1
|
Caballero S, Kent DL, Sengupta N, Li Calzi S, Shaw L, Beli E, Moldovan L, Dominguez JM, Moorthy RS, Grant MB. Bone Marrow-Derived Cell Recruitment to the Neurosensory Retina and Retinal Pigment Epithelial Cell Layer Following Subthreshold Retinal Phototherapy. Invest Ophthalmol Vis Sci 2017; 58:5164-5176. [PMID: 29049716 PMCID: PMC5636205 DOI: 10.1167/iovs.16-20736] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose We investigated whether subthreshold retinal phototherapy (SRPT) was associated with recruitment of bone marrow (BM)–derived cells to the neurosensory retina (NSR) and RPE layer. Methods GFP chimeric mice and wild-type (WT) mice were subjected to SRPT using a slit-lamp infrared laser. Duty cycles of 5%, 10%, 15%, and 20% (0.1 seconds, 250 mW, spot size 50 μm) with 30 applications were placed 50 to 100 μm from the optic disc. In adoptive transfer studies, GFP+ cells were given intravenously immediately after WT mice received SRPT. Immunohistochemistry was done for ionized calcium-binding adapter molecule-1 (IBA-1+), CD45, Griffonia simplicifolia lectin isolectin B4, GFP or cytokeratin). Expression of Ccl2, Il1b, Il6, Hspa1a, Hsp90aa1, Cryab, Hif1a, Cxcl12, and Cxcr4 mRNA and flow cytometry of the NSR and RPE-choroid were performed. Results Within 12 to 24 hours of SRPT, monocytes were detected in the NSR and RPE-choroid. Detection of reparative progenitors in the RPE occurred at 2 weeks using flow cytometry. Recruitment of GFP+ cells to the RPE layer occurred in a duty cycle–dependent manner in chimeric mice and in mice undergoing adoptive transfer. Hspa1a, Hsp90aa1, and Cryab mRNAs increased in the NSR at 2 hours post laser; Hif1a, Cxcl12, Hspa1a increased at 4 hours in the RPE-choroid; and Ccl2, Il1b, Ifng, and Il6 increased at 12 to 24 hours in the RPE-choroid. Conclusions SRPT induces monocyte recruitment to the RPE followed by hematopoietic progenitor cell homing at 2 weeks. Recruitment occurs in a duty cycle–dependent manner and potentially could contribute to the therapeutic efficacy of SRPT.
Collapse
Affiliation(s)
- Sergio Caballero
- Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States
| | | | - Nilanjana Sengupta
- Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States
| | - Sergio Li Calzi
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Lynn Shaw
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Eleni Beli
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Leni Moldovan
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - James M Dominguez
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Ramana S Moorthy
- AVRUC, Indiana University Medical Center, Indianapolis, Indiana, United States
| | - Maria B Grant
- Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
2
|
DaCosta JC, Portuguez MW, Marinowic DR, Schilling LP, Torres CM, DaCosta DI, Carrion MJM, Raupp EF, Machado DC, Soder RB, Lardi SL, Garicochea B. Safety and seizure control in patients with mesial temporal lobe epilepsy treated with regional superselective intra‐arterial injection of autologous bone marrow mononuclear cells. J Tissue Eng Regen Med 2017; 12:e648-e656. [DOI: 10.1002/term.2334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 07/29/2016] [Accepted: 09/26/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Jaderson C. DaCosta
- Brain Institute of Rio Grande do Sul (BraIns)Pontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Biomedical Research InstitutePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Postgraduate Program in Medicine and Health SciencesPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- School of MedicinePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- São Lucas HospitalPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Mirna W. Portuguez
- Brain Institute of Rio Grande do Sul (BraIns)Pontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Biomedical Research InstitutePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Postgraduate Program in Medicine and Health SciencesPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- School of MedicinePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- São Lucas HospitalPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Daniel R. Marinowic
- Brain Institute of Rio Grande do Sul (BraIns)Pontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Biomedical Research InstitutePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Lucas P. Schilling
- Brain Institute of Rio Grande do Sul (BraIns)Pontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Postgraduate Program in Medicine and Health SciencesPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- São Lucas HospitalPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Carolina M. Torres
- São Lucas HospitalPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Danielle I. DaCosta
- Brain Institute of Rio Grande do Sul (BraIns)Pontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Postgraduate Program in Medicine and Health SciencesPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- São Lucas HospitalPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Maria Júlia M. Carrion
- Postgraduate Program in Medicine and Health SciencesPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | | | - Denise C. Machado
- Biomedical Research InstitutePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Postgraduate Program in Medicine and Health SciencesPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- School of MedicinePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Ricardo B. Soder
- Brain Institute of Rio Grande do Sul (BraIns)Pontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- School of MedicinePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Silvia L. Lardi
- School of MedicinePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Bernardo Garicochea
- Postgraduate Program in Medicine and Health SciencesPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- School of MedicinePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- São Lucas HospitalPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Teaching and Research Oncology CenterHospital Sírio Libanes São Paulo SP Brazil
| |
Collapse
|
3
|
Shimada A, Hasegawa-Ishii S. Histological Architecture Underlying Brain-Immune Cell-Cell Interactions and the Cerebral Response to Systemic Inflammation. Front Immunol 2017; 8:17. [PMID: 28154566 PMCID: PMC5243818 DOI: 10.3389/fimmu.2017.00017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/05/2017] [Indexed: 11/18/2022] Open
Abstract
Although the brain is now known to actively interact with the immune system under non-inflammatory conditions, the site of cell–cell interactions between brain parenchymal cells and immune cells has been an open question until recently. Studies by our and other groups have indicated that brain structures such as the leptomeninges, choroid plexus stroma and epithelium, attachments of choroid plexus, vascular endothelial cells, cells of the perivascular space, circumventricular organs, and astrocytic endfeet construct the histological architecture that provides a location for intercellular interactions between bone marrow-derived myeloid lineage cells and brain parenchymal cells under non-inflammatory conditions. This architecture also functions as the interface between the brain and the immune system, through which systemic inflammation-induced molecular events can be relayed to the brain parenchyma at early stages of systemic inflammation during which the blood–brain barrier is relatively preserved. Although brain microglia are well known to be activated by systemic inflammation, the mechanism by which systemic inflammatory challenge and microglial activation are connected has not been well documented. Perturbed brain–immune interaction underlies a wide variety of neurological and psychiatric disorders including ischemic brain injury, status epilepticus, repeated social defeat, and neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. Proinflammatory status associated with cytokine imbalance is involved in autism spectrum disorders, schizophrenia, and depression. In this article, we propose a mechanism connecting systemic inflammation, brain–immune interface cells, and brain parenchymal cells and discuss the relevance of basic studies of the mechanism to neurological disorders with a special emphasis on sepsis-associated encephalopathy and preterm brain injury.
Collapse
Affiliation(s)
- Atsuyoshi Shimada
- Department of Pathology and Laboratory Medicine, Central Hospital, Aichi Human Service Center , Kasugai, Aichi , Japan
| | - Sanae Hasegawa-Ishii
- Department of Pharmacology, Pennsylvania State University College of Medicine , Hershey, PA , USA
| |
Collapse
|
4
|
Eyo UB, Murugan M, Wu LJ. Microglia-Neuron Communication in Epilepsy. Glia 2016; 65:5-18. [PMID: 27189853 DOI: 10.1002/glia.23006] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/20/2016] [Accepted: 04/28/2016] [Indexed: 12/22/2022]
Abstract
Epilepsy has remained a significant social concern and financial burden globally. Current therapeutic strategies are based primarily on neurocentric mechanisms that have not proven successful in at least a third of patients, raising the need for novel alternative and complementary approaches. Recent evidence implicates glial cells and neuroinflammation in the pathogenesis of epilepsy with the promise of targeting these cells to complement existing strategies. Specifically, microglial involvement, as a major inflammatory cell in the epileptic brain, has been poorly studied. In this review, we highlight microglial reaction to experimental seizures, discuss microglial control of neuronal activities, and propose the functions of microglia during acute epileptic phenotypes, delayed neurodegeneration, and aberrant neurogenesis. Future research that would help fill in the current gaps in our knowledge includes epilepsy-induced alterations in basic microglial functions, neuro-microglial interactions during chronic epilepsy, and microglial contribution to developmental seizures. Studying the role of microglia in epilepsy could inform therapies to better alleviate the disease. GLIA 2016;65:5-18.
Collapse
Affiliation(s)
- Ukpong B Eyo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Madhuvika Murugan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Long-Jun Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
5
|
MRI tracking of bone marrow mesenchymal stem cells labeled with ultra-small superparamagnetic iron oxide nanoparticles in a rat model of temporal lobe epilepsy. Neurosci Lett 2015; 606:30-5. [PMID: 26318841 DOI: 10.1016/j.neulet.2015.08.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/21/2015] [Accepted: 08/21/2015] [Indexed: 12/25/2022]
Abstract
Transplantation of bone marrow mesenchymal stem cells (BMSCs) is a promising approach for treatment of epilepsy. To our knowledge, there is little research on magnetic resonance imaging (MRI) tracking of BMSCs labeled with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles in a rat model of temporal lobe epilepsy (TLE). In this study, BMSCs were pre-labeled with USPIO nanoparticles, and then the cell apoptosis, proliferation, surface antigens, and multipotency were investigated. Lithium chloride-pilocarpine induced TLE models were administered by USPIO-labeled BMSCs (U-BMSCs), BMSCs, and saline through lateral ventricle injection as the experimental group, control I group and control II group, respectively, followed by MRI examination, electroencephalography (EEG) and Prussian blue staining. The cell experimental results showed that the labeled USPIO did not affect the biological characteristics and multiple potential of BMSCs. The U-BMSCs can be detected using MRI in vitro and in vivo, and observed in the hippocampus and adjacent parahippocampal cortical areas of the epileptic model. Moreover, electroencephalographic results showed that transplanted U-BMSCs, as well as BMSCs, were capable of reducing the number of epileptiform waves significantly (P<0.01) compared with control II group. All of these findings suggest that it is feasible to track transplanted BMSCs using MRI in a rat model of TLE, and support that USPIO labeling is a valuable tool for cell tracking in the study of seizure disorders.
Collapse
|
6
|
Increased recruitment of bone marrow-derived cells into the brain associated with altered brain cytokine profile in senescence-accelerated mice. Brain Struct Funct 2015; 221:1513-31. [PMID: 25577138 DOI: 10.1007/s00429-014-0987-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/30/2014] [Indexed: 12/31/2022]
Abstract
Bone marrow-derived cells enter the brain in a non-inflammatory condition through the attachments of choroid plexus and differentiate into ramified myeloid cells. Neurodegenerative conditions may be associated with altered immune-brain interaction. The senescence-accelerated mouse prone 10 (SAMP10) undergoes earlier onset neurodegeneration than C57BL/6 (B6) strain. We hypothesized that the dynamics of immune cells migrating from the bone marrow to the brain is perturbed in SAMP10 mice. We created 4 groups of radiation chimeras by intra-bone marrow-bone marrow transplantation using 2-month-old (2 mo) and 10 mo SAMP10 and B6 mice as recipients with GFP transgenic B6 mice as donors, and analyzed histologically 4 months later. In the [B6 → 10 mo SAMP10] chimeras, more ramified marrow-derived cells populated a larger number of discrete brain regions than the other chimeras, especially in the diencephalon. Multiplex cytokine assays of the diencephalon prepared from non-treated 3 mo and 12 mo SAMP10 and B6 mice revealed that 12 mo SAMP10 mice exhibited higher tissue concentrations of CXCL1, CCL11, G-CSF, CXCL10 and IL-6 than the other groups. Immunohistologically, choroid plexus epithelium and ependyma produced CXCL1, while astrocytic processes in the attachments of choroid plexus expressed CCL11 and G-CSF. The median eminence produced CXCL10, hypothalamic neurons G-CSF and tanycytes CCL11 and G-CSF. These brain cytokine profile changes in 12 mo SAMP10 mice were likely to contribute to acceleration of the dynamics of marrow-derived cells to the diencephalon. Further studies on the functions of ramified marrow-derived myeloid cells would enhance our understanding of the brain-bone marrow interaction.
Collapse
|
7
|
CNS inflammation and bone marrow neuropathy in type 1 diabetes. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 183:1608-20. [PMID: 24160325 DOI: 10.1016/j.ajpath.2013.07.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/28/2013] [Accepted: 07/12/2013] [Indexed: 02/06/2023]
Abstract
By using pseudorabies virus expressing green fluorescence protein, we found that efferent bone marrow-neural connections trace to sympathetic centers of the central nervous system in normal mice. However, this was markedly reduced in type 1 diabetes, suggesting a significant loss of bone marrow innervation. This loss of innervation was associated with a change in hematopoiesis toward generation of more monocytes and an altered diurnal release of monocytes in rodents and patients with type 1 diabetes. In the hypothalamus and granular insular cortex of mice with type 1 diabetes, bone marrow-derived microglia/macrophages were activated and found at a greater density than in controls. Infiltration of CD45(+)/CCR2(+)/GR-1(+)/Iba-1(+) bone marrow-derived monocytes into the hypothalamus could be mitigated by treatment with minocycline, an anti-inflammatory agent capable of crossing the blood-brain barrier. Our studies suggest that targeting central inflammation may facilitate management of microvascular complications.
Collapse
|
8
|
Widespread activation of microglial cells in the hippocampus of chronic epileptic rats correlates only partially with neurodegeneration. Brain Struct Funct 2014; 220:2423-39. [PMID: 24878824 DOI: 10.1007/s00429-014-0802-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/14/2014] [Indexed: 12/30/2022]
Abstract
Activation of microglial cells (brain macrophages) soon after status epilepticus has been suggested to be critical for the pathogenesis of mesial temporal lobe epilepsy (MTLE). However, microglial activation in the chronic phase of experimental MTLE has been scarcely addressed. In this study, we questioned whether microglial activation persists in the hippocampus of pilocarpine-treated, epileptic Wistar rats and to which extent it is associated with segmental neurodegeneration. Microglial cells were immunostained for the universal microglial marker, ionized calcium-binding adapter molecule-1 and the activation marker, CD11b (also known as OX42, Mac-1). Using quantitative morphology, i.e., stereology and Neurolucida-based reconstructions, we investigated morphological correlates of microglial activation such as cell number, ramification, somatic size and shape. We find that microglial cells in epileptic rats feature widespread, activation-related morphological changes such as increase in cell number density, massive up-regulation of CD11b and de-ramification. The parameters show heterogeneity in different hippocampal subregions. For instance, de-ramification is most prominent in the outer molecular layer of the dentate gyrus, whereas CD11b expression dominates in hilus. Interestingly, microglial activation only partially correlates with segmental neurodegeneration. Major neuronal death in the hilus, CA3 and CA1 coincides with strong up-regulation of CD11b. However, microglial activation is also observed in subregions that do not feature neurodegeneration, such as the molecular and granular layer of the dentate gyrus. This in vivo study provides solid experimental evidence that microglial cells feature widespread heterogeneous activation that only partially correlates with hippocampal segmental neuronal loss in experimental MTLE.
Collapse
|
9
|
Romariz SA, Garcia KDO, Paiva DDS, Bittencourt S, Covolan L, Mello LE, Longo BM. Participation of bone marrow-derived cells in hippocampal vascularization after status epilepticus. Seizure 2014; 23:386-9. [DOI: 10.1016/j.seizure.2014.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/24/2013] [Accepted: 01/22/2014] [Indexed: 01/15/2023] Open
|
10
|
Leal MMT, Costa-Ferro ZSM, Souza BSDF, Azevedo CM, Carvalho TM, Kaneto CM, Carvalho RH, Dos Santos RR, Soares MBP. Early transplantation of bone marrow mononuclear cells promotes neuroprotection and modulation of inflammation after status epilepticus in mice by paracrine mechanisms. Neurochem Res 2013; 39:259-68. [PMID: 24343530 DOI: 10.1007/s11064-013-1217-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/29/2013] [Accepted: 12/07/2013] [Indexed: 12/13/2022]
Abstract
Status epilepticus (SE) is a severe clinical manifestation of epilepsy associated with intense neuronal loss and inflammation, two key factors involved in the pathophysiology of temporal lobe epilepsy. Bone marrow mononuclear cells (BMMC) attenuated the consequences of pilocarpine-induced SE, including neuronal loss, in addition to frequency and duration of seizures. Here we investigated the effects of BMMC transplanted early after the onset of SE in mice, as well as the involvement of soluble factors produced by BMMC in the effects of the cell therapy. Mice were injected with pilocarpine for SE induction and randomized into three groups: transplanted intravenously with 1 × 10(7) BMMC isolated from GFP transgenic mice, injected with BMMC lysate, and saline-treated controls. Cell tracking, neuronal counting in hippocampal subfields and cytokine analysis in the serum and brain were performed. BMMC were found in the brain 4 h following transplantation and their numbers progressively decreased until 24 h following transplantation. A reduction in hippocampal neuronal loss after SE was found in mice treated with live BMMC and BMMC lysate when compared to saline-treated, SE-induced mice. Moreover, the expression of inflammatory cytokines IL-1β, TNF-α, IL-6 was decreased after injection of live BMMC and to a lesser extent, of BMMC lysate, when compared to SE-induced controls. In contrast, IL-10 expression was increased. Analysis of markers for microglia activation demonstrated a reduction of the expression of genes related to type 1-activation. BMMC transplantation promotes neuroprotection and mediates anti-inflammatory effects following SE in mice, possibly through the secretion of soluble factors.
Collapse
|
11
|
Ferrazoli EG, Blanco MM, Bittencourt S, Bachi ALL, Bahia L, Soares MBP, Ribeiro-Dos-Santos R, Mello LE, Longo BM. Anticonvulsant activity of bone marrow cells in electroconvulsive seizures in mice. BMC Neurosci 2013; 14:97. [PMID: 24011127 PMCID: PMC3846761 DOI: 10.1186/1471-2202-14-97] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 09/03/2013] [Indexed: 11/16/2022] Open
Abstract
Background Bone marrow is an accessible source of progenitor cells, which have been investigated as treatment for neurological diseases in a number of clinical trials. Here we evaluated the potential benefit of bone marrow cells in protecting against convulsive seizures induced by maximum electroconvulsive shock (MES), a widely used model for screening of anti-epileptic drugs. Behavioral and inflammatory responses were measured after MES induction in order to verify the effects promoted by transplantation of bone marrow cells. To assess the anticonvulsant effects of bone marrow cell transplantation, we measured the frequency and duration of tonic seizure, the mortality rate, the microglial expression and the blood levels of cytokine IL-1, IL-6, IL-10 and TNF-α after MES induction. We hypothesized that these behavioral and inflammatory responses to a strong stimulus such as a convulsive seizure could be modified by the transplantation of bone marrow cells. Results Bone marrow transplanted cells altered the convulsive threshold and showed anticonvulsant effect by protecting from tonic seizures. Bone marrow cells modified the microglial expression in the analyzed brain areas, increased the IL-10 and attenuate IL-6 levels. Conclusions Bone marrow cells exert protective effects by blocking the course of electroconvulsive seizures. Additionally, electroconvulsive seizures induced acute inflammatory responses by altering the pattern of microglia expression, as well as in IL-6 and IL-10 levels. Our findings also indicated that the anticonvulsant effects of these cells can be tested with the MES model following the same paradigm used for drug testing in pharmacological screening. Studies on the inflammatory reaction in response to acute seizures in the presence of transplanted bone marrow cells might open a wide range of discussions on the mechanisms relevant to the pathophysiology of epilepsies.
Collapse
Affiliation(s)
- Enéas Galdini Ferrazoli
- Laboratório de Neurofisiologia, Departamento de Fisiologia, Federal University of São Paulo - UNIFESP, R, Botucatu, 862 5 andar, V, Clementino - CEP, 04023-066, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jafari M, Soerensen J, Bogdanović RM, Dimou L, Götz M, Potschka H. Long-term genetic fate mapping of adult generated neurons in a mouse temporal lobe epilepsy model. Neurobiol Dis 2012; 48:454-63. [DOI: 10.1016/j.nbd.2012.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 06/15/2012] [Accepted: 06/22/2012] [Indexed: 11/25/2022] Open
|
13
|
Jun JY, Zubcevic J, Qi Y, Afzal A, Carvajal JM, Thinschmidt JS, Grant MB, Mocco J, Raizada MK. Brain-mediated dysregulation of the bone marrow activity in angiotensin II-induced hypertension. Hypertension 2012; 60:1316-23. [PMID: 23045460 DOI: 10.1161/hypertensionaha.112.199547] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxidative stress in the brain is implicated in increased sympathetic drive, inflammatory status, and vascular dysfunctions, associated with development and establishment of hypertension. However, little is known about the mechanism of this impaired brain-vascular communication. Here, we tested the hypothesis that increased oxidative stress in the brain cardioregulatory areas, such as the paraventricular nucleus of the hypothalamus, is driven by mitochondrial reactive oxygen species and leads to increased inflammatory cells (ICs) and decreased/dysfunctional endothelial progenitor cells (EPCs), thereby compromising vasculature repair and accelerating hypertension. Chronic angiotensin II infusion resulted in elevated blood pressure and sympathetic vasomotor drive, decreased spontaneous baroreflex gain, and increased microglia activation in the paraventricular nucleus. This was associated with 46% decrease in bone marrow (BM)-derived EPCs and 250% increase in BM ICs, resulting in 5-fold decrease of EPC/IC ratio in the BM. Treatment with mitochondrial-targeted antioxidant, a scavenger of mitochondrial O(2)(-·), intracerebroventricularly but not subcutaneously attenuated angiotensin II-induced hypertension, decreased activation of microglia in the paraventricular nucleus, and normalized EPCs/ICs. This functional communication between the brain and BM was confirmed by retrograde neuronal labeling from the BM with green fluorescent protein-tagged pseudorabies virus. Administration of green fluorescent protein-tagged pseudorabies virus into the BM resulted in predominant labeling of paraventricular nucleus neurons within 3 days, with some fluorescence in the nucleus tractus solitarius, the rostral ventrolateral medulla, and subfornical organ. Taken together, these data demonstrate that inhibition of mitochondrial reactive oxygen species attenuates angiotensin II-induced hypertension and corrects the imbalance in EPCs/ICs in the BM. They suggest that an imbalance in vascular reparative and ICs may perpetuate vascular pathophysiology in this model of hypertension.
Collapse
Affiliation(s)
- Joo Yun Jun
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Functional recovery and neuronal regeneration of a rat model of epilepsy by transplantation of Hes1-down regulated bone marrow stromal cells. Neuroscience 2012; 212:214-24. [DOI: 10.1016/j.neuroscience.2012.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/24/2012] [Accepted: 04/05/2012] [Indexed: 01/22/2023]
|
15
|
Zubcevic J, Waki H, Raizada MK, Paton JFR. Autonomic-immune-vascular interaction: an emerging concept for neurogenic hypertension. Hypertension 2011; 57:1026-33. [PMID: 21536990 DOI: 10.1161/hypertensionaha.111.169748] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jasenka Zubcevic
- Department of Physiology and Functional Genomics, McKnight Brain Institute, 1600 SW Archer Rd, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|