1
|
Jeong S, Lee BY, Rhee JS, Lee JH. G protein β subunits regulate Ca v3.3 T-type channel activity and current kinetics via interaction with the Ca v3.3 C-terminus. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184337. [PMID: 38763272 DOI: 10.1016/j.bbamem.2024.184337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/17/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Ca2+ influx through Cav3.3 T-type channel plays crucial roles in neuronal excitability and is subject to regulation by various signaling molecules. However, our understanding of the partners of Cav3.3 and the related regulatory pathways remains largely limited. To address this quest, we employed the rat Cav3.3 C-terminus as bait in yeast-two-hybrid screenings of a cDNA library, identifying rat Gβ2 as an interaction partner. Subsequent assays revealed that the interaction of Gβ2 subunit was specific to the Cav3.3 C-terminus. Through systematic dissection of the C-terminus, we pinpointed a 22 amino acid sequence (amino acids 1789-1810) as the Gβ2 interaction site. Coexpression studies of rat Cav3.3 with various Gβγ compositions were conducted in HEK-293 cells. Patch clamp recordings revealed that coexpression of Gβ2γ2 reduced Cav3.3 current density and accelerated inactivation kinetics. Interestingly, the effects were not unique to Gβ2γ2, but were mimicked by Gβ2 alone as well as other Gβγ dimers, with similar potencies. Deletion of the Gβ2 interaction site abolished the effects of Gβ2γ2. Importantly, these Gβ2 effects were reproduced in human Cav3.3. Overall, our findings provide evidence that Gβ(γ) complexes inhibit Cav3.3 channel activity and accelerate the inactivation kinetics through the Gβ interaction with the Cav3.3 C-terminus.
Collapse
Affiliation(s)
- Sua Jeong
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Bo-Young Lee
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Jeong Seop Rhee
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Synaptic Physiology Group, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Jung-Ha Lee
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea.
| |
Collapse
|
2
|
Ferron L, Harding EK, Gandini MA, Brideau C, Stys PK, Zamponi GW. Functional remodeling of presynaptic voltage-gated calcium channels in superficial layers of the dorsal horn during neuropathic pain. iScience 2024; 27:109973. [PMID: 38827405 PMCID: PMC11140212 DOI: 10.1016/j.isci.2024.109973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024] Open
Abstract
N- and P/Q-type voltage-gated Ca2+ channels are critical for synaptic transmission. While their expression is increased in the dorsal root ganglion (DRG) neuron cell bodies during neuropathic pain conditions, less is known about their synaptic remodeling. Here, we combined genetic tools with 2-photon Ca2+ imaging to explore the functional remodeling that occurs in central presynaptic terminals of DRG neurons during neuropathic pain. We imaged GCaMP6s fluorescence responses in an ex vivo spinal cord preparation from mice expressing GCaMP6s in Trpv1-Cre lineage nociceptors. We show that Ca2+ transient amplitude is increased in central terminals of these neurons after spared nerve injury, and that this increase is mediated by both N- and P/Q-type channels. We found that GABA-B receptor-dependent inhibition of Ca2+ transients was potentiated in the superficial layer of the dorsal horn. Our results provide direct evidence toward nerve injury-induced functional remodeling of presynaptic Ca2+ channels in Trpv1-lineage nociceptor terminals.
Collapse
Affiliation(s)
- Laurent Ferron
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Erika K. Harding
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Maria A. Gandini
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Craig Brideau
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Peter K. Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Gerald W. Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
3
|
Caminski ES, Antunes FTT, Souza IA, Dallegrave E, Zamponi GW. Regulation of N-type calcium channels by nociceptin receptors and its possible role in neurological disorders. Mol Brain 2022; 15:95. [PMID: 36434658 PMCID: PMC9700961 DOI: 10.1186/s13041-022-00982-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Activation of nociceptin opioid peptide receptors (NOP, a.k.a. opioid-like receptor-1, ORL-1) by the ligand nociceptin/orphanin FQ, leads to G protein-dependent regulation of Cav2.2 (N-type) voltage-gated calcium channels (VGCCs). This typically causes a reduction in calcium currents, triggering changes in presynaptic calcium levels and thus neurotransmission. Because of the widespread expression patterns of NOP and VGCCs across multiple brain regions, the dorsal horn of the spinal cord, and the dorsal root ganglia, this results in the alteration of numerous neurophysiological features. Here we review the regulation of N-type calcium channels by the NOP-nociceptin system in the context of neurological conditions such as anxiety, addiction, and pain.
Collapse
Affiliation(s)
- Emanuelle Sistherenn Caminski
- grid.412344.40000 0004 0444 6202Graduate Program in Health Sciences, Laboratory of Research in Toxicology (LAPETOX), Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS Brazil
| | - Flavia Tasmin Techera Antunes
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | - Ivana Assis Souza
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | - Eliane Dallegrave
- grid.412344.40000 0004 0444 6202Graduate Program in Health Sciences, Laboratory of Research in Toxicology (LAPETOX), Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS Brazil
| | - Gerald W. Zamponi
- grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| |
Collapse
|
4
|
Gandini MA, Souza IA, Raval D, Xu J, Pan YX, Zamponi GW. Differential regulation of Cav2.2 channel exon 37 variants by alternatively spliced μ-opioid receptors. Mol Brain 2019; 12:98. [PMID: 31775826 PMCID: PMC6880636 DOI: 10.1186/s13041-019-0524-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
We have examined the regulation of mutually exclusive Cav2.2 exon 37a and b variants by the mouse μ-opioid receptor (mMOR) C-terminal splice variants 1, 1C and 1O in tsA-201 cells. Electrophysiological analyses revealed that both channel isoforms exhibit DAMGO-induced voltage-dependent (Gβγ-mediated) inhibition and its recovery by voltage pre-pulses, as well as a voltage-independent component. However, the two channel isoforms differ in their relative extent of voltage-dependent and independent inhibition, with Cav2.2-37b showing significantly more voltage-dependent inhibition upon activation of the three mMOR receptors studied. In addition, coexpression of either mMOR1 or mMOR1C results in an agonist-independent reduction in the peak current density of Cav2.2-37a channels, whereas the peak current density of Cav2.2-37b does not appear to be affected. Interestingly, this decrease is not due to an effect on channel expression at the plasma membrane, as demonstrated by biotinylation experiments. We further examined the mechanism underlying the agonist-independent modulation of Cav2.2-37a by mMOR1C. Incubation of cells with pertussis toxin did not affect the mMOR1C mediated inhibition of Cav2.2-37a currents, indicating a lack of involvement of Gi/o signaling. However, when a Src tyrosine kinase inhibitor was applied, the effect of mMOR1C was lost. Moreover, when we recorded currents using a Cav2.2-37a mutant in which tyrosine 1747 was replaced with phenylalanine (Y1747F), the agonist independent effects of mMOR1C were abolished. Altogether our findings show that Cav2.2-37a and Cav2.2-37b isoforms are subject to differential regulation by C-terminal splice variants of mMORs, and that constitutive mMOR1C activity and downstream tyrosine kinase activity exert a selective inhibition of the Cav2.2-37a splice variant, an N-type channel isoform that is highly enriched in nociceptors. Our study provides new insights into the roles of the MOR full-length C-terminal variants in modulating Cav2.2 channel isoform activities.
Collapse
Affiliation(s)
- Maria A Gandini
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ivana A Souza
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dvij Raval
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jin Xu
- Department of Neurology and the Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ying-Xian Pan
- Department of Neurology and the Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
5
|
Dong N, Lee DWK, Sun HS, Feng ZP. Dopamine-mediated calcium channel regulation in synaptic suppression in L. stagnalis interneurons. Channels (Austin) 2019; 12:153-173. [PMID: 29589519 PMCID: PMC5972806 DOI: 10.1080/19336950.2018.1457897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/02/2022] Open
Abstract
D2 dopamine receptor-mediated suppression of synaptic transmission from interneurons plays a key role in neurobiological functions across species, ranging from respiration to memory formation. In this study, we investigated the mechanisms of D2 receptor-dependent suppression using soma-soma synapse between respiratory interneuron VD4 and LPeD1 in the mollusk Lymnaea stagnalis (L. stagnalis). We studied the effects of dopamine on voltage-dependent Ca2+ current and synaptic vesicle release from the VD4. We report that dopamine inhibits voltage-dependent Ca2+ current in the VD4 by both voltage-dependent and -independent mechanisms. Dopamine also suppresses synaptic vesicle release downstream of activity-dependent Ca2+ influx. Our study demonstrated that dopamine acts through D2 receptors to inhibit interneuron synaptic transmission through both voltage-dependent Ca2+ channel-dependent and -independent pathways. Taken together, these findings expand our understanding of dopamine function and fundamental mechanisms that shape the dynamics of neural circuit.
Collapse
Affiliation(s)
- Nancy Dong
- a Department of Physiology, Faculty of Medicine , University of Toronto , Toronto , ON , Canada
| | - David W K Lee
- a Department of Physiology, Faculty of Medicine , University of Toronto , Toronto , ON , Canada
| | - Hong-Shuo Sun
- a Department of Physiology, Faculty of Medicine , University of Toronto , Toronto , ON , Canada
| | - Zhong-Ping Feng
- a Department of Physiology, Faculty of Medicine , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
6
|
Abstract
Presynaptic Ca2+ entry occurs through voltage-gated Ca2+ (CaV) channels which are activated by membrane depolarization. Depolarization accompanies neuronal firing and elevation of Ca2+ triggers neurotransmitter release from synaptic vesicles. For synchronization of efficient neurotransmitter release, synaptic vesicles are targeted by presynaptic Ca2+ channels forming a large signaling complex in the active zone. The presynaptic CaV2 channel gene family (comprising CaV2.1, CaV2.2, and CaV2.3 isoforms) encode the pore-forming α1 subunit. The cytoplasmic regions are responsible for channel modulation by interacting with regulatory proteins. This article overviews modulation of the activity of CaV2.1 and CaV2.2 channels in the control of synaptic strength and presynaptic plasticity.
Collapse
|
7
|
Yim YY, McDonald WH, Hyde K, Cruz-Rodríguez O, Tesmer JJG, Hamm HE. Quantitative Multiple-Reaction Monitoring Proteomic Analysis of Gβ and Gγ Subunits in C57Bl6/J Brain Synaptosomes. Biochemistry 2017; 56:5405-5416. [PMID: 28880079 DOI: 10.1021/acs.biochem.7b00433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022]
Abstract
Gβγ dimers are one of the essential signaling units of activated G protein-coupled receptors (GPCRs). There are five Gβ and 12 Gγ subunits in humans; numerous studies have demonstrated that different Gβ and Gγ subunits selectively interact to form unique Gβγ dimers, which in turn may target specific receptors and effectors. Perturbation of Gβγ signaling can lead to impaired physiological responses. Moreover, previous targeted multiple-reaction monitoring (MRM) studies of Gβ and Gγ subunits have shown distinct regional and subcellular localization patterns in four brain regions. Nevertheless, no studies have quantified or compared their individual protein levels. In this study, we have developed a quantitative MRM method not only to quantify but also to compare the protein abundance of neuronal Gβ and Gγ subunits. In whole and fractionated crude synaptosomes, we were able to identify the most abundant neuronal Gβ and Gγ subunits and their subcellular localizations. For example, Gβ1 was mostly localized at the membrane while Gβ2 was evenly distributed throughout synaptosomal fractions. The protein expression levels and subcellular localizations of Gβ and Gγ subunits may affect the Gβγ dimerization and Gβγ-effector interactions. This study offers not only a new tool for quantifying and comparing Gβ and Gγ subunits but also new insights into the in vivo distribution of Gβ and Gγ subunits, and Gβγ dimer assembly in normal brain function.
Collapse
Affiliation(s)
- Yun Young Yim
- Department of Pharmacology, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| | - W Hayes McDonald
- Department of Biochemistry, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| | - Karren Hyde
- Department of Pharmacology, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| | | | | | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| |
Collapse
|
8
|
Huang J, Zamponi GW. Regulation of voltage gated calcium channels by GPCRs and post-translational modification. Curr Opin Pharmacol 2016; 32:1-8. [PMID: 27768908 DOI: 10.1016/j.coph.2016.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 01/31/2023]
Abstract
Calcium entry via voltage gated calcium channels mediates a wide range of physiological functions, whereas calcium channel dysregulation has been associated with numerous pathophysiological conditions. There are myriad cell signaling pathways that act on voltage gated calcium channels to fine tune their activities and to regulate their cell surface expression. These regulatory mechanisms include the activation of G protein-coupled receptors and downstream phosphorylation events, and their control over calcium channel trafficking through direct physical interactions. Calcium channels also undergo post-translational modifications that alter both function and density of the channels in the plasma membrane. Here we focus on select aspects of these regulatory mechanisms and highlight recent developments.
Collapse
Affiliation(s)
- Junting Huang
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
9
|
Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Pharmacol Rev 2015; 67:821-70. [PMID: 26362469 PMCID: PMC4630564 DOI: 10.1124/pr.114.009654] [Citation(s) in RCA: 772] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type Ca(V)1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Ca(V)3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (Ca(V)2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., Ca(V)1.2 and Ca(V)1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective Ca(V)1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson's disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and anxiety. Use-dependent N-type calcium channel blockers are likely to be of therapeutic use in chronic pain conditions. Thus, more selective calcium channel blockers hold promise for therapeutic intervention.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Joerg Striessnig
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Alexandra Koschak
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Annette C Dolphin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| |
Collapse
|
10
|
Hernández-Castellanos JM, Vivas O, Garduño J, De la Cruz L, Arenas I, Elías-Viñas D, Mackie K, García DE. Gβ₂ mimics activation kinetic slowing of CaV2.2 channels by noradrenaline in rat sympathetic neurons. Biochem Biophys Res Commun 2014; 445:250-4. [PMID: 24513289 DOI: 10.1016/j.bbrc.2014.01.192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2014] [Accepted: 01/31/2014] [Indexed: 11/26/2022]
Abstract
Several neurotransmitters and hormones acting through G protein-coupled receptors elicit a voltage-dependent regulation of CaV2.2 channels, having profound effects on cell function and the organism. It has been hypothesized that protein-protein interactions define specificity in signal transduction. Yet it is unknown how the molecular interactions in an intracellular signaling cascade determine the specificity of the voltage-dependent regulation induced by a specific neurotransmitter. It has been suspected that specific effector regions on the Gβ subunits of the G proteins are responsible for voltage-dependent regulation. The present study examines whether a neurotransmitter's specificity can be revealed by simple ion-current kinetic analysis likely resulting from interactions between Gβ subunits and the channel-molecule. Noradrenaline is a neurotransmitter that induces voltage-dependent regulation. By using biochemical and patch-clamp methods in rat sympathetic neurons we examined calcium current modulation induced by each of the five Gβ subunits and found that Gβ2 mimics activation kinetic slowing of CaV2.2 channels by noradrenaline. Furthermore, overexpression of the Gβ2 isoform reproduces the effect of noradrenaline in the willing-reluctant model. These results advance our understanding on the mechanisms by which signals conveying from a variety of membrane receptors are able to display precise homeostatic responses.
Collapse
Affiliation(s)
- Juan M Hernández-Castellanos
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70250, C.P. 04510 México, D.F., México
| | - Oscar Vivas
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70250, C.P. 04510 México, D.F., México
| | - Julieta Garduño
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70250, C.P. 04510 México, D.F., México
| | - Lizbeth De la Cruz
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70250, C.P. 04510 México, D.F., México
| | - Isabel Arenas
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70250, C.P. 04510 México, D.F., México
| | - David Elías-Viñas
- Section of Bioelectronics, Department of Electrical Engineering, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14740, C.P. 07000 México, D.F., México
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Gill Center for Biomedical Sciences, Indiana University, Bloomington, IN 47405, USA
| | - David E García
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70250, C.P. 04510 México, D.F., México.
| |
Collapse
|
11
|
Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW. Calcium-permeable ion channels in pain signaling. Physiol Rev 2014; 94:81-140. [PMID: 24382884 DOI: 10.1152/physrev.00023.2013] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022] Open
Abstract
The detection and processing of painful stimuli in afferent sensory neurons is critically dependent on a wide range of different types of voltage- and ligand-gated ion channels, including sodium, calcium, and TRP channels, to name a few. The functions of these channels include the detection of mechanical and chemical insults, the generation of action potentials and regulation of neuronal firing patterns, the initiation of neurotransmitter release at dorsal horn synapses, and the ensuing activation of spinal cord neurons that project to pain centers in the brain. Long-term changes in ion channel expression and function are thought to contribute to chronic pain states. Many of the channels involved in the afferent pain pathway are permeable to calcium ions, suggesting a role in cell signaling beyond the mere generation of electrical activity. In this article, we provide a broad overview of different calcium-permeable ion channels in the afferent pain pathway and their role in pain pathophysiology.
Collapse
|
12
|
Garza-López E, González-Ramírez R, Gandini MA, Sandoval A, Felix R. The familial hemiplegic migraine type 1 mutation K1336E affects direct G protein-mediated regulation of neuronal P/Q-type Ca2+ channels. Cephalalgia 2013; 33:398-407. [PMID: 23430985 DOI: 10.1177/0333102412475236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Familial hemiplegic migraine type 1 (FHM-1) is an autosomal dominant form of migraine with aura characterized by recurrent migraine, hemiparesis and ataxia. FHM-1 has been linked to missense mutations in the CACNA1A gene encoding the pore-forming subunit of the neuronal voltage-gated P/Q-type Ca(2+) channel (CaV2.1α1). METHODS Here, we explored the effects of the FHM-1 K1336E mutation on G protein-dependent modulation of the recombinant P/Q-type channel. The mutation was introduced into the human CaV2.1α1 subunit and its functional consequences investigated after heterologous expression in HEK-293 cells using patch-clamp recordings. RESULTS Functional analysis of the K1336E mutation revealed a reduction of Ca(2+) current densities, a ∼10 mV left-shift in the current-voltage relationship, and the slowing of current inactivation kinetics. When co-expressed along with the human μ-opioid receptor, application of the agonist DAMGO inhibited whole-cell currents through both the wild-type and the mutant channels. Prepulse facilitation was also reduced by the K1336E mutation. Likewise, the kinetic analysis of the onset and decay of facilitation showed that the mutation affects the apparent dissociation and reassociation rates of the Gβγ dimer from the channel complex. CONCLUSIONS These results suggest that the extent of G-protein-mediated inhibition is significantly reduced in the K1336E mutant CaV2.1 Ca(2+) channels. This alteration would contribute to render the neuronal network hyperexcitable, possibly as a consequence of reduced presynaptic inhibition, and may help to explain some aspects of the FHM-1 pathophysiology.
Collapse
Affiliation(s)
- Edgar Garza-López
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute Cinvestav-IPN, Mexico
| | | | | | | | | |
Collapse
|
13
|
Zamponi GW, Currie KPM. Regulation of Ca(V)2 calcium channels by G protein coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1629-43. [PMID: 23063655 DOI: 10.1016/j.bbamem.2012.10.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/16/2012] [Revised: 10/02/2012] [Accepted: 10/04/2012] [Indexed: 12/29/2022]
Abstract
Voltage gated calcium channels (Ca²⁺ channels) are key mediators of depolarization induced calcium influx into excitable cells, and thereby play pivotal roles in a wide array of physiological responses. This review focuses on the inhibition of Ca(V)2 (N- and P/Q-type) Ca²⁺-channels by G protein coupled receptors (GPCRs), which exerts important autocrine/paracrine control over synaptic transmission and neuroendocrine secretion. Voltage-dependent inhibition is the most widespread mechanism, and involves direct binding of the G protein βγ dimer (Gβγ) to the α1 subunit of Ca(V)2 channels. GPCRs can also recruit several other distinct mechanisms including phosphorylation, lipid signaling pathways, and channel trafficking that result in voltage-independent inhibition. Current knowledge of Gβγ-mediated inhibition is reviewed, including the molecular interactions involved, determinants of voltage-dependence, and crosstalk with other cell signaling pathways. A summary of recent developments in understanding the voltage-independent mechanisms prominent in sympathetic and sensory neurons is also included. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Canada
| | | |
Collapse
|
14
|
Mahmoud S, Yun JK, Ruiz-Velasco V. Gβ2 and Gβ4 participate in the opioid and adrenergic receptor-mediated Ca2+ channel modulation in rat sympathetic neurons. J Physiol 2012; 590:4673-89. [PMID: 22711958 DOI: 10.1113/jphysiol.2012.237644] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/17/2023] Open
Abstract
Cardiac function is regulated in part by the sympathetic branch of the autonomic nervous system via the stellate ganglion (SG) neurons. Neurotransmitters, such as noradrenaline (NA), and neuropeptides, including nociceptin (Noc), influence the excit ability of SG neurons by modulating Ca(2+) channel function following activation of the adrenergic and nociceptin/orphanin FQ peptide (NOP) opioid receptors, respectively. The regulation of Ca(2+) channels is mediated by Gβγ, but the specific Gβ subunit that modulates the channels is not known. In the present study, small interference RNA (siRNA) was employed to silence the natively expressed Gβ proteins in rat SG tissue and to examine the coupling specificity of adrenergic and NOP opioid receptors to Ca(2+) channels employing the whole-cell variant of the patch-clamp technique.Western blotting analysis showed that Gβ1, Gβ2 and Gβ4 are natively expressed. The knockdown of Gβ2 or Gβ4 led to a significant decrease of the NA- and Noc-mediated Ca(2+)current inhibition, while Gβ1 silencing was without effect. However, sustaining low levels of Gβ2 resulted in an increased expression of Gβ4 and a concomitant compensation of both adrenergic and opioid signalling pathways modulating Ca(2+) channels. Conversely, Gβ4-directed siRNA was not accompanied with a compensation of the signalling pathway. Finally, the combined silencing of Gβ2 and Gβ4 prevented any additional compensatory mechanisms.Overall, our studies suggest that in SG neurons, Gβ2 and Gβ4 normally maintain the coupling of Ca(2+) channels with the receptors, with the latter subtype responsible for maintaining the integrity of both pathways.
Collapse
Affiliation(s)
- Saifeldin Mahmoud
- Department of Anesthesiology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | | | | |
Collapse
|
15
|
Familial hemiplegic migraine type 1 mutations W1684R and V1696I alter G protein-mediated regulation of Ca(V)2.1 voltage-gated calcium channels. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1238-46. [PMID: 22549042 DOI: 10.1016/j.bbadis.2012.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2012] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 12/13/2022]
Abstract
Familial hemiplegic migraine type 1 (FHM-1) is a monogenic form of migraine with aura that is characterized by recurrent attacks of a typical migraine headache with transient hemiparesis during the aura phase. In a subset of patients, additional symptoms such as epilepsy and cerebellar ataxia are part of the clinical phenotype. FHM-1 is caused by missense mutations in the CACNA1A gene that encodes the pore-forming subunit of Ca(V)2.1 voltage-gated Ca(2+) channels. Although the functional effects of an increasing number of FHM-1 mutations have been characterized, knowledge on the influence of most of these mutations on G protein regulation of channel function is lacking. Here, we explored the effects of G protein-dependent modulation on mutations W1684R and V1696I which cause FHM-1 with and without cerebellar ataxia, respectively. Both mutations were introduced into the human Ca(V)2.1α(1) subunit and their functional consequences investigated after heterologous expression in human embryonic kidney 293 (HEK-293) cells using patch-clamp recordings. When co-expressed along with the human μ-opioid receptor, application of the agonist [d-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) inhibited currents through both wild-type (WT) and mutant Ca(V)2.1 channels, which is consistent with the known modulation of these channels by G protein-coupled receptors. Prepulse facilitation, which is a way to characterize the relief of direct voltage-dependent G protein regulation, was reduced by both FHM-1 mutations. Moreover, the kinetic analysis of the onset and decay of facilitation showed that the W1684R and V1696I mutations affect the apparent dissociation and reassociation rates of the Gβγ dimer from the channel complex, suggesting that the G protein-Ca(2+) channel affinity may be altered by the mutations. These biophysical studies may shed new light on the pathophysiology underlying FHM-1.
Collapse
|
16
|
Rebois RV, Hébert TE. Protein Complexes Involved in Heptahelical Receptor-Mediated Signal Transduction. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/16/2023]
|
17
|
Abstract
Voltage-gated Ca(2+) channels translate the electrical inputs of excitable cells into biochemical outputs by controlling influx of the ubiquitous second messenger Ca(2+) . As such the channels play pivotal roles in many cellular functions including the triggering of neurotransmitter and hormone release by CaV2.1 (P/Q-type) and CaV2.2 (N-type) channels. It is well established that G protein coupled receptors (GPCRs) orchestrate precise regulation neurotransmitter and hormone release through inhibition of CaV2 channels. Although the GPCRs recruit a number of different pathways, perhaps the most prominent, and certainly most studied among these is the so-called voltage-dependent inhibition mediated by direct binding of Gβγ to the α1 subunit of CaV2 channels. This article will review the basics of Ca(2+) -channels and G protein signaling, and the functional impact of this now classical inhibitory mechanism on channel function. It will also provide an update on more recent developments in the field, both related to functional effects and crosstalk with other signaling pathways, and advances made toward understanding the molecular interactions that underlie binding of Gβγ to the channel and the voltage-dependence that is a signature characteristic of this mechanism.
Collapse
Affiliation(s)
- Kevin P M Currie
- Department of Anesthesiology, Pharmacology and Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
18
|
Parnas I, Parnas H. Control of neurotransmitter release: From Ca2+ to voltage dependent G-protein coupled receptors. Pflugers Arch 2010; 460:975-90. [PMID: 20811904 DOI: 10.1007/s00424-010-0872-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2010] [Revised: 08/08/2010] [Accepted: 08/09/2010] [Indexed: 11/28/2022]
Abstract
This review discusses two theories that try to explain mechanisms of control of neurotransmitter release in fast synapses: the Ca(2+) hypothesis and the Ca(2+) voltage hypothesis. The review summarizes experimental results that are incompatible with predictions from the Ca(2+) hypothesis and concludes that Ca(2+) is involved in the control of the amount of release but not in the control of the time course of evoked release, i.e., initiation and termination of evoked release. Results summarizing direct effects of changes in membrane potential on the release machinery are then presented. These changes in membrane potential affect the affinity (for the transmitter) of presynaptic autoinhibitory G-protein coupled receptors (GPCRs). The voltage dependence of these GPCRs and their pivotal role in determining the time course of evoked release is discussed.
Collapse
Affiliation(s)
- Itzchak Parnas
- Department of Neurobiology, Institute of life Science, The Hebrew University, Edmon Safra Campus, Jerusalem, Israel.
| | | |
Collapse
|
19
|
Weiss N, Legrand C, Pouvreau S, Bichraoui H, Allard B, Zamponi GW, De Waard M, Jacquemond V. In vivo expression of G-protein beta1gamma2 dimer in adult mouse skeletal muscle alters L-type calcium current and excitation-contraction coupling. J Physiol 2010; 588:2945-60. [PMID: 20547679 DOI: 10.1113/jphysiol.2010.191593] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022] Open
Abstract
A number of G-protein-coupled receptors are expressed in skeletal muscle but their roles in muscle physiology and downstream effector systems remain poorly investigated. Here we explored the functional importance of the G-protein betagamma (Gbetagamma) signalling pathway on voltage-controlled Ca(2+) homeostasis in single isolated adult skeletal muscle fibres. A GFP-tagged Gbeta(1)gamma(2) dimer was expressed in vivo in mice muscle fibres. The GFP fluorescence pattern was consistent with a Gbeta(1)gamma(2) dimer localization in the transverse-tubule membrane. Membrane current and indo-1 fluorescence measurements performed under voltage-clamp conditions reveal a drastic reduction of both L-type Ca(2+) current density and of peak amplitude of the voltage-activated Ca(2+) transient in Gbeta(1)gamma(2)-expressing fibres. These effects were not observed upon expression of Gbeta(2)gamma(2), Gbeta(3)gamma(2) or Gbeta(4)gamma(2). Our data suggest that the G-protein beta(1)gamma(2) dimer may play an important regulatory role in skeletal muscle excitation-contraction coupling.
Collapse
Affiliation(s)
- Norbert Weiss
- Université Lyon 1, UMR CNRS 5123, Physiologie Intégrative Cellulaire et Moléculaire, Bâtiment R. Dubois, 43 boulevard du 11 novembre 1918, Villeurbanne, France.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Tedford HW, Kisilevsky AE, Vieira LB, Varela D, Chen L, Zamponi GW. Scanning mutagenesis of the I-II loop of the Cav2.2 calcium channel identifies residues Arginine 376 and Valine 416 as molecular determinants of voltage dependent G protein inhibition. Mol Brain 2010; 3:6. [PMID: 20181083 PMCID: PMC2829547 DOI: 10.1186/1756-6606-3-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2009] [Accepted: 02/03/2010] [Indexed: 11/01/2022] Open
Abstract
Direct interaction with the beta subunit of the heterotrimeric G protein complex causes voltage-dependent inhibition of N-type calcium channels. To further characterize the molecular determinants of this interaction, we performed scanning mutagenesis of residues 372-387 and 410-428 of the N-type channel alpha1 subunit, in which individual residues were replaced by either alanine or cysteine. We coexpressed wild type Gbeta1gamma2 subunits with either wild type or point mutant N-type calcium channels, and voltage-dependent, G protein-mediated inhibition of the channels (VDI) was assessed using patch clamp recordings. The resulting data indicate that Arg376 and Val416 of the alpha1 subunit, residues which are surface-exposed in the presence of the calcium channel beta subunit, contribute significantly to the functional inhibition by Gbeta1. To further characterize the roles of Arg376 and Val416 in this interaction, we performed secondary mutagenesis of these residues, coexpressing the resulting mutants with wild type Gbeta1gamma2 subunits and with several isoforms of the auxiliary beta subunit of the N-type channel, again assessing VDI using patch clamp recordings. The results confirm the importance of Arg376 for G protein-mediated inhibition and show that a single amino acid substitution to phenylalanine drastically alters the abilities of auxiliary calcium channel subunits to regulate G protein inhibition of the channel.
Collapse
Affiliation(s)
- Hugo W Tedford
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Dai S, Hall DD, Hell JW. Supramolecular assemblies and localized regulation of voltage-gated ion channels. Physiol Rev 2009; 89:411-52. [PMID: 19342611 DOI: 10.1152/physrev.00029.2007] [Citation(s) in RCA: 266] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022] Open
Abstract
This review addresses the localized regulation of voltage-gated ion channels by phosphorylation. Comprehensive data on channel regulation by associated protein kinases, phosphatases, and related regulatory proteins are mainly available for voltage-gated Ca2+ channels, which form the main focus of this review. Other voltage-gated ion channels and especially Kv7.1-3 (KCNQ1-3), the large- and small-conductance Ca2+-activated K+ channels BK and SK2, and the inward-rectifying K+ channels Kir3 have also been studied to quite some extent and will be included. Regulation of the L-type Ca2+ channel Cav1.2 by PKA has been studied most thoroughly as it underlies the cardiac fight-or-flight response. A prototypical Cav1.2 signaling complex containing the beta2 adrenergic receptor, the heterotrimeric G protein Gs, adenylyl cyclase, and PKA has been identified that supports highly localized via cAMP. The type 2 ryanodine receptor as well as AMPA- and NMDA-type glutamate receptors are in close proximity to Cav1.2 in cardiomyocytes and neurons, respectively, yet independently anchor PKA, CaMKII, and the serine/threonine phosphatases PP1, PP2A, and PP2B, as is discussed in detail. Descriptions of the structural and functional aspects of the interactions of PKA, PKC, CaMKII, Src, and various phosphatases with Cav1.2 will include comparisons with analogous interactions with other channels such as the ryanodine receptor or ionotropic glutamate receptors. Regulation of Na+ and K+ channel phosphorylation complexes will be discussed in separate papers. This review is thus intended for readers interested in ion channel regulation or in localization of kinases, phosphatases, and their upstream regulators.
Collapse
Affiliation(s)
- Shuiping Dai
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA
| | | | | |
Collapse
|
22
|
Hu C, Depuy SD, Yao J, McIntire WE, Barrett PQ. Protein kinase A activity controls the regulation of T-type CaV3.2 channels by Gbetagamma dimers. J Biol Chem 2009; 284:7465-73. [PMID: 19131331 PMCID: PMC2658042 DOI: 10.1074/jbc.m808049200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2008] [Revised: 01/07/2009] [Indexed: 01/10/2023] Open
Abstract
Low voltage-activated (LVA), T-type, calcium channels mediate diverse biological functions and are inhibited by Gbetagamma dimers, yet the molecular events required for channel inhibition remain unknown. Here, we identify protein kinase A (PKA) as a molecular switch that allows Gbeta(2)gammax dimers to effect voltage-independent inhibition of Ca(v)3.2 channels. Inhibition requires phosphorylation of Ser(1107), a critical serine residue on the II-III loop of the channel pore protein. S1107A prevents inhibition of unitary currents by recombinant Gbeta(2)gamma(2) dimers but does not disrupt dimer binding nor change its specificity. Gbetagamma dimers released upon receptor activation also require PKA activity for their inhibitory actions. Hence, dopamine inhibition of Ca(v)3.2 whole cell current is precluded by Gbetagamma-scavenger proteins or a peptide that blocks PKA catalytic activity. Fittingly, when used alone at receptor-selective concentrations, D(1) or D(2) agonists do not elicit channel inhibition yet together synergize to inhibit Ca(v)3.2 channel currents. We propose that a dual-receptor regulatory mechanism is used by dopamine to control Ca(v)3.2 channel activity. This mechanism, for example, would be important in aldosterone producing adrenal glomerulosa cells where channel dysregulation would lead to overproduction of aldosterone and consequent cardiac, renal, and brain target organ damage.
Collapse
Affiliation(s)
- Changlong Hu
- Department of Pharmacology, Internal Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
The central and peripheral nervous systems express multiple types of ligand and voltage-gated calcium channels (VGCCs), each with specific physiological roles and pharmacological and electrophysiological properties. The members of the Ca(v)2 calcium channel family are located predominantly at presynaptic nerve terminals, where they are responsible for controlling evoked neurotransmitter release. The activity of these channels is subject to modulation by a number of different means, including alternate splicing, ancillary subunit associations, peptide and small organic blockers, G-protein-coupled receptors (GPCRs), protein kinases, synaptic proteins, and calcium-binding proteins. These multiple and complex modes of calcium channel regulation allow neurons to maintain the specific, physiological window of cytoplasmic calcium concentrations which is required for optimal neurotransmission and proper synaptic function. Moreover, these varying means of channel regulation provide insight into potential therapeutic targets for the treatment of pathological conditions that arise from disturbances in calcium channel signaling. Indeed, considerable efforts are presently underway to identify and develop specific presynaptic calcium channel blockers that can be used as analgesics.
Collapse
Affiliation(s)
- Alexandra E Kisilevsky
- Hotchkiss Brain Institute and Department of Physiology and Biophysics, University of Calgary, Calgary, Canada
| | | |
Collapse
|
24
|
Abstract
The regulation of presynaptic, voltage-gated calcium channels by activation of heptahelical G protein-coupled receptors exerts a crucial influence on presynaptic calcium entry and hence on neurotransmitter release. Receptor activation subjects presynaptic N- and P/Q-type calcium channels to a rapid, membrane-delimited inhibition-mediated by direct, voltage-dependent interactions between G protein betagamma subunits and the channels-and to a slower, voltage-independent modulation involving soluble second messenger molecules. In turn, the direct inhibition of the channels is regulated as a function of many factors, including channel subtype, ancillary calcium channel subunits, and the types of G proteins and G protein regulatory factors involved. Twenty-five years after this mode of physiological regulation was first described, we review the investigations that have led to our current understanding of its molecular mechanisms.
Collapse
Affiliation(s)
- H William Tedford
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, Canada
| | | |
Collapse
|
25
|
Bauer CS, Woolley RJ, Teschemacher AG, Seward EP. Potentiation of exocytosis by phospholipase C-coupled G-protein-coupled receptors requires the priming protein Munc13-1. J Neurosci 2007; 27:212-9. [PMID: 17202488 PMCID: PMC6672273 DOI: 10.1523/jneurosci.4201-06.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
The vesicle priming protein Munc13-1 is regulated by diacylglycerol (DAG) and is therefore hypothesized to play a role in the control of neurotransmitter release by phospholipase C (PLC)-coupled receptors. We combined voltage-clamp recordings of voltage-gated Ca2+ channels (VGCCs) and high-resolution capacitance measurements to investigate the mechanism of receptor-mediated modulation of exocytosis in bovine chromaffin cells. Activation of endogenous H1 G(q)-protein-coupled receptors (G(q)PCRs) by histamine potentiated stimulus-coupled secretion despite concurrently inhibiting Ca2+ influx through VGCCs. Histamine increased the size of the readily releasable pool of vesicles and in particular a subpool of fusion-competent vesicles localized in close proximity to VGCCs. Pharmacological characterization showed that potentiation of exocytosis depended on the activation of PLC but not protein kinase C. Overexpression of wild-type Munc13-1 by adenoviral infection had no effect on histamine-induced potentiation per se, whereas DAG-insensitive Munc13-1(H567K) completely abolished it. This is the first endogenous mammalian G(q)PCR signaling pathway identified that engages Munc13-1 to increase stimulus-coupled secretion by recruiting vesicles to the immediately releasable pool. G(q)PCRs are therefore able to control exocytosis at the level of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex formation to produce rapid, short-term potentiation of the secretory output of neurons and endocrine cells.
Collapse
Affiliation(s)
- Claudia S. Bauer
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom, and
| | - Robert J. Woolley
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom, and
| | - Anja G. Teschemacher
- Department of Pharmacology, University of Bristol, Bristol BS3 1TD, United Kingdom
| | - Elizabeth P. Seward
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom, and
| |
Collapse
|
26
|
DePuy SD, Yao J, Hu C, McIntire W, Bidaud I, Lory P, Rastinejad F, Gonzalez C, Garrison JC, Barrett PQ. The molecular basis for T-type Ca2+ channel inhibition by G protein beta2gamma2 subunits. Proc Natl Acad Sci U S A 2006; 103:14590-5. [PMID: 16973746 PMCID: PMC1600004 DOI: 10.1073/pnas.0603945103] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Gbetagamma, a ubiquitous second messenger, relays external signals from G protein-coupled receptors to networks of intracellular effectors, including voltage-dependent calcium channels. Unlike high-voltage-activated Ca(2+) channels, the inhibition of low-voltage-activated Ca(2+) channels is subtype-dependent and mediated selectively by Gbeta(2)-containing dimers. Yet, the molecular basis for this exquisite selectivity remains unknown. Here, we used pure recombinant Gbetagamma subunits to establish that the Gbeta(2)gamma(2) dimer can selectively reconstitute the inhibition of alpha(1H) channels in isolated membrane patches. This inhibition is the result of a reduction in channel open probability that is not accompanied by a change in channel expression or an alteration in active-channel gating. By exchanging residues between the active Gbeta(2) subunit and the inactive Gbeta(1) subunit, we identified a cluster of amino acids that functionally distinguish Gbeta(2) from other Gbeta subunits. These amino acids on the beta-torus identify a region that is distinct from those regions that contact the Galpha subunit or other effectors.
Collapse
Affiliation(s)
| | | | | | | | - Isabelle Bidaud
- Département de Physiologie, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut National de la Santé et de la Recherche Médicale U661, Université Montpellier I et II, 34095 Montpellier, France
| | - Philippe Lory
- Département de Physiologie, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut National de la Santé et de la Recherche Médicale U661, Université Montpellier I et II, 34095 Montpellier, France
| | | | - Carlos Gonzalez
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908; and
| | | | - Paula Q. Barrett
- Departments of *Pharmacology and
- To whom correspondence should be addressed at:
Department of Pharmacology, University of Virginia School of Medicine, 1300 Jefferson Park Avenue, Charlottesville, VA 22908. E-mail:
| |
Collapse
|
27
|
Evans RM, Zamponi GW. Presynaptic Ca2+ channels--integration centers for neuronal signaling pathways. Trends Neurosci 2006; 29:617-24. [PMID: 16942804 DOI: 10.1016/j.tins.2006.08.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2006] [Revised: 06/29/2006] [Accepted: 08/17/2006] [Indexed: 12/25/2022]
Abstract
Calcium influx into presynaptic nerve terminals via voltage-gated Ca2+ channels is an essential step in neurotransmitter release. The predominant Ca2+ channel species in synaptic nerve terminals are P/Q-type and N-type channels, with their relative levels of expression varying across the nervous system. The different distributions of these two channel subtypes are reflected in their distinct physiological and pathological roles, yet their activity is regulated by common mechanisms and both function as part of larger signaling complexes that enable their precise regulation and subcellular targeting. Here, we provide a broad overview of molecular and cellular mechanisms that regulate Ca2+ channels, and how these cellular signaling pathways are integrated at the level of the channel protein.
Collapse
Affiliation(s)
- Rhian M Evans
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
28
|
Tedford HW, Kisilevsky AE, Peloquin JB, Zamponi GW. Scanning Mutagenesis Reveals a Role for Serine 189 of the Heterotrimeric G-Protein Beta 1 Subunit in the Inhibition of N-Type Calcium Channels. J Neurophysiol 2006; 96:465-70. [PMID: 16687621 DOI: 10.1152/jn.00216.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Direct interactions between the presynaptic N-type calcium channel and the β subunit of the heterotrimeric G-protein complex cause voltage-dependent inhibition of N-type channel activity, crucially influencing neurotransmitter release and contributing to analgesia caused by opioid drugs. Previous work using chimeras of the G-protein β subtypes Gβ1 and Gβ5 identified two 20–amino acid stretches of structurally contiguous residues on the Gβ1 subunit as critical for inhibition of the N-type channel. To identify key modulation determinants within these two structural regions, we performed scanning mutagenesis in which individual residues of the Gβ1 subunit were replaced by corresponding Gβ5 residues. Our results show that Gβ1 residue Ser189 is critical for N-type calcium channel modulation, whereas none of the other Gβ1 mutations caused statistically significant effects on the ability of Gβ1 to inhibit N-type channels. Structural modeling shows residue 189 is surface exposed, consistent with the idea that it may form a direct contact with the N-type calcium channel α1 subunit during binding interactions.
Collapse
Affiliation(s)
- H William Tedford
- Department of Physiology and Biophysics, Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, T2N 4N1, Canada
| | | | | | | |
Collapse
|
29
|
Steiner D, Saya D, Schallmach E, Simonds WF, Vogel Z. Adenylyl cyclase type-VIII activity is regulated by G(betagamma) subunits. Cell Signal 2005; 18:62-8. [PMID: 15925485 DOI: 10.1016/j.cellsig.2005.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
The Ca2+-activated adenylyl cyclase type VIII (AC-VIII) has been implicated in several forms of neural plasticity, including drug addiction and learning and memory. It has not been clear whether Gi/o proteins and G-protein coupled receptors regulate the activity of AC-VIII. Here we show in intact mammalian cell system that AC-VIII is inhibited by mu-opioid receptor activation and that this inhibition is pertussis toxin sensitive. Moreover, we show that G(betagamma) subunits inhibit AC-VIII activity, while constitutively active alphai/o subunits do not. Different Gbeta isoforms varied in their efficacies, with Gbeta1gamma2 or Gbeta2gamma2 being more efficient than Gbeta3gamma2 and Gbeta4gamma2, while Gbeta5 (transfected with gamma2) had no effect. As for the Ggamma subunits, Gbeta1 inhibited AC-VIII activity in the presence of all gamma subunits tested except for gamma5 that had only a marginal activity. Moreover, cotransfection with proteins known to serve as scavengers of Gbetagamma dimers, or to reduce Gbetagamma plasma membrane anchorage, markedly attenuated the mu-opioid receptor-induced inhibition of AC-VIII. These results demonstrate that Gbetagamma (originating from agonist activation of these receptors) and probably not Galphai/o subunits are involved in the agonist inhibition of AC-VIII.
Collapse
Affiliation(s)
- Debora Steiner
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
30
|
Li X, Hümmer A, Han J, Xie M, Melnik-Martinez K, Moreno RL, Buck M, Mark MD, Herlitze S. G protein beta2 subunit-derived peptides for inhibition and induction of G protein pathways. Examination of voltage-gated Ca2+ and G protein inwardly rectifying K+ channels. J Biol Chem 2005; 280:23945-59. [PMID: 15824105 DOI: 10.1074/jbc.m414078200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated Ca2+ channels of the N-, P/Q-, and R-type and G protein inwardly rectifying K+ channels (GIRK) are modulated via direct binding of G proteins. The modulation is mediated by G protein betagamma subunits. By using electrophysiological recordings and fluorescence resonance energy transfer, we characterized the modulatory domains of the G protein beta subunit on the recombinant P/Q-type channel and GIRK channel expressed in HEK293 cells and on native non-L-type Ca2+ currents of cultured hippocampal neurons. We found that Gbeta2 subunit-derived deletion constructs and synthesized peptides can either induce or inhibit G protein modulation of the examined ion channels. In particular, the 25-amino acid peptide derived from the Gbeta2 N terminus inhibits G protein modulation, whereas a 35-amino acid peptide derived from the Gbeta2 C terminus induced modulation of voltage-gated Ca2+ channels and GIRK channels. Fluorescence resonance energy transfer (FRET) analysis of the live action of these peptides revealed that the 25-amino acid peptide diminished the FRET signal between G protein beta2gamma3 subunits, indicating a reorientation between G protein beta2gamma3 subunits in the presence of the peptide. In contrast, the 35-amino acid peptide increased the FRET signal between GIRK1,2 channel subunits, similarly to the Gbetagamma-mediated FRET increase observed for this GIRK subunit combination. Circular dichroism spectra of the synthesized peptides suggest that the 25-amino acid peptide is structured. These results indicate that individual G protein beta subunit domains can act as independent, separate modulatory domains to either induce or inhibit G protein modulation for several effector proteins.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kinoshita-Kawada M, Oberdick J, Xi Zhu M. A Purkinje cell specific GoLoco domain protein, L7/Pcp-2, modulates receptor-mediated inhibition of Cav2.1 Ca2+ channels in a dose-dependent manner. ACTA ACUST UNITED AC 2005; 132:73-86. [PMID: 15548431 DOI: 10.1016/j.molbrainres.2004.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 09/08/2004] [Indexed: 10/26/2022]
Abstract
L7/Pcp-2 is a GoLoco domain protein encoded by a Purkinje cell dendritic mRNA. Although biochemical interactions of GoLoco proteins with Galpha(o) and Galpha(i) are well documented, little is known about effector function modulation resulting from these interactions. The P-type Ca2+ channels might be physiological effectors of L7 because (1) they are the major voltage-dependent Ca2+ channels (VDCC) that modulate Purkinje cell output and (2) they are regulated by G(i/o) proteins. As a first step towards validating this hypothesis and to further understand the possible physiological effect of L7 protein and its two isoforms, we have coexpressed Ca(v)2.1 channels and kappa-opioid receptors (KORs) with varying amounts of L7A or L7B in Xenopus oocytes and measured ionic currents by two-electrode voltage clamping. Without receptor activation L7 did not alter the Ca2+ channel activity. With tonic and weak activation of the receptors, however, the Ca2+ channels were inhibited by 40-50%. This inhibition was enhanced by low, but dampened by high, expression levels of L7A and L7B and differences were observed between the two isoforms. The enhancing effect of L7 was occluded by overexpression of Gbetagamma, whereas the disinhibition was antagonized by overexpression of Galpha(o). We propose that L7 differentially affects the Galpha and Gbetagamma arms of receptor-induced G(i/o) signaling in a concentration-dependent manner, through which it increases the dynamic range of regulation of P/Q-type Ca2+ channels by G(i/o) protein-coupled receptors. This provides a framework for designing further experiments to determine how dendritic local fluctuations in L7 protein levels might influence signal processing in Purkinje cells.
Collapse
MESH Headings
- Animals
- Calcium Channels, N-Type/genetics
- Calcium Channels, N-Type/metabolism
- Calcium Channels, P-Type/genetics
- Calcium Channels, P-Type/metabolism
- Cell Membrane/genetics
- Cell Membrane/metabolism
- Dendrites/metabolism
- Female
- GTP-Binding Protein alpha Subunits/genetics
- GTP-Binding Protein alpha Subunits/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein beta Subunits/genetics
- GTP-Binding Protein beta Subunits/metabolism
- GTP-Binding Protein gamma Subunits/genetics
- GTP-Binding Protein gamma Subunits/metabolism
- Gene Dosage
- Membrane Potentials/genetics
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neural Inhibition/genetics
- Oocytes
- Patch-Clamp Techniques
- Protein Structure, Tertiary/genetics
- Purkinje Cells/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Signal Transduction/genetics
- Xenopus laevis
Collapse
Affiliation(s)
- Mariko Kinoshita-Kawada
- Department of Neuroscience and the Center for Molecular Neurobiology, The Ohio State University, 168 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA
| | | | | |
Collapse
|
32
|
Parnas H, Slutsky I, Rashkovan G, Silman I, Wess J, Parnas I. Depolarization initiates phasic acetylcholine release by relief of a tonic block imposed by presynaptic M2 muscarinic receptors. J Neurophysiol 2005; 93:3257-69. [PMID: 15703226 DOI: 10.1152/jn.01131.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
The role of presynaptic muscarinic autoreceptors in the initiation of phasic acetylcholine (ACh) release at frog and mouse neuromuscular junctions was studied by measuring the dependency of the amount (m) of ACh release on the level of presynaptic depolarization. Addition of methoctramine (a blocker of M2 muscarinic receptors), or of acetylcholinesterase (AChE), increased release in a voltage-dependent manner; enhancement of release declined as the depolarizing pulse amplitude increased. In frogs and wild-type mice the slope of log m/log pulse amplitude (PA) was reduced from about 7 in the control to about 4 in the presence of methoctramine or AChE. In M2 muscarinic receptor knockout mice, the slope of log m/log PA was much smaller (about 4) and was not further reduced by addition of either methoctramine or AChE. The effect of a brief (0.1 ms), but strong (-1.2 microA) depolarizing prepulse on the dependency of m on PA was also studied. The depolarizing prepulse had effects similar to those of methoctramine and AChE. In particular, it enhanced release of test pulses in a voltage-dependent manner and reduced the slope of log m/log PA from about 7 to about 4. Methoctramine + AChE occluded the prepulse effects. In knockout mice, the depolarizing prepulse had no effects. The cumulative results suggest that initiation of phasic ACh release is achieved by depolarization-mediated relief of a tonic block imposed by presynaptic M2 muscarinic receptors.
Collapse
Affiliation(s)
- H Parnas
- Department of Neurobiology, The Hebrew University, Jerusalem 91904, Israel.
| | | | | | | | | | | |
Collapse
|
33
|
Doering CJ, Kisilevsky AE, Feng ZP, Arnot MI, Peloquin J, Hamid J, Barr W, Nirdosh A, Simms B, Winkfein RJ, Zamponi GW. A Single Gβ Subunit Locus Controls Cross-talk between Protein Kinase C and G Protein Regulation of N-type Calcium Channels. J Biol Chem 2004; 279:29709-17. [PMID: 15105422 DOI: 10.1074/jbc.m308693200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The modulation of N-type calcium channels is a key factor in the control of neurotransmitter release. Whereas N-type channels are inhibited by Gbetagamma subunits in a G protein beta-isoform-dependent manner, channel activity is typically stimulated by activation of protein kinase C (PKC). In addition, there is cross-talk among these pathways, such that PKC-dependent phosphorylation of the Gbetagamma target site on the N-type channel antagonizes subsequent G protein inhibition, albeit only for Gbeta(1)-mediated responses. The molecular mechanisms that control this G protein beta subunit subtype-specific regulation have not been described. Here, we show that G protein inhibition of N-type calcium channels is critically dependent on two separate but adjacent approximately 20-amino acid regions of the Gbeta subunit, plus a highly conserved Asn-Tyr-Val motif. These regions are distinct from those implicated previously in Gbetagamma signaling to other effectors such as G protein-coupled inward rectifier potassium channels, phospholipase beta(2), and adenylyl cyclase, thus raising the possibility that the specificity for G protein signaling to calcium channels might rely on unique G protein structural determinants. In addition, we identify a highly specific locus on the Gbeta(1) subunit that serves as a molecular detector of PKC-dependent phosphorylation of the G protein target site on the N-type channel alpha(1) subunit, thus providing for a molecular basis for G protein-PKC cross-talk. Overall, our results significantly advance our understanding of the molecular details underlying the integration of G protein and PKC signaling pathways at the level of the N-type calcium channel alpha(1) subunit.
Collapse
Affiliation(s)
- Clinton J Doering
- Department of Physiology and Biophysics, Cellular and Molecular Neurobiology Research Group, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Beedle AM, McRory JE, Poirot O, Doering CJ, Altier C, Barrere C, Hamid J, Nargeot J, Bourinet E, Zamponi GW. Agonist-independent modulation of N-type calcium channels by ORL1 receptors. Nat Neurosci 2004; 7:118-25. [PMID: 14730309 DOI: 10.1038/nn1180] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2003] [Accepted: 12/18/2003] [Indexed: 11/09/2022]
Abstract
We have investigated modulation of voltage-gated calcium channels by nociceptin (ORL1) receptors. In rat DRG neurons and in tsA-201 cells, nociceptin mediated a pronounced inhibition of N-type calcium channels, whereas other calcium channel subtypes were unaffected. In tsA-201 cells, expression of N-type channels with human ORL1 resulted in a voltage-dependent G-protein inhibition of the channel that occurred in the absence of nociceptin, the ORL1 receptor agonist. Consistent with this observation, native N-type channels of small nociceptive dorsal root ganglion (DRG) neurons also had tonic inhibition by G proteins. Biochemical characterization showed the existence of an N-type calcium channel-ORL1 receptor signaling complex, which efficiently exposes N-type channels to constitutive ORL1 receptor activity. Calcium channel activity is thus regulated by changes in ORL1 receptor expression, which provides a possible molecular mechanism for the development of tolerance to opioid receptor agonists.
Collapse
Affiliation(s)
- Aaron M Beedle
- Department of Physiology & Biophysics, Cellular and Molecular Neurobiology Research Group, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bertram R, Swanson J, Yousef M, Feng ZP, Zamponi GW. A minimal model for G protein-mediated synaptic facilitation and depression. J Neurophysiol 2003; 90:1643-53. [PMID: 12724366 DOI: 10.1152/jn.00190.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptors are ubiquitous in neurons, as well as other cell types. Activation of receptors by hormones or neurotransmitters splits the G protein heterotrimer into Galpha and Gbetagamma subunits. It is now clear that Gbetagamma directly inhibits Ca2+ channels, putting them into a reluctant state. The effects of Gbetagamma depend on the specific beta and gamma subunits present, as well as the beta subunit isoform of the N-type Ca2+ channel. We describe a minimal mathematical model for the effects of G protein action on the dynamics of synaptic transmission. The model is calibrated by data obtained by transfecting G protein and Ca2+ channel subunits into tsA-201 cells. We demonstrate with numerical simulations that G protein action can provide a mechanism for either short-term synaptic facilitation or depression, depending on the manner in which G protein-coupled receptors are activated. The G protein action performs high-pass filtering of the presynaptic signal, with a filter cutoff that depends on the combination of G protein and Ca2+ channel subunits present. At stimulus frequencies above the cutoff, trains of single spikes are transmitted, while only doublets are transmitted at frequencies below the cutoff. Finally, we demonstrate that relief of G protein inhibition can contribute to paired-pulse facilitation.
Collapse
Affiliation(s)
- Richard Bertram
- Department of Mathematics, Florida State University, Tallahassee, Florida 32306, USA.
| | | | | | | | | |
Collapse
|
36
|
Spafford JD, Chen L, Feng ZP, Smit AB, Zamponi GW. Expression and modulation of an invertebrate presynaptic calcium channel alpha1 subunit homolog. J Biol Chem 2003; 278:21178-87. [PMID: 12672808 DOI: 10.1074/jbc.m302212200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Here we report the first assessment of the expression and modulation of an invertebrate alpha1 subunit homolog of mammalian presynaptic Cav2 calcium channels (N-type and P/Q-type) in mammalian cells. Our data show that molluscan channel (LCav2a) isolated from Lymnaea stagnalis is effectively membrane-targeted and electrophysiologically recordable in tsA-201 cells only when the first 44 amino acids of LCav2a are substituted for the corresponding region of rat Cav2.1. When coexpressed with rat accessory subunits, the biophysical properties of LCav2a-5'rbA resemble those of mammalian N-type calcium channels with respect to activation and inactivation, lack of pronounced calcium dependent inactivation, preferential permeation of barium ions, and cadmium block. Consistent with reports of native Lymnaea calcium currents, the LCav2a-5'rbA channel is insensitive to micromolar concentrations of omega-conotoxin GVIA and is not affected by nifedipine, thus confirming that it is not of the L-type. Interestingly, the LCav2a-5'rbA channel is almost completely and irreversibly inhibited by guanosine 5'-3-O-(thio)triphosphate but not regulated by syntaxin1, suggesting that invertebrate presynaptic calcium channels are differently modulated from their vertebrate counterparts.
Collapse
Affiliation(s)
- J David Spafford
- Department of Physiology and Biophysics, Cellular and Molecular Neurobiology Research Group, University of Calgary, Calgary, T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
37
|
Agler HL, Evans J, Colecraft HM, Yue DT. Custom distinctions in the interaction of G-protein beta subunits with N-type (CaV2.2) versus P/Q-type (CaV2.1) calcium channels. J Gen Physiol 2003; 121:495-510. [PMID: 12771191 PMCID: PMC2217353 DOI: 10.1085/jgp.200208770] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/01/2023] Open
Abstract
Inhibition of N- (Cav2.2) and P/Q-type (Cav2.1) calcium channels by G-proteins contribute importantly to presynaptic inhibition as well as to the effects of opiates and cannabinoids. Accordingly, elucidating the molecular mechanisms underlying G-protein inhibition of voltage-gated calcium channels has been a major research focus. So far, inhibition is thought to result from the interaction of multiple proposed sites with the Gbetagamma complex (Gbetagamma). Far less is known about the important interaction sites on Gbetagamma itself. Here, we developed a novel electrophysiological paradigm, "compound-state willing-reluctant analysis," to describe Gbetagamma interaction with N- and P/Q-type channels, and to provide a sensitive and efficient screen for changes in modulatory behavior over a broad range of potentials. The analysis confirmed that the apparent (un)binding kinetics of Gbetagamma with N-type are twofold slower than with P/Q-type at the voltage extremes, and emphasized that the kinetic discrepancy increases up to ten-fold in the mid-voltage range. To further investigate apparent differences in modulatory behavior, we screened both channels for the effects of single point alanine mutations within four regions of Gbeta1, at residues known to interact with Galpha. These residues might thereby be expected to interact with channel effectors. Of eight mutations studied, six affected G-protein modulation of both N- and P/Q-type channels to varying degrees, and one had no appreciable effect on either channel. The remaining mutation was remarkable for selective attenuation of effects on P/Q-, but not N-type channels. Surprisingly, this mutation decreased the (un)binding rates without affecting its overall affinity. The latter mutation suggests that the binding surface on Gbetagamma for N- and P/Q-type channels are different. Also, the manner in which this last mutation affected P/Q-type channels suggests that some residues may be important for "steering" or guiding the protein into the binding pocket, whereas others are important for simply binding to the channel.
Collapse
Affiliation(s)
- Heather L Agler
- Ca2+ Signals Laboratory, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
38
|
Spafford JD, Zamponi GW. Functional interactions between presynaptic calcium channels and the neurotransmitter release machinery. Curr Opin Neurobiol 2003; 13:308-14. [PMID: 12850215 DOI: 10.1016/s0959-4388(03)00061-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/27/2022]
Abstract
In vertebrates, the physical coupling between presynaptic calcium channels and synaptic vesicle release proteins enhances the efficiency of neurotransmission. Recent evidence indicates that these synaptic proteins may feedback directly on synaptic release by negatively regulating calcium entry, and indirectly through pathways involving second messenger molecules. Studies of individual neurons from both vertebrates and invertebrates have provided novel insights into the roles of scaffolding proteins in calcium channel targeting and neurotransmitter release. These studies require us to expand current models of synaptic transmission.
Collapse
Affiliation(s)
- J David Spafford
- Department of Physiology and Biophysics, Cellular and Molecular Neurobiology Research Group, University of Calgary, 3330 Hospital Drive, Northwest Calgary, T2N 4N1, Canada
| | | |
Collapse
|
39
|
Ruiz-Velasco V, Ikeda SR. A splice variant of the G protein beta 3-subunit implicated in disease states does not modulate ion channels. Physiol Genomics 2003; 13:85-95. [PMID: 12595577 DOI: 10.1152/physiolgenomics.00057.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
A single-nucleotide polymorphism (C825T) in the GNB3 gene produces an alternative splice variant of the heterotrimeric G protein beta3 subunit (Gbeta3). Translation of the alternatively spliced mRNA results in a protein product, Gbeta3-s, in which 41 amino acids are deleted from Gbeta3. Interestingly, previous studies indicate that the C825T allele occurs with a high frequency in patients with certain vascular disorders. However, little information is available regarding the functional role Gbeta3-s might play in ion channel modulation. To examine this aspect, Gbeta3 or Gbeta3-s, along with either Ggamma2 or Ggamma5, were expressed in rat sympathetic neurons by nuclear microinjection of vector encoding the desired protein. In contrast to Gbeta3, expression of Gbeta3-s did not modulate N-type Ca(2+) or G protein-gated inwardly rectifying K(+) channels. In addition, Gbeta3-s did not appear to complex with a pertussis toxin-insensitive mutant of Galpha(i2) or couple to natively expressed alpha(2)-adrenergic receptors. Finally, fluorescence resonance energy transfer (FRET) measurements indicated that enhanced yellow fluorescent protein (EYFP)-labeled Gbeta3-s does not form a Gbetagamma heterodimer when coexpressed with enhanced cyan fluorescent protein (ECFP)-labeled Ggamma2. Therefore, when expressed in sympathetic neurons, Gbeta3-s appears to lack biological activity--hence pathological conditions in patients carrying the homozygous C825T allele may result from a functional knockout of Gbeta3.
Collapse
Affiliation(s)
- Victor Ruiz-Velasco
- Laboratory of Molecular Physiology, Guthrie Research Institute, Sayre, Pennsylvania 18840, USA.
| | | |
Collapse
|
40
|
Melliti K, Grabner M, Seabrook GR. The familial hemiplegic migraine mutation R192Q reduces G-protein-mediated inhibition of P/Q-type (Ca(V)2.1) calcium channels expressed in human embryonic kidney cells. J Physiol 2003; 546:337-47. [PMID: 12527722 PMCID: PMC2342512 DOI: 10.1113/jphysiol.2002.026716] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022] Open
Abstract
Familial hemiplegic migraine is associated with at least 13 different missense mutations in the alpha1A Ca(2+) channel subunit. Some of these mutations have been shown to affect the biophysical properties of alpha1A currents. To date, no study has examined the influence of such mutations on the G-protein regulation of channel function. Because G-proteins inhibit movement of the voltage sensor, we examined the effects of the R192Q mutation, which neutralizes a positive charge in the first S4 segment. Human wild-type (WT) or R192Q mutant channels were expressed in human embryonic kidney tsA-201 cells along with dopamine D2 receptors. Application of quinpirole induced fast (approximately 1 s), pertussis toxin-sensitive inhibition of alpha1A(WT) and alpha1A(R192Q) Ca(2+) currents, consistent with the activation of a membrane-delimited pathway. alpha1A(WT) Ca(2+) currents were inhibited by 62.9 +/- 0.9 % (n = 27), whereas alpha1A(R192Q) Ca(2+) currents were inhibited by only 47.9 +/- 1.8 % (n = 35; P < 0.001). Concentration-response analysis showed that only the extent of inhibition was affected, with no change in agonist potency (EC(50) = 1 nM). Prepulse facilitation, which is a characteristic of voltage-dependent inhibition, was also reduced by the R192Q mutation. However, the kinetics of facilitation and slow activation were not affected, suggesting that G-protein-Ca(2+) channel affinity was unchanged. These results show that the R192Q mutation reduces the G-protein inhibition of P/Q-type Ca(2+) channels, probably by altering mechanisms by which Gbetagamma subunit binding induces a change in channel gating. Altered G-protein modulation and the consequent reduced presynaptic inhibition may contribute to migraine attacks by favouring a persistent state of hyperexcitability.
Collapse
Affiliation(s)
- Karim Melliti
- Merck Sharp and Dohme Research Laboratories, The Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR, UK.
| | | | | |
Collapse
|
41
|
Jarvis SE, Barr W, Feng ZP, Hamid J, Zamponi GW. Molecular determinants of syntaxin 1 modulation of N-type calcium channels. J Biol Chem 2002; 277:44399-407. [PMID: 12221094 DOI: 10.1074/jbc.m206902200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported that syntaxin 1A, a component of the presynaptic SNARE complex, directly modulates N-type calcium channel gating in addition to promoting tonic G-protein inhibition of the channels, whereas syntaxin 1B affects channel gating but does not support G-protein modulation (Jarvis, S. E., and Zamponi, G. W. (2001) J. Neurosci. 21, 2939-2948). Here, we have investigated the molecular determinants that govern the action of syntaxin 1 isoforms on N-type calcium channel function. In vitro evidence shows that both syntaxin 1 isoforms physically interact with the G-protein beta subunit and the synaptic protein interaction (synprint) site contained within the N-type calcium channel domain II-III linker region. Moreover, in vitro evidence suggests that distinct domains of syntaxin participate in each interaction, with the COOH-terminal SNARE domain (residues 183-230) binding to Gbeta and the N-terminal (residues 1-69) binding to the synprint motif of the channel. Electrophysiological analysis of chimeric syntaxin 1A/1B constructs reveals that the variable NH(2)-terminal domains of syntaxin 1 are responsible for the differential effects of syntaxin 1A and 1B on N-type calcium channel function. Because syntaxin 1 exists in both "open" and "closed" conformations during exocytosis, we produced a constitutively open form of syntaxin 1A and found that it still promoted G-protein inhibition of the channels, but it did not affect N-type channel availability. This state dependence of the ability of syntaxin 1 to mediate N-type calcium channel availability suggests that syntaxin 1 dynamically regulates N-type channel function during various steps of exocytosis. Finally, syntaxin 1A appeared to compete with Ggamma for the Gbeta subunit both in vitro and under physiological conditions, suggesting that syntaxin 1A may contain a G-protein gamma subunit-like domain.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Antigens, Surface/physiology
- Blotting, Western
- Brain/metabolism
- Calcium Channels, N-Type/metabolism
- Cattle
- Cloning, Molecular
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Glutathione Transferase/metabolism
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/physiology
- Patch-Clamp Techniques
- Polymerase Chain Reaction
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- Rats
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Amino Acid
- Syntaxin 1
- Transfection
Collapse
|
42
|
Giovannini F, Sher E, Webster R, Boot J, Lang B. Calcium channel subtypes contributing to acetylcholine release from normal, 4-aminopyridine-treated and myasthenic syndrome auto-antibodies-affected neuromuscular junctions. Br J Pharmacol 2002; 136:1135-45. [PMID: 12163346 PMCID: PMC1573446 DOI: 10.1038/sj.bjp.0704818] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022] Open
Abstract
1 Acetylcholine release at the neuromuscular junction relies on rapid, local and transient calcium increase at presynaptic active zones, triggered by the ion influx through voltage-dependent calcium channels (VDCCs) clustered on the presynaptic membrane. Pharmacological investigation of the role of different VDCC subtypes (L-, N-, P/Q- and R-type) in spontaneous and evoked acetylcholine (ACh) release was carried out in adult mouse neuromuscular junctions (NMJs) under normal and pathological conditions. 2 omega-Agatoxin IVA (500 nM), a specific P/Q-type VDCC blocker, abolished end plate potentials (EPPs) in normal NMJs. However, when neurotransmitter release was potentiated by the presence of the K(+) channel blocker 4-aminopyridine (4-AP), an omega-agatoxin IVA- and omega-conotoxin MVIIC-resistant component was detected. This resistant component was only partially sensitive to 1 micro M omega-conotoxin GVIA (N-type VDCC blocker), but insensitive to any other known VDCC blockers. Spontaneous release was dependent only on P/Q-type VDCC in normal NMJs. However, in the presence of 4-AP, it relied on L-type VDCCs too. 3 ACh release from normal NMJs was compared with that of NMJs of mice passively injected with IgGs obtained from patients with Lambert-Eaton myasthenic syndrome (LEMS), a disorder characterized by a compromised neurotransmitter release. Differently from normal NMJs, in LEMS IgGs-treated NMJs an omega-agatoxin IVA-resistant EPP component was detected, which was only partially blocked by calciseptine (1 micro M), a specific L-type VDCC blocker. 4 Altogether, these data demonstrate that multiple VDCC subtypes are present at the mouse NMJ and that a resistant component can be identified under 'pharmacological' and/or 'pathological' conditions.
Collapse
MESH Headings
- 4-Aminopyridine/pharmacology
- Acetylcholine/metabolism
- Adult
- Aged
- Aged, 80 and over
- Animals
- Autoantibodies/pharmacology
- Calcium Channel Blockers/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/physiology
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/physiology
- Calcium Channels, N-Type/drug effects
- Calcium Channels, N-Type/physiology
- Calcium Channels, P-Type/drug effects
- Calcium Channels, P-Type/physiology
- Calcium Channels, Q-Type/drug effects
- Calcium Channels, Q-Type/physiology
- Calcium Channels, R-Type/drug effects
- Calcium Channels, R-Type/physiology
- Female
- Humans
- Immunoglobulin G/pharmacology
- In Vitro Techniques
- Lambert-Eaton Myasthenic Syndrome/immunology
- Male
- Mice
- Middle Aged
- Neuromuscular Junction/drug effects
- Neuromuscular Junction/metabolism
- Neuromuscular Junction/physiology
- Potassium Channel Blockers/pharmacology
Collapse
Affiliation(s)
- F Giovannini
- Neuroscience Group, Institute of Molecular Medicine, John Radcliffe Hospital, Headington OX3 9DU, UK.
| | | | | | | | | |
Collapse
|
43
|
Bertram R, Arnot MI, Zamponi GW. Role for G protein Gbetagamma isoform specificity in synaptic signal processing: a computational study. J Neurophysiol 2002; 87:2612-23. [PMID: 11976397 DOI: 10.1152/jn.2002.87.5.2612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Computational modeling is used to investigate the functional impact of G protein-mediated presynaptic autoinhibition on synaptic filtering properties. It is demonstrated that this form of autoinhibition, which is relieved by depolarization, acts as a high-pass filter. This contrasts with vesicle depletion, which acts as a low-pass filter. Model parameters are adjusted to reproduce kinetic slowing data from different Gbetagamma dimeric isoforms, which produce different degrees of slowing. With these sets of parameter values, we demonstrate that the range of frequencies filtered out by the autoinhibition varies greatly depending on the Gbetagamma isoform activated by the autoreceptors. It is shown that G protein autoinhibition can enhance the spatial contrast between a spatially distributed high-frequency signal and surrounding low-frequency noise, providing an alternate mechanism to lateral inhibition. It is also shown that autoinhibition can increase the fidelity of coincidence detection by increasing the signal-to-noise ratio in the postsynaptic cell. The filter cut, the input frequency below which signals are filtered, depends on several biophysical parameters in addition to those related to Gbetagamma binding and unbinding. By varying one such parameter, the rate at which transmitter unbinds from autoreceptors, we show that the filter cut can be adjusted up or down for several of the Gbetagamma isoforms. This allows for great synapse-to-synapse variability in the distinction between signal and noise.
Collapse
Affiliation(s)
- Richard Bertram
- Department of Mathematics and Kasha Laboratory of Biophysics, Florida State University, Tallahassee, Florida 32306, USA.
| | | | | |
Collapse
|
44
|
Abstract
This review focuses on the coupling specificity of the Galpha and Gbetagamma subunits of pertussis toxin (PTX)-sensitive G(i/o) proteins that mediate diverse signaling pathways, including regulation of ion channels and other effectors. Several lines of evidence indicate that specific combinations of G protein alpha, beta and gamma subunits are required for different receptors or receptor-effector networks, and that a higher degree of specificity for Galpha and Gbetagamma is observed in intact systems than reported in vitro. The structural determinants of receptor-G protein specificity remain incompletely understood, and involve receptor-G protein interaction domains, and perhaps other scaffolding processes. By identifying G protein specificity for individual receptor signaling pathways, ligands targeted to disrupt individual pathways of a given receptor could be developed.
Collapse
Affiliation(s)
- Paul R Albert
- Ottawa Health Research Institute, Neuroscience, University of Ottawa, 451 Smyth Road, K1H-8M5, Ottawa, ON, Canada.
| | | |
Collapse
|
45
|
Borgland SL, Connor M, Ryan RM, Ball HJ, Christie MJ. Prostaglandin E(2) inhibits calcium current in two sub-populations of acutely isolated mouse trigeminal sensory neurons. J Physiol 2002; 539:433-44. [PMID: 11882676 PMCID: PMC2290145 DOI: 10.1113/jphysiol.2001.013322] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022] Open
Abstract
Prostaglandins are important mediators of pain and inflammation. We have examined the effects of prostanoids on voltage-activated calcium currents (I(Ca)) in acutely isolated mouse trigeminal sensory neurons, using standard whole cell voltage clamp techniques. Trigeminal neurons were divided into two populations based on the presence (Type 2) or absence (Type 1) of low voltage-activated T-type I(Ca). The absence of T-type I(Ca) is highly correlated with sensitivity to mu-opioid agonists and the VR1 agonist capsaicin. In both populations of cells, high voltage-activated I(Ca) was inhibited by PGE(2) with an EC(50) of about 35 nM, to a maximum of 30 %. T-type I(Ca) was not inhibited by PGE(2). Pertussis toxin pre-treatment abolished the effects of PGE(2) in Type 2 cells, but not in Type 1 cells, whereas treatment with cholera toxin prevented the effects of PGE(2) in Type 1 cells, but not in Type 2 cells. Inhibition of I(Ca) by PGE(2) was associated with slowing of current activation and could be relieved with a large positive pre-pulse, consistent with inhibition of I(Ca) by G protein betagamma subunits. Reverse transcription-polymerase chain reaction of mRNA from trigeminal ganglia indicated that all four EP prostanoid receptors were present. However, in both Type 1 and Type 2 cells the effects of PGE(2) were only mimicked by the selective EP(3) receptor agonist ONO-AE-248, and not by selective agonists for EP(1) (ONO-DI-004), EP(2) (ONO-AE1-259) and EP(4) (ONO-AE1-329) receptors. These data indicate that two populations of neurons in trigeminal ganglia differing in their calcium channel expression, sensitivity to mu-opioids and capsaicin also have divergent mechanisms of PGE(2)-mediated inhibition of calcium channels, with Gi/Go type G proteins involved in one population, and Gs type G proteins in the other.
Collapse
MESH Headings
- Animals
- Calcium Channel Blockers/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium Channels, N-Type/drug effects
- Calcium Channels, N-Type/metabolism
- Calcium Channels, Q-Type/drug effects
- Calcium Channels, Q-Type/metabolism
- Cholera Toxin/pharmacology
- Dinoprostone/pharmacology
- Electrophysiology
- Female
- GTP-Binding Protein alpha Subunits, Gi-Go/drug effects
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gs/drug effects
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- GTP-Binding Proteins/drug effects
- GTP-Binding Proteins/metabolism
- In Vitro Techniques
- Ion Channel Gating
- Male
- Mice
- Mice, Inbred C57BL
- Neurons, Afferent/drug effects
- Patch-Clamp Techniques
- Pertussis Toxin
- RNA/genetics
- RNA/isolation & purification
- Reverse Transcriptase Polymerase Chain Reaction
- Trigeminal Nerve/drug effects
- Trigeminal Nerve/metabolism
- Virulence Factors, Bordetella/pharmacology
Collapse
|
46
|
Ruiz-Velasco V, Ikeda SR, Puhl HL. Cloning, tissue distribution, and functional expression of the human G protein beta 4-subunit. Physiol Genomics 2002; 8:41-50. [PMID: 11842130 DOI: 10.1152/physiolgenomics.00085.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Heterotrimeric G proteins (Galphabetagamma) play an essential role in coupling membrane receptors to effector proteins such as ion channels and enzymes. Among the five mammalian Gbeta-subunits cloned, the human G protein beta4 has not been described. The purpose of the present study was to functionally characterize the newly identified human Gbeta4 subunit. The Gbeta4 open reading frame (ORF) was amplified utilizing PCR from brain cDNA. Amplification primers were generated following 5' rapid amplification of cDNA ends (5'-RACE) from an expressed sequence tag (EST) containing the predicted 3' end of the protein. Multiple tissue cDNA panel analysis showed that Gbeta4 mRNA was strongly expressed in lung and placenta, whereas it is weakly expressed in brain and heart. Heterologous overexpression of Gbeta4gamma2 or Gbeta4gamma4 in rat sympathetic neurons resulted in tonic modulation of N-type voltage-gated Ca(2+) and G protein-gated inwardly rectifying K(+) currents. Furthermore, coexpression of Gbeta4gamma2 and Galpha(oA) resulted in heterotrimer formation. These results show that the newly cloned Gbeta subunit shares several properties with other human Gbeta family members.
Collapse
Affiliation(s)
- Victor Ruiz-Velasco
- Laboratory of Molecular Physiology, cDNA Resource Center, Guthrie Research Institute, Sayre, Pennsylvania 18840, USA
| | | | | |
Collapse
|
47
|
Identification and characterization of novel human Ca(v)2.2 (alpha 1B) calcium channel variants lacking the synaptic protein interaction site. J Neurosci 2002. [PMID: 11756491 DOI: 10.1523/jneurosci.22-01-00082.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
The physical interaction between the presynaptic vesicle release complex and the large cytoplasmic region linking domains II and III of N-type (Ca(v)2.2) calcium channel alpha(1)B subunits is considered to be of fundamental importance for efficient neurotransmission. By PCR analysis of human brain cDNA libraries and IMR32 cell mRNA, we have isolated novel N-type channel variants, termed Ca(v)2.2-Delta1 and Delta2, which lack large parts of the domain II-III linker region, including the synaptic protein interaction site. They appear to be widely expressed across the human CNS as indicated by RNase protection assays. When expressed in tsA-201 cells, both novel variants formed barium-permeable channels with voltage dependences and kinetics for activation that were similar to those observed with the full-length channel. All three channel types exhibited the hallmarks of prepulse facilitation, which interestingly occurred independently of G-protein betagamma subunits. By contrast, the voltage dependence of steady-state inactivation seen with both Delta1 and Delta2 channels was shifted toward more depolarized potentials, and recovery from inactivation of Delta1 and Delta2 channels occurred more rapidly than that of the full-length channel. Moreover, the Delta1 channel was dramatically less sensitive to both omega-conotoxin MVIIA and GVIA than either the Delta2 variant or the full-length construct. Finally, the domain II-III linker region of neither variant was able to effectively bind syntaxin in vitro. These results suggest that the structure of the II-III linker region is an important determinant of N-type channel function and pharmacology. The lack of syntaxin binding hints at a unique physiological function of these channels.
Collapse
|
48
|
Kaneko S, Cooper CB, Nishioka N, Yamasaki H, Suzuki A, Jarvis SE, Akaike A, Satoh M, Zamponi GW. Identification and characterization of novel human Ca(v)2.2 (alpha 1B) calcium channel variants lacking the synaptic protein interaction site. J Neurosci 2002; 22:82-92. [PMID: 11756491 PMCID: PMC6757606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/23/2023] Open
Abstract
The physical interaction between the presynaptic vesicle release complex and the large cytoplasmic region linking domains II and III of N-type (Ca(v)2.2) calcium channel alpha(1)B subunits is considered to be of fundamental importance for efficient neurotransmission. By PCR analysis of human brain cDNA libraries and IMR32 cell mRNA, we have isolated novel N-type channel variants, termed Ca(v)2.2-Delta1 and Delta2, which lack large parts of the domain II-III linker region, including the synaptic protein interaction site. They appear to be widely expressed across the human CNS as indicated by RNase protection assays. When expressed in tsA-201 cells, both novel variants formed barium-permeable channels with voltage dependences and kinetics for activation that were similar to those observed with the full-length channel. All three channel types exhibited the hallmarks of prepulse facilitation, which interestingly occurred independently of G-protein betagamma subunits. By contrast, the voltage dependence of steady-state inactivation seen with both Delta1 and Delta2 channels was shifted toward more depolarized potentials, and recovery from inactivation of Delta1 and Delta2 channels occurred more rapidly than that of the full-length channel. Moreover, the Delta1 channel was dramatically less sensitive to both omega-conotoxin MVIIA and GVIA than either the Delta2 variant or the full-length construct. Finally, the domain II-III linker region of neither variant was able to effectively bind syntaxin in vitro. These results suggest that the structure of the II-III linker region is an important determinant of N-type channel function and pharmacology. The lack of syntaxin binding hints at a unique physiological function of these channels.
Collapse
Affiliation(s)
- Shuji Kaneko
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Beedle AM, Zamponi GW. Molecular determinants of opioid analgesia: Modulation of presynaptic calcium channels. Drug Dev Res 2002. [DOI: 10.1002/ddr.10026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022]
|
50
|
Ruiz-Velasco V, Ikeda SR. Functional expression and FRET analysis of green fluorescent proteins fused to G-protein subunits in rat sympathetic neurons. J Physiol 2001; 537:679-92. [PMID: 11744747 PMCID: PMC2278994 DOI: 10.1111/j.1469-7793.2001.00679.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022] Open
Abstract
1. cDNA constructs coding for a yellow-emitting green fluorescent protein (GFP) mutant fused to the N-terminus of the G-protein subunit beta 1 (YFP-beta 1) and a cyan-emitting GFP mutant fused to the N-terminus of the G-protein subunit gamma 2 (CFP-gamma 2) were heterologously expressed in rat superior cervical ganglion (SCG) neurons following intranuclear injection of the tagged subunits. The ability of the tagged subunits to modulate effectors, form a heterotrimer and couple to receptors was characterized using the whole-cell patch-clamp technique. Fluorescent resonance energy transfer (FRET) was also measured to determine the protein-protein interaction between the two fusion proteins. 2. Similar to co-expression of untagged beta 1/gamma 2, co-expression of YFP-beta 1/gamma 2, beta 1/CFP-gamma 2, or YFP-beta 1/CFP-gamma 2 resulted in a significant increase in basal N-type Ca(2+) channel facilitation when compared to uninjected neurons. Furthermore, the noradrenaline (NA)-mediated inhibition of Ca(2+) channels was significantly attenuated. 3. Co-expression of YFP-beta 1/CFP-gamma 2 with G-protein-gated inwardly rectifying K(+) channels (GIRK1 and GIRK4) resulted in tonic GIRK currents that were blocked by Ba(2+). 4. The ability of the tagged subunits to form heterotrimers was tested by co-injecting either tagged or untagged G beta 1 and G gamma 2 with excess G alpha(oA) cDNA. Under these conditions, the NA-mediated Ca(2+) current inhibition was significantly decreased when compared to uninjected neurons. 5. Coupling to the alpha 2-adrenergic receptor was reconstituted in neurons expressing pertussis toxin (PTX)-insensitive G alpha(oA) and either tagged or untagged G beta 1 gamma 2 subunits. Application of NA to PTX-treated cells resulted in a voltage-dependent inhibition of N-type Ca(2+) currents. 6. FRET measurements in the SCG revealed an in vivo interaction between YFP-beta 1 and CFP-gamma 2. Co-expression of untagged beta 1 significantly decreased the interaction between the two fusion proteins. 7. In summary, the attachment of GFP mutants to the N-terminus of G beta 1 or G gamma 2 does not qualitatively impair their ability to form a heterotrimer, modulate effectors (N-type Ca(2+) and GIRK channels), or couple to receptors.
Collapse
Affiliation(s)
- V Ruiz-Velasco
- Laboratory of Molecular Physiology, Guthrie Research Institute, 1 Guthrie Square, Sayre, PA 18840, USA.
| | | |
Collapse
|