1
|
Michel-Flutot P, Mansart A, Vinit S. Glycolytic metabolism modulation on spinal neuroinflammation and vital functions following cervical spinal cord injury. Respir Physiol Neurobiol 2025; 332:104383. [PMID: 39645172 DOI: 10.1016/j.resp.2024.104383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
High spinal cord injuries (SCIs) often result in persistent diaphragm paralysis and respiratory dysfunction. Chronic neuroinflammation within the damaged spinal cord after injury plays a prominent role in limiting functional recovery by impeding neuroplasticity. In this study, we aimed to reduce glucose metabolism that supports neuroinflammatory processes in an acute preclinical model of C2 spinal cord lateral hemisection in rats. We administered 2-deoxy-D-glucose (2-DG; 200 mg/kg/day s.c., for 7 days) and evaluated the effect on respiratory function and chondroitin sulfate proteoglycans (CSPGs) production around spinal phrenic motoneurons. Contrary to our initial hypothesis, our 2-DG treatment did not have any effect on diaphragm activity and CSPGs production in injured rats, although slight increases in tidal volume were observed. Unexpectedly, it led to deleterious effects in uninjured (sham) animals, characterized by increased ventilation and CSPGs production. Ultimately, our results seem to indicate that this 2-DG treatment paradigm may create a neuroinflammatory state in healthy animals, without affecting the already established spinal inflammation in injured rats.
Collapse
Affiliation(s)
| | - Arnaud Mansart
- Université Paris-Saclay, UVSQ, Inserm U1173, Infection et Inflammation (2I), Versailles 78000, France
| | - Stéphane Vinit
- Université Paris-Saclay, UVSQ, Inserm U1179, END-ICAP, Versailles 78000, France
| |
Collapse
|
2
|
Hoffman OR, Koehler JL, Espina JEC, Patterson AM, Gohar ES, Coleman E, Schoenike BA, Espinosa-Garcia C, Paredes F, Varvel NH, Dingledine RJ, Maguire JL, Roopra AS. Disease modification upon brief exposure to tofacitinib during chronic epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.07.552299. [PMID: 37662337 PMCID: PMC10473616 DOI: 10.1101/2023.08.07.552299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
All current drug treatments for epilepsy, a neurological disorder affecting over 50 million people( 1, 2 ) merely treat symptoms, and a third of patients do not respond to medication. There are no disease modifying treatments that may be administered briefly to patients to enduringly eliminate spontaneous seizures and reverse cognitive deficits( 3, 4 ). Applying network approaches to rodent models and human temporal lobectomy samples at both whole tissue and single-nuclei resolutions, we observe the well-characterized pattern of rapid induction and subsequent quenching exhibited of the JAK/STAT pathway within days of epileptogenic insult. This is followed by a resurgent activation weeks to months later with the onset of spontaneous seizures. Targeting the first wave of activation after epileptic insult does not prevent disease. However, brief inhibition of the second wave with CP690550 (Tofacitinib) ( 5, 6 ) enduringly suppresses seizures, rescues deficits in spatial memory, and alleviates epilepsy-associated histopathological alterations. Seizure suppression lasts for at least 2 months after the final dose. Using discovery-based transcriptomic analysis across models of epilepsy and validation of putative mechanisms with human data, we demonstrate a powerful approach to identifying disease modifying targets; this may be useful for other neurological disorders. With this approach, we find that reignition of inflammatory JAK/STAT3 signaling in chronic epilepsy opens a window for disease modification with the FDA-approved, orally available drug CP690550.
Collapse
|
3
|
Klein P, Kaminski RM, Koepp M, Löscher W. New epilepsy therapies in development. Nat Rev Drug Discov 2024; 23:682-708. [PMID: 39039153 DOI: 10.1038/s41573-024-00981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
Epilepsy is a common brain disorder, characterized by spontaneous recurrent seizures, with associated neuropsychiatric and cognitive comorbidities and increased mortality. Although people at risk can often be identified, interventions to prevent the development of the disorder are not available. Moreover, in at least 30% of patients, epilepsy cannot be controlled by current antiseizure medications (ASMs). As a result of considerable progress in epilepsy genetics and the development of novel disease models, drug screening technologies and innovative therapeutic modalities over the past 10 years, more than 200 novel epilepsy therapies are currently in the preclinical or clinical pipeline, including many treatments that act by new mechanisms. Assisted by diagnostic and predictive biomarkers, the treatment of epilepsy is undergoing paradigm shifts from symptom-only ASMs to disease prevention, and from broad trial-and-error treatments for seizures in general to mechanism-based treatments for specific epilepsy syndromes. In this Review, we assess recent progress in ASM development and outline future directions for the development of new therapies for the treatment and prevention of epilepsy.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA.
| | | | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Wolfgang Löscher
- Translational Neuropharmacology Lab., NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
4
|
Khatibi VA, Salimi M, Rahdar M, Rezaei M, Nazari M, Dehghan S, Davoudi S, Raoufy MR, Mirnajafi-Zadeh J, Javan M, Hosseinmardi N, Behzadi G, Janahmadi M. Glycolysis inhibition partially resets epilepsy-induced alterations in the dorsal hippocampus-basolateral amygdala circuit involved in anxiety-like behavior. Sci Rep 2023; 13:6520. [PMID: 37085688 PMCID: PMC10119516 DOI: 10.1038/s41598-023-33710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/18/2023] [Indexed: 04/23/2023] Open
Abstract
Pharmacoresistant temporal lobe epilepsy affects millions of people around the world with uncontrolled seizures and comorbidities, like anxiety, being the most problematic aspects calling for novel therapies. The intrahippocampal kainic acid model of temporal lobe epilepsy is an appropriate rodent model to evaluate the effects of novel interventions, including glycolysis inhibition, on epilepsy-induced alterations. Here, we investigated kainic acid-induced changes in the dorsal hippocampus (dHPC) and basolateral amygdala (BLA) circuit and the efficiency of a glycolysis inhibitor, 2-deoxy D-glucose (2-DG), in resetting such alterations using simultaneous local field potentials (LFP) recording and elevated zero-maze test. dHPC theta and gamma powers were lower in epileptic groups, both in the baseline and anxiogenic conditions. BLA theta power was higher in baseline condition while it was lower in anxiogenic condition in epileptic animals and 2-DG could reverse it. dHPC-BLA coherence was altered only in anxiogenic condition and 2-DG could reverse it only in gamma frequency. This coherence was significantly correlated with the time in which the animals exposed themselves to the anxiogenic condition. Further, theta-gamma phase-locking was lower in epileptic groups in the dHPC-BLA circuit and 2-DG could considerably increase it.
Collapse
Affiliation(s)
- Vahid Ahli Khatibi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Salimi
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Rahdar
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Rezaei
- Department of Physiology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Milad Nazari
- Department of Molecular Biology and Genetics, Aarhus University, Åarhus, Denmark
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Davoudi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gila Behzadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center and Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Zhang M, Qin Q, Zhang S, Liu W, Meng H, Xu M, Huang X, Lin X, Lin M, Herman P, Hyder F, Stevens RC, Wang Z, Li B, Thompson GJ. Aerobic glycolysis imaging of epileptic foci during the inter-ictal period. EBioMedicine 2022; 79:104004. [PMID: 35436726 PMCID: PMC9035653 DOI: 10.1016/j.ebiom.2022.104004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In drug-resistant epilepsy, surgical resection of the epileptic focus can end seizures. However, success is dependent on the ability to identify foci locations and, unfortunately, current methods like electrophysiology and positron emission tomography can give contradictory results. During seizures, glucose is metabolized at epileptic foci through aerobic glycolysis, which can be imaged through the oxygen-glucose index (OGI) biomarker. However, inter-ictal (between seizures) OGI changes have not been studied, which has limited its application. METHODS 18 healthy controls and 24 inter-ictal, temporal lobe epilepsy patients underwent simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) scans. We used [18F]fluorodeoxyglucose-PET (FDG-PET) to detect cerebral glucose metabolism, and calibrated functional MRI to acquire relative oxygen consumption. With these data, we calculated relative OGI maps. FINDINGS While bilaterally symmetrical in healthy controls, we observed, in patients during the inter-ictal period, higher OGI ipsilateral to the epileptic focus than contralateral. While traditional FDG-PET results and temporal lobe OGI results usually both agreed with invasive electrophysiology, in cases where FDG-PET disagreed with electrophysiology, temporal lobe OGI agreed with electrophysiology, and vice-versa. INTERPRETATION As either our novel epilepsy biomarker or traditional approaches located foci in every case, our work provides promising insights into metabolic changes in epilepsy. Our method allows single-session OGI measurement which can be useful in other diseases. FUNDING This work was supported by ShanghaiTech University, the Shanghai Municipal Government, the National Natural Science Foundation of China Grant (No. 81950410637) and Shanghai Municipal Key Clinical Specialty (No. shslczdzk03403). F. H. and P. H. were supported by USA National Institute of Health grants (R01 NS-100106, R01 MH-067528).Z. W. was supported by the Key-Area Research and Development Program of Guangdong Province (2019B030335001), National Natural Science Foundation of China (No. 82151303), and National Key R&D Program of China (No. 2021ZD0204002).
Collapse
Affiliation(s)
- Miao Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qikai Qin
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuning Zhang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongping Meng
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mengyang Xu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyun Huang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaozhu Lin
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mu Lin
- MR Collaboration, Siemens Healthineers Ltd., Shanghai 201318, China
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven 06520, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven 06520, USA; Radiology and Biomedical Imaging, Yale University, New Haven 06520, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven 06520, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven 06520, USA; Radiology and Biomedical Imaging, Yale University, New Haven 06520, USA; Biomedical Engineering, Yale University, New Haven 06520, USA
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zheng Wang
- School of Psychological and Cognitive Sciences; Beijing Key Laboratory of Behavior and Mental Health; IDG/McGovern Institute for Brain Research; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Ruijin Center, Shanghai 200025, China.
| | - Garth J Thompson
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
6
|
Wijayasinghe YS, Bhansali MP, Borkar MR, Chaturbhuj GU, Muntean BS, Viola RE, Bhansali PR. A Comprehensive Biological and Synthetic Perspective on 2-Deoxy-d-Glucose (2-DG), A Sweet Molecule with Therapeutic and Diagnostic Potentials. J Med Chem 2022; 65:3706-3728. [PMID: 35192360 DOI: 10.1021/acs.jmedchem.1c01737] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glucose, the primary substrate for ATP synthesis, is catabolized during glycolysis to generate ATP and precursors for the synthesis of other vital biomolecules. Opportunistic viruses and cancer cells often hijack this metabolic machinery to obtain energy and components needed for their replication and proliferation. One way to halt such energy-dependent processes is by interfering with the glycolytic pathway. 2-Deoxy-d-glucose (2-DG) is a synthetic glucose analogue that can inhibit key enzymes in the glycolytic pathway. The efficacy of 2-DG has been reported across an array of diseases and disorders, thereby demonstrating its broad therapeutic potential. Recent approval of 2-DG in India as a therapeutic approach for the management of the COVID-19 pandemic has brought renewed attention to this molecule. The purpose of this perspective is to present updated therapeutic avenues as well as a variety of chemical synthetic strategies for this medically useful sugar derivative, 2-DG.
Collapse
Affiliation(s)
- Yasanandana S Wijayasinghe
- Department of Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Kelaniya, Ragama 11010, Sri Lanka
| | | | - Maheshkumar R Borkar
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Ganesh U Chaturbhuj
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Brian S Muntean
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Ronald E Viola
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Pravin R Bhansali
- Department of Science, Faculty of Science and Technology, Alliance University, Chikkahagade Cross, Chandapura-Anekal Main Road, Anekal, Bengaluru 562106, Karnataka, India
| |
Collapse
|
7
|
de Melo IS, Dos Santos YMO, Pacheco ALD, Costa MA, de Oliveira Silva V, Freitas-Santos J, de Melo Bastos Cavalcante C, Silva-Filho RC, Leite ACR, Gitaí DGL, Duzzioni M, Sabino-Silva R, Borbely AU, de Castro OW. Role of Modulation of Hippocampal Glucose Following Pilocarpine-Induced Status Epilepticus. Mol Neurobiol 2021; 58:1217-1236. [PMID: 33123979 DOI: 10.1007/s12035-020-02173-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
Status epilepticus (SE) is defined as continuous and self-sustaining seizures, which trigger hippocampal neurodegeneration, mitochondrial dysfunction, oxidative stress, and energy failure. During SE, the neurons become overexcited, increasing energy consumption. Glucose uptake is increased via the sodium glucose cotransporter 1 (SGLT1) in the hippocampus under epileptic conditions. In addition, modulation of glucose can prevent neuronal damage caused by SE. Here, we evaluated the effect of increased glucose availability in behavior of limbic seizures, memory dysfunction, neurodegeneration process, neuronal activity, and SGLT1 expression. Vehicle (VEH, saline 0.9%, 1 μL) or glucose (GLU; 1, 2 or 3 mM, 1 μL) were administered into hippocampus of male Wistar rats (Rattus norvegicus) before or after pilocarpine to induce SE. Behavioral analysis of seizures was performed for 90 min during SE. The memory and learning processes were analyzed by the inhibitory avoidance test. After 24 h of SE, neurodegeneration process, neuronal activity, and SGLT1 expression were evaluated in hippocampal and extrahippocampal regions. Modulation of hippocampal glucose did not protect memory dysfunction followed by SE. Our results showed that the administration of glucose after pilocarpine reduced the severity of seizures, as well as the number of limbic seizures. Similarly, glucose after SE reduced cell death and neuronal activity in hippocampus, subiculum, thalamus, amygdala, and cortical areas. Finally, glucose infusion elevated the SGLT1 expression in hippocampus. Taken together our data suggest that possibly the administration of intrahippocampal glucose protects brain in the earlier stage of epileptogenic processes via an important support of SGLT1.
Collapse
Affiliation(s)
- Igor Santana de Melo
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | | | - Amanda Larissa Dias Pacheco
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Maisa Araújo Costa
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Vanessa de Oliveira Silva
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Jucilene Freitas-Santos
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | | | - Reginaldo Correia Silva-Filho
- Bioenergetics Laboratory, Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Ana Catarina Rezende Leite
- Bioenergetics Laboratory, Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Daniel Góes Leite Gitaí
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Marcelo Duzzioni
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Robinson Sabino-Silva
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia, MG, Brazil
| | - Alexandre Urban Borbely
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Olagide Wagner de Castro
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceió, AL, Brazil.
| |
Collapse
|
8
|
Feng TT, Yang XY, Hao SS, Sun FF, Huang Y, Lin QS, Pan W. TLR-2-mediated metabolic reprogramming participates in polyene phosphatidylcholine-mediated inhibition of M1 macrophage polarization. Immunol Res 2020; 68:28-38. [PMID: 32248343 DOI: 10.1007/s12026-020-09125-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Nikbakht F, Belali R, Rasoolijazi H, Mohammad Khanizadeh A. 2-Deoxyglucose protects hippocampal neurons against kainate-induced temporal lobe epilepsy by modulating monocyte-derived macrophages (mo-MΦ) and progranulin production in the hippocampus. Neuropeptides 2019; 76:101932. [PMID: 31227312 DOI: 10.1016/j.npep.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 02/04/2023]
Abstract
Inflammation is an important factor in the pathology of epilepsy with the hallmarks of resident microglia activation and infiltration of circulating monocytes in the damaged area. In the case of recovery and tissue repair, some monocytes change to macrophages (mo-MΦ) to enhance tissue repair. 2-deoxyglucose (2DG) is an analog of glucose capable of protecting the brain, and progranulin is a neurotrophic factor produced mainly by microglia and has an inflammation modulator effect. This study attempted to evaluate if one of the neuroprotective mechanisms of 2-DG is comprised of increasing monocyte-derived macrophages (mo-MΦ) and progranulin production. Status epilepticus (SE) was induced by i.c.v. injection of kainic acid (KA).2DG (125/mg/kg/day) was administered intraperitoneally. Four days later, animals were sacrificed. Their brain sections were then stained with Cresyl violet and Fluoro-Jade B to count the number of necrotic and degenerating neurons in CA3 and Hilus of dentate gyrus of the hippocampus. Lastly, immunohistochemistry was used to detect CD11b + monocyte, macrophage cells, and Progranulin level was evaluated by Western blotting. The histological analysis showed that 2DG can reduce the number of necrotic and degenerating neurons in CA3 and Hilar areas. Following KA administration, a great number of cD11b+ cells with monocyte morphology were observed in the hippocampus. 2DG not only reduced cD11b+ monocyte cells but was able to convert them to cells with the morphology of macrophages (mo-MΦ). 2DG also caused a significant increase in progranulin level in the hippocampus. Because macrophages and microglia are the most important sources of progranulin, it appears that 2DG caused the derivation of monocytes to macrophages and these cells produced progranulin with a subsequent anti-inflammation effect. In summary, it was concluded that 2DG is neuroprotective and probably one of its neuroprotective mechanisms is by modulating monocyte-derived macrophages by progranulin production.
Collapse
Affiliation(s)
- Farnaz Nikbakht
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rafie Belali
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Homa Rasoolijazi
- Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
10
|
Carvill GL, Dulla CG, Lowenstein DH, Brooks-Kayal AR. The path from scientific discovery to cures for epilepsy. Neuropharmacology 2019; 167:107702. [PMID: 31301334 DOI: 10.1016/j.neuropharm.2019.107702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 02/06/2023]
Abstract
The epilepsies are a complex group of disorders that can be caused by a myriad of genetic and acquired factors. As such, identifying interventions that will prevent development of epilepsy, as well as cure the disorder once established, will require a multifaceted approach. Here we discuss the progress in scientific discovery propelling us towards this goal, including identification of genetic risk factors and big data approaches that integrate clinical and molecular 'omics' datasets to identify common pathophysiological signatures and biomarkers. We discuss the many animal and cellular models of epilepsy, what they have taught us about pathophysiology, and the cutting edge cellular, optogenetic, chemogenetic and anti-seizure drug screening approaches that are being used to find new cures in these models. Finally, we reflect on the work that still needs to be done towards identify at-risk individuals early, targeting and stopping epileptogenesis, and optimizing promising treatment approaches. Ultimately, developing and implementing cures for epilepsy will require a coordinated and immense effort from clinicians and basic scientists, as well as industry, and should always be guided by the needs of individuals affected by epilepsy and their families. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Gemma L Carvill
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| | - Dan H Lowenstein
- Department of Neurology, University of California, San Francisco, CA, 94941, USA
| | - Amy R Brooks-Kayal
- Department of Pediatrics and Neurology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, 80045, USA
| |
Collapse
|
11
|
Frere S, Slutsky I. Alzheimer's Disease: From Firing Instability to Homeostasis Network Collapse. Neuron 2019; 97:32-58. [PMID: 29301104 DOI: 10.1016/j.neuron.2017.11.028] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) starts from pure cognitive impairments and gradually progresses into degeneration of specific brain circuits. Although numerous factors initiating AD have been extensively studied, the common principles underlying the transition from cognitive deficits to neuronal loss remain unknown. Here we describe an evolutionarily conserved, integrated homeostatic network (IHN) that enables functional stability of central neural circuits and safeguards from neurodegeneration. We identify the critical modules comprising the IHN and propose a central role of neural firing in controlling the complex homeostatic network at different spatial scales. We hypothesize that firing instability and impaired synaptic plasticity at early AD stages trigger a vicious cycle, leading to dysregulation of the whole IHN. According to this hypothesis, the IHN collapse represents the major driving force of the transition from early memory impairments to neurodegeneration. Understanding the core elements of homeostatic control machinery, the reciprocal connections between distinct IHN modules, and the role of firing homeostasis in this hierarchy has important implications for physiology and should offer novel conceptual approaches for AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Samuel Frere
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
12
|
Leiter I, Bascuñana P, Bengel FM, Bankstahl JP, Bankstahl M. Attenuation of epileptogenesis by 2-deoxy-d-glucose is accompanied by increased cerebral glucose supply, microglial activation and reduced astrocytosis. Neurobiol Dis 2019; 130:104510. [PMID: 31212069 DOI: 10.1016/j.nbd.2019.104510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 06/02/2019] [Accepted: 06/14/2019] [Indexed: 02/03/2023] Open
Abstract
RATIONALE Neuronal excitability and brain energy homeostasis are strongly interconnected and evidence suggests that both become altered during epileptogenesis. Pharmacologic modulation of cerebral glucose metabolism might therefore exert anti-epileptogenic effects. Here we provide mechanistic insights into effects of the glycolytic inhibitor 2-deoxy-d-glucose (2-DG) on experimental epileptogenesis by longitudinal 2-deoxy-2[18F]fluoro-d-glucose positron emission tomography ([18F]FDG PET) and histology. METHODS To imitate epileptogenesis, 6 Hz-corneal kindling was performed in male NMRI mice by twice daily electrical stimulation for 21 days. Kindling groups were treated i.p. 1 min after each stimulation with either 250 mg/kg 2-DG (CoKi_2-DG) or saline (CoKi_vehicle). A separate group of unstimulated mice was treated with 2-DG (2-DG_only). Dynamic 60-min [18F]FDG PET/CT scans were acquired at baseline and interictally on days 10 and 17 of kindling. [18F]FDG uptake (%injected dose/cc) was quantified in predefined regions of interest (ROI) using a MRI-based brain atlas, and kinetic modelling was performed to evaluate glucose net influx rate Ki and glucose metabolic rate MRGlu. Furthermore, statistical parametric mapping (SPM) analysis was applied on kinetic brain maps. For histological evaluation, brain sections were stained for glucose transporter 1 (GLUT1), astrocytes, microglia, as well as dying neurons. RESULTS Post-stimulation 2-DG treatment attenuated early kindling progression, indicated by a reduction of fully-kindled mice, and a lower overall percentage of type five seizures. While 2-DG treatment alone led to globally increased Ki and MRGlu values at day 17, kindling progression per se did not influence glucose turnover. Kindling accompanied by 2-DG treatment, however, resulted in regionally elevated [18F]FDG uptake as well as increased Ki at days 10 and 17 compared both to baseline and to the 2-DG_only group. In hippocampus and thalamus, higher MRGlu values were found in the CoKi_2-DG vs. the CoKi_vehicle group at day 17. t maps resulting from SPM analysis generally confirmed the results of the ROI analysis, and additionally revealed increased MRGlu restricted to the ventral hippocampus when comparing the CoKi_2-DG and the 2-DG_only group both at days 10 and, more distinct, day 17. Immunohistochemical staining showed an attenuated kindling-induced regional activation of astrocytes in the CoKi_2-DG group. Interestingly, 2-DG treatment alone (and also in combination with kindling, but not kindling alone) led to increased microglial activation scores, whereas neither staining of GLUT1 nor of dying neurons revealed any differences to untreated controls. CONCLUSIONS Post-stimulation treatment with 2-DG exerts disease-modifying effects in the mouse 6 Hz corneal kindling model. The observed local increase in glucose supply and turnover, the alleviation of astroglial activation and the activation of microglia by 2-DG might contribute separately or in combination to its positive interference with epileptogenesis.
Collapse
Affiliation(s)
- Ina Leiter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover and Center for Systems Neuroscience, Bünteweg 17, 30559 Hannover, Germany; Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Pablo Bascuñana
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Frank Michael Bengel
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Jens Peter Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Marion Bankstahl
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover and Center for Systems Neuroscience, Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
13
|
Koenig JB, Cantu D, Low C, Sommer M, Noubary F, Croker D, Whalen M, Kong D, Dulla CG. Glycolytic inhibitor 2-deoxyglucose prevents cortical hyperexcitability after traumatic brain injury. JCI Insight 2019; 5:126506. [PMID: 31038473 DOI: 10.1172/jci.insight.126506] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injury (TBI) causes cortical dysfunction and can lead to post-traumatic epilepsy. Multiple studies demonstrate that GABAergic inhibitory network function is compromised following TBI, which may contribute to hyperexcitability and motor, behavioral, and cognitive deficits. Preserving the function of GABAergic interneurons, therefore, is a rational therapeutic strategy to preserve cortical function after TBI and prevent long-term clinical complications. Here, we explored an approach based on the ketogenic diet, a neuroprotective and anticonvulsant dietary therapy which results in reduced glycolysis and increased ketosis. Utilizing a pharmacologic inhibitor of glycolysis (2-deoxyglucose, or 2-DG), we found that acute in vitro application of 2-DG decreased the excitability of excitatory neurons, but not inhibitory interneurons, in cortical slices from naïve mice. Employing the controlled cortical impact (CCI) model of TBI in mice, we found that in vitro 2-DG treatment rapidly attenuated epileptiform activity seen in acute cortical slices 3 to 5 weeks after TBI. One week of in vivo 2-DG treatment immediately after TBI prevented the development of epileptiform activity, restored excitatory and inhibitory synaptic activity, and attenuated the loss of parvalbumin-expressing inhibitory interneurons. In summary, 2-DG may have therapeutic potential to restore network function following TBI.
Collapse
Affiliation(s)
- Jenny B Koenig
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA.,Neuroscience Program, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, USA
| | - David Cantu
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Cho Low
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA.,Cellular, Molecular, and Developmental Biology Program, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, USA
| | - Mary Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Farzad Noubary
- Department of Health Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Danielle Croker
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Michael Whalen
- Neuroscience Center, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dong Kong
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
14
|
High glycolytic activity of tumor cells leads to underestimation of electron transport system capacity when mitochondrial ATP synthase is inhibited. Sci Rep 2018; 8:17383. [PMID: 30478338 PMCID: PMC6255871 DOI: 10.1038/s41598-018-35679-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023] Open
Abstract
This study sought to elucidate how oligomycin, an ATP synthase blocker, leads to underestimation of maximal oxygen consumption rate (maxOCR) and spare respiratory capacity (SRC) in tumor cells. T98G and U-87MG glioma cells were titrated with the protonophore CCCP to induce maxOCR. The presence of oligomycin (0.3-3.0 µg/mL) led to underestimation of maxOCR and a consequent decrease in SRC values of between 25% and 40% in medium containing 5.5 or 11 mM glucose. The inhibitory effect of oligomycin on CCCP-induced maxOCR did not occur when glutamine was the metabolic substrate or when the glycolytic inhibitor 2-deoxyglucose was present. ATP levels were reduced and ADP/ATP ratios increased in cells treated with CCCP, but these changes were minimized when oligomycin was used to inhibit reverse activity of ATP synthase. Exposing digitonin-permeabilized cells to exogenous ATP, but not ADP, resulted in partial inhibition of CCCP-induced maxOCR. We conclude that underestimation of maxOCR and SRC in tumor cells when ATP synthase is inhibited is associated with high glycolytic activity and that the glycolytic ATP yield may have an inhibitory effect on the metabolism of respiratory substrates and cytochrome c oxidase activity. Under CCCP-induced maxOCR, oligomycin preserves intracellular ATP by inhibiting ATP synthase reverse activity.
Collapse
|
15
|
Koenig JB, Dulla CG. Dysregulated Glucose Metabolism as a Therapeutic Target to Reduce Post-traumatic Epilepsy. Front Cell Neurosci 2018; 12:350. [PMID: 30459556 PMCID: PMC6232824 DOI: 10.3389/fncel.2018.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of disability worldwide and can lead to post-traumatic epilepsy. Multiple molecular, cellular, and network pathologies occur following injury which may contribute to epileptogenesis. Efforts to identify mechanisms of disease progression and biomarkers which predict clinical outcomes have focused heavily on metabolic changes. Advances in imaging approaches, combined with well-established biochemical methodologies, have revealed a complex landscape of metabolic changes that occur acutely after TBI and then evolve in the days to weeks after. Based on this rich clinical and preclinical data, combined with the success of metabolic therapies like the ketogenic diet in treating epilepsy, interest has grown in determining whether manipulating metabolic activity following TBI may have therapeutic value to prevent post-traumatic epileptogenesis. Here, we focus on changes in glucose utilization and glycolytic activity in the brain following TBI and during seizures. We review relevant literature and outline potential paths forward to utilize glycolytic inhibitors as a disease-modifying therapy for post-traumatic epilepsy.
Collapse
Affiliation(s)
- Jenny B Koenig
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
16
|
Kovács R, Gerevich Z, Friedman A, Otáhal J, Prager O, Gabriel S, Berndt N. Bioenergetic Mechanisms of Seizure Control. Front Cell Neurosci 2018; 12:335. [PMID: 30349461 PMCID: PMC6187982 DOI: 10.3389/fncel.2018.00335] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Epilepsy is characterized by the regular occurrence of seizures, which follow a stereotypical sequence of alterations in the electroencephalogram. Seizures are typically a self limiting phenomenon, concluding finally in the cessation of hypersynchronous activity and followed by a state of decreased neuronal excitability which might underlie the cognitive and psychological symptoms the patients experience in the wake of seizures. Many efforts have been devoted to understand how seizures spontaneously stop in hope to exploit this knowledge in anticonvulsant or neuroprotective therapies. Besides the alterations in ion-channels, transmitters and neuromodulators, the successive build up of disturbances in energy metabolism have been suggested as a mechanism for seizure termination. Energy metabolism and substrate supply of the brain are tightly regulated by different mechanisms called neurometabolic and neurovascular coupling. Here we summarize the current knowledge whether these mechanisms are sufficient to cover the energy demand of hypersynchronous activity and whether a mismatch between energy need and supply could contribute to seizure control.
Collapse
Affiliation(s)
- Richard Kovács
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Zoltan Gerevich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel.,Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jakub Otáhal
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Siegrun Gabriel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Nikolaus Berndt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Biochemie, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Computational and Imaging Science in Cardiovascular Medicine, Berlin, Germany
| |
Collapse
|
17
|
Abstract
There is a resurgence of interest in the role of metabolism in epilepsy. Long considered ancillary and acknowledged only in the context of clinical application of ketogenic diets, metabolic control of epilepsy is gaining momentum and mainstream interest among researchers. A metabolic paradigm for epilepsy rests upon known perturbations in three major interconnected metabolic nodes and therapeutic targets therefrom (i.e., glycolysis, mitochondria, and redox balance).
Collapse
|
18
|
Boison D, Steinhäuser C. Epilepsy and astrocyte energy metabolism. Glia 2017; 66:1235-1243. [PMID: 29044647 DOI: 10.1002/glia.23247] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/29/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022]
Abstract
Epilepsy is a complex neurological syndrome characterized by neuronal hyperexcitability and sudden, synchronized electrical discharges that can manifest as seizures. It is now increasingly recognized that impaired astrocyte function and energy homeostasis play key roles in the pathogenesis of epilepsy. Excessive neuronal discharges can only happen, if adequate energy sources are made available to neurons. Conversely, energy depletion during seizures is an endogenous mechanism of seizure termination. Astrocytes control neuronal energy homeostasis through neurometabolic coupling. In this review, we will discuss how astrocyte dysfunction in epilepsy leads to distortion of key metabolic and biochemical mechanisms. Dysfunctional glutamate metabolism in astrocytes can directly contribute to neuronal hyperexcitability. Closure of astrocyte intercellular gap junction coupling as observed early during epileptogenesis limits activity-dependent trafficking of energy metabolites, but also impairs clearance of the extracellular space from accumulation of K+ and glutamate. Dysfunctional astrocytes also increase the metabolism of adenosine, a metabolic product of ATP degradation that broadly inhibits energy-consuming processes as an evolutionary adaptation to conserve energy. Due to the critical role of astroglial energy homeostasis in the control of neuronal excitability, metabolic therapeutic approaches that prevent the utilization of glucose might represent a potent antiepileptic strategy. In particular, high fat low carbohydrate "ketogenic diets" as well as inhibitors of glycolysis and lactate metabolism are of growing interest for the therapy of epilepsy.
Collapse
Affiliation(s)
- Detlev Boison
- R.S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, Oregon
| | | |
Collapse
|
19
|
Contribution of Intrinsic Lactate to Maintenance of Seizure Activity in Neocortical Slices from Patients with Temporal Lobe Epilepsy and in Rat Entorhinal Cortex. Int J Mol Sci 2017; 18:ijms18091835. [PMID: 28832554 PMCID: PMC5618484 DOI: 10.3390/ijms18091835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022] Open
Abstract
Neuronal lactate uptake supports energy metabolism associated with synaptic signaling and recovery of extracellular ion gradients following neuronal activation. Altered expression of the monocarboxylate transporters (MCT) in temporal lobe epilepsy (TLE) hampers lactate removal into the bloodstream. The resulting increase in parenchymal lactate levels might exert both, anti- and pro-ictogen effects, by causing acidosis and by supplementing energy metabolism, respectively. Hence, we assessed the contribution of lactate to the maintenance of transmembrane potassium gradients, synaptic signaling and pathological network activity in chronic epileptic human tissue. Stimulus induced and spontaneous field potentials and extracellular potassium concentration changes (∆[K⁺]O) were recorded in parallel with tissue pO₂ and pH in slices from TLE patients while blocking MCTs by α-cyano-4-hydroxycinnamic acid (4-CIN) or d-lactate. Intrinsic lactate contributed to the oxidative energy metabolism in chronic epileptic tissue as revealed by the changes in pO₂ following blockade of lactate uptake. However, unlike the results in rat hippocampus, ∆[K⁺]O recovery kinetics and field potential amplitude did not depend on the presence of lactate. Remarkably, inhibition of lactate uptake exerted pH-independent anti-seizure effects both in healthy rat and chronic epileptic tissue and this effect was partly mediated via adenosine 1 receptor activation following decreased oxidative metabolism.
Collapse
|
20
|
Abstract
Epilepsy is a common and devastating neurological disorder characterized by recurrent and unprovoked spontaneous seizures. One leading hypothesis for the development and progression of epilepsy is that large-scale changes in gene transcription and protein expression contribute to aberrant network restructuring and hyperexcitability, resulting in the genesis of repeated seizures. Current research shows that epigenetic mechanisms, including posttranslational alterations to the proteins around which DNA is coiled, chemical modifications to DNA, and the activity of various noncoding RNA molecules exert important influences on these gene networks in experimental epilepsy. Key findings from animal models have been replicated in humans using brain tissue obtained from living patients at the time of neurosurgical resection for pharmacoresistant epilepsy. These findings have spurred efforts to target epigenetic processes to disrupt or modify epilepsy in experimental models with varying degrees of success. In this review, we will (1) summarize the epigenetic mechanisms implicated in epileptogenesis and epilepsy, (2) explore the influence of metabolic factors on epigenetic mechanisms, and (3) assess the potential of using epigenetic markers to support diagnosis and prognosis. Translation of these findings may guide the development of molecular biomarkers and novel therapeutics for prevention or modification of epileptic disorders.
Collapse
Affiliation(s)
- Rebecca M. Hauser
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - David C. Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Farah D. Lubin
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
21
|
Magistroni R, Boletta A. Defective glycolysis and the use of 2-deoxy-D-glucose in polycystic kidney disease: from animal models to humans. J Nephrol 2017; 30:511-519. [PMID: 28390001 DOI: 10.1007/s40620-017-0395-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/27/2017] [Indexed: 02/06/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited renal disease characterized by bilateral renal cyst formation. ADPKD is one of the most common rare disorders, accounting for ~10% of all patients with end-stage renal disease (ESRD). ADPKD is a chronic disorder in which the gradual expansion of cysts that form in a minority of nephrons eventually causes loss of renal function due to the compression and degeneration of the surrounding normal parenchyma. Numerous deranged pathways have been identified in the cyst-lining epithelia, prompting the design of potential therapies. Several of these potential treatments have proved effective in slowing down disease progression in pre-clinical animal studies, while only one has subsequently been proven to effectively slow down disease progression in patients, and it has recently been approved for therapy in Europe, Canada and Japan. Among the affected cellular functions and pathways, recent investigations have described metabolic derangement in ADPKD as a major trait offering additional opportunities for targeted therapies. In particular, increased aerobic glycolysis (the Warburg effect) has been described as a prominent feature of ADPKD kidneys and its inhibition using the glucose analogue 2-deoxy-D-glucose (2DG) proved effective in slowing down disease progression in preclinical models of the disease. At the same time, previous clinical experiences have been reported with 2DG, showing that this compound is well tolerated in humans with minimal and reversible side effects. In this work, we review the literature and speculate that 2DG could be a good candidate for a clinical trial in humans affected by ADPKD.
Collapse
Affiliation(s)
- Riccardo Magistroni
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina, 58, 20132, Milan, Italy
- Division of Nephrology and Hypertension, San Raffaele Hospital, Milan, Italy
- Division of Nephrology and Dialysis, AOU Policlinico di Modena, Università di Modena e Reggio Emilia, Modena, Italy
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina, 58, 20132, Milan, Italy.
| |
Collapse
|
22
|
Ma D, Zheng J, Tang P, Xu W, Qing Z, Yang S, Li J, Yang R. Quantitative Monitoring of Hypoxia-Induced Intracellular Acidification in Lung Tumor Cells and Tissues Using Activatable Surface-Enhanced Raman Scattering Nanoprobes. Anal Chem 2016; 88:11852-11859. [DOI: 10.1021/acs.analchem.6b03590] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dandan Ma
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jing Zheng
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Pinting Tang
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weijian Xu
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhihe Qing
- School
of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, Hunan 410004, China
| | - Sheng Yang
- School
of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, Hunan 410004, China
| | - Jishan Li
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ronghua Yang
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
- School
of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
23
|
Chiaravalli M, Rowe I, Mannella V, Quilici G, Canu T, Bianchi V, Gurgone A, Antunes S, D'Adamo P, Esposito A, Musco G, Boletta A. 2-Deoxy-d-Glucose Ameliorates PKD Progression. J Am Soc Nephrol 2016; 27:1958-69. [PMID: 26534924 PMCID: PMC4926967 DOI: 10.1681/asn.2015030231] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/03/2015] [Indexed: 12/22/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an important cause of ESRD for which there exists no approved therapy in the United States. Defective glucose metabolism has been identified as a feature of ADPKD, and inhibition of glycolysis using glucose analogs ameliorates aggressive PKD in preclinical models. Here, we investigated the effects of chronic treatment with low doses of the glucose analog 2-deoxy-d-glucose (2DG) on ADPKD progression in orthologous and slowly progressive murine models created by inducible inactivation of the Pkd1 gene postnatally. As previously reported, early inactivation (postnatal days 11 and 12) of Pkd1 resulted in PKD developing within weeks, whereas late inactivation (postnatal days 25-28) resulted in PKD developing in months. Irrespective of the timing of Pkd1 gene inactivation, cystic kidneys showed enhanced uptake of (13)C-glucose and conversion to (13)C-lactate. Administration of 2DG restored normal renal levels of the phosphorylated forms of AMP-activated protein kinase and its target acetyl-CoA carboxylase. Furthermore, 2DG greatly retarded disease progression in both model systems, reducing the increase in total kidney volume and cystic index and markedly reducing CD45-positive cell infiltration. Notably, chronic administration of low doses (100 mg/kg 5 days per week) of 2DG did not result in any obvious sign of toxicity as assessed by analysis of brain and heart histology as well as behavioral tests. Our data provide proof of principle support for the use of 2DG as a therapeutic strategy in ADPKD.
Collapse
Affiliation(s)
| | - Isaline Rowe
- Molecular Basis of Polycystic Kidney Disease Unit
| | - Valeria Mannella
- Molecular Basis of Polycystic Kidney Disease Unit, Biomolecular Nuclear Magnetic Resonance Unit, Division of Genetics and Cell Biology
| | - Giacomo Quilici
- Biomolecular Nuclear Magnetic Resonance Unit, Division of Genetics and Cell Biology
| | | | - Veronica Bianchi
- Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Antonia Gurgone
- Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | | | - Patrizia D'Adamo
- Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | | | - Giovanna Musco
- Biomolecular Nuclear Magnetic Resonance Unit, Division of Genetics and Cell Biology
| | | |
Collapse
|
24
|
Altered Glycolysis and Mitochondrial Respiration in a Zebrafish Model of Dravet Syndrome. eNeuro 2016; 3:eN-NWR-0008-16. [PMID: 27066534 PMCID: PMC4820792 DOI: 10.1523/eneuro.0008-16.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 11/21/2022] Open
Abstract
Altered metabolism is an important feature of many epileptic syndromes but has not been reported in Dravet syndrome (DS), a catastrophic childhood epilepsy associated with mutations in a voltage-activated sodium channel, Nav1.1 (SCN1A). To address this, we developed novel methodology to assess real-time changes in bioenergetics in zebrafish larvae between 4 and 6 d postfertilization (dpf). Baseline and 4-aminopyridine (4-AP) stimulated glycolytic flux and mitochondrial respiration were simultaneously assessed using a Seahorse Biosciences extracellular flux analyzer. Scn1Lab mutant zebrafish showed a decrease in baseline glycolytic rate and oxygen consumption rate (OCR) compared to controls. A ketogenic diet formulation rescued mutant zebrafish metabolism to control levels. Increasing neuronal excitability with 4-AP resulted in an immediate increase in glycolytic rates in wild-type zebrafish, whereas mitochondrial OCR increased slightly and quickly recovered to baseline values. In contrast, scn1Lab mutant zebrafish showed a significantly slower and exaggerated increase of both glycolytic rates and OCR after 4-AP. The underlying mechanism of decreased baseline OCR in scn1Lab mutants was not because of altered mitochondrial DNA content or dysfunction of enzymes in the electron transport chain or tricarboxylic acid cycle. Examination of glucose metabolism using a PCR array identified five glycolytic genes that were downregulated in scn1Lab mutant zebrafish. Our findings in scn1Lab mutant zebrafish suggest that glucose and mitochondrial hypometabolism contribute to the pathophysiology of DS.
Collapse
|
25
|
Affiliation(s)
- Helen E Scharfman
- Nathan Kline Institute for Psychiatric Research and New York University Langone Medical Center, Orangeburg, NY 10962, USA.
| |
Collapse
|
26
|
Metabolic responses differentiate between interictal, ictal and persistent epileptiform activity in intact, immature hippocampus in vitro. Neurobiol Dis 2014; 75:1-14. [PMID: 25533681 DOI: 10.1016/j.nbd.2014.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 12/06/2014] [Accepted: 12/11/2014] [Indexed: 01/09/2023] Open
Abstract
Interictal spikes, ictal responses, and status epilepticus are characteristic of abnormal neuronal activity in epilepsy. Since these events may involve different energy requirements, we evaluated metabolic function (assessed by simultaneous NADH and FAD+ imaging and tissue O2 recordings) in the immature, intact mouse hippocampus (P5-P7, in vitro) during spontaneous interictal spikes and ictal-like events (ILEs), induced by increased neuronal network excitability with either low Mg2+ media or decreased inhibition with bicuculline. In low Mg2+ medium NADH fluorescence showed a small decrease both during the interictal build-up leading to an ictal event and before ILE occurrences, but a large positive response during and after ILEs (up to 10% net change). Tissue O2 recordings (pO2) showed an oxygen dip (indicating oxygen consumption) coincident with each ILE at P5 and P7, closely matching an NADH fluorescence increase, indicating a large surge in oxidative metabolism. The ILE O2 dip was significantly larger at P7 as compared to P5 suggesting a higher metabolic response at P7. After several ILEs at P7, continuous, low voltage activity (late recurrent discharges: LRDs) occurred. During LRDs, whilst the epileptiform activity was relatively small (low voltage synchronous activity) oxygen levels remained low and NADH fluorescence elevated, indicating persistent oxygen utilization and maintained high metabolic demand. In bicuculline, NADH fluorescence levels decreased prior to the onset of epileptiform activity, followed by a slow positive phase, which persisted during interictal responses. Metabolic responses can thus differentiate between interictal, ictal-like and persistent epileptiform activity resembling status epilepticus, and confirm that spreading depression did not occur. These results demonstrate clear translational value to the understanding of metabolic requirements during epileptic conditions.
Collapse
|
27
|
Ma CY, Yao MJ, Zhai QW, Jiao JW, Yuan XB, Poo MM. SIRT1 suppresses self-renewal of adult hippocampal neural stem cells. Development 2014; 141:4697-709. [DOI: 10.1242/dev.117937] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The balance between self-renewal and differentiation of adult neural stem cells (aNSCs) is essential for the maintenance of the aNSC reservoir and the continuous supply of new neurons, but how this balance is fine-tuned in the adult brain is not fully understood. Here, we investigate the role of SIRT1, an important metabolic sensor and epigenetic repressor, in regulating adult hippocampal neurogenesis in mice. We found that there was an increase in SIRT1 expression during aNSC differentiation. In Sirt1 knockout (KO) mice, as well as in brain-specific and inducible stem cell-specific conditional KO mice, the proliferation and self-renewal rates of aNSCs in vivo were elevated. Proliferation and self-renewal rates of aNSCs and adult neural progenitor cells (aNPCs) were also elevated in neurospheres derived from Sirt1 KO mice and were suppressed by the SIRT1 agonist resveratrol in neurospheres from wild-type mice. In cultured neurospheres, 2-deoxy-D-glucose-induced metabolic stress suppressed aNSC/aNPC proliferation, and this effect was mediated in part by elevating SIRT1 activity. Microarray and biochemical analysis of neurospheres suggested an inhibitory effect of SIRT1 on Notch signaling in aNSCs/aNPCs. Inhibition of Notch signaling by a γ-secretase inhibitor also largely abolished the increased aNSC/aNPC proliferation caused by Sirt1 deletion. Together, these findings indicate that SIRT1 is an important regulator of aNSC/aNPC self-renewal and a potential mediator of the effect of metabolic changes.
Collapse
Affiliation(s)
- Chen-yan Ma
- Institute of Neuroscience, State Key Laboratory of Neuroscience and CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Mao-jin Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience and CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qi-wei Zhai
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian-wei Jiao
- Institute of Zoology, State Key Laboratory of Reproductive Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-bing Yuan
- Institute of Neuroscience, State Key Laboratory of Neuroscience and CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mu-ming Poo
- Institute of Neuroscience, State Key Laboratory of Neuroscience and CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
28
|
Yang H, Wu J, Guo R, Peng Y, Zheng W, Liu D, Song Z. Glycolysis in energy metabolism during seizures. Neural Regen Res 2014; 8:1316-26. [PMID: 25206426 PMCID: PMC4107649 DOI: 10.3969/j.issn.1673-5374.2013.14.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/27/2013] [Indexed: 01/23/2023] Open
Abstract
Studies have shown that glycolysis increases during seizures, and that the glycolytic metabolite lactic acid can be used as an energy source. However, how lactic acid provides energy for seizures and how it can participate in the termination of seizures remains unclear. We reviewed possible mechanisms of glycolysis involved in seizure onset. Results showed that lactic acid was involved in seizure onset and provided energy at early stages. As seizures progress, lactic acid reduces the pH of tissue and induces metabolic acidosis, which terminates the seizure. The specific mechanism of lactic acid-induced acidosis involves several aspects, which include lactic acid-induced inhibition of the glycolytic enzyme 6-diphosphate kinase-1, inhibition of the N-methyl-D-aspartate receptor, activation of the acid-sensitive 1A ion channel, strengthening of the receptive mechanism of the inhibitory neurotransmitter γ-minobutyric acid, and changes in the intra- and extracellular environment.
Collapse
Affiliation(s)
- Heng Yang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Jiongxing Wu
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Ren Guo
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Yufen Peng
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Wen Zheng
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Ding Liu
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Zhi Song
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
29
|
Cantu D, Walker K, Andresen L, Taylor-Weiner A, Hampton D, Tesco G, Dulla CG. Traumatic Brain Injury Increases Cortical Glutamate Network Activity by Compromising GABAergic Control. Cereb Cortex 2014; 25:2306-20. [PMID: 24610117 DOI: 10.1093/cercor/bhu041] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) is a major risk factor for developing pharmaco-resistant epilepsy. Although disruptions in brain circuitry are associated with TBI, the precise mechanisms by which brain injury leads to epileptiform network activity is unknown. Using controlled cortical impact (CCI) as a model of TBI, we examined how cortical excitability and glutamatergic signaling was altered following injury. We optically mapped cortical glutamate signaling using FRET-based glutamate biosensors, while simultaneously recording cortical field potentials in acute brain slices 2-4 weeks following CCI. Cortical electrical stimulation evoked polyphasic, epileptiform field potentials and disrupted the input-output relationship in deep layers of CCI-injured cortex. High-speed glutamate biosensor imaging showed that glutamate signaling was significantly increased in the injured cortex. Elevated glutamate responses correlated with epileptiform activity, were highest directly adjacent to the injury, and spread via deep cortical layers. Immunoreactivity for markers of GABAergic interneurons were significantly decreased throughout CCI cortex. Lastly, spontaneous inhibitory postsynaptic current frequency decreased and spontaneous excitatory postsynaptic current increased after CCI injury. Our results suggest that specific cortical neuronal microcircuits may initiate and facilitate the spread of epileptiform activity following TBI. Increased glutamatergic signaling due to loss of GABAergic control may provide a mechanism by which TBI can give rise to post-traumatic epilepsy.
Collapse
Affiliation(s)
- David Cantu
- Department of Neuroscience, Tufts University School of Medicine, SC201, Boston, MA 02111, USA
| | - Kendall Walker
- Department of Neuroscience, Alzheimer's Disease Research Laboratory, Tufts University School of Medicine, A305, Boston, MA 02111, USA
| | - Lauren Andresen
- Department of Neuroscience, Tufts University School of Medicine, SC201, Boston, MA 02111, USA Program in Neuroscience at the Sackler School of Biomedical Sciences, Tufts University
| | - Amaro Taylor-Weiner
- Department of Neuroscience, Tufts University School of Medicine, SC201, Boston, MA 02111, USA Current address: Broad Institute, Cambridge, MA 02142, USA
| | - David Hampton
- Department of Neuroscience, Tufts University School of Medicine, SC201, Boston, MA 02111, USA
| | - Giuseppina Tesco
- Department of Neuroscience, Alzheimer's Disease Research Laboratory, Tufts University School of Medicine, A305, Boston, MA 02111, USA
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, SC201, Boston, MA 02111, USA
| |
Collapse
|
30
|
Chen J, Zheng G, Guo H, Shi ZN. Role of Endoplasmic Reticulum Stress via the PERK Signaling Pathway in Brain Injury from Status Epilepticus. J Mol Neurosci 2014; 53:677-83. [DOI: 10.1007/s12031-014-0236-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/13/2014] [Indexed: 11/24/2022]
|
31
|
Abstract
The ketogenic diet and its newer variants are clinically useful in treating epilepsy. They can also have antiepileptogenic properties and can eventually have a role in treating other neurologic and nonneurologic conditions. Despite being nearly a century old, identifying the molecular underpinnings of the ketogenic diet has been challenging. However, recent studies provide experimental evidence for 4 distinct mechanisms that could contribute to the antiseizure and other beneficial effects of these diets. These mechanisms include carbohydrate reduction, activation of adenosine triphosphate (ATP)-sensitive potassium channels by mitochondrial metabolism, inhibition of the mammalian target of rapamycin pathway, and inhibition of glutamatergic excitatory synaptic transmission.
Collapse
Affiliation(s)
- Nika N. Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston MA
| | - Adam L. Hartman
- Department of Neurology, Johns Hopkins University School of Medicine and Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Carl E. Stafstrom
- Departments of Neurology and Pediatrics, University of Wisconsin, Madison, WI
| | - Liu Lin Thio
- Departments of Neurology, Pediatrics, and Anatomy & Neurobiology, Washington University, St. Louis, MO
| |
Collapse
|
32
|
Yang H, Guo R, Wu J, Peng Y, Xie D, Zheng W, Huang X, Liu D, Liu W, Huang L, Song Z. The Antiepileptic Effect of the Glycolytic Inhibitor 2-Deoxy-d-Glucose is Mediated by Upregulation of KATP Channel Subunits Kir6.1 and Kir6.2. Neurochem Res 2013; 38:677-85. [DOI: 10.1007/s11064-012-0958-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/10/2012] [Accepted: 12/19/2012] [Indexed: 01/20/2023]
|
33
|
Ockuly JC, Gielissen JM, Levenick CV, Zeal C, Groble K, Munsey K, Sutula TP, Stafstrom CE. Behavioral, cognitive, and safety profile of 2-deoxy-2-glucose (2DG) in adult rats. Epilepsy Res 2012; 101:246-52. [PMID: 22578658 DOI: 10.1016/j.eplepsyres.2012.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 03/16/2012] [Accepted: 04/16/2012] [Indexed: 11/27/2022]
Abstract
2-Deoxy-D-glucose (2DG), a glucose analog that transiently inhibits glycolysis, has anticonvulsant and antiepileptic disease-modifying properties in experimental in vivo models of seizures and epilepsy. Here we evaluated the effects of 2DG across the range of doses (50-500mg/kg i.p.) shown previously to exert anticonvulsant and antiepileptic effects in rats, on spatial learning and memory using the Morris water maze and on exploratory behavior using the open field test. For water maze testing, both acute and chronic protocols were tested. For acute testing, 2DG was injected for 15min prior to the water maze trial only on testing days. For chronic testing, 2DG was injected daily for 14days before water maze testing began. Neither protocol altered the latency to platform acquisition or retention of platform location by the probe test. For open field testing, 2DG was given at doses of 50-250mg/kg 15 or 30min prior to testing on each testing day. When given 30min prior to testing, exploratory activity in the open field was transiently and reversibly decreased by 2DG at doses of 250mg/kg/day but there were no effects on open field activity at 50mg/kg/day. When given 15min prior to testing, 2DG decreased exploratory activity in a dose-dependent fashion at both 50 and 250mg/kg. There were no toxic effects of 2DG at doses of 500mg/kg/day on body weight or general health. In summary, 2DG is well tolerated at doses associated with anticonvulsant and antiepileptic effects, supporting its potential as an anticonvulsant and antiepileptic agent with a novel mechanism of action.
Collapse
Affiliation(s)
- Jeffrey C Ockuly
- Department of Neurology, University of Wisconsin, Madison, WI 53705, United States
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hu XL, Cheng X, Fei J, Xiong ZQ. Neuron-restrictive silencer factor is not required for the antiepileptic effect of the ketogenic diet. Epilepsia 2011; 52:1609-16. [PMID: 21762439 DOI: 10.1111/j.1528-1167.2011.03171.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE The ketogenic diet (KD) has been used as an effective antiepileptic treatment for nearly a century. Inhibition of glycolysis and increased levels of ketone bodies are both known to contribute to the antiepileptic effects of the KD. Neuron-restrictive silencer factor (NRSF), also known as RE-1 silencing transcription factor (REST), is implicated in the antiepileptic effects of the glycolytic inhibitor 2-deoxy-d-glucose (2DG). Glycolytic inhibition is a common feature of the KD and 2DG treatment, leading to the hypothesis that NRSF might also be involved in the antiepileptic effect of the KD. To test this hypothesis, the present study was designed to investigate the role of NRSF in the antiepileptic effect of 2DG, the KD, and acetone in vivo. METHODS Kindling was used as a model to test the antiepileptic effects of 2DG, the KD, and acetone on control and NRSF conditional knockout mice (NRSF-cKO; from the intercross of CamKIIα-iCre and NRSF exon 2 floxed mice). After recovery from electrode implantation, adult mice were stimulated twice a day at afterdischarge threshold (ADT) current intensity. In the 2DG- (500 mg/kg) and acetone- (10 mmol/kg) treated groups, drugs were injected intraperitoneally 20 min before each stimulus. In the 2DG group, mice were pretreated with intraperitoneal injections for 3 days in addition to the injections administered before the regular kindling stimulation. In the KD group, mice were fed the KD instead of a control diet until the end of stimulations. KEY FINDINGS Compared with control mice, the antiepileptic effect of 2DG was abolished in NRSF-cKO mice, indicating that NRSF is required for the antiepileptic effect of 2DG. In the KD-fed group, kindling development was retarded in both control and NRSF-cKO mice. In the acetone-treated group, inhibition of kindling-induced epileptogenesis was observed in both control and NRSF-cKO mice, similar to the action of the KD. SIGNIFICANCE These findings imply that NRSF repression complex is not essential for the antiepileptic effect of the ketogenic diet.
Collapse
Affiliation(s)
- Xiao-Ling Hu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
35
|
Masino SA, Kawamura M, Wasser CD, Wasser CA, Pomeroy LT, Ruskin DN. Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity. Curr Neuropharmacol 2010; 7:257-68. [PMID: 20190967 PMCID: PMC2769009 DOI: 10.2174/157015909789152164] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/01/2009] [Accepted: 05/06/2009] [Indexed: 12/12/2022] Open
Abstract
For many years the neuromodulator adenosine has been recognized as an endogenous anticonvulsant molecule and termed a “retaliatory metabolite.” As the core molecule of ATP, adenosine forms a unique link between cell energy and neuronal excitability. In parallel, a ketogenic (high-fat, low-carbohydrate) diet is a metabolic therapy that influences neuronal activity significantly, and ketogenic diets have been used successfully to treat medically-refractory epilepsy, particularly in children, for decades. To date the key neural mechanisms underlying the success of dietary therapy are unclear, hindering development of analogous pharmacological solutions. Similarly, adenosine receptor–based therapies for epilepsy and myriad other disorders remain elusive. In this review we explore the physiological regulation of adenosine as an anticonvulsant strategy and suggest a critical role for adenosine in the success of ketogenic diet therapy for epilepsy. While the current focus is on the regulation of adenosine, ketogenic metabolism and epilepsy, the therapeutic implications extend to acute and chronic neurological disorders as diverse as brain injury, inflammatory and neuropathic pain, autism and hyperdopaminergic disorders. Emerging evidence for broad clinical relevance of the metabolic regulation of adenosine will be discussed.
Collapse
Affiliation(s)
- S A Masino
- Psychology Department, Trinity College, 300 Summit St., Hartford, CT, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Wu X, Pan L, Wang Z, Liu X, Zhao D, Zhang X, Rupp RA, Xu J. Ultraviolet irradiation induces autofluorescence enhancement via production of reactive oxygen species and photodecomposition in erythrocytes. Biochem Biophys Res Commun 2010; 396:999-1005. [DOI: 10.1016/j.bbrc.2010.05.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 05/10/2010] [Indexed: 12/01/2022]
|
37
|
Ding Y, Wang S, Zhang MM, Guo Y, Yang Y, Weng SQ, Wu JM, Qiu X, Ding MP. Fructose-1,6-diphosphate inhibits seizure acquisition in fast hippocampal kindling. Neurosci Lett 2010; 477:33-6. [PMID: 20416358 DOI: 10.1016/j.neulet.2010.04.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/12/2010] [Accepted: 04/14/2010] [Indexed: 11/30/2022]
Abstract
Inhibition of glycolytic metabolism may provide a new therapy for refractory epilepsy. Fructose-1,6-diphosphate (FDP), which inhibits glycolysis and diverts glucose into the pentose phosphate pathway, has strong inhibitory action on seizures induced by chemical convulsants. Here, we investigated the effect of FDP on a rat model of rapid hippocampal kindling. After determining the after-discharge threshold (ADT), the seizure severity and after-discharge duration (ADD) were measured to study the antiepileptogenic effects of FDP (0.5 or 1.0 g/kg i.p. for 4 days). The mRNA expression levels of the brain-derived neurotrophic factor (BDNF) and its principal receptor TrkB, which are key modulators of seizure activity, were determined in the ipsilateral hippocampus by real-time polymerase chain reaction (RT-PCR). High-dose FDP (1.0 g/kg) delayed kindling development together with shortened ADD, and high-dose treated rats also needed more kindling stimulations and more cumulative ADD to stage 4. However, it showed no significant antiepileptogenic effect at a lower dose of 0.5 g/kg. In addition, FDP attenuated BDNF and TrkB expression before and during kindling procedure; this result indicated that BDNF/TrkB signaling pathway may participate in the antiepileptogenic action of FDP. Our data demonstrates that FDP has a significant antiepileptogenic effect in kindling seizures and that it may be a potential antiepileptic drug in the future.
Collapse
Affiliation(s)
- Yao Ding
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Ketogenic diets (KDs) are effective treatments for epilepsy. The mechanisms of action are poorly understood. In some experimental seizure models, calorie restriction and hypoglycemia may augment the antiseizure effects of KDs. In addition, inhibiting glycolysis or diverting glucose from the glycolytic pathway inhibits seizures and possibly epileptogenesis, suggesting an interaction between energy regulation and the anticonvulsant actions of these interventions. Children on KDs frequently exhibit poor weight gain and have lower blood glucose levels compared to children on standard, balanced diets. Young rodents on a KD also exhibit slow weight gain, lower blood glucose and insulin levels, and elevated leptin levels. This review considers the possibility that calorie restriction, low serum glucose, and KDs share common cell signaling pathways to alter brain excitability. AMP-activated protein kinase (AMPK) is an attractive candidate signaling protein that could link energy balance to gene expression in such a way so as to reduce brain excitability.
Collapse
Affiliation(s)
- Kelvin A Yamada
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|