1
|
Kiel C, Prins S, Foss AJE, Luthert PJ. "Energetics of the outer retina II: Calculation of a spatio-temporal energy budget in retinal pigment epithelium and photoreceptor cells based on quantification of cellular processes". PLoS One 2025; 20:e0311169. [PMID: 39869549 PMCID: PMC11771881 DOI: 10.1371/journal.pone.0311169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2024] [Accepted: 09/14/2024] [Indexed: 01/29/2025] Open
Abstract
The outer retina (OR) is highly energy demanding. Impaired energy metabolism combined with high demands are expected to cause energy insufficiencies that make the OR susceptible to complex blinding diseases such as age-related macular degeneration (AMD). Here, anatomical, physiological and quantitative molecular data were used to calculate the ATP expenditure of the main energy-consuming processes in three cell types of the OR for the night and two different periods during the day. The predicted energy demands in a rod dominated (perifovea) area are 1.69 x 1013 ATP/s/mm2 tissue in the night and 6.53 x 1012 ATP/s/mm2 tissue during the day with indoor light conditions. For a cone-dominated foveal area the predicted energy demands are 6.41 x 1012 ATP/s/mm2 tissue in the night and 6.75 x 1012 ATP/s/mm2 tissue with indoor light conditions during daytime. We propose the likely need for diurnal/circadian shifts in energy demands to efficiently stagger all energy consuming processes. Our data provide insights into vulnerabilities in the aging OR and suggest that diurnal constraints may be important when considering therapeutic interventions to optimize metabolism.
Collapse
Affiliation(s)
- Christina Kiel
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Stella Prins
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Alexander J. E. Foss
- Department of Ophthalmology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Philip J. Luthert
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- NIHR Moorfields Biomedical Research Centre, University College London, London, United Kingdom
| |
Collapse
|
2
|
Abstract
Ribosomes synthesize protein in all cells. Maintaining both the correct number and composition of ribosomes is critical for protein homeostasis. To address this challenge, cells have evolved intricate quality control mechanisms during assembly to ensure that only correctly matured ribosomes are released into the translating pool. However, these assembly-associated quality control mechanisms do not deal with damage that arises during the ribosomes' exceptionally long lifetimes and might equally compromise their function or lead to reduced ribosome numbers. Recent research has revealed that ribosomes with damaged ribosomal proteins can be repaired by the release of the damaged protein, thereby ensuring ribosome integrity at a fraction of the energetic cost of producing new ribosomes, appropriate for stress conditions. In this article, we cover the types of ribosome damage known so far, and then we review the known repair mechanisms before surveying the literature for possible additional instances of repair.
Collapse
Affiliation(s)
- Yoon-Mo Yang
- Current affiliation: Graduate School of Biomedical Science and Engineering and Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea;
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Katrin Karbstein
- Current affiliation: Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| |
Collapse
|
3
|
Cho CJ, Nguyen T, Rougeau AK, Huang YZ, To S, Lin X, Gamage ST, Meier JL, Mills JC. Inhibition of Ribosome Biogenesis in vivo Causes p53-Dependent Death and p53-Independent Dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614959. [PMID: 39386693 PMCID: PMC11463434 DOI: 10.1101/2024.09.25.614959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/12/2024]
Abstract
Ribosomes are critical for cell function; their synthesis (known as ribosome biogenesis; "RiBi") is complex and energy-intensive. Surprisingly little is known about RiBi in differentiated cells in vivo in adult tissue. Here, we generated mice with conditional deletion of Nat10 , an essential gene for RiBi and translation, to investigate effects of RiBi blockade in vivo. We focused on RiBi in a long-lived, ribosome-rich cell population, pancreatic acinar cells, during homeostasis and tumorigenesis. We observed a surprising latency of several weeks between Nat10 deletion and onset of structural and functional abnormalities and p53-dependent acinar cell death, which was associated with translocation of ribosomal proteins RPL5 and RPL11 into acinar cell nucleoplasm. Indeed, deletion of Trp53 could rescue acinar cells from apoptotic cell death; however, Nat10 Δ / Δ ; Trp53 Δ / Δ acinar cells remained morphologically and functionally abnormal. Moreover, the deletion of Trp53 did not rescue the lethality of inducible, globally deleted Nat10 in adult mice nor did it rescue embryonic lethality of global Nat10 deletion, emphasizing p53-independent consequences of RiBi inhibition. Deletion of Nat10 in acinar cells blocked Kras -oncogene-driven pancreatic intraepithelial neoplasia and subsequent pancreatic ductal adenocarcinoma, regardless of Trp53 mutation status. Together, our results provide initial insights into how cells respond to defects in RiBi and translation in vivo .
Collapse
|
4
|
Ni C, Schmitz DA, Lee J, Pawłowski K, Wu J, Buszczak M. Labeling of heterochronic ribosomes reveals C1ORF109 and SPATA5 control a late step in human ribosome assembly. Cell Rep 2022; 38:110597. [PMID: 35354024 PMCID: PMC9004343 DOI: 10.1016/j.celrep.2022.110597] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2021] [Revised: 02/03/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
Although features of ribosome assembly are shared between species, our understanding of the diversity, complexity, dynamics, and regulation of ribosome production in multicellular organisms remains incomplete. To gain insights into ribosome biogenesis in human cells, we perform a genome-wide loss-of-function screen combined with differential labeling of pre-existing and newly assembled ribosomes. These efforts identify two functionally uncharacterized genes, C1orf109 and SPATA5. We provide evidence that these factors, together with CINP and SPATA5L1, control a late step of human pre-60S maturation in the cytoplasm. Loss of either C1orf109 or SPATA5 impairs global protein synthesis. These results link ribosome assembly with neurodevelopmental disorders associated with recessive SPATA5 mutations. Based on these findings, we propose that the expanded repertoire of ribosome biogenesis factors likely enables multicellular organisms to coordinate multiple steps of ribosome production in response to different developmental and environmental stimuli. Ni et al. describe a live-cell labeling technique to track the production and movement of old and new ribosomes. Through a CRISPR screen, they identify C1ORF109 and SPATA5 as two ribosome biogenesis factors. They further reveal that SPATA5 allelic variants associated with neurodevelopmental defects impair ribosome maturation.
Collapse
Affiliation(s)
- Chunyang Ni
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Daniel A Schmitz
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Jeon Lee
- Lyda Hill-Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9365, USA
| | - Krzysztof Pawłowski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| |
Collapse
|
5
|
Fusco CM, Desch K, Dörrbaum AR, Wang M, Staab A, Chan ICW, Vail E, Villeri V, Langer JD, Schuman EM. Neuronal ribosomes exhibit dynamic and context-dependent exchange of ribosomal proteins. Nat Commun 2021; 12:6127. [PMID: 34675203 PMCID: PMC8531293 DOI: 10.1038/s41467-021-26365-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
Owing to their morphological complexity and dense network connections, neurons modify their proteomes locally, using mRNAs and ribosomes present in the neuropil (tissue enriched for dendrites and axons). Although ribosome biogenesis largely takes place in the nucleus and perinuclear region, neuronal ribosomal protein (RP) mRNAs have been frequently detected remotely, in dendrites and axons. Here, using imaging and ribosome profiling, we directly detected the RP mRNAs and their translation in the neuropil. Combining brief metabolic labeling with mass spectrometry, we found that a group of RPs rapidly associated with translating ribosomes in the cytoplasm and that this incorporation was independent of canonical ribosome biogenesis. Moreover, the incorporation probability of some RPs was regulated by location (neurites vs. cell bodies) and changes in the cellular environment (following oxidative stress). Our results suggest new mechanisms for the local activation, repair and/or specialization of the translational machinery within neuronal processes, potentially allowing neuronal synapses a rapid means to regulate local protein synthesis.
Collapse
Affiliation(s)
- Claudia M. Fusco
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Kristina Desch
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Aline R. Dörrbaum
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,Present Address: MOS, Center for Mass Spectrometry and Optical Spectroscopy, Mannheim, Germany
| | - Mantian Wang
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,grid.508836.0Present Address: Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Anja Staab
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Ivy C. W. Chan
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,grid.424247.30000 0004 0438 0426Present Address: German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Eleanor Vail
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Veronica Villeri
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,grid.412041.20000 0001 2106 639XPresent Address: Department of Neuroscience, University of Bordeaux, Bordeaux, France
| | - Julian D. Langer
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,grid.419494.50000 0001 1018 9466Max Planck Institute for Biophysics, Frankfurt, Germany
| | - Erin M. Schuman
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| |
Collapse
|
6
|
Why exercise builds muscles: titin mechanosensing controls skeletal muscle growth under load. Biophys J 2021; 120:3649-3663. [PMID: 34389312 PMCID: PMC8456289 DOI: 10.1016/j.bpj.2021.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2021] [Revised: 04/29/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022] Open
Abstract
Muscles sense internally generated and externally applied forces, responding to these in a coordinated hierarchical manner at different timescales. The center of the basic unit of the muscle, the sarcomeric M-band, is perfectly placed to sense the different types of load to which the muscle is subjected. In particular, the kinase domain of titin (TK) located at the M-band is a known candidate for mechanical signaling. Here, we develop a quantitative mathematical model that describes the kinetics of TK-based mechanosensitive signaling and predicts trophic changes in response to exercise and rehabilitation regimes. First, we build the kinetic model for TK conformational changes under force: opening, phosphorylation, signaling, and autoinhibition. We find that TK opens as a metastable mechanosensitive switch, which naturally produces a much greater signal after high-load resistance exercise than an equally energetically costly endurance effort. Next, for the model to be stable and give coherent predictions, in particular for the lag after the onset of an exercise regime, we have to account for the associated kinetics of phosphate (carried by ATP) and for the nonlinear dependence of protein synthesis rates on muscle fiber size. We suggest that the latter effect may occur via the steric inhibition of ribosome diffusion through the sieve-like myofilament lattice. The full model yields a steady-state solution (homeostasis) for muscle cross-sectional area and tension and, a quantitatively plausible hypertrophic response to training, as well as atrophy after an extended reduction in tension.
Collapse
|
7
|
Circular RNAs: The Brain Transcriptome Comes Full Circle. Trends Neurosci 2020; 43:752-766. [PMID: 32829926 DOI: 10.1016/j.tins.2020.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2020] [Revised: 07/02/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs) are a class of RNA molecules with a covalently closed loop structure formed by back-splicing of exon-exon junctions. The detection of circRNAs across many eukaryotic species, often with cell-type- and tissue-type-specific expression, has catalyzed a growing interest in understanding circRNA biogenesis and their potential functions. circRNAs are enriched in the brain, and accumulate upon neuronal differentiation and depolarization, suggesting that these RNAs are an integral component of the brain transcriptome, and may play functional roles. Here, we give an overview of the current understanding of circRNA biogenesis and function, discuss how circRNAs contribute to transcriptome complexity in the brain, and discuss recent data on the functional roles of circRNAs in the brain. We also discuss emerging data on the role of circRNAs in brain disorders and address common challenges of circRNA quantification in postmortem human brain.
Collapse
|
8
|
Aging and Caloric Restriction Modulate the DNA Methylation Profile of the Ribosomal RNA Locus in Human and Rat Liver. Nutrients 2020; 12:nu12020277. [PMID: 31973116 PMCID: PMC7070571 DOI: 10.3390/nu12020277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/24/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 12/21/2022] Open
Abstract
A growing amount of evidence suggests that the downregulation of protein synthesis is an adaptive response during physiological aging, which positively contributes to longevity and can be modulated by nutritional interventions like caloric restriction (CR). The expression of ribosomal RNA (rRNA) is one of the main determinants of translational rate, and epigenetic modifications finely contribute to its regulation. Previous reports suggest that hypermethylation of ribosomal DNA (rDNA) locus occurs with aging, although with some species- and tissue- specificity. In the present study, we experimentally measured DNA methylation of three regions (the promoter, the 5′ of the 18S and the 5′ of 28S sequences) in the rDNA locus in liver tissues from rats at two, four, 10, and 18 months. We confirm previous findings, showing age-related hypermethylation, and describe, for the first time, that this gain in methylation also occurs in human hepatocytes. Furthermore, we show that age-related hypermethylation is enhanced in livers of rat upon CR at two and 10 months, and that at two months a trend towards the reduction of rRNA expression occurs. Collectively, our results suggest that CR modulates age-related regulation of methylation at the rDNA locus, thus providing an epigenetic readout of the pro-longevity effects of CR.
Collapse
|
9
|
Penzo M, Montanaro L, Treré D, Derenzini M. The Ribosome Biogenesis-Cancer Connection. Cells 2019; 8:cells8010055. [PMID: 30650663 PMCID: PMC6356843 DOI: 10.3390/cells8010055] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 01/05/2023] Open
Abstract
Multifaceted relations link ribosome biogenesis to cancer. Ribosome biogenesis takes place in the nucleolus. Clarifying the mechanisms involved in this nucleolar function and its relationship with cell proliferation: (1) allowed the understanding of the reasons for the nucleolar changes in cancer cells and their exploitation in tumor pathology, (2) defined the importance of the inhibition of ribosome biogenesis in cancer chemotherapy and (3) focused the attention on alterations of ribosome biogenesis in the pathogenesis of cancer. This review summarizes the research milestones regarding these relevant relationships between ribosome biogenesis and cancer. The structure and function of the nucleolus will also be briefly described.
Collapse
Affiliation(s)
- Marianna Penzo
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
- Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
- Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
| | - Davide Treré
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy.
| | | |
Collapse
|
10
|
Hetman M, Slomnicki LP. Ribosomal biogenesis as an emerging target of neurodevelopmental pathologies. J Neurochem 2018; 148:325-347. [PMID: 30144322 DOI: 10.1111/jnc.14576] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
Abstract
Development of the nervous system is carried out by complex gene expression programs that are regulated at both transcriptional and translational level. In addition, quality control mechanisms such as the TP53-mediated apoptosis or neuronal activity-stimulated survival ensure successful neurogenesis and formation of functional circuitries. In the nucleolus, production of ribosomes is essential for protein synthesis. In addition, it participates in chromatin organization and regulates the TP53 pathway via the ribosomal stress response. Its tight regulation is required for maintenance of genomic integrity. Mutations in several ribosomal components and trans-acting ribosomal biogenesis factors result in neurodevelopmental syndromes that present with microcephaly, autism, intellectual deficits and/or progressive neurodegeneration. Furthermore, ribosomal biogenesis is perturbed by exogenous factors that disrupt neurodevelopment including alcohol or Zika virus. In this review, we present recent literature that argues for a role of dysregulated ribosomal biogenesis in pathogenesis of various neurodevelopmental syndromes. We also discuss potential mechanisms through which such dysregulation may lead to cellular pathologies of the developing nervous system including insufficient proliferation and/or loss of neuroprogenitors cells, apoptosis of immature neurons, altered neuronal morphogenesis, and neurodegeneration.
Collapse
Affiliation(s)
- Michal Hetman
- Departments of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA.,Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Lukasz P Slomnicki
- Departments of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA
| |
Collapse
|
11
|
Locati MD, Pagano JFB, Girard G, Ensink WA, van Olst M, van Leeuwen S, Nehrdich U, Spaink HP, Rauwerda H, Jonker MJ, Dekker RJ, Breit TM. Expression of distinct maternal and somatic 5.8S, 18S, and 28S rRNA types during zebrafish development. RNA (NEW YORK, N.Y.) 2017; 23:1188-1199. [PMID: 28500251 PMCID: PMC5513064 DOI: 10.1261/rna.061515.117] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/29/2017] [Accepted: 05/09/2017] [Indexed: 05/27/2023]
Abstract
There is mounting evidence that the ribosome is not a static translation machinery, but a cell-specific, adaptive system. Ribosomal variations have mostly been studied at the protein level, even though the essential transcriptional functions are primarily performed by rRNAs. At the RNA level, oocyte-specific 5S rRNAs are long known for Xenopus. Recently, we described for zebrafish a similar system in which the sole maternal-type 5S rRNA present in eggs is replaced completely during embryonic development by a somatic-type. Here, we report the discovery of an analogous system for the 45S rDNA elements: 5.8S, 18S, and 28S. The maternal-type 5.8S, 18S, and 28S rRNA sequences differ substantially from those of the somatic-type, plus the maternal-type rRNAs are also replaced by the somatic-type rRNAs during embryogenesis. We discuss the structural and functional implications of the observed sequence differences with respect to the translational functions of the 5.8S, 18S, and 28S rRNA elements. Finally, in silico evidence suggests that expansion segments (ES) in 18S rRNA, previously implicated in ribosome-mRNA interaction, may have a preference for interacting with specific mRNA genes. Taken together, our findings indicate that two distinct types of ribosomes exist in zebrafish during development, each likely conducting the translation machinery in a unique way.
Collapse
MESH Headings
- Animals
- Base Pairing
- Base Sequence
- DNA, Ribosomal/genetics
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/metabolism
- Nucleic Acid Conformation
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 28S/metabolism
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5.8S/metabolism
- Ribosomes/metabolism
- Sequence Alignment
- Zebrafish/genetics
- Zebrafish/growth & development
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Mauro D Locati
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Johanna F B Pagano
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Geneviève Girard
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Wim A Ensink
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Marina van Olst
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Selina van Leeuwen
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Ulrike Nehrdich
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, Gorlaeus Laboratories-Cell Observatorium, Leiden 2333 CE, the Netherlands
| | - Herman P Spaink
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, Gorlaeus Laboratories-Cell Observatorium, Leiden 2333 CE, the Netherlands
| | - Han Rauwerda
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Martijs J Jonker
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Rob J Dekker
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Timo M Breit
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| |
Collapse
|
12
|
Slomnicki LP, Malinowska A, Kistowski M, Palusinski A, Zheng JJ, Sepp M, Timmusk T, Dadlez M, Hetman M. Nucleolar Enrichment of Brain Proteins with Critical Roles in Human Neurodevelopment. Mol Cell Proteomics 2016; 15:2055-75. [PMID: 27053602 DOI: 10.1074/mcp.m115.051920] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/15/2015] [Indexed: 11/06/2022] Open
Abstract
To study nucleolar involvement in brain development, the nuclear and nucleolar proteomes from the rat cerebral cortex at postnatal day 7 were analyzed using LC-MS/iTRAQ methodology. Data of the analysis are available via ProteomeXchange with identifier PXD002188. Among 504 candidate nucleolar proteins, the overrepresented gene ontology terms included such cellular compartmentcategories as "nucleolus", "ribosome" and "chromatin". Consistent with such classification, the most overrepresented functional gene ontology terms were related to RNA metabolism/ribosomal biogenesis, translation, and chromatin organization. Sixteen putative nucleolar proteins were associated with neurodevelopmental phenotypes in humans. Microcephaly and/or cognitive impairment were the most common phenotypic manifestations. Although several such proteins have links to ribosomal biogenesis and/or genomic stability/chromatin structure (e.g. EMG1, RPL10, DKC1, EIF4A3, FLNA, SMC1, ATRX, MCM4, NSD1, LMNA, or CUL4B), others including ADAR, LARP7, GTF2I, or TCF4 have no such connections known. Although neither the Alazami syndrome-associated LARP7nor the Pitt-Hopkins syndrome-associated TCF4 were reported in nucleoli of non-neural cells, in neurons, their nucleolar localization was confirmed by immunostaining. In cultured rat hippocampal neurons, knockdown of LARP7 reduced both perikaryal ribosome content and general protein synthesis. Similar anti-ribosomal/anti-translation effects were observed after knockdown of the ribosomal biogenesis factor EMG1 whose deficiency underlies Bowen-Conradi syndrome. Finally, moderate reduction of ribosome content and general protein synthesis followed overexpression of two Pitt-Hopkins syndrome mutant variants of TCF4. Therefore, dysregulation of ribosomal biogenesis and/or other functions of the nucleolus may disrupt neurodevelopment resulting in such phenotypes as microcephaly and/or cognitive impairment.
Collapse
Affiliation(s)
- Lukasz P Slomnicki
- From the ‡Kentucky Spinal Cord Injury Research Center and the Departments of Neurological Surgery and
| | - Agata Malinowska
- ¶Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Michal Kistowski
- ¶Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Antoni Palusinski
- ‖Department of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jing-Juan Zheng
- From the ‡Kentucky Spinal Cord Injury Research Center and the Departments of Neurological Surgery and
| | - Mari Sepp
- **Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Tonis Timmusk
- **Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Michal Dadlez
- ¶Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Michal Hetman
- From the ‡Kentucky Spinal Cord Injury Research Center and the Departments of Neurological Surgery and §Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky;
| |
Collapse
|
13
|
Slomnicki LP, Pietrzak M, Vashishta A, Jones J, Lynch N, Elliot S, Poulos E, Malicote D, Morris BE, Hallgren J, Hetman M. Requirement of Neuronal Ribosome Synthesis for Growth and Maintenance of the Dendritic Tree. J Biol Chem 2016; 291:5721-5739. [PMID: 26757818 DOI: 10.1074/jbc.m115.682161] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2015] [Indexed: 01/23/2023] Open
Abstract
The nucleolus serves as a principal site of ribosome biogenesis but is also implicated in various non-ribosomal functions, including negative regulation of the pro-apoptotic transcription factor p53. Although disruption of the nucleolus may trigger the p53-dependent neuronal death, neurotoxic consequences of a selective impairment of ribosome production are unclear. Here, we report that in rat forebrain neuronal maturation is associated with a remarkable expansion of ribosomes despite postnatal down-regulation of ribosomal biogenesis. In cultured rat hippocampal neurons, inhibition of the latter process by knockdowns of ribosomal proteins S6, S14, or L4 reduced ribosome content without disrupting nucleolar integrity, cell survival, and signaling responses to the neurotrophin brain-derived neurotrophic factor. Moreover, reduced general protein synthesis and/or formation of RNA stress granules suggested diminished ribosome recruitment to at least some mRNAs. Such a translational insufficiency was accompanied by impairment of brain-derived neurotrophic factor-mediated dendritic growth. Finally, RNA stress granules and smaller dendritic trees were also observed when ribosomal proteins were depleted from neurons with established dendrites. Thus, a robust ribosomal apparatus is required to carry out protein synthesis that supports dendritic growth and maintenance. Consequently, deficits of ribosomal biogenesis may disturb neurodevelopment by reducing neuronal connectivity. Finally, as stress granule formation and dendritic loss occur early in neurodegenerative diseases, disrupted homeostasis of ribosomes may initiate and/or amplify neurodegeneration-associated disconnection of neuronal circuitries.
Collapse
Affiliation(s)
- Lukasz P Slomnicki
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Maciej Pietrzak
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Aruna Vashishta
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - James Jones
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Nicholas Lynch
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Shane Elliot
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Eric Poulos
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - David Malicote
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Bridgit E Morris
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Justin Hallgren
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Michal Hetman
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and; Departments of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292.
| |
Collapse
|
14
|
DNA repair abnormalities leading to ataxia: shared neurological phenotypes and risk factors. Neurogenetics 2014; 15:217-28. [PMID: 25038946 DOI: 10.1007/s10048-014-0415-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/01/2014] [Accepted: 07/11/2014] [Indexed: 02/06/2023]
Abstract
Since identification of mutations in the ATM gene leading to ataxia-telangiectasia, enormous efforts have been devoted to discovering the roles this protein plays in DNA repair as well as other cellular functions. Even before the identification of ATM mutations, it was clear that other diseases with different genomic loci had very similar neurological symptoms. There has been significant progress in understanding why cancer and immunodeficiency occur in ataxia-telangiectasia even though many details remain to be determined, but the field is no closer to determining why the nervous system requires ATM and other DNA repair genes. Even though rodent disease models have similar DNA repair abnormalities as the human diseases, they have no consistent, robust neuropathological phenotype making it difficult to understand the neurological underpinnings of disease. Therefore, it may be useful to reassess the neurological and neuropathological characteristics of ataxia-telangiectasia in human patients to look for potential commonalities in DNA repair diseases that result in ataxia. In doing so, it is clear that ataxia-telangiectasia and similar diseases share neurological features other than merely ataxia, such as length-dependent motor and sensory neuropathies, and that the neuroanatomical localization for these symptoms is understood. Cells affected in ataxia-telangiectasia and similar diseases are some of the largest single nucleated cells in the body. In addition, a subset of these diseases also has extrapyramidal movements and oculomotor apraxia. These neurological and neuropathological similarities may indicate a common DNA repair related pathogenesis with very large cell size as a critical risk factor.
Collapse
|
15
|
Hetman M, Pietrzak M. Emerging roles of the neuronal nucleolus. Trends Neurosci 2012; 35:305-14. [PMID: 22305768 DOI: 10.1016/j.tins.2012.01.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2011] [Revised: 12/15/2011] [Accepted: 01/03/2012] [Indexed: 12/22/2022]
Abstract
Although, the nucleolus has been observed for almost 200 years in neurons, studies that directly address the neuronal roles of this subnuclear structure have appeared only recently. The aim of this review is to discuss recent progress and identify some critical questions that remain to be answered. As expected for the cellular center of ribosome biogenesis, the nucleolus is essential for the growth of developing neurons, including neurite morphogenesis and long-term maintenance of mature neurons. In addition, the nucleolus contributes to neuronal stress responses, including the regulation of apoptosis. Hence, disrupted neurodevelopment or neurodegeneration are among the likely consequences of nucleolar dysfunction. Conversely, the presence of active nucleoli may determine the potential for neurorepair.
Collapse
Affiliation(s)
- Michal Hetman
- Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, Louisville, Kentucky 40292, USA.
| | | |
Collapse
|
16
|
Smetana K, Jirásková I, Mikulenková D, Klamová H. Nucleolar and cytoplasmic RNA density-concentration in leukemia granulocytic progenitors in human bone marrow biopsies: A short cytochemical note. Acta Histochem 2011; 113:58-61. [PMID: 19698977 DOI: 10.1016/j.acthis.2009.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2009] [Revised: 07/08/2009] [Accepted: 07/09/2009] [Indexed: 12/20/2022]
Abstract
The present study was undertaken to provide more information on the differentiation and maturation of human granulocytes using computer-assisted image RNA densitometry at single-cell level. The bone marrow of patients suffering from chronic phase of chronic myeloid leukemia represents a very convenient model for such measurements because of the satisfactory number of early stages, as well as advanced stages, of the granulocytic cell lineage represented by neutrophils. In contrast to the erythroid cell lineage, similar nucleolar and cytoplasmic RNA density-concentration values were found only in early granulocytic progenitors such as myeloblasts and promyelocytes. In advanced stages of the granulocytic development starting with myelocytes, these cells were characterized by a larger decrease in the cytoplasmic RNA concentration in comparison with that of the nucleoli. Thus, the nucleolar to cytoplasmic RNA concentration ratio in these cells was above 1. On the other hand, it should be pointed out that late differentiation stages of granulocytes, starting with myelocytes, possessed nucleolar bodies (nucleoli without surrounding perinucleolar chromatin) of a markedly reduced size.
Collapse
Affiliation(s)
- Karel Smetana
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | | | | | | |
Collapse
|
17
|
Gomes C, Smith SC, Youssef MN, Zheng JJ, Hagg T, Hetman M. RNA polymerase 1-driven transcription as a mediator of BDNF-induced neurite outgrowth. J Biol Chem 2010; 286:4357-63. [PMID: 21098478 DOI: 10.1074/jbc.m110.170134] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023] Open
Abstract
Neurite outgrowth is essential for development of the nervous system. Neurotrophins including BDNF are among extracellular signals that regulate neurite outgrowth. The ERK1/2 pathway contributes to intracellular signaling networks transducing the pro-neuritic effects of BDNF. In the nucleolus, RNA polymerase-1 (Pol1)-mediated transcription regulates ribosomal biogenesis, enabling cellular protein synthesis and growth. Hence, we tested the possibility that Pol1 is an effector for pro-neuritic signals such as BDNF. We report that Pol1-mediated nucleolar transcription was increased by BDNF in an ERK1/2-dependent manner in rat forebrain neurons. Conversely, in cultured hippocampal neurons, knockdown of a Pol1 coactivator, transcription initiation factor 1A (TIF1A), attenuated BDNF- or ERK1/2-induced neurite outgrowth. Also, upon overexpression, a constitutively active mutant of TIF1A strongly promoted neurite outgrowth, including increases in total neurite length and branching. Finally, overexpression of wild-type TIF1A enhanced the pro-neuritic effects of ERK1/2 activation. These observations indicate that the Pol1-mediated nucleolar transcription regulates neurite outgrowth and serves as a major pro-neuritic effector of the BDNF-activated ERK1/2 pathway. Thus, development of the nervous system appears critically dependent on the nucleolus.
Collapse
Affiliation(s)
- Cynthia Gomes
- Department of Neurological Surgery, University of Louisville, Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky 40292, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Although DNA damage-induced neurotoxicity is implicated in various pathologies of the nervous system, its underlying mechanisms are not completely understood. Transcription is a DNA transaction that is highly active in the nervous system. In addition to its direct role in expression of the genetic information, transcription contributes to DNA damage detection and repair as well as chromatin organization including biogenesis of the nucleolus. Transcription is inhibited by DNA single-strand breaks and DNA adducts. Hence, transcription inhibition may be an important contributor to the neurotoxic consequences of such types of DNA damage. This review discusses the existing evidence in support of the latter hypothesis. The presented literature suggests that neuronal DNA damage interferes with the RNA-Polymerase-2-dependent transcription of genes encoding proteins with critical functions in neurotransmission and intracellular signaling. The latter category includes extracellular signal-regulated kinase-1/2 mitogen-activated protein kinase phosphatases whose lowered expression results in chronic activation of extracellular signal-regulated kinase-1/2 and its reduced responsiveness to physiological stimuli. Conversely, DNA damage-induced inhibition of RNA-Polymerase-1 and the subsequent disruption of the nucleolus induce p53-mediated apoptosis of developing neurons. Finally, decreasing nucleolar transcription may link DNA damage to chronic neurodegeneration in adults.
Collapse
Affiliation(s)
- Michal Hetman
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, Louisville, KY 40292, USA.
| | | | | |
Collapse
|
19
|
A short cytochemical note on the nucleolar and cytoplasmic RNA concentration in differentiating cells represented by human erythroblasts. Acta Histochem 2010; 112:407-11. [PMID: 19386355 DOI: 10.1016/j.acthis.2009.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2009] [Revised: 02/17/2009] [Accepted: 02/23/2009] [Indexed: 11/21/2022]
Abstract
The present study was undertaken to provide more information on the nucleolar and cytoplasmic RNA concentration in differentiating cells of the erythroid lineage. These cells represent a convenient model to study cell differentiation since all stages are morphologically well characterised. The bone marrow of patients suffering from the chronic phase of chronic myeloid leukaemia without a large increase in the granulocyte to erythroid ratio provided erythroblasts for computer-assisted image density measurements of RNA in nucleoli and cytoplasm at the single cell level. The measurements indicated a significant decrease of the nucleolar and cytoplasmic RNA concentration only in advanced stages of erythroblast differentiation (polychromatic and orthochromatic erythroblasts). The ratio of the nucleolar to cytoplasmic RNA concentration was otherwise very stable and did not change during differentiation, being similar in the early and advanced stages of erythroblastic development. In contrast, the nucleolar size significantly decreased even during the early stages of erythroid development (basophilic erythroblasts). This marked decrease in the nucleolar diameter in differentiating erythroblasts and the less marked decrease in the nucleolar RNA concentration suggest that the amount of RNA in the nucleolus is closely associated with nucleolar size rather than on its concentration within the nucleolar body.
Collapse
|
20
|
Abstract
During terminal differentiation of lens fibre cells all cytoplasmic organelles are degraded abruptly. This process eliminates light-scattering elements from the optical axis of the lens and thereby ensures the transparency of the tissue. With the breakdown of the nucleus, transcription ceases, but the degree to which extant RNA is translated in the anucleated cells is uncertain. Previous studies indicated that fibre cell mRNA is unusually stable. For example, full-length delta-crystallin transcripts have been detected in core fibres months after transcription in these cells ceased. In the present study, we used the embryonic chicken lens as a model to examine the fate of RNA in the period immediately before and after organelle degradation. We mapped the tissue distribution of ribosomal RNA (rRNA) using acridine orange staining, in situ hybridization, and direct visualization of ribosomes by electron microscopy. These experiments suggested that rRNA decayed in the anucleated core fibre cells with a half-life of approximately 2.5 days. Similarly, in situ hybridization analysis of polyadenylated transcripts, beta-actin, or GAPDH mRNA indicated that these sequences were not stable in the core fibre cells. However, in agreement with earlier findings, we detected a strong in situ hybridization signal for delta-crystallin in the lens core, many days after transcription had ceased. We used quantitative PCR to compare the levels of GAPDH, L14 and delta-crystallin transcripts in the core region during development. Surprisingly, all three mRNAs decayed with indistinguishable kinetics. We conclude that the persistent delta-crystallin hybridization signal was not evidence of an unusually stable mRNA but, rather, reflected the extraordinary initial abundance of this transcript. Taken together, our data indicate that the half-life of both mRNA and the protein synthetic machinery in the lens core is only a few days. Given that, in vertebrate lenses, nuclei in this region of the lens are degraded during embryonic development, protein synthesis in central lens fibre cells is probably completed well before birth.
Collapse
Affiliation(s)
- Beverly Faulkner-Jones
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
21
|
Brandenburger Y, Arthur JF, Woodcock EA, Du XJ, Gao XM, Autelitano DJ, Rothblum LI, Hannan RD. Cardiac hypertrophy in vivo is associated with increased expression of the ribosomal gene transcription factor UBF. FEBS Lett 2003; 548:79-84. [PMID: 12885411 DOI: 10.1016/s0014-5793(03)00744-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
The ribosomal DNA transcription-specific factor, UBF, is a key target for the regulation of ribosomal RNA synthesis and hypertrophic growth of isolated neonatal cardiomyocytes. In this study, we have examined whether UBF expression is also an important determinant of cardiac growth rates in vivo. We show that rDNA transcription, rRNA synthesis and UBF expression in left ventricular myocytes isolated from mice 1-6 weeks following transverse aortic constriction were significantly increased (2.5-3.5-fold) compared to the levels in myocytes from the left ventricle of sham-operated mice.
Collapse
Affiliation(s)
- Yves Brandenburger
- Molecular Cardiology, Baker Heart Research Institute, P.O. Box 6492, St Kilda Road Central, Melbourne, Vic., 8008, Australia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kastner P, Mosgoeller W, Fang-Kircher S, Kitzmueller E, Kirchner L, Hoeger H, Seither P, Lubec G, Lubec B. Deficient brain RNA polymerase and altered nucleolar structure persists until day 8 after perinatal asphyxia of the rat. Pediatr Res 2003; 53:62-71. [PMID: 12508083 DOI: 10.1203/00006450-200301000-00013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022]
Abstract
RNA polymerases (POL) are integral constituents of the protein synthesis machinery, with POL I and POL III coding for ribosomal RNA and POL II coding for protein. POL I is located in the nucleolus and transcribes class I genes, those that code for large ribosomal RNA. It has been reported that the POL system is seriously affected in perinatal asphyxia (PA) immediately after birth. Because POL I is necessary for protein synthesis and brain protein synthesis was shown to be deranged after hypoxic-ischemic conditions, we aimed to study whether POL derangement persists in a simple, well-documented animal model of graded global PA at the activity, mRNA, protein, and morphologic level until 8 d after the asphyctic insult. Nuclear POL I activity was determined according to a radiochemical method; mRNA steady state and protein levels of RPA4O-an essential subunit of POL I and III-were evaluated by blotting methods; and the POL I subunit polymerase activating factor-53 was evaluated using immunohistochemistry. Silver staining and transmission electron microscopy were used to examine the nucleolus. At the eighth day after PA, nuclear POL I decreased with the length of the asphyctic period, whereas mRNA and protein levels for RPA4O were unchanged. The subunit polymerase activating factor-53, however, was unambiguously reduced in several brain regions. Dramatic changes of nucleolar morphology were observed, the main finding being nucleolar disintegration at the electron microscopy level. We suggest that severe acidosis and/or deficient protein kinase C in the brain during the asphyctic period may be responsible for disintegration of the nucleolus as well as for decreased POL activity persisting until the eighth day after PA. The biologic effect may be that PA causes impaired RNA and protein synthesis, which has been already observed in hypoxic-ischemic states.
Collapse
|
23
|
Stefanovsky VY, Pelletier G, Hannan R, Gagnon-Kugler T, Rothblum LI, Moss T. An immediate response of ribosomal transcription to growth factor stimulation in mammals is mediated by ERK phosphorylation of UBF. Mol Cell 2001; 8:1063-73. [PMID: 11741541 DOI: 10.1016/s1097-2765(01)00384-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Ribosomal transcription in mammals is regulated in response to growth, differentiation, disease, and aging, but the mechanisms of this regulation have remained unresolved. We show that epidermal growth factor induces immediate, ERK1/2-dependent activation of endogenous ribosomal transcription, while inactivation of ERK1/2 causes an equally immediate reversion to the basal transcription level. ERK1/2 was found to phosphorylate the architectural transcription factor UBF at amino acids 117 and 201 within HMG boxes 1 and 2, preventing their interaction with DNA. Mutation of these sites inhibited transcription activation and abrogated the transcriptional response to ERK1/2. Thus, growth factor regulation of ribosomal transcription likely acts by a cyclic modulation of DNA architecture. The data suggest a central role for ribosome biogenesis in growth regulation.
Collapse
Affiliation(s)
- V Y Stefanovsky
- Cancer Research Centre and Department of Medical Biology, Laval University, Hôtel-Dieu de Québec, 11 côte du Palais, G1R 2J6, Québec, Canada
| | | | | | | | | | | |
Collapse
|
24
|
García-Ovejero D, Trejo JL, Ciriza I, Walton KD, García-Segura LM. Space flight affects magnocellular supraoptic neurons of young prepuberal rats: transient and permanent effects. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 130:191-205. [PMID: 11675122 DOI: 10.1016/s0165-3806(01)00236-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Effects of microgravity on postural control and volume of extracellular fluids as well as stress associated with space flight may affect the function of hypothalamic neurosecretory neurons. Since environmental modifications in young animals may result in permanent alterations in neuroendocrine function, the present study was designed to determine the effect of a space flight on oxytocinergic and vasopressinergic magnocellular hypothalamic neurons of prepuberal rats. Fifteen-day-old Sprague-Dawley female rats were flown aboard the Space Shuttle Columbia (STS-90, Neurolab mission, experiment 150) for 16 days. Age-matched litters remained on the ground in cages similar to those of the flight animals. Six animals from each group were killed on the day of landing and eight animals from each group were maintained under standard vivarium conditions and killed 18 weeks after landing. Several signs of enhanced transcriptional and biosynthetic activity were observed in magnocellular supraoptic neurons of flight animals on the day of landing compared to control animals. These include increased c-Fos expression, larger nucleoli and cytoplasm, and higher volume occupied in the neuronal perikaryon by mitochondriae, endoplasmic reticulum, Golgi apparatus, lysosomes and cytoplasmic inclusions known as nematosomes. In contrast, the volume occupied by neurosecretory vesicles in the supraoptic neuronal perikarya was significantly decreased in flight rats. This decrease was associated with a significant decrease in oxytocin and vasopressin immunoreactive levels, suggestive of an increased hormonal release. Vasopressin levels, cytoplasmic volume and c-Fos expression returned to control levels by 18 weeks after landing. These reversible effects were probably associated to osmotic stimuli resulting from modifications in the volume and distribution of extracellular fluids and plasma during flight and landing. However, oxytocin levels were still reduced at 18 weeks after landing in flight animals compared to controls. This indicates that space flight during prepuberal age may induce irreversible modifications in the regulation of oxytocinergic neurons, which in turn may result in permanent endocrine and behavioral impairments.
Collapse
Affiliation(s)
- D García-Ovejero
- Instituto Cajal, C.S.I.C., Avda. Doctor Arce 37, E-28002 Madrid, Spain.
| | | | | | | | | |
Collapse
|
25
|
Van Nieuwenhoven FA, Martin X, Heijnen VV, Cornelussen RN, Snoeckx LH. HSP70-mediated acceleration of translational recovery after stress is independent of ribosomal RNA synthesis. Eur J Cell Biol 2001; 80:586-92. [PMID: 11675934 DOI: 10.1078/0171-9335-00192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
HSP70 is known to protect cells against stressful events. In the present study, the hypothesis was investigated that elevated HSP70 levels protect RNA polymerase I during stress, leading to decreased inhibition of ribosomal RNA (rRNA) synthesis and accelerated recovery of protein translation after stress. To this end, transcriptional and translational activity was studied in H9c2 cells during recovery after a severe heat treatment (SHT, 1 h 45 degrees C) in the presence of elevated HSP70 levels. The latter was achieved by heat pretreatment or by adenovirus-mediated hsp70 gene transfer. Rates of transcription and translation were determined by measuring cellular 3H-labelled uridine and leucine incorporation, respectively. The two types of pretreatment did not affect basal rates of transcription and translation, immediately before SHT. During SHT, both transcriptional and translational rates dropped to less than 10% of basal levels in pretreated as well as non-pretreated cells. Two and four h after SHT, both transcriptional and translational rates were significantly higher in HSP70-overexpressing cells compared to non-pretreated cells. However, immediately after SHT, transcription rates were similarly depressed in non-pretreated and pretreated cells, showing that increased levels of HSP70 did not protect RNA polymerase I activity during SHT. Thus, the HSP70-mediated acceleration of translational recovery is not preceded in time by an enhanced recovery of rRNA synthesis. Therefore, the HSP70-mediated early recovery of protein synthesis after heat stress is independent of rRNA synthesis.
Collapse
Affiliation(s)
- F A Van Nieuwenhoven
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands.
| | | | | | | | | |
Collapse
|
26
|
Lafarga M, Andres MA, Berciano MT, Maquiera E. Organization of nucleoli and nuclear bodies in osmotically stimulated supraoptic neurons of the rat. J Comp Neurol 1991; 308:329-39. [PMID: 1865004 DOI: 10.1002/cne.903080302] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022]
Abstract
This study has analyzed variations in the number of nucleoli and nuclear bodies, as well as in their ultrastructural and cytochemical organization, after the osmotically induced activation of supraoptic nucleus (SON) neurons of the rat. The number of nucleoli and nuclear bodies and also the nucleolar size were determined on smear preparations of previously block-impregnated SON. The mean number of nucleoli per cell was 1.35 +/- 0.6 (mean +/- SDM) in control rats. No significant variations in this value were registered either in dehydrated or rehydrated rats. The mean nucleolar volume and the total nucleolar volume per cell showed a significant increase in dehydrated rats with respect to the controls, whereas these two parameters tended to return to control values in rats rehydrated after dehydration. The mean number of nuclear bodies per cell increased significantly from 0.56 +/- 0.50 (mean +/- SDM) in control rats to 1.54 +/- 1.1 after 6 days of dehydration. By electron microscopy, SON neurons displayed a reticulated nucleolar configuration. After the osmotically induced neuronal activation, there was an increase in the proportion of the total nucleolar area occupied by the granular component, and also a reduction in the mean fibrillar-center area. The most characteristic nucleolar features in rehydrated rats were the tendency for the granular component to be segregated and the occurrence of intranucleolar vacuoles. Ultrastructural cytochemistry with a specific silver method revealed a selective silver reaction on the coiled threads of the nuclear bodies--identified as "coiled bodies"--and on the nucleolar fibrillar components in all animal groups studied. Since nucleoli play a major role in ribosome biogenesis, a relationship between these nucleolar changes and the level of cellular activity of SON neurons is proposed. Furthermore, the response of nuclear "coiled bodies" to neuronal activation suggests their participation in the processing and transport of rRNA precursors.
Collapse
Affiliation(s)
- M Lafarga
- Department of Anatomy and Cell Biology, Faculty of Medicine, Santander, Spain
| | | | | | | |
Collapse
|
27
|
Corcoran JJ, Wilson SP, Kirshner N. Turnover and storage of newly synthesized adenine nucleotides in bovine adrenal medullary cell cultures. J Neurochem 1986; 46:151-60. [PMID: 3940276 DOI: 10.1111/j.1471-4159.1986.tb12938.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Abstract
The adenine nucleotide stores of cultured adrenal medullary cells were radiolabeled by incubating the cells with 32Pi and [3H]adenosine and the turnover, subcellular distribution, and secretion of the nucleotides were examined. ATP represented 84-88% of the labeled adenine nucleotides, ADP 11-13%, and AMP 1-3%. The turnover of 32P-adenine nucleotides and 3H-nucleotides was biphasic and virtually identical; there was an initial fast phase with a t1/2 of 3.5-4.5 h and a slow phase with a half-life varying from 7 to 17 days, depending upon the particular cell preparation. The t1/2 of the slow phase for labeled adenine nucleotides was the same as that for the turnover of labeled catecholamines. The subcellular distribution of labeled adenine nucleotides provides evidence that there are at least two pools of adenine nucleotides which make up the component with the long half-life. One pool, which contains the bulk of endogenous nucleotides (75% of the total), is present within the chromaffin vesicles; the subcellular localization of the second pool has not been identified. The studies also show that [3H]ATP and [32P]ATP are distributed differently within the cell; 3 days after labeling 75% of the [32P]ATP was present in chromaffin vesicles while only 35% of the [3H]ATP was present in chromaffin vesicles. Evidence for two pools of ATP with long half-lives and for the differential distribution of [32P]ATP and [3H]ATP was also obtained from secretion studies. Stimulation of cell cultures with nicotine or scorpion venom 24 h after labeling with [3H]adenosine and 32Pi released relatively twice as much catecholamine as 32P-labeled compounds and relatively three times as much catecholamine as 3H-labeled compounds.
Collapse
|
28
|
Stoykova AS, Dabeva MD, Dimova RN, Hadjiolov AA. Ribosome biogenesis and nucleolar ultrastructure in neuronal and oligodendroglial rat brain cells. J Neurochem 1985; 45:1667-76. [PMID: 3850925 DOI: 10.1111/j.1471-4159.1985.tb10521.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023]
Abstract
The absolute amounts of precursor to ribosomal RNA (pre-rRNA) and ribosomal RNA (rRNA) in isolated rat brain neuronal and oligodendroglial nuclei were determined. The amount of the major pre-rRNA and rRNA species in neuronal nuclei was about twofold higher than in oligodendroglial nuclei. The relative rate of pre-rRNA synthesis in vivo was 2.3- to 2.7-fold higher in neuronal as compared with oligodendroglial nuclei. This corresponds to a 2.7-fold higher activity of the "template-bound" RNA polymerase I in isolated neuronal nuclei, whereas the activity of the "free" enzyme in both neuronal and glial nuclei was almost identical. The higher transcription rates of rRNA genes correlated with the markedly more prominent fibrillar component in neuronal nucleoli. The turnover times of the major pre-rRNA and rRNA species in neuronal and oligodendroglial nuclei were similar, except for 45S pre-rRNA, which turned over at an approximately 1.5-fold slower rate in neuronal nuclei. The relative rates of processing of pre-rRNA and of nucleocytoplasmic transport of rRNA in neuronal cells were approximately 2.7-fold higher than in oligodendroglial cells and corresponded to the differences in rRNA gene transcription rates. The established ribosome formation features correlated with an abundant (neurons) or exceedingly scarce (oligodendrocytes) nucleolar granular component. The turnover rate of cytoplasmic ribosomes in rat brain neurons was twofold slower than in oligodendrocytes, largely because of the about fivefold higher amount of ribosomes in the cytoplasm of neurons. We conclude that ribosome formation and turnover in neuronal and oligodendroglial cells are adapted to the protein synthetic levels in these two types of brain cells.
Collapse
|
29
|
Filion AM, Laughrea M. Translation fidelity in the aging mammal: studies with an accurate in vitro system on aged rats. Mech Ageing Dev 1985; 29:125-42. [PMID: 3974306 DOI: 10.1016/0047-6374(85)90013-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Abstract
The accuracy of poly(U) translation was measured in the post-mitochondrial supernatant from whole brain of 7- and 33-month-old Fischer 344 rats. Measurements were made: under in vitro conditions in which translation fidelity was similar to what is known about the accuracy of translation in vivo; and under stresses of varying Mg2+ concentrations (3-12 mM), pH (6.6-8.4), temperature (26-42 degrees C) and in the presence or absence of 2.4% ethanol. No significant difference could be detected between the responses of old and young extracts, the activities of their Phe- and Leu-tRNA synthetases, and their endogenous amounts of Phe-tRNA and Leu-tRNA, despite the fact that the rats studied corresponded in age (by actuarial criteria) to 90-year-old human beings. The accuracy of poly(U) translation was also studied: in liver and hippocampus extracts from 7- and 33-month-old rats; and in brain extracts from 3- and 29-month-old rats. The results were similar to those obtained in brain extracts from 7-month-old rats. Explanations are provided for the inconsistencies which exist in the literature regarding the effect of aging on the accuracy of protein synthesis. It is shown that the inconsistencies are likely to reflect inadequate methodology in three previous studies rather than biological diversity in the control of translation fidelity in aged animals.
Collapse
|
30
|
Lindholm DB. Thyroxine preferentially stimulates transcription by isolated neuronal nuclei in the developing rat brain cortex. FEBS Lett 1984; 171:240-4. [PMID: 6202558 DOI: 10.1016/0014-5793(84)80495-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/18/2023]
Abstract
The administration of thyroxine to neonatal rats stimulates RNA synthesis by neuronal nuclei isolated from the developing rat brain cortex. Glial nuclei are relatively resistant to thyroxine treatment. The activity of neuronal RNA polymerase II is particularly stimulated by the hormone. Thyroxine also affects neuronal chromatin structure as shown by changes in the relative proportion of different subnuclear fractions obtained by gentle micrococcal nuclease digestion of nuclei from hormone-treated rats.
Collapse
|