykova
- University of Geneva, Faculty of Science, Earth and Environmental Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Uni Carl Vogt, 66 Bvd. Carl Vogt, CH-1211 Geneva, Switzerland.
| |
Collapse
|
18
|
Rietl AJ, Overlander ME, Nyman AJ, Jackson CR. Microbial Community Composition and Extracellular Enzyme Activities Associated with Juncus roemerianus and Spartina alterniflora Vegetated Sediments in Louisiana Saltmarshes. MICROBIAL ECOLOGY 2016; 71:290-303. [PMID: 26271740 DOI: 10.1007/s00248-015-0651-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/14/2015] [Indexed: 06/04/2023]
Abstract
Saltmarshes are typically dominated by perennial grasses with large underground rhizome systems that can change local sediment conditions and be important in shaping the sediment microbial community. Factors such as salinity that control plant zonation in saltmarshes are also likely to influence the microbial community, but little is known as to whether microbial communities share distribution patterns with plants in these systems. To determine the extent to which microbial assemblages are influenced by saltmarsh plant communities, as well as to examine patterns in microbial community structure at local and regional scales, we sampled sediments at three saltmarshes in Louisiana, USA. All three systems exhibit a patchy distribution of Juncus roemerianus stands within a Spartina alterniflora marsh. Sediment samples were collected from the interior of several J. roemerianus stands as well as from the S. alterniflora matrix. Samples were assayed for extracellular enzyme activity and DNA extracted to determine microbial community composition. Denaturing gradient gel electrophoresis of rRNA gene fragments was used to determine regional patterns in bacterial, archaeal, and fungal assemblages, while Illumina sequencing was used to examine local, vegetation-driven, patterns in community structure at one site. Both enzyme activity and microbial community structure were primarily influenced by regional site. Within individual saltmarshes, bacterial and archaeal communities differed between J. roemerianus and S. alterniflora vegetated sediments, while fungal communities did not. These results highlight the importance of the plant community in shaping the sediment microbial community in saltmarshes but also demonstrate that regional scale factors are at least as important.
Collapse
Affiliation(s)
- Anthony J Rietl
- School of Renewable Natural Resources, Renewable Natural Resources Department, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - Megan E Overlander
- Department of Biology, The University of Mississippi, Shoemaker Hall, Oxford, MS, 38677, USA
| | - Andrew J Nyman
- School of Renewable Natural Resources, Renewable Natural Resources Department, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Colin R Jackson
- Department of Biology, The University of Mississippi, Shoemaker Hall, Oxford, MS, 38677, USA
| |
Collapse
|
19
|
Stauffert M, Cravo-Laureau C, Duran R. Dynamic of sulphate-reducing microorganisms in petroleum-contaminated marine sediments inhabited by the polychaete Hediste diversicolor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15273-15284. [PMID: 25256587 DOI: 10.1007/s11356-014-3624-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/16/2014] [Indexed: 06/03/2023]
Abstract
The behaviour of sulphate-reducing microbial community was investigated at the oxic-anoxic interface (0-2 cm) of marine sediments when submitted to oil and enhanced bioturbation activities by the addition of Hediste diversicolor. Although total hydrocarbon removal was not improved by the addition of H. diversicolor, terminal restriction fragment length polymorphism (T-RFLP) analyses based on dsrAB (dissimilatory sulphite reductase) genes and transcripts showed different patterns according to the presence of H. diversicolor which favoured the abundance of dsrB genes during the early stages of incubation. Complementary DNA (cDNA) dsrAB libraries revealed that in presence of H. diversicolor, most dsrAB sequences belonged to hydrocarbonoclastic Desulfobacteraceae, suggesting that sulphate-reducing microorganisms (SRMs) may play an active role in hydrocarbon biodegradation in sediments where the reworking activity is enhanced. Furthermore, the presence of dsrAB sequences related to sequences found associated to environments with high dinitrogen fixation activity suggested potential N2 fixation by SRMs in bioturbated-polluted sediments.
Collapse
Affiliation(s)
- Magalie Stauffert
- Equipe Environnement et Microbiologie, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Cristiana Cravo-Laureau
- Equipe Environnement et Microbiologie, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France.
| | - Robert Duran
- Equipe Environnement et Microbiologie, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| |
Collapse
|
20
|
Smith MW, Davis RE, Youngblut ND, Kärnä T, Herfort L, Whitaker RJ, Metcalf WW, Tebo BM, Baptista AM, Simon HM. Metagenomic evidence for reciprocal particle exchange between the mainstem estuary and lateral bay sediments of the lower Columbia River. Front Microbiol 2015; 6:1074. [PMID: 26483785 PMCID: PMC4589670 DOI: 10.3389/fmicb.2015.01074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/18/2015] [Indexed: 11/27/2022] Open
Abstract
Lateral bays of the lower Columbia River estuary are areas of enhanced water retention that influence net ecosystem metabolism through activities of their diverse microbial communities. Metagenomic characterization of sediment microbiota from three disparate sites in two brackish lateral bays (Baker and Youngs) produced ∼100 Gbp of DNA sequence data analyzed subsequently for predicted SSU rRNA and peptide-coding genes. The metagenomes were dominated by Bacteria. A large component of Eukaryota was present in Youngs Bay samples, i.e., the inner bay sediment was enriched with the invasive New Zealand mudsnail, Potamopyrgus antipodarum, known for high ammonia production. The metagenome was also highly enriched with an archaeal ammonia oxidizer closely related to Nitrosoarchaeum limnia. Combined analysis of sequences and continuous, high-resolution time series of biogeochemical data from fixed and mobile platforms revealed the importance of large-scale reciprocal particle exchanges between the mainstem estuarine water column and lateral bay sediments. Deposition of marine diatom particles in sediments near Youngs Bay mouth was associated with a dramatic enrichment of Bacteroidetes (58% of total Bacteria) and corresponding genes involved in phytoplankton polysaccharide degradation. The Baker Bay sediment metagenome contained abundant Archaea, including diverse methanogens, as well as functional genes for methylotrophy and taxonomic markers for syntrophic bacteria, suggesting that active methane cycling occurs at this location. Our previous work showed enrichments of similar anaerobic taxa in particulate matter of the mainstem estuarine water column. In total, our results identify the lateral bays as both sources and sinks of biogenic particles significantly impacting microbial community composition and biogeochemical activities in the estuary.
Collapse
Affiliation(s)
- Maria W Smith
- Center for Coastal Margin Observation and Prediction and Institute of Environmental Health, Oregon Health & Science University, Portland OR, USA
| | - Richard E Davis
- Center for Coastal Margin Observation and Prediction and Institute of Environmental Health, Oregon Health & Science University, Portland OR, USA
| | | | - Tuomas Kärnä
- Center for Coastal Margin Observation and Prediction and Institute of Environmental Health, Oregon Health & Science University, Portland OR, USA
| | - Lydie Herfort
- Center for Coastal Margin Observation and Prediction and Institute of Environmental Health, Oregon Health & Science University, Portland OR, USA
| | - Rachel J Whitaker
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana IL, USA
| | - William W Metcalf
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana IL, USA
| | - Bradley M Tebo
- Center for Coastal Margin Observation and Prediction and Institute of Environmental Health, Oregon Health & Science University, Portland OR, USA
| | - António M Baptista
- Center for Coastal Margin Observation and Prediction and Institute of Environmental Health, Oregon Health & Science University, Portland OR, USA
| | - Holly M Simon
- Center for Coastal Margin Observation and Prediction and Institute of Environmental Health, Oregon Health & Science University, Portland OR, USA
| |
Collapse
|
21
|
Bowen JL, Weisman D, Yasuda M, Jayakumar A, Morrison HG, Ward BB. Marine Oxygen-Deficient Zones Harbor Depauperate Denitrifying Communities Compared to Novel Genetic Diversity in Coastal Sediments. MICROBIAL ECOLOGY 2015; 70:311-321. [PMID: 25721726 DOI: 10.1007/s00248-015-0582-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
Denitrification is a critically important biogeochemical pathway that removes fixed nitrogen from ecosystems and thus ultimately controls the rate of primary production in nitrogen-limited systems. We examined the community structure of bacteria containing the nirS gene, a signature gene in the denitrification pathway, from estuarine and salt marsh sediments and from the water column of two of the world's largest marine oxygen-deficient zones (ODZs). We generated over 125,000 nirS gene sequences, revealing a large degree of genetic diversity including 1,815 unique taxa, the vast majority of which formed clades that contain no cultured representatives. These results underscore how little we know about the genetic diversity of metabolisms underlying this critical biogeochemical pathway. Marine sediments yielded 1,776 unique taxa when clustered at 95 % sequence identity, and there was no single nirS denitrifier that was a competitive dominant; different samples had different highly abundant taxa. By contrast, there were only 39 unique taxa identified in samples from the two ODZs, and 99 % of the sequences belonged to 5 or fewer taxa. The ODZ samples were often dominated by nirS sequences that shared a 92 % sequence identity to a nirS found in the anaerobic ammonium-oxidizing (anammox) genus Scalindua. This sequence was abundant in both ODZs, accounting for 38 and 59 % of all sequences, but it was virtually absent in marine sediments. Our data indicate that ODZs are remarkably depauperate in nirS genes compared to the remarkable genetic richness found in coastal sediments.
Collapse
Affiliation(s)
- Jennifer L Bowen
- Department of Biology, University of Massachusetts, 100 Morrissey Blvd, Boston, MA, 02125, USA,
| | | | | | | | | | | |
Collapse
|
22
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
23
|
Angermeyer A, Crosby SC, Huber JA. Decoupled distance-decay patterns between dsrA and 16S rRNA genes among salt marsh sulfate-reducing bacteria. Environ Microbiol 2015; 18:75-86. [DOI: 10.1111/1462-2920.12821] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Angus Angermeyer
- Ecology and Evolutionary Biology; Brown University; Providence RI 02912 USA
- Josephine Bay Paul Center; Marine Biological Laboratory; Woods Hole MA 02543 USA
| | - Sarah C. Crosby
- Ecology and Evolutionary Biology; Brown University; Providence RI 02912 USA
- Ecosystems Center; Marine Biological Laboratory; Woods Hole MA 02543 USA
| | - Julie A. Huber
- Josephine Bay Paul Center; Marine Biological Laboratory; Woods Hole MA 02543 USA
| |
Collapse
|
24
|
Thomas F, Giblin AE, Cardon ZG, Sievert SM. Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments. Front Microbiol 2014; 5:309. [PMID: 25009538 PMCID: PMC4068000 DOI: 10.3389/fmicb.2014.00309] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/05/2014] [Indexed: 12/02/2022] Open
Abstract
Salt marshes are highly productive ecosystems hosting an intense sulfur (S) cycle, yet little is known about S-oxidizing microorganisms in these ecosystems. Here, we studied the diversity and transcriptional activity of S-oxidizers in salt marsh sediments colonized by the plant Spartina alterniflora, and assessed variations with sediment depth and small-scale compartments within the rhizosphere. We combined next-generation amplicon sequencing of 16S rDNA and rRNA libraries with phylogenetic analyses of marker genes for two S-oxidation pathways (soxB and rdsrAB). Gene and transcript numbers of soxB and rdsrAB phylotypes were quantified simultaneously, using newly designed (RT)-qPCR assays. We identified a diverse assemblage of S-oxidizers, with Chromatiales and Thiotrichales being dominant. The detection of transcripts from S-oxidizers was mostly confined to the upper 5 cm sediments, following the expected distribution of root biomass. A common pool of species dominated by Gammaproteobacteria transcribed S-oxidation genes across roots, rhizosphere, and surrounding sediment compartments, with rdsrAB transcripts prevailing over soxB. However, the root environment fine-tuned the abundance and transcriptional activity of the S-oxidizing community. In particular, the global transcription of soxB was higher on the roots compared to mix and rhizosphere samples. Furthermore, the contribution of Epsilonproteobacteria-related S-oxidizers tended to increase on Spartina roots compared to surrounding sediments. These data shed light on the under-studied oxidative part of the sulfur cycle in salt marsh sediments and indicate small-scale heterogeneities are important factors shaping abundance and potential activity of S-oxidizers in the rhizosphere.
Collapse
Affiliation(s)
- François Thomas
- Watson Laboratory, Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| | - Anne E Giblin
- Marine Biological Laboratory, The Ecosystems Center, Woods Hole MA, USA
| | - Zoe G Cardon
- Marine Biological Laboratory, The Ecosystems Center, Woods Hole MA, USA
| | - Stefan M Sievert
- Watson Laboratory, Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| |
Collapse
|
25
|
Darjany LE, Whitcraft CR, Dillon JG. Lignocellulose-responsive bacteria in a southern California salt marsh identified by stable isotope probing. Front Microbiol 2014; 5:263. [PMID: 24917856 PMCID: PMC4040508 DOI: 10.3389/fmicb.2014.00263] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/13/2014] [Indexed: 11/25/2022] Open
Abstract
Carbon cycling by microbes has been recognized as the main mechanism of organic matter decomposition and export in coastal wetlands, yet very little is known about the functional diversity of specific groups of decomposers (e.g., bacteria) in salt marsh benthic trophic structure. Indeed, salt marsh sediment bacteria remain largely in a black box in terms of their diversity and functional roles within salt marsh benthic food web pathways. We used DNA stable isotope probing (SIP) utilizing 13C-labeled lignocellulose as a proxy to evaluate the fate of macrophyte-derived carbon in benthic salt marsh bacterial communities. Overall, 146 bacterial species were detected using SIP, of which only 12 lineages were shared between enriched and non-enriched communities. Abundant groups from the 13C-labeled community included Desulfosarcina, Spirochaeta, and Kangiella. This study is the first to use heavy-labeled lignocellulose to identify bacteria responsible for macrophyte carbon utilization in salt marsh sediments and will allow future studies to target specific lineages to elucidate their role in salt marsh carbon cycling and ultimately aid our understanding of the potential of salt marshes to store carbon.
Collapse
Affiliation(s)
- Lindsay E Darjany
- Department of Biological Sciences, California State University Long Beach, CA, USA
| | | | - Jesse G Dillon
- Department of Biological Sciences, California State University Long Beach, CA, USA
| |
Collapse
|
26
|
Lee JZ, Burow LC, Woebken D, Everroad RC, Kubo MD, Spormann AM, Weber PK, Pett-Ridge J, Bebout BM, Hoehler TM. Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats. Front Microbiol 2014; 5:61. [PMID: 24616716 PMCID: PMC3935151 DOI: 10.3389/fmicb.2014.00061] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/30/2014] [Indexed: 11/17/2022] Open
Abstract
Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB). However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico-permanently submerged Microcoleus microbial mat (GN-S), and intertidal Lyngbya microbial mat (GN-I)-were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes. Across microcosms, H2 production occurred under dark anoxic conditions with simultaneous production of a suite of organic acids. H2 production was not significantly affected by inhibition of nitrogen fixation, but rather appears to result from constitutive fermentation of photosynthetic storage products by oxygenic phototrophs. Comparison to accumulated glycogen and to CO2 flux indicated that, in the GN-I mat, fermentation released almost all of the carbon fixed via photosynthesis during the preceding day, primarily as organic acids. Across mats, although oxygenic and anoxygenic phototrophs were detected, cyanobacterial [NiFe]-hydrogenase transcripts predominated. Molybdate inhibition experiments indicated that SRBs from a wide distribution of DsrA phylotypes were responsible for H2 consumption. Incubation with (13)C-acetate and NanoSIMS (secondary ion mass-spectrometry) indicated higher uptake in both Chloroflexi and SRBs relative to other filamentous bacteria. These manipulations and diel incubations confirm that Cyanobacteria were the main fermenters in Guerrero Negro mats and that the net flux of nighttime fermentation byproducts (not only hydrogen) was largely regulated by the interplay between Cyanobacteria, SRBs, and Chloroflexi.
Collapse
Affiliation(s)
- Jackson Z. Lee
- Exobiology Branch, NASA Ames Research CenterMoffett Field, CA, USA
- Bay Area Environmental Research InstituteSonoma, CA, USA
| | - Luke C. Burow
- Exobiology Branch, NASA Ames Research CenterMoffett Field, CA, USA
- Departments of Civil and Environmental Engineering, and Chemical Engineering, Stanford UniversityStanford, CA, USA
| | - Dagmar Woebken
- Exobiology Branch, NASA Ames Research CenterMoffett Field, CA, USA
- Departments of Civil and Environmental Engineering, and Chemical Engineering, Stanford UniversityStanford, CA, USA
| | | | - Mike D. Kubo
- Exobiology Branch, NASA Ames Research CenterMoffett Field, CA, USA
- The SETI InstituteMountain View, CA, USA
| | - Alfred M. Spormann
- Departments of Civil and Environmental Engineering, and Chemical Engineering, Stanford UniversityStanford, CA, USA
| | - Peter K. Weber
- Lawrence Livermore National Lab, Chemical Sciences DivisionLivermore, CA, USA
| | - Jennifer Pett-Ridge
- Lawrence Livermore National Lab, Chemical Sciences DivisionLivermore, CA, USA
| | - Brad M. Bebout
- Exobiology Branch, NASA Ames Research CenterMoffett Field, CA, USA
| | - Tori M. Hoehler
- Exobiology Branch, NASA Ames Research CenterMoffett Field, CA, USA
| |
Collapse
|
27
|
Vishnivetskaya TA, Fisher LS, Brodie GA, Phelps TJ. Microbial communities involved in biological ammonium removal from coal combustion wastewaters. MICROBIAL ECOLOGY 2013; 66:49-59. [PMID: 23314095 DOI: 10.1007/s00248-012-0152-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/06/2012] [Indexed: 06/01/2023]
Abstract
The efficiency of a novel integrated treatment system for biological removal of ammonium, nitrite, nitrate, and heavy metals from fossil power plant effluent was evaluated. Microbial communities were analyzed using bacterial and archaeal 16S rRNA gene clone libraries (Sanger sequences) and 454 pyrosequencing technology. While seasonal changes in microbial community composition were observed, the significant (P = 0.001) changes in bacterial and archaeal communities were consistent with variations in ammonium concentration. Phylogenetic analysis of 16S rRNA gene sequences revealed an increase of potential ammonium-oxidizing bacteria (AOB), Nitrosomonas, Nitrosococcus, Planctomycetes, and OD1, in samples with elevated ammonium concentration. Other bacteria, such as Nitrospira, Nitrococcus, Nitrobacter, Thiobacillus, ε-Proteobacteria, Firmicutes, and Acidobacteria, which play roles in nitrification and denitrification, were also detected. The AOB oxidized 56 % of the ammonium with the concomitant increase in nitrite and ultimately nitrate in the trickling filters at the beginning of the treatment system. Thermoprotei within the phylum Crenarchaeota thrived in the splitter box and especially in zero-valent iron extraction trenches, where an additional 25 % of the ammonium was removed. The potential ammonium-oxidizing Archaea (AOA) (Candidatus Nitrosocaldus) were detected towards the downstream end of the treatment system. The design of an integrated treatment system consisting of trickling filters, zero-valent iron reaction cells, settling pond, and anaerobic wetlands was efficient for the biological removal of ammonium and several other contaminants from wastewater generated at a coal burning power plant equipped with selective catalytic reducers for nitrogen oxide removal.
Collapse
|
28
|
Lever MA. Functional gene surveys from ocean drilling expeditions - a review and perspective. FEMS Microbiol Ecol 2013; 84:1-23. [PMID: 23228016 DOI: 10.1111/1574-6941.12051] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/18/2012] [Accepted: 11/29/2012] [Indexed: 12/18/2022] Open
Abstract
The vast majority of microbes inhabiting the subseafloor remain uncultivated and their energy sources unknown. Thus, a focus of ocean drilling expeditions over the past decade has been to characterize the distribution of microbes associated with specific metabolic reactions. An important question has been whether microbes involved in key microbial processes, such as sulfate reduction and methanogenesis, differ fundamentally from their counterparts in surface environments. To this end, functional genes of anaerobic methane cycling (mcrA), sulfate reduction (dsrAB), acetogenesis (fhs), and dehalorespiration (rdhA) have been examined. A compilation of existing functional gene data suggests that subseafloor microbes involved in anaerobic methane cycling, sulfate reduction, acetogenesis, and dehalorespiration are not fundamentally different from their counterparts in the surface world. Moreover, quantifications of mcrA and dsrAB suggest that, unless the majority of subseafloor microbes involved in methane cycling and sulfate reduction are too genetically divergent to be detected with conventional methods, these processes only support a small fraction (< 1%) of total microbial biomass in the deep biosphere. Ecological explanations for the observed trends, target processes and methods for future investigations, and strategies for tackling the unresolved issue of microbial contamination in samples obtained by ocean drilling are discussed.
Collapse
Affiliation(s)
- Mark A Lever
- Center for Geomicrobiology, Institute of BioScience, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
29
|
Faulwetter JL, Burr MD, Parker AE, Stein OR, Camper AK. Influence of season and plant species on the abundance and diversity of sulfate reducing bacteria and ammonia oxidizing bacteria in constructed wetland microcosms. MICROBIAL ECOLOGY 2013; 65:111-127. [PMID: 22961363 DOI: 10.1007/s00248-012-0114-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 08/14/2012] [Indexed: 06/01/2023]
Abstract
Constructed wetlands offer an effective means for treatment of wastewater from a variety of sources. An understanding of the microbial ecology controlling nitrogen, carbon and sulfur cycles in constructed wetlands has been identified as the greatest gap for optimizing performance of these promising treatment systems. It is suspected that operational factors such as plant types and hydraulic operation influence the subsurface wetland environment, especially redox, and that the observed variation in effluent quality is due to shifts in the microbial populations and/or their activity. This study investigated the biofilm associated sulfate reducing bacteria and ammonia oxidizing bacteria (using the dsrB and amoA genes, respectively) by examining a variety of surfaces within a model wetland (gravel, thick roots, fine roots, effluent), and the changes in activity (gene abundance) of these functional groups as influenced by plant species and season. Molecular techniques were used including quantitative PCR and denaturing gradient gel electrophoresis (DGGE), both with and without propidium monoazide (PMA) treatment. PMA treatment is a method for excluding from further analysis those cells with compromised membranes. Rigorous statistical analysis showed an interaction between the abundance of these two functional groups with the type of plant and season (p < 0.05). The richness of the sulfate reducing bacterial community, as indicated by DGGE profiles, increased in planted vs. unplanted microcosms. For ammonia oxidizing bacteria, season had the greatest impact on gene abundance and diversity (higher in summer than in winter). Overall, the primary influence of plant presence is believed to be related to root oxygen loss and its effect on rhizosphere redox.
Collapse
Affiliation(s)
- Jennifer L Faulwetter
- Center for Biofilm Engineering, Montana State University, 366 EPS, Bozeman, MT 59717-3980, USA
| | | | | | | | | |
Collapse
|
30
|
Kondo R, Mori Y, Sakami T. Comparison of sulphate-reducing bacterial communities in Japanese fish farm sediments with different levels of organic enrichment. Microbes Environ 2012; 27:193-9. [PMID: 22791053 PMCID: PMC4036007 DOI: 10.1264/jsme2.me11278] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fish farm sediments receive a large amount of organic matter from uneaten food and fecal material. This nutrient enrichment, or organic pollution, causes the accumulation of sulphide in the sediment from the action of sulphate-reducing bacteria (SRB). We investigated the effect of organic enrichment around coastal fish farms comparing the SRB community structure in these sediments. Sediment samples with different levels of organic pollution classified based upon the contents of acid-volatile sulphide and chemical oxygen demand were collected at three stations on the coast of western Japan. The SRB community composition was assessed using PCR amplification, cloning, sequencing and phylogenetic analysis of the dissimilatory sulphite reductase β-subunit gene (dsrB) fragments using directly extracted sediment DNA. Sequencing of the cloned PCR products of dsrB showed the existence of different SRB groups in the sediments. The majority of dsrB sequences were associated with the families Desulfobacteraceae and Desulfobulbaceae. Clones related to the phylum Firmicutes were also detected from all sediment samples. Statistical comparison of sequences revealed that community compositions of SRB from polluted sediments significantly differed from those of moderately polluted sediments and unpolluted sediments (LIBSHUFF, p<0.05), showing a different distribution of SRB in the fish farm sediments. There is evidence showing that the organic enrichment of sediments influences the composition of SRB communities in sediments at marine fish farms.
Collapse
Affiliation(s)
- Ryuji Kondo
- Department of Marine Bioscience, Fukui Prefectural University, Gakuen-cho, Obama, Fukui 917-0003, Japan.
| | | | | |
Collapse
|
31
|
Giloteaux L, Duran R, Casiot C, Bruneel O, Elbaz-Poulichet F, Goñi-Urriza M. Three-year survey of sulfate-reducing bacteria community structure in Carnoulès acid mine drainage (France), highly contaminated by arsenic. FEMS Microbiol Ecol 2012; 83:724-37. [PMID: 23057444 DOI: 10.1111/1574-6941.12028] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 11/29/2022] Open
Abstract
A 3-year survey on sulfate-reducing bacteria (SRB) was conducted in the waters of the arsenic-rich acid mine drainage (AMD) located at Carnoulès (France) to determine the influence of environmental parameters on their community structure. The source (S5 station) exhibited most extreme conditions with pH lowering to ~1.2; iron, sulfate, and arsenic concentrations reaching 6843, 29 593, and 638 mg L(-1), respectively. The conditions were less extreme at the downstream stations S1 (pH ~3.7; iron, sulfate, and arsenic concentrations of 1114, 4207, and 167 mg L(-1), respectively) and COWG (pH ~3.4; iron, sulfate, and arsenic concentrations of 854, 3134, and 110 mg L(-1), respectively). SRB community structures were characterized by terminal restriction fragment length polymorphism and library analyses based on dsrAB genes. The predominant dsrAB sequences detected were most similar to the family Desulfobulbaceae. Additionally, certain phylotypes could be related to spatio-temporal fluctuations of pH, iron, and arsenic species. For example, Desulfohalobiaceae-related sequences were detected at the most acidic sample (pH 1.4) with high iron and arsenic concentrations (6379 and 524 mg L(-1), respectively). New dsrAB sequences, with no isolated representatives, were found exclusively in COWG. This study gives new insights on SRB community dynamics in AMD systems.
Collapse
Affiliation(s)
- Ludovic Giloteaux
- Equipe Environnement et Microbiologie - UMR IPREM5254, Université de Pau et des Pays de l'Adour, Pau Cedex, France
| | | | | | | | | | | |
Collapse
|
32
|
Colin Y, Goñi-Urriza M, Caumette P, Guyoneaud R. Combination of high throughput cultivation and dsrA sequencing for assessment of sulfate-reducing bacteria diversity in sediments. FEMS Microbiol Ecol 2012; 83:26-37. [PMID: 22809466 DOI: 10.1111/j.1574-6941.2012.01452.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/03/2012] [Accepted: 07/05/2012] [Indexed: 11/29/2022] Open
Abstract
Improving the knowledge on sulfate-reducing bacteria (SRB) diversity and ecophysiology will permit a better understanding on their key roles in aquatic ecosystems. Therefore, their diversity was evaluated in estuarine sediments by a polyphasic approach including dsrA gene cloning and sequencing (156 clones) and high-throughput isolations in 384-well microplates (177 strains). Using the related thresholds of 95% (DsrA amino acid sequences) and 97% (16S rRNA gene sequences) for sequence similarity, SRB were grouped into 60 and 22 operational taxonomic units, respectively. Both approaches poorly overlapped and rather complemented each other. The clone library was dominated by sequences related to the Desulfobacteraceae, while only one isolate belonged to this family. Most of the strains were affiliated to the genera Desulfopila and Desulfotalea within the Desulfobulbaceae. Desulfopila-related strains exhibited a high phylogenetic microdiversity and represented numerically significant populations. In contrast, Desulfovibrio isolates were less abundant but displayed a high phylogenetic diversity. Three hundred and eighty-four-well microplate isolations enhanced significantly the number of isolates handled. As a consequence, 15 new taxa sharing less than 98% sequence similarity (16S rRNA gene) with their closest relatives were obtained. This polyphasic approach allowed to obtain a high phylogenetic diversity and thus a better view of sulfate-reducing communities in intertidal sediments.
Collapse
Affiliation(s)
- Yannick Colin
- Equipe Environnement et Microbiologie, IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, IBEAS, Pau Cedex, France
| | | | | | | |
Collapse
|
33
|
Fan LF, Tang SL, Chen CP, Hsieh HL. Diversity and composition of sulfate- and sulfite-reducing prokaryotes as affected by marine-freshwater gradient and sulfate availability. MICROBIAL ECOLOGY 2012; 63:224-237. [PMID: 21785985 DOI: 10.1007/s00248-011-9912-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 06/30/2011] [Indexed: 05/31/2023]
Abstract
Sulfate- and sulfite-reducing prokaryotes (SSRP) communities play a key role in both sulfur and carbon cycles. In estuarine ecosystems, sulfate concentrations change with tides and could be limited in tidal freshwater reach or deep sediments. In a subtropical estuary of northern Taiwan in December 2007, we examined the compositional changes of SSRP communities. We examined three sites: from the lower estuarine brackish-water reach (site GR and mangrove vegetation site, GM) to the upper estuarine tidal freshwater reach (site HR), as well as from surface to a 50-cm depth. The partial sequence of sulfite reductase (dsrB) genes was used as a molecular marker of SSRP, linked to polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE) techniques. SSRP communities of the DGGE profiles varied with sites according to one-way analyses of similarities (Global R = 0.69, P = 0.001). Using cluster analysis, the DGGE profile was found to show site-specific clusters and a distinct depth zonation (five, six, and two SSRP communities at the GM, GR, and HR sites, respectively). SSRP composition was highly correlated to the combination of salinity, reduced sulfur, and total organic carbon contents (BIO-ENV analysis, r ( s ) = 0.56). After analyzing a total of 35 dsrB sequences in the DGGE gel, six groups with 15 phylotypes were found, which were closely related to marine-freshwater gradient. Moreover, sequences neighboring sulfite-reducing prokaryotes were observed, in addition to those affiliated to sulfate-reducing prokaryotes. Four phylotypes harvested in HR resembled the genus Desulfitobacterium, a sulfite-reducing prokaryote, which failed to use sulfate as an electron acceptor and were active in freshwater and sulfate-limited habitat. The other five phylotypes in the HR reach belonged to the sulfate-reducing prokaryotes of the genera Desulfatiferula, Desulfosarcina, Desulfovibrio, and Desulfotomaculum, which appeared to tolerate low salinity and low sulfate supply. SSRP phylotypes at the mangrove-vegetated GM site (five phylotypes in two groups) were phylogenetically less diverse, when compared with those at the non-mangrove-vegetated GR site (three phylotypes in three groups) and the tidally influenced freshwater HR site (nine phylotypes in five groups). Phylotypes found at GR and GM were all affiliated to marine sulfate-reducing prokaryote strains of the genera Desulfofaba, Desulfobotulus, Desulfatiferula, Desulfosarcina, and Desulfotomaculum. Notably, a phylotype recorded in the surface sediment at GR resembled the genus Desulfobulbus, which was recorded from freshwater environment consisting of the freshwater input at GR during ebb tides.
Collapse
Affiliation(s)
- Lan-Feng Fan
- Biodiversity Research Center, Academia Sinica, No. 128 Academia Rd., Sec. 2, Nankang, Taipei, 115, Taiwan
| | | | | | | |
Collapse
|
34
|
Blazejak A, Schippers A. Real-Time PCR Quantification and Diversity Analysis of the Functional Genes aprA and dsrA of Sulfate-Reducing Prokaryotes in Marine Sediments of the Peru Continental Margin and the Black Sea. Front Microbiol 2011; 2:253. [PMID: 22203820 PMCID: PMC3244613 DOI: 10.3389/fmicb.2011.00253] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 11/29/2011] [Indexed: 12/03/2022] Open
Abstract
Sulfate-reducing prokaryotes (SRP) are ubiquitous and quantitatively important members in many ecosystems, especially in marine sediments. However their abundance and diversity in subsurface marine sediments is poorly understood. In this study, the abundance and diversity of the functional genes for the enzymes adenosine 5′-phosphosulfate reductase (aprA) and dissimilatory sulfite reductase (dsrA) of SRP in marine sediments of the Peru continental margin and the Black Sea were analyzed, including samples from the deep biosphere (ODP site 1227). For aprA quantification a Q-PCR assay was designed and evaluated. Depth profiles of the aprA and dsrA copy numbers were almost equal for all sites. Gene copy numbers decreased concomitantly with depth from around 108/g sediment close to the sediment surface to less than 105/g sediment at 5 mbsf. The 16S rRNA gene copy numbers of total bacteria were much higher than those of the functional genes at all sediment depths and used to calculate the proportion of SRP to the total Bacteria. The aprA and dsrA copy numbers comprised in average 0.5–1% of the 16S rRNA gene copy numbers of total bacteria in the sediments up to a depth of ca. 40 mbsf. In the zone without detectable sulfate in the pore water from about 40–121 mbsf (Peru margin ODP site 1227), only dsrA (but not aprA) was detected with copy numbers of less than 104/g sediment, comprising ca. 14% of the 16S rRNA gene copy numbers of total bacteria. In this zone, sulfate might be provided for SRP by anaerobic sulfide oxidation. Clone libraries of aprA showed that all isolated sequences originate from SRP showing a close relationship to aprA of characterized species or form a new cluster with only distant relation to aprA of isolated SRP. For dsrA a high diversity was detected, even up to 121 m sediment depth in the deep biosphere.
Collapse
Affiliation(s)
- Anna Blazejak
- Geomicrobiology, Federal Institute for Geosciences and Natural Resources (BGR) Hannover, Germany
| | | |
Collapse
|
35
|
Håvelsrud OE, Haverkamp THA, Kristensen T, Jakobsen KS, Rike AG. A metagenomic study of methanotrophic microorganisms in Coal Oil Point seep sediments. BMC Microbiol 2011; 11:221. [PMID: 21970369 PMCID: PMC3197505 DOI: 10.1186/1471-2180-11-221] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/04/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Methane oxidizing prokaryotes in marine sediments are believed to function as a methane filter reducing the oceanic contribution to the global methane emission. In the anoxic parts of the sediments, oxidation of methane is accomplished by anaerobic methanotrophic archaea (ANME) living in syntrophy with sulphate reducing bacteria. This anaerobic oxidation of methane is assumed to be a coupling of reversed methanogenesis and dissimilatory sulphate reduction. Where oxygen is available aerobic methanotrophs take part in methane oxidation. In this study, we used metagenomics to characterize the taxonomic and metabolic potential for methane oxidation at the Tonya seep in the Coal Oil Point area, California. Two metagenomes from different sediment depth horizons (0-4 cm and 10-15 cm below sea floor) were sequenced by 454 technology. The metagenomes were analysed to characterize the distribution of aerobic and anaerobic methanotrophic taxa at the two sediment depths. To gain insight into the metabolic potential the metagenomes were searched for marker genes associated with methane oxidation. RESULTS Blast searches followed by taxonomic binning in MEGAN revealed aerobic methanotrophs of the genus Methylococcus to be overrepresented in the 0-4 cm metagenome compared to the 10-15 cm metagenome. In the 10-15 cm metagenome, ANME of the ANME-1 clade, were identified as the most abundant methanotrophic taxon with 8.6% of the reads. Searches for particulate methane monooxygenase (pmoA) and methyl-coenzyme M reductase (mcrA), marker genes for aerobic and anaerobic oxidation of methane respectively, identified pmoA in the 0-4 cm metagenome as Methylococcaceae related. The mcrA reads from the 10-15 cm horizon were all classified as originating from the ANME-1 clade. CONCLUSIONS Most of the taxa detected were present in both metagenomes and differences in community structure and corresponding metabolic potential between the two samples were mainly due to abundance differences. The results suggests that the Tonya Seep sediment is a robust methane filter, where taxa presently dominating this process could be replaced by less abundant methanotrophic taxa in case of changed environmental conditions.
Collapse
Affiliation(s)
- Othilde Elise Håvelsrud
- Norwegian Geotechnical Institute, Sognsveien 72, P,O, Box 3930 Ullevål Stadion, N-0806 Oslo, Norway
| | | | | | | | | |
Collapse
|
36
|
Lazar CS, Dinasquet J, L'Haridon S, Pignet P, Toffin L. Distribution of anaerobic methane-oxidizing and sulfate-reducing communities in the G11 Nyegga pockmark, Norwegian Sea. Antonie van Leeuwenhoek 2011; 100:639-53. [PMID: 21751028 DOI: 10.1007/s10482-011-9620-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/30/2011] [Indexed: 01/31/2023]
Abstract
Pockmarks are seabed geological structures sustaining methane seepage in cold seeps. Based on RNA-derived sequences the active fraction of the archaeal community was analysed in sediments associated with the G11 pockmark, in the Nyegga region of the Norwegian Sea. The anaerobic methanotrophic Archaea (ANME) and sulfate-reducing bacteria (SRB) communities were studied as well. The vertical distribution of the archaeal community assessed by PCR-DGGE highlighted the presence of ANME-2 in surface sediments, and ANME-1 in deeper sediments. Enrichments of methanogens showed the presence of hydrogenotrophic methanogens of the Methanogenium genus in surface sediment layers as well. The active fraction of the archaeal community was uniquely composed of ANME-2 in the shallow sulfate-rich sediments. Functional methyl coenzyme M reductase gene libraries showed that sequences affiliated with the ANME-1 and ANME-3 groups appeared in the deeper sediments but ANME-2 dominated both surface and deeper layers. Finally, dissimilatory sulfite reductase gene libraries revealed a high SRB diversity (i.e. Desulfobacteraceae, Desulfobulbaceae, Syntrophobacteraceae and Firmicutes) in the shallow sulfate-rich sediments. The SRB diversity was much lower in the deeper section. Overall, these results show that the microbial community in sediments associated with a pockmark harbour classical cold seep ANME and SRB communities.
Collapse
Affiliation(s)
- Cassandre Sara Lazar
- Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, IFREMER Centre de Brest, Département Etudes des Environnements Profonds, Université de Bretagne Occidentale, Plouzané, France.
| | | | | | | | | |
Collapse
|
37
|
Edgcomb VP, Leadbetter ER, Bourland W, Beaudoin D, Bernhard JM. Structured multiple endosymbiosis of bacteria and archaea in a ciliate from marine sulfidic sediments: a survival mechanism in low oxygen, sulfidic sediments? Front Microbiol 2011; 2:55. [PMID: 21833311 PMCID: PMC3153031 DOI: 10.3389/fmicb.2011.00055] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/10/2011] [Indexed: 11/13/2022] Open
Abstract
Marine micro-oxic to sulfidic environments are sites of intensive biogeochemical cycling and elemental sequestration, where prokaryotes are major driving forces mediating carbon, nitrogen, sulfur, phosphorus, and metal cycles, important from both biogeochemical and evolutionary perspectives. Associations between single-celled eukaryotes and bacteria and/or archaea are common in such habitats. Here we describe a ciliate common in the micro-oxic to anoxic, typically sulfidic, sediments of Santa Barbara Basin (CA, USA). The ciliate is 95% similar to Parduzcia orbis (18S rRNA). Transmission electron micrographs reveal clusters of at least three different endobiont types organized within membrane-bound sub-cellular regions. Catalyzed reporter deposition-fluorescent in situ hybridization and 16S rRNA clone libraries confirm the symbionts include up to two sulfate reducers (Desulfobulbaceae, Desulfobacteraceae), a methanogen (Methanobacteriales), and possibly a Bacteroidete (Cytophaga) and a Type I methanotroph, suggesting synergistic metabolisms in this environment. This case study is discussed in terms of implications to biogeochemistry, and benthic ecology.
Collapse
Affiliation(s)
- Virginia P Edgcomb
- Geology and Geophysics Department, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| | | | | | | | | |
Collapse
|
38
|
Rees GN, Baldwin DS, Watson GO, Hall KC. Sulfide formation in freshwater sediments, by sulfate-reducing microorganisms with diverse tolerance to salt. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 409:134-139. [PMID: 20934202 DOI: 10.1016/j.scitotenv.2010.08.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 05/30/2023]
Abstract
Understanding how sulfate-reducing microbes in freshwater systems respond to added salt, and therefore sulfate, is becoming increasingly important in inland systems where the threat from salinisation is increasing. To address this knowledge gap, we carried out mesocosm studies to determine how the sulfate-reducing microbial community in sediments from a freshwater wetland would respond to salinisation. The levels of inorganic mineral sulfides produced after 6months incubation were measured to determine whether they were in sufficient quantity to be harmful if re-oxidized. Comparative sequence analysis of the dissimilatory sulfite reductase (DSR) gene was used to compare the sulfate-reducing community structure in mesocosms without salt and those incubated with moderate levels of salt. The amount of total S, acid volatile sulfide or chromium-reducible sulfide produced in sediments with 0, 1 or 5gL(-1) added salt were not significantly different. Sediments subjected to 15gL(-1) salt contained significantly higher total S and acid volatile sulfide, and levels were above trigger values for potential harm if re-oxidation occurred. The overall community structure of the sulfate-reducing microbiota (SRM) was explained by the level of salt added to sediments. However, a group of sulfate reducers were identified that occurred in both the high salt and freshwater treatments. These results demonstrate that freshwater sediments contain sulfate reducers with diverse abilities to respond to salt and can respond rapidly to increasing salinity, explaining the observation that harmful levels of acid volatile sulfides can form rapidly in sediments with no history of exposure to salt.
Collapse
Affiliation(s)
- Gavin N Rees
- Murray-Darling Freshwater Research Centre and CSIRO Land and Water, Wodonga, Victoria 3690, Australia.
| | | | | | | |
Collapse
|
39
|
Yu RQ, Adatto I, Montesdeoca MR, Driscoll CT, Hines ME, Barkay T. Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland. FEMS Microbiol Ecol 2010; 74:655-68. [DOI: 10.1111/j.1574-6941.2010.00978.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
40
|
Chi Fru E. Microbial evolution of sulphate reduction when lateral gene transfer is geographically restricted. Int J Syst Evol Microbiol 2010; 61:1725-1735. [PMID: 20802057 DOI: 10.1099/ijs.0.026914-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lateral gene transfer (LGT) is an important mechanism by which micro-organisms acquire new functions. This process has been suggested to be central to prokaryotic evolution in various environments. However, the influence of geographical constraints on the evolution of laterally acquired genes in microbial metabolic evolution is not yet well understood. In this study, the influence of geographical isolation on the evolution of laterally acquired dissimilatory sulphite reductase (dsr) gene sequences in the sulphate-reducing micro-organisms (SRM) was investigated. Sequences on four continental blocks related to SRM known to have received dsr by LGT were analysed using standard phylogenetic and multidimensional statistical methods. Sequences related to lineages with large genetic diversity correlated positively with habitat divergence. Those affiliated to Thermodesulfobacterium indicated strong biogeographical delineation; hydrothermal-vent sequences clustered independently from hot-spring sequences. Some of the hydrothermal-vent and hot-spring sequences suggested to have been acquired from a common ancestral source may have diverged upon isolation within distinct habitats. In contrast, analysis of some Desulfotomaculum sequences indicated they could have been transferred from different ancestral sources but converged upon isolation within the same niche. These results hint that, after lateral acquisition of dsr genes, barriers to gene flow probably play a strong role in their subsequent evolution.
Collapse
Affiliation(s)
- E Chi Fru
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle NE1 7RU, UK
| |
Collapse
|
41
|
Oliveira V, Santos AL, Coelho F, Gomes NCM, Silva H, Almeida A, Cunha A. Effects of monospecific banks of salt marsh vegetation on sediment bacterial communities. MICROBIAL ECOLOGY 2010; 60:167-179. [PMID: 20495797 DOI: 10.1007/s00248-010-9678-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 04/19/2010] [Indexed: 05/29/2023]
Abstract
The aim of this study was to understand if two species of salt marsh plants, widely distributed in European estuaries (Spartina maritima and Halimione portulacoides) differently influence the distribution, activity, and metabolic physiology of sediment bacterial communities in monospecific banks, in comparison with uncolonized sediment (control). Microbiological descriptors of abundance and activity were assessed along vertical profiles of sediments. Rates of activity of the extracellular enzymes beta-glucosidase, alpha-glucosidase, aminopeptidase, arylsulfatase, and phosphatase were generally higher in the vegetation banks in relation to control sediments where they were also less variable with depth. This is interpreted as an indirect effect related to supply of plant-derived polymeric substrates for bacterial growth. Parameters related to sediment texture (grain size, percent of fines or water content) showed significant relations with cell abundance or maximum hydrolysis rates, pointing to an indirect effect of plant colonization exerted through the modification of sediment physical properties. The profiles of utilization of sole-carbon-source (Biolog Ecoplates) showed that only the communities from the upper sediment layer of the S. maritima and the H. portulacoides banks exhibit consistent differences in terms of physiological profiles. Bacterial communities in control sediments exhibited the lowest physiological variability between surface and sub-surface communities. The results indicate that microbial colonization and organic matter decomposition are enhanced under the influence of salt marsh plants and confirm that plant coverage is a major determinant of the processes of organic matter recycling in intertidal estuarine sediments.
Collapse
Affiliation(s)
- Vanessa Oliveira
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | | | | | | | | | | | | |
Collapse
|
42
|
Diversity of dissimilatory sulfite reductase genes (dsrAB) in a salt marsh impacted by long-term acid mine drainage. Appl Environ Microbiol 2010; 76:4819-28. [PMID: 20472728 DOI: 10.1128/aem.03006-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) play a major role in the coupled biogeochemical cycling of sulfur and chalcophilic metal(loid)s. By implication, they can exert a strong influence on the speciation and mobility of multiple metal(loid) contaminants. In this study, we combined DsrAB gene sequencing and sulfur isotopic profiling to identify the phylogeny and distribution of SRB and to assess their metabolic activity in salt marsh sediments exposed to acid mine drainage (AMD) for over 100 years. Recovered dsrAB sequences from three sites sampled along an AMD flow path indicated the dominance of a single Desulfovibrio species. Other major sequence clades were related most closely to Desulfosarcina, Desulfococcus, Desulfobulbus, and Desulfosporosinus species. The presence of metal sulfides with low delta(34)S values relative to delta(34)S values of pore water sulfate showed that sediment SRB populations were actively reducing sulfate under ambient conditions (pH of approximately 2), although possibly within less acidic microenvironments. Interestingly, delta(34)S values for pore water sulfate were lower than those for sulfate delivered during tidal inundation of marsh sediments. 16S rRNA gene sequence data from sediments and sulfur isotope data confirmed that sulfur-oxidizing bacteria drove the reoxidation of biogenic sulfide coupled to oxygen or nitrate reduction over a timescale of hours. Collectively, these findings imply a highly dynamic microbially mediated cycling of sulfate and sulfide, and thus the speciation and mobility of chalcophilic contaminant metal(loid)s, in AMD-impacted marsh sediments.
Collapse
|
43
|
Webster G, Rinna J, Roussel EG, Fry JC, Weightman AJ, Parkes RJ. Prokaryotic functional diversity in different biogeochemical depth zones in tidal sediments of the Severn Estuary, UK, revealed by stable-isotope probing. FEMS Microbiol Ecol 2010; 72:179-97. [DOI: 10.1111/j.1574-6941.2010.00848.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
44
|
Nested PCR and new primers for analysis of sulfate-reducing bacteria in low-cell-biomass environments. Appl Environ Microbiol 2010; 76:2856-65. [PMID: 20228118 DOI: 10.1128/aem.02023-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New primers were designed for the amplification of dsrAB genes by nested PCR to investigate the diversity of sulfate-reducing prokaryotes (SRP) in environments with low bacterial cell density. The success of the nested PCR for the determination of SRP diversity was estimated by terminal-restriction fragment length polymorphism analysis in the Reigous, a small creek at an inactive mine (Carnoulès, France), which constitutes an extreme acidic arsenic-rich environment. Nested PCR limits were evaluated in dsrAB-rich sediments, and this technique was compared to direct PCR using either known primers (DSR1F/DSR4R) or new primers (dsr619AF/dsr1905BR). The comparison of clone libraries revealed that, even if the levels of diversity observed were not identical, nested PCR did not reduce the diversity compared to that of direct DSR1F/DSR4R PCR. Clone sequences were affiliated mainly with the Desulfobacteraceae and Desulfohalobiaceae families. Many sequences (approximately 30%) were related to a deeply branching lineage unaffiliated with any cultured SRP. Although this dsrAB cluster was found in all libraries, the new primers better amplified this lineage, providing more information on this unknown bacterial group. Thanks to these new primers in nested PCR, the SRP community from Carnoulès could be characterized. Specific SRP populations were obtained according to environmental characteristics. Desulfomicrobiaceae-related sequences were recovered in samples with low pH, low levels of dissolved oxygen, and high As content, while sequences belonging to the deeply branching group were found in a less extreme sample. Furthermore, for the first time, dsrAB sequences related to the latter group were recovered from freshwater.
Collapse
|
45
|
Diversity and identification of methanogenic archaea and sulphate-reducing bacteria in sediments from a pristine tropical mangrove. Antonie van Leeuwenhoek 2010; 97:401-11. [PMID: 20195901 DOI: 10.1007/s10482-010-9422-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
Abstract
Mangrove sediments are anaerobic ecosystems rich in organic matter. This environment is optimal for anaerobic microorganisms, such as sulphate-reducing bacteria and methanogenic archaea, which are responsible for nutrient cycling. In this study, the diversity of these two functional guilds was evaluated in a pristine mangrove forest using denaturing gradient gel electrophoresis (DGGE) and clone library sequencing in a 50 cm vertical profile sampled every 5.0 cm. DGGE profiles indicated that both groups presented higher richness in shallow samples (0-30 cm) with a steep decrease in richness beyond that depth. According to redundancy analysis, this alteration significantly correlated with a decrease in the amount of organic matter. Clone library sequencing indicated that depth had a strong effect on the selection of dissimilatory sulphate reductase (dsrB) operational taxonomic units (OTUs), as indicated by the small number of shared OTUs found in shallow (0.0 cm) and deep (40.0 cm) libraries. On the other hand, methyl coenzyme-M reductase (mcrA) libraries indicated that most of the OTUs found in the shallow library were present in the deep library. These results show that these two guilds co-exist in these mangrove sediments and indicate important roles for these organisms in nutrient cycling within this ecosystem.
Collapse
|
46
|
Miletto M, Loeb R, Antheunisse AM, Bodelier PLE, Laanbroek HJ. Response of the sulfate-reducing community to the re-establishment of estuarine conditions in two contrasting soils: a mesocosm approach. MICROBIAL ECOLOGY 2010; 59:109-120. [PMID: 19953240 DOI: 10.1007/s00248-009-9614-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 10/25/2009] [Indexed: 05/28/2023]
Abstract
We studied the response of the sulfate-reducing prokaryote (SRP) communities to the experimental variation of salinity and tide in an outdoor mesocosm setup. Intact soil monoliths were collected at two areas of the Haringvliet lagoon (The Netherlands): one sampling location consisted of agricultural grassland, drained and fertilized for at least the last century; the other of a freshwater marshland with more recent sea influence. Two factors, i.e., "salinity" (freshwater/oligohaline) and "tide" (nontidal/tidal), were tested in a full-factorial design. Soil samples were collected after 5 months (June-October). Dissimilatory (bi)sulfite reductase beta subunit-based denaturing gradient gel electrophoresis (dsrB-DGGE) analysis revealed that the SRP community composition in the agricultural grassland and in the freshwater marshland was represented mainly by microorganisms related to the Desulfobulbaceae and the Desulfobacteraceae, respectively. Desulfovibrio-related dsrB were detected only in the tidal treatments; Desulfomonile-related dsrB occurrence was related to the presence of oligohaline conditions. Treatments did have an effect on the overall SRP community composition of both soils, but not on the sulfate depletion rates in sulfate-amended anoxic slurry incubations. However, initiation of sulfate reduction upon sulfate addition was clearly different between the two soils.
Collapse
Affiliation(s)
- Marzia Miletto
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), AC Nieuwesluis, The Netherlands.
| | | | | | | | | |
Collapse
|
47
|
Wu XJ, Pan JL, Liu XL, Tan J, Li DT, Yang H. Sulfate-reducing bacteria in leachate-polluted aquifers along the shore of the East China Sea. Can J Microbiol 2009; 55:818-28. [PMID: 19767854 DOI: 10.1139/w09-037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The diversity of sulfate-reducing bacteria (SRB) in the aquifer underlying the Laogang Landfill along the shore of the East China Sea was investigated. The DNA extracted from 15 groundwater samples was subjected to PCR amplification of the dissimilatory sulfite reductase (dsr) gene. Full-length dsrAB amplicons (approximately 1.9 kb) were then used to construct 4 clone libraries, while the dsrB amplicons (approximately 350 bp) were used for denaturing gradient gel electrophoresis (DGGE) analysis. The clones in the 4 libraries covered all cultured SRB lineages, as well as a deeply branching clade not affiliated with any cultured SRB. In addition, nearly 80% of the 388 clones in the 4 libraries were similar to sequences of the Deltaproteobacteria, Desulfobacteriaceae, Desulfovibrionales, Syntrophaceae, and Desulfobulbaceae. Furthermore, a wide variety of marine SRB was detected, which indicated that seawater has infiltrated the aquifer. Indeed, the DGGE profiles revealed obvious variations in SRB diversity among the 15 samples, which clustered in accordance with the sulfate concentration of the samples ([SO4(2-)]). Moreover, the sulfate concentrations and SRB diversity along the leachate plume did not show regular variation, which suggests the impact of both groundwater flow and seawater intrusion.
Collapse
Affiliation(s)
- Xiu-Juan Wu
- MOE Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|
48
|
Jiang L, Zheng Y, Peng X, Zhou H, Zhang C, Xiao X, Wang F. Vertical distribution and diversity of sulfate-reducing prokaryotes in the Pearl River estuarine sediments, Southern China. FEMS Microbiol Ecol 2009; 70:93-106. [PMID: 19744241 DOI: 10.1111/j.1574-6941.2009.00758.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The vertical distribution and diversity of sulfate-reducing prokaryotes (SRPs) in a sediment core from the Pearl River Estuary was reported for the first time. The profiles of methane and sulfate concentrations along the sediment core indicated processes of methane production/oxidation and sulfate reduction. Phospholipid fatty acids analysis suggested that sulfur-oxidizing bacteria (SOB) might be abundant in the upper layers, while SRPs might be distributed throughout the sediment core. Quantitative competitive-PCR analysis indicated that the ratios of SRPs to total bacteria in the sediment core varied from around 2-20%. Four dissimilatory sulfite reductase (dsrAB) gene libraries were constructed and analyzed for the top layer (0-6 cm), middle layer (18-24 cm), bottom layer (44-50 cm) and the sulfate-methane transition zone (32-42 cm) sediments. Most of the retrieved dsrAB sequences (80.9%) had low sequence similarity with known SRP sequences and formed deeply branching dsrAB lineages. Meanwhile, bacterial 16S rRNA gene analysis revealed that members of the Proteobacteria were predominant in these sediments. Putative SRPs within Desulfobacteriaceae, Syntrophaceae and Desulfobulbaceae of Deltaproteobacteria, and putative SOB within Epsilonproteobacteria were detected by the 16S rRNA gene analysis. Results of this study suggested a variety of novel SRPs in the Pearl River Estuary sediments.
Collapse
Affiliation(s)
- Lijing Jiang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Agrawal A, Lal B. Rapid detection and quantification of bisulfite reductase genes in oil field samples using real-time PCR. FEMS Microbiol Ecol 2009; 69:301-12. [PMID: 19527290 DOI: 10.1111/j.1574-6941.2009.00714.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) pose a serious problem to offshore oil industries by producing sulfide, which is highly reactive, corrosive and toxic. The dissimilatory sulfite reductase (dsr) gene encodes for enzyme dissimilatory sulfite reductase and catalyzes the conversion of sulfite to sulfide. Because this gene is required by all sulfate reducers, it is a potential candidate as a functional marker. Denaturing gradient gel electrophoresis fingerprints revealed the presence of considerable genetic diversity in the DNA extracts achieved from production water collected from various oil fields. A quantitative PCR (qPCR) assay was developed for rapid and accurate detection of dsrB in oil field samples. A standard curve was prepared based on a plasmid containing the appropriate dsrB fragment from Desulfomicrobium norvegicum. The quantification range of this assay was six orders of magnitude, from 4.5 x 10(7) to 4.5 x 10(2) copies per reaction. The assay was not influenced by the presence of foreign DNA. This assay was tested against several DNA samples isolated from formation water samples collected from geographically diverse locations of India. The results indicate that this qPCR approach can provide valuable information related to the abundance of the bisulfite reductase gene in harsh environmental samples.
Collapse
|
50
|
Bagwell CE, Formolo M, Ye Q, Yeager CM, Lyons TW, Zhang CL. Direct analysis of sulfate reducing bacterial communities in gas hydrate-impacted marine sediments by PCR-DGGE. J Basic Microbiol 2009; 49 Suppl 1:S87-92. [DOI: 10.1002/jobm.200800278] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|