1
|
Tan RJ, Liu Y. Matrix metalloproteinases in kidney homeostasis and diseases: an update. Am J Physiol Renal Physiol 2024; 327:F967-F984. [PMID: 39361724 PMCID: PMC11687849 DOI: 10.1152/ajprenal.00179.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases with important roles in kidney homeostasis and pathology. While capable of collectively degrading each component of the extracellular matrix, MMPs also degrade nonmatrix substrates to regulate inflammation, epithelial plasticity, proliferation, apoptosis, and angiogenesis. More recently, intriguing mechanisms that directly alter podocyte biology have been described. There is now irrefutable evidence for MMP dysregulation in many types of kidney disease including acute kidney injury, diabetic and hypertensive nephropathy, polycystic kidney disease, and Alport syndrome. This updated review will detail the complex biology of MMPs in kidney disease.
Collapse
Affiliation(s)
- Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Gupta S, Mandal S, Banerjee K, Almarshood H, Pushpakumar SB, Sen U. Complex Pathophysiology of Acute Kidney Injury (AKI) in Aging: Epigenetic Regulation, Matrix Remodeling, and the Healing Effects of H 2S. Biomolecules 2024; 14:1165. [PMID: 39334931 PMCID: PMC11429536 DOI: 10.3390/biom14091165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The kidney is an essential excretory organ that works as a filter of toxins and metabolic by-products of the human body and maintains osmotic pressure throughout life. The kidney undergoes several physiological, morphological, and structural changes with age. As life expectancy in humans increases, cell senescence in renal aging is a growing challenge. Identifying age-related kidney disorders and their cause is one of the contemporary public health challenges. While the structural abnormalities to the extracellular matrix (ECM) occur, in part, due to changes in MMPs, EMMPRIN, and Meprin-A, a variety of epigenetic modifiers, such as DNA methylation, histone alterations, changes in small non-coding RNA, and microRNA (miRNA) expressions are proven to play pivotal roles in renal pathology. An aged kidney is vulnerable to acute injury due to ischemia-reperfusion, toxic medications, altered matrix proteins, systemic hemodynamics, etc., non-coding RNA and miRNAs play an important role in renal homeostasis, and alterations of their expressions can be considered as a good marker for AKI. Other epigenetic changes, such as histone modifications and DNA methylation, are also evident in AKI pathophysiology. The endogenous production of gaseous molecule hydrogen sulfide (H2S) was documented in the early 1980s, but its ameliorative effects, especially on kidney injury, still need further research to understand its molecular mode of action in detail. H2S donors heal fibrotic kidney tissues, attenuate oxidative stress, apoptosis, inflammation, and GFR, and also modulate the renin-angiotensin-aldosterone system (RAAS). In this review, we discuss the complex pathophysiological interplay in AKI and its available treatments along with future perspectives. The basic role of H2S in the kidney has been summarized, and recent references and knowledge gaps are also addressed. Finally, the healing effects of H2S in AKI are described with special emphasis on epigenetic regulation and matrix remodeling.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Subhadeep Mandal
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Kalyan Banerjee
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Hebah Almarshood
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Sathnur B Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
3
|
van Heugten MH, Blijdorp CJ, Arjune S, van Willigenburg H, Bezstarosti K, Demmers JA, Musterd-Bhaggoe U, Meijer E, Gansevoort RT, Zietse R, Hayat S, Kramann R, Müller RU, Salih M, Hoorn EJ. Matrix Metalloproteinase-7 in Urinary Extracellular Vesicles Identifies Rapid Disease Progression in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2024; 35:321-334. [PMID: 38073039 PMCID: PMC10914202 DOI: 10.1681/asn.0000000000000277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/12/2023] [Indexed: 03/02/2024] Open
Abstract
SIGNIFICANCE STATEMENT There is an unmet need for biomarkers of disease progression in autosomal dominant polycystic kidney disease (ADPKD). This study investigated urinary extracellular vesicles (uEVs) as a source of such biomarkers. Proteomic analysis of uEVs identified matrix metalloproteinase 7 (MMP-7) as a biomarker predictive of rapid disease progression. In validation studies, MMP-7 was predictive in uEVs but not in whole urine, possibly because uEVs are primarily secreted by tubular epithelial cells. Indeed, single-nucleus RNA sequencing showed that MMP-7 was especially increased in proximal tubule and thick ascending limb cells, which were further characterized by a profibrotic phenotype. Together, these data suggest that MMP-7 is a biologically plausible and promising uEV biomarker for rapid disease progression in ADPKD. BACKGROUND In ADPKD, there is an unmet need for early markers of rapid disease progression to facilitate counseling and selection for kidney-protective therapy. Our aim was to identify markers for rapid disease progression in uEVs. METHODS Six paired case-control groups ( n =10-59/group) of cases with rapid disease progression and controls with stable disease were formed from two independent ADPKD cohorts, with matching by age, sex, total kidney volume, and genetic variant. Candidate uEV biomarkers were identified by mass spectrometry and further analyzed using immunoblotting and an ELISA. Single-nucleus RNA sequencing of healthy and ADPKD tissue was used to identify the cellular origin of the uEV biomarker. RESULTS In the discovery proteomics experiments, the protein abundance of MMP-7 was significantly higher in uEVs of patients with rapid disease progression compared with stable disease. In the validation groups, a significant >2-fold increase in uEV-MMP-7 in patients with rapid disease progression was confirmed using immunoblotting. By contrast, no significant difference in MMP-7 was found in whole urine using ELISA. Compared with healthy kidney tissue, ADPKD tissue had significantly higher MMP-7 expression in proximal tubule and thick ascending limb cells with a profibrotic phenotype. CONCLUSIONS Among patients with ADPKD, rapid disease progressors have higher uEV-associated MMP-7. Our findings also suggest that MMP-7 is a biologically plausible biomarker for more rapid disease progression.
Collapse
Affiliation(s)
- Martijn H. van Heugten
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Charles J. Blijdorp
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sita Arjune
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Hester van Willigenburg
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Usha Musterd-Bhaggoe
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Esther Meijer
- Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Ron T. Gansevoort
- Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert Zietse
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sikander Hayat
- Medical Faculty, Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Rafael Kramann
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Medical Faculty, Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
- Division of Nephrology, RWTH Aachen University, Aachen, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Mahdi Salih
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ewout J. Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Avello A, Guerrero-Mauvecin J, Sanz AB. Urine MMP7 as a kidney injury biomarker. Clin Kidney J 2024; 17:sfad233. [PMID: 38186894 PMCID: PMC10768779 DOI: 10.1093/ckj/sfad233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 01/09/2024] Open
Abstract
Matrix metalloproteinase 7 (MMP-7) is a secreted endopeptidase involved in the degradation of extracellular matrix components and the activation of cytokines and growth factors. The regulation of MMP-7 can be transcriptionally regulated by AP-1 or Wnt/β-catenin or post-translationally by proteolytic activation. MMP-7 expression is low or absent in the healthy kidney, but is significantly upregulated in kidney injury, including AKI and CKD. The function of MMP-7 in kidney disease may differ for CKD and AKI; it may have a profibrotic role in CKD and an anti-apoptotic and regenerative function in AKI. Additionally, the potential of MMP-7 as a biomarker has been studied in different kidney diseases, and the results are promising. Recently, combined unbiased kidney proteomics and transcriptomics approaches identified kidney MMP-7 as the protein having the strongest association with both fibrosis and eGFR and confirmed the predictive role of plasma MMP-7 levels for kidney function decline in over 11 000 individuals. Additionally, urinary MMP-7, combined with urinary cystatin C (CysC) and retinol binding protein (RBP) was reported to provide information on tubular injury in focal segmental glomerulosclerosis and minimal change disease. We now present an overview of research on MMP-7 expression and function in kidney diseases and discuss its potential as a biomarker of kidney diseases.
Collapse
Affiliation(s)
- Alejandro Avello
- Laboratory of Experimental Nephrology, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | | | - Ana Belen Sanz
- Laboratory of Experimental Nephrology, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
| |
Collapse
|
5
|
Banerjee S, Baidya SK, Adhikari N, Jha T. An updated patent review of matrix metalloproteinase (MMP) inhibitors (2021-present). Expert Opin Ther Pat 2023; 33:631-649. [PMID: 37982191 DOI: 10.1080/13543776.2023.2284935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Matrix metalloproteinases (MMPs) are strongly interlinked with the progression and mechanisms of several life-threatening diseases including cancer. Thus, novel MMP inhibitors (MMPIs) as promising drug candidates can be effective in combating these diseases. However, no MMPIs are marketed to date due to poor pharmacokinetics and lower selectivity. Therefore, this review was performed to study the newer MMPIs patented after the COVID-19 period for an updated perspective on MMPIs. AREAS COVERED This review highlights patents related to MMPIs, and their therapeutic implications published between January 2021 and August 2023 available in the Google Patents, Patentscope, and Espacenet databases. EXPERT OPINION Despite various MMP-related patents disclosed up to 2020, newer patent applications in the post-COVID-19 period decreased a lot. Besides major MMPs, other isoforms (i.e. MMP-3 and MMP-7) have gained attention recently for drug development. This may open up newer dimensions targeting these MMPs for therapeutic advancements. The isoform selectivity and bioavailability are major concerns for effective MMPI development. Thus, adopting theoretical approaches and experimental methodologies can unveil the development of novel MMPIs with improved pharmacokinetic profiles. Nevertheless, the involvement of MMPs in cancer, and the mechanisms of such MMPs in other diseases should be extensively studied for novel MMPI development.
Collapse
Affiliation(s)
| | | | | | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
6
|
Mitchell A, Malmgren L, Bartosch P, McGuigan FE, Akesson KE. Pro-Inflammatory Proteins Associated with Frailty and Its Progression-A Longitudinal Study in Community-Dwelling Women. J Bone Miner Res 2023; 38:1076-1091. [PMID: 37254268 DOI: 10.1002/jbmr.4861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023]
Abstract
The complex pathophysiology underlying biological aging creates challenges for identifying biomarkers associated with frailty. This longitudinal, nontargeted proteomics study aimed to identify proteins associated with frailty, particularly the change from nonfrail to frail. The population-based Osteoporosis Prospective Risk Assessment cohort includes women all of whom are 75 years old at inclusion (n = 1044) and reassessed at 80 years (n = 715) and 85 years (n = 382). A deficits in health frailty index (FI) and 92 plasma proteins (Olink CVD-II panel) were available at all ages. The identical age facilitated differentiating chronological and biological aging. Bidirectional analyses, performed cross-sectionally and longitudinally, used regression models controlled for false discovery rate (FDR), across 5- and 10-year time windows and longitudinal mixed models. Frailty outcomes were frailty index, frailty status (frail defined as FI ≥ 0.25), change in frailty index, and change in frailty status, together with protein expression or change in protein expression. Elevated levels of 32 proteins were positively associated with the FI, cross-sectionally at all ages (range: β-coefficients 0.22-2.06; FDR 0.021-0.024), of which 18 were also associated with frailty status (range: odds ratios 1.40-5.77; FDR 0.022-0.016). Based on the accrued data, eight core proteins (CD4, FGF23, Gal-9, PAR-1, REN, TNFRSF10A TNFRSF11A, and TNFRSF10B) are proposed. A one-unit change in the FI was additively associated with increased protein expression over 5 and 10 years (range: β-coefficients 0.52-1.59; p < 0.001). Increments in baseline FI consistently associated with a change in protein expression over time (5 years, β-range 0.05-1.35; 10 years, β-range 0.51-1.48; all p < 0.001). A one-unit increase in protein expression was also associated with an increased probability of being frail (FI ≥ 0.25) (β-range: 0.14-0.61). Mirroring the multisystem deterioration that typifies frailty, the proteins and their associated biological pathways reflect pathologies, including the renal system, skeletal homeostasis, and TRAIL-activated apoptotic signaling. The core proteins are compelling candidates for understanding the development and progression of frailty with advancing age, including the intrinsic musculoskeletal component. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Adam Mitchell
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Lund University, Malmö, Sweden
- Department of Orthopedics, Skåne University Hospital, Malmö, Sweden
| | - Linnea Malmgren
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Lund University, Malmö, Sweden
- Department of Geriatrics, Skåne University Hospital, Malmö, Sweden
| | - Patrik Bartosch
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Lund University, Malmö, Sweden
- Department of Orthopedics, Skåne University Hospital, Malmö, Sweden
| | - Fiona Elizabeth McGuigan
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Lund University, Malmö, Sweden
- Department of Orthopedics, Skåne University Hospital, Malmö, Sweden
| | - Kristina E Akesson
- Department of Clinical Sciences Malmö, Clinical and Molecular Osteoporosis Research Unit, Lund University, Malmö, Sweden
- Department of Orthopedics, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
7
|
Ramamoorthy R, Hussain H, Ravelo N, Sriramajayam K, Di Gregorio DM, Paulrasu K, Chen P, Young K, Masciarella AD, Jayakumar AR, Paidas MJ. Kidney Damage in Long COVID: Studies in Experimental Mice. BIOLOGY 2023; 12:1070. [PMID: 37626956 PMCID: PMC10452084 DOI: 10.3390/biology12081070] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
Signs and symptoms involving multiple organ systems which persist for weeks or months to years after the initial SARS-CoV-2 infection (also known as PASC or long COVID) are common complications of individuals with COVID-19. We recently reported pathophysiological changes in various organs post-acute infection of mice with mouse hepatitis virus-1 (MHV-1, a coronavirus) (7 days) and after long-term post-infection (12 months). One of the organs severely affected in this animal model is the kidney, which correlated well with human studies showing kidney injury post-SARS-CoV-2 infection. Our long-term post-infection pathological observation in kidneys includes the development of edema and inflammation of the renal parenchyma, severe acute tubular necrosis, and infiltration of macrophages and lymphocytes, in addition to changes observed in both acute and long-term post-infection, which include tubular epithelial cell degenerative changes, peritubular vessel congestion, proximal and distal tubular necrosis, hemorrhage in the interstitial tissue, and vacuolation of renal tubules. These findings strongly suggest the possible development of renal fibrosis, in particular in the long-term post-infection. Accordingly, we investigated whether the signaling system that is known to initiate the above-mentioned changes in kidneys in other conditions is also activated in long-term post-MHV-1 infection. We found increased TGF-β1, FGF23, NGAL, IL-18, HIF1-α, TLR2, YKL-40, and B2M mRNA levels in long-term post-MHV-1 infection, but not EGFR, TNFR1, BCL3, and WFDC2. However, only neutrophil gelatinase-associated lipocalin (NGAL) increased in acute infection (7 days). Immunoblot studies showed an elevation in protein levels of HIF1-α, TLR-2, and EGFR in long-term post-MHV-1 infection, while KIM-1 and MMP-7 protein levels are increased in acute infection. Treatment with a synthetic peptide, SPIKENET (SPK), which inhibits spike protein binding, reduced NGAL mRNA in acute infection, and decreased TGF-β1, BCL3 mRNA, EGFR, HIF1-α, and TLR-2 protein levels long-term post-MHV-1 infection. These findings suggest that fibrotic events may initiate early in SARS-CoV-2 infection, leading to pronounced kidney fibrosis in long COVID. Targeting these factors therapeutically may prevent acute or long-COVID-associated kidney complications.
Collapse
Affiliation(s)
- Rajalakshmi Ramamoorthy
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.); (N.R.)
| | - Hussain Hussain
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA;
| | - Natalia Ravelo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.); (N.R.)
| | - Kannappan Sriramajayam
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Dibe M. Di Gregorio
- University of Miami College of Arts and Sciences, Coral Gables, FL 33146, USA;
| | - Kodisundaram Paulrasu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Pingping Chen
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (P.C.); (K.Y.)
| | - Karen Young
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (P.C.); (K.Y.)
| | | | - Arumugam R. Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.); (N.R.)
| | - Michael J. Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.); (N.R.)
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
8
|
Catanese L, Siwy J, Mischak H, Wendt R, Beige J, Rupprecht H. Recent Advances in Urinary Peptide and Proteomic Biomarkers in Chronic Kidney Disease: A Systematic Review. Int J Mol Sci 2023; 24:ijms24119156. [PMID: 37298105 DOI: 10.3390/ijms24119156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Biomarker development, improvement, and clinical implementation in the context of kidney disease have been a central focus of biomedical research for decades. To this point, only serum creatinine and urinary albumin excretion are well-accepted biomarkers in kidney disease. With their known blind spot in the early stages of kidney impairment and their diagnostic limitations, there is a need for better and more specific biomarkers. With the rise in large-scale analyses of the thousands of peptides in serum or urine samples using mass spectrometry techniques, hopes for biomarker development are high. Advances in proteomic research have led to the discovery of an increasing amount of potential proteomic biomarkers and the identification of candidate biomarkers for clinical implementation in the context of kidney disease management. In this review that strictly follows the PRISMA guidelines, we focus on urinary peptide and especially peptidomic biomarkers emerging from recent research and underline the role of those with the highest potential for clinical implementation. The Web of Science database (all databases) was searched on 17 October 2022, using the search terms "marker *" OR biomarker * AND "renal disease" OR "kidney disease" AND "proteome *" OR "peptid *" AND "urin *". English, full-text, original articles on humans published within the last 5 years were included, which had been cited at least five times per year. Studies based on animal models, renal transplant studies, metabolite studies, studies on miRNA, and studies on exosomal vesicles were excluded, focusing on urinary peptide biomarkers. The described search led to the identification of 3668 articles and the application of inclusion and exclusion criteria, as well as abstract and consecutive full-text analyses of three independent authors to reach a final number of 62 studies for this manuscript. The 62 manuscripts encompassed eight established single peptide biomarkers and several proteomic classifiers, including CKD273 and IgAN237. This review provides a summary of the recent evidence on single peptide urinary biomarkers in CKD, while emphasizing the increasing role of proteomic biomarker research with new research on established and new proteomic biomarkers. Lessons learned from the last 5 years in this review might encourage future studies, hopefully resulting in the routine clinical applicability of new biomarkers.
Collapse
Affiliation(s)
- Lorenzo Catanese
- Department of Nephrology, Angiology and Rheumatology, Klinikum Bayreuth GmbH, 95447 Bayreuth, Germany
- Kuratorium for Dialysis and Transplantation (KfH), 95445 Bayreuth, Germany
- Medizincampus Oberfranken, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Justyna Siwy
- Mosaiques Diagnostics GmbH, 30659 Hannover, Germany
| | | | - Ralph Wendt
- Department of Nephrology, St. Georg Hospital Leipzig, 04129 Leipzig, Germany
| | - Joachim Beige
- Department of Nephrology, St. Georg Hospital Leipzig, 04129 Leipzig, Germany
- Department of Internal Medicine II, Martin-Luther-University Halle/Wittenberg, 06108 Halle/Saale, Germany
- Kuratorium for Dialysis and Transplantation (KfH), 04129 Leipzig, Germany
| | - Harald Rupprecht
- Department of Nephrology, Angiology and Rheumatology, Klinikum Bayreuth GmbH, 95447 Bayreuth, Germany
- Kuratorium for Dialysis and Transplantation (KfH), 95445 Bayreuth, Germany
- Medizincampus Oberfranken, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
9
|
Lidberg KA, Muthusamy S, Adil M, Mahadeo A, Yang J, Patel RS, Wang L, Bammler TK, Reichel J, Yeung CK, Himmelfarb J, Kelly EJ, Akilesh S. Serum Protein Exposure Activates a Core Regulatory Program Driving Human Proximal Tubule Injury. J Am Soc Nephrol 2022; 33:949-965. [PMID: 35197326 PMCID: PMC9063895 DOI: 10.1681/asn.2021060751] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 02/06/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The kidneys efficiently filter waste products while retaining serum proteins in the circulation. However, numerous diseases compromise this barrier function, resulting in spillage of serum proteins into the urine (proteinuria). Some studies of glomerular filtration suggest that tubules may be physiologically exposed to nephrotic-range protein levels. Therefore, whether serum components can directly injure the downstream tubular portions of the kidney, which in turn can lead to inflammation and fibrosis, remains controversial. METHODS We tested the effects of serum protein exposure in human kidney tubule microphysiologic systems and with orthogonal epigenomic approaches since animal models cannot directly assess the effect of serum components on tubules. RESULTS Serum, but not its major protein component albumin, induced tubular injury and secretion of proinflammatory cytokines. Epigenomic comparison of serum-injured tubules and intact kidney tissue revealed canonical stress-inducible regulation of injury-induced genes. Concordant transcriptional changes in microdissected tubulointerstitium were also observed in an independent cohort of patients with proteinuric kidney disease. CONCLUSIONS Our results demonstrate a causal role for serum proteins in tubular injury and identify regulatory mechanisms and novel pathways for intervention.
Collapse
Affiliation(s)
- Kevin A. Lidberg
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Selvaraj Muthusamy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Mohamed Adil
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Anish Mahadeo
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Jade Yang
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | | | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Jonathan Reichel
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Catherine K. Yeung
- Department of Pharmacy, University of Washington, Seattle, Washington
- Kidney Research Institute, Seattle, Washington
| | - Jonathan Himmelfarb
- Kidney Research Institute, Seattle, Washington
- Nephrology Division, Department of Medicine, University of Washington, Seattle, Washington
| | - Edward J. Kelly
- Department of Pharmaceutics, University of Washington, Seattle, Washington
- Kidney Research Institute, Seattle, Washington
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
- Kidney Research Institute, Seattle, Washington
| |
Collapse
|
10
|
Teng S, Liu G, Li L, Ou J, Yu Y. CUX1 promotes epithelial-mesenchymal transition (EMT) in renal fibrosis of UUO model by targeting MMP7. Biochem Biophys Res Commun 2022; 608:128-134. [PMID: 35397425 DOI: 10.1016/j.bbrc.2022.03.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) displays a critical role in the development of renal fibrosis, an important pathological process of chronic kidney disease (CKD). Transcription factor Cut-like homeobox 1 (CUX1) has shown profound effects on several kidney diseases. However, its role in CKD has not been understood yet. In this study, unilateral ureteric obstruction (UUO) surgery was performed on male C57BL/6 mice to simulate CKD in vivo. Renal fibrosis was further induced in human proximal tubular epithelial cell (HK-2) by TGF-β1 stimulation. CUX1 and MMP7 were found to be over-expressed in renal tissue of UUO mice. Renal functional analyses and histological assessment indicated that CUX1 knockdown alleviated renal injury in UUO mice. Mitochondrial dysfunction was determined in UUO group and improved after CUX1 silencing. Besides, CUX1 knockdown suppressed EMT in UUO mice and TGF-β1 treated HK-2 cells, as evidenced by reduced expressions of α-SMA, vimentin, fibronectin and augmented abundance of E-cadherin. Furthermore, CUX1 knockdown decreased MMP7 expression by targeting at its promoter region. MMP7 was responsible for the inhibitory effect of CUX1 knockdown on EMT in HK-2 cells. In summary, our findings suggest that CUX1 promotes EMT in CKD by targeting MMP7, and highlight the crucial role of CUX1 in CKD pathogenesis.
Collapse
Affiliation(s)
- Siyuan Teng
- Department of Nephrology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Ge Liu
- Department of Nephrology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Liangjun Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jun Ou
- Department of Nephrology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yang Yu
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
11
|
Göteson A, Isgren A, Sparding T, Holmén-Larsson J, Jakobsson J, Pålsson E, Landén M. A serum proteomic study of two case-control cohorts identifies novel biomarkers for bipolar disorder. Transl Psychiatry 2022; 12:55. [PMID: 35136035 PMCID: PMC8826439 DOI: 10.1038/s41398-022-01819-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/12/2021] [Accepted: 01/17/2022] [Indexed: 01/08/2023] Open
Abstract
We set out to identify novel protein associations with potential as clinically viable biomarkers for bipolar disorder. To this end, we used proximity extension assay to analyze 201 unique proteins in blood serum from two independent cohorts comprising patients with bipolar disorder and healthy controls (total n = 493). We identified 32 proteins significantly associated with bipolar disorder in both case-control cohorts after adjusting for relevant covariates. Twenty-two findings are novel to bipolar disorder, but 10 proteins have previously been associated with bipolar disorder: chitinase-3-like protein 1, C-C motif chemokine 3 (CCL3), CCL4, CCL20, CCL25, interleukin 10, growth/differentiation factor-15, matrilysin (MMP-7), pro-adrenomedullin, and TNF-R1. Next, we estimated the variance in serum protein concentrations explained by psychiatric drugs and found that some case-control associations may have been driven by psychiatric drugs. The highest variance explained was observed between lithium use and MMP-7, and in post-hoc analyses and found that the serum concentration of MMP-7 was positively associated with serum lithium concentration, duration of lithium therapy, and inversely associated with estimated glomerular filtration rate in an interaction with lithium. This is noteworthy given that MMP-7 has been suggested as a mediator of renal tubulointerstitial fibrosis, which is characteristic of lithium-induced nephropathy. Finally, we used machine learning to evaluate the classification performance of the studied biomarkers but the average performance in unseen data was fair to moderate (area under the receiver operating curve = 0.72). Taken together, our serum biomarker findings provide novel insight to the etiopathology of bipolar disorder, and we present a suggestive biomarker for lithium-induced nephropathy.
Collapse
Affiliation(s)
- Andreas Göteson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
| | - Anniella Isgren
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Timea Sparding
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Jessica Holmén-Larsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Joel Jakobsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Erik Pålsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Geraniol protects against cyclosporine A-induced renal injury in rats: Role of Wnt/β-catenin and PPARγ signaling pathways. Life Sci 2021; 291:120259. [PMID: 34968469 DOI: 10.1016/j.lfs.2021.120259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022]
Abstract
AIMS The nephrotoxicity of cyclosporine A (CsA) limits its use as an immunosuppressant. Wnt/β-catenin signaling is involved in the pathogenesis of both acute and chronic kidney disease, and it is inhibited by peroxisome proliferator-activated receptor gamma (PPARγ). We aimed to evaluate if geraniol, which can modulate both PPARγ and Wnt signaling, could protect against CsA-induced nephrotoxicity. MATERIALS AND METHODS Rats (6 groups) received the vehicle or a combination of CsA (30 mg/kg) with the vehicle, geraniol (50, 100, or 200 mg/kg), or the PPARγ agonist pioglitazone for 4 weeks. Blood pressure (BP), markers of renal injury (serum urea, serum creatinine, blood urea nitrogen, and urinary NAG), oxidative stress (glutathione peroxidase), inflammation (ICAM-1, IL-18, and NF-κB), apoptosis (caspase-3), extracellular matrix remodeling [matrix metalloproteinase-9 (MMP-9)], and fibrosis (TGF-β1, Smad3, and Smad7) were assessed. Renal histological analysis, Wnt signaling components (Wnt-4/β-catenin and E-cadherin), and PPARγ expression were evaluated. KEY FINDINGS CsA group had renal injury, as well as increased BP, renal oxidative stress, inflammation, and fibrosis. The latter changes were associated with altered renal architecture, active Wnt signaling (higher Wnt-4 and β-catenin expression and E-cadherin down-regulation), and lower PPARγ levels. Geraniol protected against kidney damage and the associated biochemical and histomorphological changes in a dose-dependent manner. The latter effects were comparable or superior to those of pioglitazone. SIGNIFICANCE The down-regulation of Wnt/β-catenin and the increase in PPARγ by geraniol suggest that both pathways are involved in its renoprotective potential. The study highlights geraniol as a valuable protective asset against chemically induced nephrotoxicity.
Collapse
|
13
|
Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in kidney disease. Adv Clin Chem 2021; 105:141-212. [PMID: 34809827 DOI: 10.1016/bs.acc.2021.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are a group of zinc and calcium endopeptidases which cleave extracellular matrix (ECM) proteins. They are also involved in the degradation of cell surface components and regulate multiple cellular processes, cell to cell interactions, cell proliferation, and cell signaling pathways. MMPs function in close interaction with the endogenous tissue inhibitors of matrix metalloproteinases (TIMPs), both of which regulate cell turnover, modulate various growth factors, and participate in the progression of tissue fibrosis and apoptosis. The multiple roles of MMPs and TIMPs are continuously elucidated in kidney development and repair, as well as in a number of kidney diseases. This chapter focuses on the current findings of the significance of MMPs and TIMPs in a wide range of kidney diseases, whether they result from kidney tissue changes, hemodynamic alterations, tubular epithelial cell apoptosis, inflammation, or fibrosis. In addition, the potential use of these endopeptidases as biomarkers of renal dysfunction and as targets for therapeutic interventions to attenuate kidney disease are also explored in this review.
Collapse
|
14
|
Chou LF, Chen TW, Yang HY, Tian YC, Chang MY, Hung CC, Hsu SH, Tsai CY, Ko YC, Yang CW. Transcriptomic signatures of exacerbated progression in leptospirosis subclinical chronic kidney disease with secondary nephrotoxic injury. Am J Physiol Renal Physiol 2021; 320:F1001-F1018. [PMID: 33779314 DOI: 10.1152/ajprenal.00640.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
High-incidence regions of leptospirosis caused by Leptospira spp. coincide with chronic kidney disease. This study investigated whether asymptomatic leptospirosis is an emerging culprit that predisposes to progressive chronic kidney disease when superimposed on secondary nephrotoxic injury. Kidney histology/function and whole transcriptomic profiles were evaluated for Leptospira-infected C57/BL6 mice with adenine-induced kidney injury. The extent of tubulointerstitial kidney lesions and expression of inflammation/fibrosis genes in infected mice with low-dose (0.1%) adenine, particularly in high-dose (0.2%) adenine-fed superimposed on Leptospira-infected mice, were significantly increased compared with mice following infection or adenine diet alone, and the findings are consistent with renal transcriptome analysis. Pathway enrichment findings showed that integrin-β- and fibronectin-encoding genes had distinct expression within the integrin-linked kinase-signaling pathway, which were upregulated in 0.2% adenine-fed Leptospira-infected mice but not in 0.2% adenine-fed mice, indicating that background subclinical Leptospiral infection indeed enhanced subsequent secondary nephrotoxic kidney injury and potential pathogenic molecules associated with secondary nephrotoxic leptospirosis. Comparative analysis of gene expression patterns with unilateral ureteric obstruction-induced mouse renal fibrosis and patients with chronic kidney disease showed that differentially expressed orthologous genes such as hemoglobin-α2, PDZ-binding kinase, and DNA topoisomerase II-α were identified in infected mice fed with low-dose and high-dose adenine, respectively, revealing differentially expressed signatures identical to those found in the datasets and may serve as markers of aggravated kidney progression. This study indicates that background subclinical leptospirosis, when subjected to various degrees of subsequent secondary nephrotoxic injury, may predispose to exacerbated fibrosis, mimicking the pathophysiological process of progressive chronic kidney disease.NEW & NOTEWORTHY Leptospira-infected mice followed by secondary nephrotoxic injury exacerbated immune/inflammatory responses and renal fibrosis. Comparison with the murine model revealed candidates involved in the progression of renal fibrosis in chronic kidney disease (CKD). Comparative transcriptome study suggests that secondary nephrotoxic injury in Leptospira-infected mice recapitulates the gene expression signatures found in CKD patients. This study indicates that secondary nephrotoxic injury may exacerbate CKD in chronic Leptospira infection implicating in the progression of CKD of unknown etiology.
Collapse
Affiliation(s)
- Li-Fang Chou
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Huang-Yu Yang
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Chung Tian
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yang Chang
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Chieh Hung
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shen-Hsing Hsu
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chung-Ying Tsai
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yi-Ching Ko
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
15
|
Xie H, Miao N, Xu D, Zhou Z, Ni J, Yin F, Wang Y, Cheng Q, Chen P, Li J, Zheng P, Zhou L, Liu J, Zhang W, Wang X, Lu L. FoxM1 promotes Wnt/β-catenin pathway activation and renal fibrosis via transcriptionally regulating multi-Wnts expressions. J Cell Mol Med 2021; 25:1958-1971. [PMID: 33434361 PMCID: PMC7882937 DOI: 10.1111/jcmm.15948] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/27/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
The activation of Wnt/β‐catenin pathway plays a pivotal role in promoting renal fibrosis. The activation of Wnt/β‐catenin pathway relies on the binding of Wnts to Frizzled receptors on cell membrane. However, the factor regulating Wnts production remains unclear. Here, we demonstrated that transcriptional factor FoxM1 was significantly increased in obstructed kidneys and patients' kidneys with fibrosis. The up‐regulation of FoxM1 mainly distributed in tubular epithelial cells. Pharmacological inhibition of FoxM1 down‐regulated multi‐Wnts elevation in UUO mice and attenuated renal fibrosis. In cultured renal tubular epithelial cells, overexpression of FoxM1 promoted 8 Wnts expression, while knock‐down on FoxM1‐suppressed multi‐Wnts including Wnt1, Wnt2b and Wnt3 expression induced by Ang II. Chromatin immunoprecipitation PCR confirmed that FoxM1 bound to Wnt1, Wnt2b, Wnt3 promoters and luciferase assay further identified that the transcriptions of Wnt1, Wnt2b and Wnt3 were regulated by FoxM1. Thus, our findings show that multi‐Wnt family members were regulated by transcriptional factor FoxM1. FoxM1 might be a key switch for activating β‐catenin pathway and renal fibrosis. Therefore, FoxM1 might be a potential therapeutic target in manipulating renal fibrosis.
Collapse
Affiliation(s)
- Hongyan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Naijun Miao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dan Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhuanli Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiayun Ni
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Fan Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yanzhe Wang
- Department of Nephrology, Shanghai Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Qian Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Panpan Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jingyao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Peiqing Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiaoxia Wang
- Department of Nephrology, Shanghai Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Limin Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, 201102, China
| |
Collapse
|
16
|
Ihara K, Skupien J, Kobayashi H, Md Dom ZI, Wilson JM, O'Neil K, Badger HS, Bowsman LM, Satake E, Breyer MD, Duffin KL, Krolewski AS. Profibrotic Circulating Proteins and Risk of Early Progressive Renal Decline in Patients With Type 2 Diabetes With and Without Albuminuria. Diabetes Care 2020; 43:2760-2767. [PMID: 32887710 PMCID: PMC7576423 DOI: 10.2337/dc20-0630] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/09/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The role of fibrosis in early progressive renal decline in type 2 diabetes is unknown. Circulating WFDC2 (WAP four-disulfide core domain protein 2) and matrix metalloproteinase 7 (MMP-7; Matrilysin) are postulated to be biomarkers of renal fibrosis. This study examined an association of circulating levels of these proteins with early progressive renal decline. RESEARCH DESIGN AND METHODS Individuals with type 2 diabetes enrolled in the Joslin Kidney Study with an estimated glomerular filtration rate (eGFR) ≥60 mL/min/1.73 m2 were monitored for 6-12 years to ascertain fast early progressive renal decline, defined as eGFR loss ≥5 mL/min/1.73 m2/year. RESULTS A total of 1,181 individuals were studied: 681 without and 500 with albuminuria. Median eGFR and albumin-to-creatinine ratio (ACR) at baseline were 97 mL/min/1.73 m2 and 24 mg/g, respectively. During follow-up, 152 individuals experienced fast early progressive renal decline: 6.9% in those with normoalbuminuria and 21% with albuminuria. In both subgroups, the risk of renal decline increased with increasing baseline levels of WFDC2 (P < 0.0001) and MMP-7 (P < 0.0001). After adjustment for relevant clinical characteristics and known biomarkers, an increase by one quartile in the fibrosis index (combination of levels of WFDC2 and MMP-7) was associated with higher risk of renal decline (odds ratio 1.63; 95% CI 1.30-2.04). The association was similar and statistically significant among patients with and without albuminuria. CONCLUSIONS Elevation of circulating profibrotic proteins is associated with the development of early progressive renal decline in type 2 diabetes. This association is independent from albuminuria status and points to the importance of the fibrotic process in the development of early renal decline.
Collapse
Affiliation(s)
- Katsuhito Ihara
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA.,Department of Nephrology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jan Skupien
- Department of Metabolic Diseases, Jagellonian University Medical College, Krakow, Poland
| | - Hiroki Kobayashi
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | - Zaipul I Md Dom
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | - Jonathan M Wilson
- Diabetes and Complication Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Kristina O'Neil
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA
| | - Hannah S Badger
- Diabetes and Complication Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Lenden M Bowsman
- Diabetes and Complication Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Eiichiro Satake
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | - Matthew D Breyer
- Diabetes and Complication Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Kevin L Duffin
- Diabetes and Complication Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Andrzej S Krolewski
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA .,Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
17
|
Azithromycin Partially Mitigates Dysregulated Repair of Lung Allograft Small Airway Epithelium. Transplantation 2020; 104:1166-1176. [PMID: 31985728 DOI: 10.1097/tp.0000000000003134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Dysregulated airway epithelial repair following injury is a proposed mechanism driving posttransplant bronchiolitis obliterans (BO), and its clinical correlate bronchiolitis obliterans syndrome (BOS). This study compared gene and cellular characteristics of injury and repair in large (LAEC) and small (SAEC) airway epithelial cells of transplant patients. METHODS Subjects were recruited at the time of routine bronchoscopy posttransplantation and included patients with and without BOS. Airway epithelial cells were obtained from bronchial and bronchiolar brushing performed under radiological guidance from these patients. In addition, bronchial brushings were also obtained from healthy control subjects comprising of adolescents admitted for elective surgery for nonrespiratory-related conditions. Primary cultures were established, monolayers wounded, and repair assessed (±) azithromycin (1 µg/mL). In addition, proliferative capacity as well as markers of injury and dysregulated repair were also assessed. RESULTS SAEC had a significantly dysregulated repair process postinjury, despite having a higher proliferative capacity than large airway epithelial cells. Addition of azithromycin significantly induced repair in these cells; however, full restitution was not achieved. Expression of several genes associated with epithelial barrier repair (matrix metalloproteinase 7, matrix metalloproteinase 3, the integrins β6 and β8, and β-catenin) were significantly different in epithelial cells obtained from patients with BOS compared to transplant patients without BOS and controls, suggesting an intrinsic defect. CONCLUSIONS Chronic airway injury and dysregulated repair programs are evident in airway epithelium obtained from patients with BOS, particularly with SAEC. We also show that azithromycin partially mitigates this pathology.
Collapse
|
18
|
Liu Z, Tan RJ, Liu Y. The Many Faces of Matrix Metalloproteinase-7 in Kidney Diseases. Biomolecules 2020; 10:biom10060960. [PMID: 32630493 PMCID: PMC7356035 DOI: 10.3390/biom10060960] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Matrix metalloproteinase-7 (MMP-7) is a secreted zinc-dependent endopeptidase that is implicated in regulating kidney homeostasis and diseases. MMP-7 is produced as an inactive zymogen, and proteolytic cleavage is required for its activation. MMP-7 is barely expressed in normal adult kidney but upregulated in acute kidney injury (AKI) and chronic kidney disease (CKD). The expression of MMP-7 is transcriptionally regulated by Wnt/β-catenin and other cues. As a secreted protein, MMP-7 is present and increased in the urine of patients, and its levels serve as a noninvasive biomarker for predicting AKI prognosis and monitoring CKD progression. Apart from degrading components of the extracellular matrix, MMP-7 also cleaves a wide range of substrates, such as E-cadherin, Fas ligand, and nephrin. As such, it plays an essential role in regulating many cellular processes, such as cell proliferation, apoptosis, epithelial-mesenchymal transition, and podocyte injury. The function of MMP-7 in kidney diseases is complex and context-dependent. It protects against AKI by priming tubular cells for survival and regeneration but promotes kidney fibrosis and CKD progression. MMP-7 also impairs podocyte integrity and induces proteinuria. In this review, we summarized recent advances in our understanding of the regulation, role, and mechanisms of MMP-7 in the pathogenesis of kidney diseases. We also discussed the potential of MMP-7 as a biomarker and therapeutic target in a clinical setting.
Collapse
Affiliation(s)
- Zhao Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Roderick J. Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Correspondence:
| |
Collapse
|
19
|
Matrix Metalloproteinases in Diabetic Kidney Disease. J Clin Med 2020; 9:jcm9020472. [PMID: 32046355 PMCID: PMC7073625 DOI: 10.3390/jcm9020472] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/11/2022] Open
Abstract
Around the world diabetic kidney disease (DKD) is the main cause of chronic kidney disease (CKD), which is characterized by mesangial expansion, glomerulosclerosis, tubular atrophy, and interstitial fibrosis. The hallmark of the pathogenesis of DKD is an increased extracellular matrix (ECM) accumulation causing thickening of the glomerular and tubular basement membranes, mesangial expansion, sclerosis, and tubulointerstitial fibrosis. The matrix metalloproteases (MMPs) family are composed of zinc-dependent enzymes involved in the degradation and hydrolysis of ECM components. Several MMPs are expressed in the kidney; nephron compartments, vasculature and connective tissue. Given their important role in DKD, several studies have been performed in patients with DKD proposing that the measurement of their activity in serum or in urine may become in the future markers of early DKD. Studies from diabetic nephropathy experimental models suggest that a balance between MMPs levels and their inhibitors is needed to maintain renal homeostasis. This review focuses in the importance of the MMPs within the kidney and their modifications at the circulation, kidney and urine in patients with DKD. We also cover the most important studies performed in experimental models of diabetes in terms of MMPs levels, renal expression and its down-regulation effect.
Collapse
|
20
|
Tan RJ, Li Y, Rush BM, Cerqueira DM, Zhou D, Fu H, Ho J, Beer Stolz D, Liu Y. Tubular injury triggers podocyte dysfunction by β-catenin-driven release of MMP-7. JCI Insight 2019; 4:122399. [PMID: 31743113 DOI: 10.1172/jci.insight.122399] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/14/2019] [Indexed: 01/19/2023] Open
Abstract
Proteinuric chronic kidney disease (CKD) remains a major health problem worldwide. While it is well established that the progression of primary glomerular disease induces tubulointerstitial lesions, how tubular injury triggers glomerular damage is poorly understood. We hypothesized that injured tubules secrete mediators that adversely affect glomerular health. To test this, we used conditional knockout mice with tubule-specific ablation of β-catenin (Ksp-β-cat-/-) and subjected them to chronic angiotensin II (Ang II) infusion or Adriamycin. Compared with control mice, Ksp-β-cat-/- mice were dramatically protected from proteinuria and glomerular damage. MMP-7, a downstream target of β-catenin, was upregulated in treated control mice, but this induction was blunted in the Ksp-β-cat-/- littermates. Incubation of isolated glomeruli with MMP-7 ex vivo led to nephrin depletion and impaired glomerular permeability. Furthermore, MMP-7 specifically and directly degraded nephrin in cultured glomeruli or cell-free systems, and this effect was dependent on its proteolytic activity. In vivo, expression or infusion of exogenous MMP-7 caused proteinuria, and genetic ablation of MMP-7 protected mice from Ang II-induced proteinuria and glomerular injury. Collectively, these results demonstrate that β-catenin-driven MMP-7 release from renal tubules promotes glomerular injury via direct degradation of the key slit diaphragm protein nephrin.
Collapse
Affiliation(s)
| | | | | | - Débora Malta Cerqueira
- Division of Pediatric Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Haiyan Fu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jacqueline Ho
- Division of Pediatric Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Donna Beer Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Youhua Liu
- Department of Pathology, and.,Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Nakazawa Y, Inoue S, Nakamura Y, Iida Y, Ishigaki Y, Miyazawa K. High‐salt diet promotes crystal deposition through hypertension in Dahl salt‐sensitive rat model. Int J Urol 2019; 26:839-846. [DOI: 10.1111/iju.14035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/06/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Yusuke Nakazawa
- Department of Urology Kanazawa Medical UniversityUchinada Japan
| | - Shinya Inoue
- Department of Urology Kanazawa Medical UniversityUchinada Japan
| | - Yuka Nakamura
- Medical Research Institute Kanazawa Medical UniversityUchinada Japan
| | - Yasuo Iida
- Department of General Education Kanazawa Medical University Uchinada Ishikawa Japan
| | - Yasuhito Ishigaki
- Medical Research Institute Kanazawa Medical UniversityUchinada Japan
| | | |
Collapse
|
22
|
Zakiyanov O, Kalousová M, Zima T, Tesař V. Matrix Metalloproteinases in Renal Diseases: A Critical Appraisal. Kidney Blood Press Res 2019; 44:298-330. [PMID: 31185475 DOI: 10.1159/000499876] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/10/2019] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases within the metzincin protein family that not only cleave extracellular matrix (ECM) components, but also process the non-ECM molecules, including various growth factors and their binding proteins. MMPs participate in cell to ECM interactions, and MMPs are known to be involved in cell proliferation mechanisms and most probably apoptosis. These proteinases are grouped into six classes: collagenases, gelatinases, stromelysins, matrilysins, membrane type MMPs, and other MMPs. Various mechanisms regulate the activity of MMPs, inhibition by tissue inhibitors of metalloproteinases being the most important. In the kidney, intrinsic glomerular cells and tubular epithelial cells synthesize several MMPs. The measurement of circulating MMPs can provide valuable information in patients with kidney diseases. They play an important role in many renal diseases, both acute and chronic. This review attempts to summarize the current knowledge of MMPs in the kidney and discusses recent data from patient and animal studies with reference to specific diseases. A better understanding of the MMPs' role in renal remodeling may open the way to new interventions favoring deleterious renal changes in a number of kidney diseases.
Collapse
Affiliation(s)
- Oskar Zakiyanov
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia,
| | - Marta Kalousová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Tomáš Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Vladimír Tesař
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| |
Collapse
|
23
|
Fu H, Zhou D, Zhu H, Liao J, Lin L, Hong X, Hou FF, Liu Y. Matrix metalloproteinase-7 protects against acute kidney injury by priming renal tubules for survival and regeneration. Kidney Int 2019; 95:1167-1180. [PMID: 30878215 DOI: 10.1016/j.kint.2018.11.043] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 01/03/2023]
Abstract
Matrix metalloproteinase-7 (MMP-7) is a secreted endopeptidase that degrades a broad range of substrates. Recent studies have identified MMP-7 as an early biomarker to predict severe acute kidney injury (AKI) and poor outcomes after cardiac surgery; however, the role of MMP-7 in the pathogenesis of AKI is unknown. In this study, we investigated the expression of MMP-7 and the impact of MMP-7 deficiency in several models of AKI. MMP-7 was induced in renal tubules following ischemia/ reperfusion injury or cisplatin administration, and in folic acid-induced AKI. MMP-7 knockout mice experienced higher mortality, elevated serum creatinine, and more severe histologic lesions after ischemic or toxic insults. Tubular apoptosis and interstitial inflammation were more prominent in MMP-7 knockout kidneys. These histologic changes were accompanied by increased expression of FasL and other components of the extrinsic apoptotic pathway, as well as increased expression of pro-inflammatory chemokines. In a rescue experiment, exogenous MMP-7 ameliorated kidney injury in MMP-7 knockout mice after ischemia/reperfusion. In vitro, MMP-7 protected tubular epithelial cells against apoptosis by directly degrading FasL. In isolated tubules ex vivo, MMP-7 promoted cell proliferation by degrading E-cadherin and thereby liberating β-catenin, priming renal tubules for regeneration. Taken together, these results suggest that induction of MMP-7 is protective in AKI by degrading FasL and mobilizing β-catenin, thereby priming kidney tubules for survival and regeneration.
Collapse
Affiliation(s)
- Haiyan Fu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haili Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Liao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Lin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Liang J, Lin G, Tian J, Chen J, Liang R, Chen Z, Deng Q, Dong Z, Liu T, Wu Y. Measurement of urinary matrix metalloproteinase-7 for early diagnosis of acute kidney injury based on an ultrasensitive immunomagnetic microparticle-based time-resolved fluoroimmunoassay. Clin Chim Acta 2019; 490:55-62. [DOI: 10.1016/j.cca.2018.11.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/07/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
|
25
|
Khamisabadi A, Tahmasbpour E, Ghanei M, Shahriary A. Roles of matrix metalloproteinases (MMPs) in SM-induced pathologies. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1477163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ali Khamisabadi
- Faculty of Veterinary Medicine, Tabriz University, Tabriz, Iran
| | - Eisa Tahmasbpour
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Zhang J, Ren P, Wang Y, Feng S, Wang C, Shen X, Weng C, Lang X, Chen Z, Jiang H, Chen J. Serum Matrix Metalloproteinase-7 Level is Associated with Fibrosis and Renal Survival in Patients with IgA Nephropathy. Kidney Blood Press Res 2017; 42:541-552. [DOI: 10.1159/000477132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/08/2017] [Indexed: 11/19/2022] Open
|
27
|
Yang X, Chen C, Teng S, Fu X, Zha Y, Liu H, Wang L, Tian J, Zhang X, Liu Y, Nie J, Hou FF. Urinary Matrix Metalloproteinase-7 Predicts Severe AKI and Poor Outcomes after Cardiac Surgery. J Am Soc Nephrol 2017; 28:3373-3382. [PMID: 28698269 DOI: 10.1681/asn.2017020142] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/27/2017] [Indexed: 01/25/2023] Open
Abstract
Urinary matrix metalloproteinase-7 (uMMP-7) levels consistently reflect the activity of intrarenal Wnt/β-catenin, which is activated in AKI models. To test the hypothesis that uMMP-7 is a predictor for severe AKI in patients after cardiac surgery, we performed a prospective, multicenter, two-stage cohort study in 721 patients undergoing cardiac surgery. In stage 1, we enrolled 323 children from three academic medical centers. In stage 2, we enrolled 398 adults at six centers. We analyzed levels of uMMP-7 and other injury biomarkers during the perioperative period. Severe AKI was defined as Kidney Disease Improving Global Outcomes stage 2 or 3. uMMP-7 level peaked within 6 hours after surgery in patients who subsequently developed severe AKI. After multivariate adjustment, the highest quintile of postoperative uMMP-7 level, compared with the lowest quintile, associated with 17-fold (in adults) and 36-fold (in children) higher odds of severe AKI. Elevated uMMP-7 level associated with increased risk of composite events (severe AKI, acute dialysis, and in-hospital death) and longer stay in the intensive care unit and hospital. For predicting severe AKI, uMMP-7 had an area under the receiver operating characteristic curve of 0.81 (in children) and 0.76 (in adults), outperforming urinary IL-18, angiotensinogen, neutrophil gelatinase-associated lipocalin, albumin-to-creatinine ratio, and tissue inhibitor of metalloproteinase-2·IGF-binding protein-7 and the clinical model. uMMP-7 significantly improved risk reclassification over the clinical model alone, as measured by net reclassification improvement and integrated discrimination improvement. In conclusion, uMMP-7 is a promising predictor for severe AKI and poor in-hospital outcomes in patients after cardiac surgery.
Collapse
Affiliation(s)
- Xiaobing Yang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China
| | - Chunbo Chen
- Department of Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Siyuan Teng
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China
| | - Xiaorui Fu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China
| | - Yan Zha
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang Medical University, Guiyang, China
| | - Huafeng Liu
- Division of Nephrology, Institute of Nephrology, Guangdong Medical College, Zhanjiang, China; and
| | - Li Wang
- Division of Nephrology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Jianwei Tian
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China
| | - Xiangyan Zhang
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang Medical University, Guiyang, China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China
| | - Jing Nie
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China;
| |
Collapse
|
28
|
Gröne EF, Federico G, Nelson PJ, Arnold B, Gröne HJ. The hormetic functions of Wnt pathways in tubular injury. Pflugers Arch 2017; 469:899-906. [PMID: 28685176 PMCID: PMC5541077 DOI: 10.1007/s00424-017-2018-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023]
Abstract
Chronic tubulointerstitial damage with tubular epithelial atrophy and interstitial fibrosis is the hallmark of chronic kidney disease (CKD) and a predictor for progression of CKD.Several experiments have now provided evidence that the Wnt signaling pathways are significantly contributing to atrophy and fibrosis; in contrast, it also has been shown that the Wnt system fosters regenerative processes in acute tubular injury.We now have demonstrated that Dickkopf 3 (DKK3) is an agonist for canonical Wnt signaling in CKD and fosters chronic fibrosing inflammation of the tubulointerstitial compartment. Genetic- and antibody-mediated inhibition of DKK3 leads to a pronounced improvement of tubular differentiation and a reduction in fibrosis.In addition, the secreted glycoprotein DKK3 can be used as a non-invasive urinary marker for the extent of CKD in man.
Collapse
Affiliation(s)
- Elisabeth F Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Giuseppina Federico
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Peter J Nelson
- Clinical Biochemistry, Ludwig Maximilian University, Munich, Bavaria, Germany
| | - Bernd Arnold
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. h.-
| |
Collapse
|
29
|
Parrish AR. Matrix Metalloproteinases in Kidney Disease: Role in Pathogenesis and Potential as a Therapeutic Target. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:31-65. [PMID: 28662825 DOI: 10.1016/bs.pmbts.2017.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Matrix metalloproteinases (MMPs) are large family of proteinases. In addition to a fundamental role in the remodeling of the extracellular matrix, they also cleave a number of cell surface proteins and are involved in multiple cellular processes. MMP activity is regulated via numerous mechanisms, including inhibition by endogenous tissue inhibitors of metalloproteinases (TIMPs). Similar to MMPs, a role for TIMPs has been established in multiple cell signaling pathways. Aberrant expression of MMPs and TIMPS in renal pathophysiology has long been recognized, and with the generation of specific knockout mice, the mechanistic role of several MMPs and TIMPs is becoming more understood and has revealed both pathogenic and protective roles. This chapter will focus on the expression and localization of MMPs and TIMPs in the kidney, as well as summarizing the current information linking these proteins to acute kidney injury and chronic kidney disease. In addition, we will summarize studies suggesting that MMPs and TIMPs may be biomarkers of renal dysfunction and represent novel therapeutic targets to attenuate kidney disease.
Collapse
Affiliation(s)
- Alan R Parrish
- School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
30
|
Gerarduzzi C, Kumar RK, Trivedi P, Ajay AK, Iyer A, Boswell S, Hutchinson JN, Waikar SS, Vaidya VS. Silencing SMOC2 ameliorates kidney fibrosis by inhibiting fibroblast to myofibroblast transformation. JCI Insight 2017; 2:90299. [PMID: 28422762 DOI: 10.1172/jci.insight.90299] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/16/2017] [Indexed: 12/14/2022] Open
Abstract
Secreted modular calcium-binding protein 2 (SMOC2) belongs to the secreted protein acidic and rich in cysteine (SPARC) family of matricellular proteins whose members are known to modulate cell-matrix interactions. We report that SMOC2 is upregulated in the kidney tubular epithelial cells of mice and humans following fibrosis. Using genetically manipulated mice with SMOC2 overexpression or knockdown, we show that SMOC2 is critically involved in the progression of kidney fibrosis. Mechanistically, we found that SMOC2 activates a fibroblast-to-myofibroblast transition (FMT) to stimulate stress fiber formation, proliferation, migration, and extracellular matrix production. Furthermore, we demonstrate that targeting SMOC2 by siRNA results in attenuation of TGFβ1-mediated FMT in vitro and an amelioration of kidney fibrosis in mice. These findings implicate that SMOC2 is a key signaling molecule in the pathological secretome of a damaged kidney and targeting SMOC2 offers a therapeutic strategy for inhibiting FMT-mediated kidney fibrosis - an unmet medical need.
Collapse
Affiliation(s)
- Casimiro Gerarduzzi
- Renal Division, Department of Medicine, Brigham and Women's Hospital (BWH), Boston, Massachusetts, USA
| | - Ramya K Kumar
- Renal Division, Department of Medicine, Brigham and Women's Hospital (BWH), Boston, Massachusetts, USA
| | - Priyanka Trivedi
- Renal Division, Department of Medicine, Brigham and Women's Hospital (BWH), Boston, Massachusetts, USA
| | - Amrendra K Ajay
- Renal Division, Department of Medicine, Brigham and Women's Hospital (BWH), Boston, Massachusetts, USA
| | - Ashwin Iyer
- Renal Division, Department of Medicine, Brigham and Women's Hospital (BWH), Boston, Massachusetts, USA
| | - Sarah Boswell
- Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Sushrut S Waikar
- Renal Division, Department of Medicine, Brigham and Women's Hospital (BWH), Boston, Massachusetts, USA
| | - Vishal S Vaidya
- Renal Division, Department of Medicine, Brigham and Women's Hospital (BWH), Boston, Massachusetts, USA.,Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Zhou D, Fu H, Zhang L, Zhang K, Min Y, Xiao L, Lin L, Bastacky SI, Liu Y. Tubule-Derived Wnts Are Required for Fibroblast Activation and Kidney Fibrosis. J Am Soc Nephrol 2017; 28:2322-2336. [PMID: 28336721 DOI: 10.1681/asn.2016080902] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/16/2017] [Indexed: 01/15/2023] Open
Abstract
Cell-cell communication via Wnt ligands is necessary in regulating embryonic development and has been implicated in CKD. Because Wnt ligands are ubiquitously expressed, the exact cellular source of the Wnts involved in CKD remains undefined. To address this issue, we generated two conditional knockout mouse lines in which Wntless (Wls), a dedicated cargo receptor that is obligatory for Wnt secretion, was selectively ablated in tubular epithelial cells or interstitial fibroblasts. Blockade of Wnt secretion by genetic deletion of Wls in renal tubules markedly inhibited myofibroblast activation and reduced renal fibrosis after unilateral ureteral obstruction. This effect associated with decreased activation of β-catenin and downstream gene expression and preserved tubular epithelial integrity. In contrast, fibroblast-specific deletion of Wls exhibited little effect on the severity of renal fibrosis after obstructive or ischemia-reperfusion injury. In vitro, incubation of normal rat kidney fibroblasts with tubule-derived Wnts promoted fibroblast proliferation and activation. Furthermore, compared with kidney specimens from patients without CKD, biopsy specimens from patients with CKD also displayed increased expression of multiple Wnt proteins, predominantly in renal tubular epithelium. These results illustrate that tubule-derived Wnts have an essential role in promoting fibroblast activation and kidney fibrosis via epithelial-mesenchymal communication.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Lu Zhang
- Division of Nephrology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ke Zhang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yali Min
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Liangxiang Xiao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Lin Lin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sheldon I Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; .,State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| |
Collapse
|
32
|
Ke B, Fan C, Yang L, Fang X. Matrix Metalloproteinases-7 and Kidney Fibrosis. Front Physiol 2017; 8:21. [PMID: 28239354 PMCID: PMC5301013 DOI: 10.3389/fphys.2017.00021] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022] Open
Abstract
Matrix metalloproteinase-7 (MMP-7) is a secreted zinc- and calcium-dependent endopeptidase that degrades a broad range of extracellular matrix substrates and additional substrates. MMP-7 playsa crucial role in a diverse array of cellular processes and appears to be a key regulator of fibrosis in several diseases, including pulmonary fibrosis, liver fibrosis, and cystic fibrosis. In particular, the relationship between MMP-7 and kidney fibrosis has attracted significant attention in recent years. Growing evidence indicates that MMP-7 plays an important role in the pathogenesis of kidney fibrosis. Here, we summarize the recent progress in the understanding of the role of MMP-7 in kidney fibrosis. In particular, we discuss how MMP-7 contributes to kidney fibrotic lesions via the following three pathways: epithelial-mesenchymal transition (EMT), transforming growth factor-beta (TGF-β) signaling, and extracellular matrix (ECM) deposition. Further dissection of the crosstalk among and regulation of these pathways will help clinicians and researchers develop effective therapeutic approaches for treating chronic kidney disease.
Collapse
Affiliation(s)
- Ben Ke
- The Third Hospital of Nanchang Nanchang, China
| | - Chuqiao Fan
- Nanchang University School of Medicine Nanchang, China
| | - Liping Yang
- Department of Nephrology, The Second Affiliated Hospital to Nanchang University Nanchang, China
| | - Xiangdong Fang
- Department of Breast Surgery, Jiangxi Cancer Hospital Nanchang, China
| |
Collapse
|
33
|
Zhou D, Tian Y, Sun L, Zhou L, Xiao L, Tan RJ, Tian J, Fu H, Hou FF, Liu Y. Matrix Metalloproteinase-7 Is a Urinary Biomarker and Pathogenic Mediator of Kidney Fibrosis. J Am Soc Nephrol 2016; 28:598-611. [PMID: 27624489 DOI: 10.1681/asn.2016030354] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/07/2016] [Indexed: 12/19/2022] Open
Abstract
Matrix metalloproteinase-7 (MMP-7), a secreted zinc- and calcium-dependent endopeptidase, is a transcriptional target of canonical Wnt/β-catenin signaling. Because Wnt/β-catenin is activated in diseased kidney, we hypothesized that urinary MMP-7 level may be used as a noninvasive surrogate biomarker for fibrotic lesions. To test this hypothesis, we conducted a cross-sectional study, measuring urinary MMP-7 levels in a cohort of 102 patients with CKD. Compared with normal subjects, patients with various kidney disorders had markedly elevated urinary levels of MMP-7. Furthermore, urinary MMP-7 levels closely correlated with renal fibrosis scores in patients. In mice, knockout of MMP-7 ameliorated the fibrotic lesions and expression of matrix genes induced by obstructive injury. Genetic ablation of MMP-7 also preserved E-cadherin protein expression and substantially reduced the expression of total and dephosphorylated β-catenin and the de novo expression of vimentin and fibroblast-specific protein 1 in renal tubules of obstructed kidneys. In vitro, MMP-7 proteolytically degraded E-cadherin in proximal tubular cells, leading to β-catenin liberation and nuclear translocation and induction of β-catenin target genes by a mechanism independent of Wnt ligands. Finally, pharmacologic inhibition of MMP-7 immediately after obstructive injury reduced renal fibrosis in vivo These results suggest that MMP-7 not only can serve as a noninvasive biomarker but also is an important pathogenic mediator of kidney fibrosis.
Collapse
Affiliation(s)
| | - Yuan Tian
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Sun
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liangxiang Xiao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Jianwei Tian
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- Department of Pathology and .,State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Nukarinen E, Lindström O, Kuuliala K, Kylänpää L, Pettilä V, Puolakkainen P, Kuuliala A, Hämäläinen M, Moilanen E, Repo H, Hästbacka J. Association of Matrix Metalloproteinases -7, -8 and -9 and TIMP -1 with Disease Severity in Acute Pancreatitis. A Cohort Study. PLoS One 2016; 11:e0161480. [PMID: 27561093 PMCID: PMC4999158 DOI: 10.1371/journal.pone.0161480] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/06/2016] [Indexed: 12/27/2022] Open
Abstract
Objectives Several biomarkers for early detection of severe acute pancreatitis (SAP) have been presented. Matrix metalloproteinases (MMP) and their tissue inhibitors (TIMP) are released early in inflammation. We aimed to assess levels of MMP-7, -8, -9 and TIMP-1 in acute pancreatitis (AP) and explore their ability to detect disease severity. Our second aim was to find an association between MMPs, TIMP and creatinine. Methods We collected plasma samples for MMP-7, -8, -9 and TIMP-1 analyses from 176 patients presenting within 96 h from onset of acute pancreatitis (AP) symptoms. We used samples from 32 control subjects as comparison. The revised Atlanta Classification was utilised to assess severity of disease. Receiver operating characteristic curve analysis and Spearman´s Rho-test were utilised for statistical calculations. Results Compared with controls, patients showed higher levels of all studied markers. MMP-8 was higher in moderately severe AP than in mild AP (p = 0.005) and MMP-8, -9 and TIMP-1 were higher in severe than in mild AP (p<0.001, p = 0.005 and p = 0.019). MMP-8 detected SAP with an AUC of 0.939 [95% CI 0.894–0.984], LR+ 9.03 [5.30–15.39]. MMP-8, -9 and TIMP-1 failed to discern moderately severe AP from SAP. MMP-7 was not different between patient groups. MMP-7 and TIMP-1 correlated weakly with creatinine (Rho = 0.221 and 0.243). MMP-8 might be a useful biomarker in early detection of SAP.
Collapse
Affiliation(s)
- Eija Nukarinen
- Department of Perioperative, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- * E-mail:
| | - Outi Lindström
- Department of GI Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Krista Kuuliala
- Department of Bacteriology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Leena Kylänpää
- Department of GI Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ville Pettilä
- Department of Perioperative, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pauli Puolakkainen
- Department of GI Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Kuuliala
- Department of Bacteriology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - Heikki Repo
- Department of Bacteriology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Hästbacka
- Department of Perioperative, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
35
|
Elevated Urinary Matrix Metalloproteinase-7 Detects Underlying Renal Allograft Inflammation and Injury. Transplantation 2016; 100:648-54. [DOI: 10.1097/tp.0000000000000867] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Wnt/β-catenin signaling in kidney injury and repair: a double-edged sword. J Transl Med 2016; 96:156-67. [PMID: 26692289 PMCID: PMC4731262 DOI: 10.1038/labinvest.2015.153] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023] Open
Abstract
The Wnt/β-catenin signaling cascade is an evolutionarily conserved, highly complex pathway that is known to be involved in kidney injury and repair after a wide variety of insults. Although the kidney displays an impressive ability to repair and recover after injury, these repair mechanisms can be overwhelmed, leading to maladaptive responses and eventual development of chronic kidney disease (CKD). Emerging evidence demonstrates that Wnt/β-catenin signaling possesses dual roles in promoting repair/regeneration or facilitating progression to CKD after acute kidney injury (AKI), depending on the magnitude and duration of its activation. In this review, we summarize the expression, intracellular modification, and secretion of Wnt family proteins and their regulation in a variety of kidney diseases. We also explore our current understanding of the potential mechanisms by which transient Wnt/β-catenin activation positively regulates adaptive responses of the kidney after AKI, and discuss how sustained activation of this signaling triggers maladaptive responses and causes destructive outcomes. A better understanding of these mechanisms may offer important opportunities for designing targeted therapy to promote adaptive kidney repair/recovery and prevent progression to CKD in patients.
Collapse
|
37
|
Matrix remodeling by MMPs during wound repair. Matrix Biol 2015; 44-46:113-21. [PMID: 25770908 DOI: 10.1016/j.matbio.2015.03.002] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/16/2022]
Abstract
Repair following injury involves a range of processes - such as re-epithelialization, scar formation, angiogenesis, inflammation, and more - that function, often together, to restore tissue architecture. MMPs carry out diverse roles in all of these activities. In this article, we discuss how specific MMPs act on ECM during two critical repair processes: re-epithelialization and resolution of scar tissue. For wound closure, we discuss how two MMPs - MMP1 in human epidermis and MMP7 in mucosal epithelia - facilitate re-epithelialization by cleaving different ECM or ECM-associated proteins to affect similar integrin:matrix adhesion. In scars and fibrotic tissues, we discuss that a variety of MMPs carry out a diverse range of activities that can either promote or limit ECM deposition. However, few of these MMP-driven activities have been demonstrated to be due a direct action on ECM.
Collapse
|
38
|
Abstract
Wnt/β-catenin signaling is an evolutionarily conserved, highly complex, key developmental pathway that regulates cell fate, organ development, tissue homeostasis, as well as injury and repair. Although relatively silent in normal adult kidney, Wnt/β-catenin signaling is re-activated after renal injury in a wide variety of animal models and in human kidney disorders. Whereas some data point to a protective role of this signaling in healing and repair after acute kidney injury, increasing evidence suggests that sustained activation of Wnt/β-catenin is associated with the development and progression of renal fibrotic lesions. In kidney cells, Wnt/β-catenin promotes the expression of numerous fibrosis-related genes such as Snail1, plasminogen activator inhibitor-1, and matrix metalloproteinase-7. Recent studies also indicate that multiple components of the renin-angiotensin system are the direct downstream targets of Wnt/β-catenin. Consistently, inhibition of Wnt/β-catenin signaling by an assortment of strategies ameliorates kidney injury and mitigates renal fibrotic lesions in various models of chronic kidney disease, suggesting that targeting this signaling could be a plausible strategy for therapeutic intervention. In this mini review, we will briefly discuss the regulation, downstream targets, and mechanisms of Wnt/β-catenin signaling in the pathogenesis of kidney fibrosis.
Collapse
|
39
|
Kidney tubular β-catenin signaling controls interstitial fibroblast fate via epithelial-mesenchymal communication. Sci Rep 2014; 3:1878. [PMID: 23698793 PMCID: PMC3662012 DOI: 10.1038/srep01878] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/01/2013] [Indexed: 12/11/2022] Open
Abstract
Activation of β-catenin, the principal mediator of canonical Wnt signaling, is a common pathologic finding in a wide variety of chronic kidney diseases (CKD). While β-catenin is induced predominantly in renal tubular epithelium in CKD, surprisingly, depletion of tubular β-catenin had little effect on the severity of renal fibrosis. Interestingly, less apoptosis was detected in interstitial fibroblasts in knockout mice, which was accompanied by a decreased expression of Bax and Fas ligand (FasL). Tubule-specific knockout of β-catenin diminished renal induction of matrix metalloproteinase (MMP-7), which induced FasL expression in interstitial fibroblasts and potentiated fibroblast apoptosis in vitro. These results demonstrate that loss of tubular β-catenin resulted in enhanced interstitial fibroblast survival due to decreased MMP-7 expression. Our studies uncover a novel role of the tubular β-catenin/MMP-7 axis in controlling the fate of interstitial fibroblasts via epithelial-mesenchymal communication.
Collapse
|
40
|
The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis? FIBROGENESIS & TISSUE REPAIR 2014; 7:4. [PMID: 24678881 PMCID: PMC3986639 DOI: 10.1186/1755-1536-7-4] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/27/2014] [Indexed: 02/06/2023]
Abstract
Interstitial fibrosis is the common endpoint of end-stage chronic kidney disease (CKD) leading to kidney failure. The clinical course of many renal diseases, and thereby of CKD, is highly variable. One of the major challenges in deciding which treatment approach is best suited for a patient but also in the development of new treatments is the lack of markers able to identify and stratify patients with stable versus progressive disease. At the moment renal biopsy is the only means of diagnosing renal interstitial fibrosis. Novel biomarkers should improve diagnosis of a disease, estimate its prognosis and assess the response to treatment, all in a non-invasive manner. Existing markers of CKD do not fully and specifically address these requirements and in particular do not specifically reflect renal fibrosis. The aim of this review is to give an insight of the involvement of the extracellular matrix (ECM) proteins in kidney diseases and as a source of potential novel biomarkers of renal fibrosis. In particular the use of the protein fingerprint technology, that identifies neo-epitopes of ECM proteins generated by proteolytic cleavage by proteases or other post-translational modifications, might identify such novel biomarkers of renal fibrosis.
Collapse
|
41
|
Kramann R, DiRocco DP, Humphreys BD. Understanding the origin, activation and regulation of matrix-producing myofibroblasts for treatment of fibrotic disease. J Pathol 2013; 231:273-89. [PMID: 24006178 DOI: 10.1002/path.4253] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 08/26/2013] [Indexed: 12/19/2022]
Abstract
Fibrosis and scar formation results from chronic progressive injury in virtually every tissue and affects a growing number of people around the world. Myofibroblasts drive fibrosis, and recent work has demonstrated that mesenchymal cells, including pericytes and perivascular fibroblasts, are their main progenitors. Understanding the cellular mechanisms of pericyte/fibroblast-to-myofibroblast transition, myofibroblast proliferation and the key signalling pathways that regulate these processes is essential to develop novel targeted therapeutics for the growing patient population suffering from solid organ fibrosis. In this review, we summarize the current knowledge about different progenitor cells of myofibroblasts, discuss major pathways that regulate their transdifferentiation and discuss the current status of novel targeted anti-fibrotic therapeutics in development.
Collapse
Affiliation(s)
- Rafael Kramann
- Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; RWTH Aachen University, Division of Nephrology, Aachen, Germany
| | | | | |
Collapse
|
42
|
Oelusarz A, Nichols LA, Grunz-Borgmann EA, Chen G, Akintola AD, Catania JM, Burghardt RC, Trzeciakowski JP, Parrish AR. Overexpression of MMP-7 Increases Collagen 1A2 in the Aging Kidney. Physiol Rep 2013; 1. [PMID: 24273653 PMCID: PMC3834982 DOI: 10.1002/phy2.90] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The percentage of the U.S. population over 65 is rapidly increasing, as is the incidence of chronic kidney disease (CKD). The kidney is susceptible to age-dependent alterations in structure, specifically tubulointerstitial fibrosis that leads to CKD. Matrix metalloproteinases (MMPs) were initially characterized as extracellular matrix (ECM) proteinases; however, it is clear that their biological role is much larger. We have observed increased gene expression of several MMPs in the aging kidney, including MMP-7. MMP-7 overexpression was observed starting at 16 months, with over a 500-fold upregulation in 2-year-old animals. Overexpression of MMP-7 is not observed in age-matched, calorically restricted controls that do not develop fibrosis and renal dysfunction, suggesting a role in the pathogenesis. In order to delineate the contributions of MMP-7 to renal dysfunction, we overexpressed MMP-7 in NRK-52E cells. High-throughput sequencing of the cells revealed that two collagen genes, Col1a2 and Col3a1, were elevated in the MMP-7 overexpressing cells. These two collagen genes were also elevated in aging rat kidneys and temporally correlated with increased MMP-7 expression. Addition of exogenous MMP-7, or conditioned media from MMP-7 overexpressing cells also increased Col1A2 expression. Inhibition of protein kinase A (PKA), src, and MAPK signaling at p38 and ERK was able to attenuate the MMP-7 upregulation of Col1a2. Consistent with this finding, increased phosphorylation of PKA, src, and ERK was seen in MMP-7 overexpressing cells and upon exogenous MMP-7 treatment of NRK-52E cells. These data suggest a novel mechanism by which MMP-7 contributes to the development of fibrosis leading to CKD.
Collapse
Affiliation(s)
- Anna Oelusarz
- Medical Pharmacology and Physiology, School of Medicine, University of Missouri
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kwekel JC, Desai VG, Moland CL, Vijay V, Fuscoe JC. Life cycle analysis of kidney gene expression in male F344 rats. PLoS One 2013; 8:e75305. [PMID: 24116033 PMCID: PMC3792073 DOI: 10.1371/journal.pone.0075305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/13/2013] [Indexed: 11/18/2022] Open
Abstract
Age is a predisposing condition for susceptibility to chronic kidney disease and progression as well as acute kidney injury that may arise due to the adverse effects of some drugs. Age-related differences in kidney biology, therefore, are a key concern in understanding drug safety and disease progression. We hypothesize that the underlying suite of genes expressed in the kidney at various life cycle stages will impact susceptibility to adverse drug reactions. Therefore, establishing changes in baseline expression data between these life stages is the first and necessary step in evaluating this hypothesis. Untreated male F344 rats were sacrificed at 2, 5, 6, 8, 15, 21, 78, and 104 weeks of age. Kidneys were collected for histology and gene expression analysis. Agilent whole-genome rat microarrays were used to query global expression profiles. An ANOVA (p<0.01) coupled with a fold-change>1.5 in relative mRNA expression, was used to identify 3,724 unique differentially expressed genes (DEGs). Principal component analyses of these DEGs revealed three major divisions in life-cycle renal gene expression. K-means cluster analysis identified several groups of genes that shared age-specific patterns of expression. Pathway analysis of these gene groups revealed age-specific gene networks and functions related to renal function and aging, including extracellular matrix turnover, immune cell response, and renal tubular injury. Large age-related changes in expression were also demonstrated for the genes that code for qualified renal injury biomarkers KIM-1, Clu, and Tff3. These results suggest specific groups of genes that may underlie age-specific susceptibilities to adverse drug reactions and disease. This analysis of the basal gene expression patterns of renal genes throughout the life cycle of the rat will improve the use of current and future renal biomarkers and inform our assessments of kidney injury and disease.
Collapse
Affiliation(s)
- Joshua C. Kwekel
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
- * E-mail: (JCK); (JCF)
| | - Varsha G. Desai
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Carrie L. Moland
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Vikrant Vijay
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - James C. Fuscoe
- Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, United States of America
- * E-mail: (JCK); (JCF)
| |
Collapse
|
44
|
Kramann R, Dirocco DP, Maarouf OH, Humphreys BD. Matrix Producing Cells in Chronic Kidney Disease: Origin, Regulation, and Activation. CURRENT PATHOBIOLOGY REPORTS 2013; 1. [PMID: 24319648 DOI: 10.1007/s40139-013-0026-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chronic injury to the kidney causes kidney fibrosis with irreversible loss of functional renal parenchyma and leads to the clinical syndromes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). Regardless of the type of initial injury, kidney disease progression follows the same pathophysiologic processes characterized by interstitial fibrosis, capillary rarefaction and tubular atrophy. Myofibroblasts play a pivotal role in fibrosis by driving excessive extracellular matrix (ECM) deposition. Targeting these cells in order to prevent the progression of CKD is a promising therapeutic strategy, however, the cellular source of these cells is still controversial. In recent years, a growing amount of evidence points to resident mesenchymal cells such as pericytes and perivascular fibroblasts, which form extensive networks around the renal vasculature, as major contributors to the pool of myofibroblasts in renal fibrogenesis. Identifying the cellular origin of myofibroblasts and the key regulatory pathways that drive myofibroblast proliferation and transdifferentiation as well as capillary rarefaction is the first step to developing novel anti-fibrotic therapeutics to slow or even reverse CKD progression and ultimately reduce the prevalence of ESRD. This review will summarize recent findings concerning the cellular source of myofibroblasts and highlight recent discoveries concerning the key regulatory signaling pathways that drive their expansion and progression in CKD.
Collapse
Affiliation(s)
- Rafael Kramann
- Brigham and Women's Hospital, Boston, Massachusetts ; Harvard Medical School, Boston, Massachusetts ; RWTH Aachen University, Division of Nephrology, Aachen, Germany
| | | | | | | |
Collapse
|
45
|
Han S, Lee H, Oh Y, Lee J, Kim S, Ha J, Kim S, Park M, Kim Y, Kim D. Identification of the Effects of Aging-Related Gene-Matrix Metalloproteinase on Allograft Outcomes in Kidney Transplantation. Transplant Proc 2013; 45:2158-64. [DOI: 10.1016/j.transproceed.2013.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/04/2013] [Accepted: 03/21/2013] [Indexed: 01/23/2023]
|
46
|
Xue H, Xiao Z, Zhang J, Wen J, Wang Y, Chang Z, Zhao J, Gao X, Du J, Chen YG. Disruption of the Dapper3 gene aggravates ureteral obstruction-mediated renal fibrosis by amplifying Wnt/β-catenin signaling. J Biol Chem 2013; 288:15006-14. [PMID: 23580654 DOI: 10.1074/jbc.m113.458448] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wnt/β-catenin signaling plays key roles in embryonic development and tissue homeostasis. Dapper3/Dact3, one of the three members of the Dapper gene family, is transcriptionally repressed in colorectal cancer and may function as a negative regulator of Wnt/β-catenin signaling. To investigate its physiological functions, we generated a mouse strain harboring conditional null alleles of Dapper3 (Dapper3(flox/flox)), and homozygous Dapper3-deficient (Dapper3(-/-)) mice were produced after crossing with EIIa-cre transgenic mice. We found that Dapper3 is not essential for mouse embryogenesis, postnatal survival, and reproduction. However, adult Dapper3(-/-) mice exhibited a mild reduction in body weight compared with their wild-type littermates, suggesting a functional role of Dapper3 in postnatal growth. To investigate the role of Dapper3 in renal fibrosis, we employed the unilateral ureteral obstruction model. Dapper3 mRNA expression was up-regulated in kidney after unilateral ureteral obstruction. Loss of the Dapper3 gene enhanced myofibroblast activation and extracellular matrix overproduction in the obstructed kidney. Moreover, this aggravated fibrotic phenotype was accompanied with accumulation of Dishevelled2 and β-catenin proteins and activation of Wnt-targeted fibrotic genes. In primary renal tubular cells, Dapper3 inhibits Wnt-induced epithelial-to-mesenchymal transition. Consistently, Dapper3 interacted with and down-regulated Dishevelled2 protein and attenuated the Wnt-responsive Topflash reporter expression. These findings together suggest that Dapper3 antagonizes the fibrotic actions of Wnt signaling in kidney.
Collapse
Affiliation(s)
- Hua Xue
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sustained Wnt/β-catenin signaling rescues high glucose induction of transforming growth factor-β1-mediated renal fibrosis. Am J Med Sci 2012; 344:374-82. [PMID: 22270399 DOI: 10.1097/maj.0b013e31824369c5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
INTRODUCTION Although diabetic nephropathy is attributable to transforming growth factor-β1 (TGF-β1) overproduction in glomer-ular mesangial cells, the biological role of Wnt/β-catenin signaling in controlling high glucose-induced TGF-β1 has not yet been elucidated. METHODS This study found that sustained Wnt/β-catenin signaling was required to protect glomerular mesangial cells from high glucose induction of TGF-β1-mediated fibrosis using in vitro and in vivo diabetic models. RESULTS High glucose down-regulated the Wnt signaling associated with increased TGF-β1 and fibronectin messenger RNA expression in glomerular mesangial cells. Restoring Wnt4, Wnt5a and cytosolic β-catenin levels by transfecting Wnt4, Wnt5a and stable β-catenin alleviated the stimulatory effect of high glucose on c-Jun mediated TGF-β1 fibrosis. Transfection of kinase-active glycogen synthase kinase-3β (GSK-3β) also abrogated high glucose promotion of nuclear c-Jun levels, TGF-β1 and fibronectin messenger RNA expression in mesangial cells. Pharmacological modulation of GSK-3ββ and ββ-catenin signaling by recombinant Wnt5a or GSK-3β inhibitor (BIO or LiCl) suppressed high glucose promotion of TGF-β1-mediated fibrosis. Exogenous BIO and SB216763 alleviated TGF-β1-mediated fibrogenic expression in the kidneys of diabetic rats. Immunohistochemistry showed that GSK-3β inhibitor significantly reversed the diabetic attenuation of TGF-β1 and c-Jun coinciding with fibronectin immunoreactivity within glomeruli. Immunofluorescence demonstrated that cells within the glomeruli restored β-catenin expression after BIO and SB216763 treatment in cells within diabetic glomeruli colocalized with fragmented nuclei by 4',6-diamidino-2-phenylindole staining. CONCLUSIONS Sustained Wnt signaling reduced c-Jun-dependent TGF-β1-mediated fibronectin accumulation in mesangial cells. These findings suggest that modulation of Wnt signaling is a viable alternative strategy to rescue the TGF-β1-mediated fibrotic signaling pathway in diabetic renal injury.
Collapse
|
48
|
Kawakami T, Ren S, Duffield JS. Wnt signalling in kidney diseases: dual roles in renal injury and repair. J Pathol 2012; 229:221-31. [DOI: 10.1002/path.4121] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 09/24/2012] [Accepted: 09/30/2012] [Indexed: 01/25/2023]
Affiliation(s)
- Takahisa Kawakami
- Division of Nephrology, Center for Lung Biology, Department of Medicine, and Institute of Stem Cell and Regenerative Medicine; University of Washington; Seattle WA USA
| | - Shuyu Ren
- Division of Nephrology, Center for Lung Biology, Department of Medicine, and Institute of Stem Cell and Regenerative Medicine; University of Washington; Seattle WA USA
| | - Jeremy S Duffield
- Division of Nephrology, Center for Lung Biology, Department of Medicine, and Institute of Stem Cell and Regenerative Medicine; University of Washington; Seattle WA USA
| |
Collapse
|
49
|
Pulkkinen K, Murugan S, Vainio S. Wnt signaling in kidney development and disease. Organogenesis 2012; 4:55-9. [PMID: 19279716 DOI: 10.4161/org.4.2.5849] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/06/2008] [Indexed: 01/09/2023] Open
Abstract
The Wnt gene family, which encodes secreted growth and differentiation factors, has been implicated in kidney organogenesis. The Wnts control both ureteric bud development and signaling, but they also serve as inductive factors to regulate nephrogenesis in the mesenchcymal cells. Several of the Wnt genes are expressed in the developing kidney, and gene knock-out studies have revealed specific developmental functions for these. Consistent with this, changes in Wnt ligands and pathway components are associated with many kidney diseases, including kidney cancers, renal fibrosis, cystic kidney diseases, acute renal failure, diabetic nephropathy and ischaemic injury. It is these associations of the Wnt signaling system with kidney development and kidney diseases that form to topic of this review.
Collapse
Affiliation(s)
- Kaisa Pulkkinen
- Department of Medical Biochemistry and Molecular Biology and Biocenter Oulu; Laboratory of Developmental Biology; University of Oulu; Oulu, Finland
| | | | | |
Collapse
|
50
|
GUO Y, XIAO L, SUN L, LIU F. Wnt/β-Catenin Signaling: a Promising New Target for Fibrosis Diseases. Physiol Res 2012; 61:337-46. [PMID: 22670697 DOI: 10.33549/physiolres.932289] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Wnt/β-catenin signaling is involved in virtually every aspect of embryonic development and also controls homeostatic self-renewal in a number of adult tissues. Recently, emerging evidence from researches of organ fibrosis suggest that sustained Wnt/β-catenin pathway reactivation is linked to the pathogenesis of fibrotic disorders. Here we focus on Wnt/β-catenin-related pathogenic effects in different organs, such as lung fibrosis, liver fibrosis, skin fibrosis and renal fibrosis. Additionally, Wnt/β-catenin signaling works in a combinatorial manner with TGF-β signaling in the process of fibrosis, and TGF-β signaling can induce expression of Wnt/β-catenin superfamily members and vice versa. Moreover, network analysis, based on pathway databases, revealed that key factors in the Wnt pathway were targeted by some differentially expressed microRNAs detected in fibrosis diseases. These findings demonstrated the crosstalks between Wnt/β-catenin pathway and TGF-β signalings, and microRNAs, highlighting the role of Wnts in organ fibrogenesis. Most importantly, nowadays there is a variety of Wnt pathway inhibitors which give us the potential therapeutic feasibility, modulation of the Wnt pathway may, therefore, present as a suitable and promising therapeutic strategy in the future.
Collapse
Affiliation(s)
| | | | - L. SUN
- Department of Nephropathy, Second Xiangya Hospital, Central South University, Changsha, P. R. China
| | - F. LIU
- Department of Nephropathy, Second Xiangya Hospital, Central South University, Changsha, P. R. China
| |
Collapse
|