1
|
Liu F, Hutchinson R. Visible particles in parenteral drug products: A review of current safety assessment practice. Curr Res Toxicol 2024; 7:100175. [PMID: 38975062 PMCID: PMC11223083 DOI: 10.1016/j.crtox.2024.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Parenteral drug products (PDPs) are administered extensively to treat various diseases. Product quality plays a critical role in ensuring patient safety and product efficacy. One important quality challenge is the contamination of particles in PDPs. Particle presence in PDPs represents potential safety risk to patients. Differential guidance and practice have been in place for visible (VPs) and subvisible particles (SVPs) in PDPs. For SVPs, the amount limits have been harmonized in multiple Pharmacopeias. The pharmaceutical industry follows the guided limits for regulatory and quality compliance. However, for VPs, no such acceptable limit has been set. This results in not only quality but also safety challenges for manufacturers and drug developers in managing and evaluating VPs. It is important to understand the potential safety risk of VPs so these can be weighed against the benefit of the PDPs. To evaluate their potential risk(s), it is necessary to understand their nature, origin, frequency of their occurrence, safety risk, the risk mitigation measures, and the method to evaluate their safety. The current paper reviews the critical literature on these aspects and provides insight into considerations when performing safety assessment and managing the risk(s) for VPs in PDPs.
Collapse
Affiliation(s)
- Frank Liu
- Safe Product Services LLC, Pittsfield, MA, USA
| | | |
Collapse
|
2
|
Lyons-Darden T, Heim KE, Han L, Haines L, Sayes CM, Oller AR. Bioaccessibility of Metallic Nickel and Nickel Oxide Nanoparticles in Four Simulated Biological Fluids. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:877. [PMID: 38786832 PMCID: PMC11123708 DOI: 10.3390/nano14100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Bioaccessibility of metals from substances and alloys is increasingly used as part of the assessment to predict potential toxicity. However, data are sparse on the metal bioaccessibility from nanoparticle (NP) size metal substances. This study examines nickel ion release from metallic nickel and nickel oxide micron particles (MPs) and NPs in simulated biological fluids at various timepoints including those relevant for specific routes of exposure. The results suggest that MPs of both metallic nickel and nickel oxide generally released more nickel ions in acidic simulated biological fluids (gastric and lysosomal) than NPs of the same substance, with the largest differences being for nickel oxide. In more neutral pH fluids (interstitial and perspiration), nickel metal NPs released more nickel ions than MPs, with nickel oxide results showing a higher release for MPs in interstitial fluid yet a lower release in perspiration fluid. Various experimental factors related to the particle, fluid, and extraction duration were identified that can have an impact on the particle dissolution and release of nickel ions. Overall, the results suggest that based on nickel release alone, nickel NPs are not inherently more hazardous than nickel MPs. Moreover, analyses should be performed on a case-by-case basis with consideration of various experimental factors and correlation with in vivo data.
Collapse
Affiliation(s)
- Tara Lyons-Darden
- NiPERA, Inc., 2525 Meridian Parkway, Suite 240, Durham, NC 27713, USA;
| | - Katherine E. Heim
- NiPERA, Inc., 2525 Meridian Parkway, Suite 240, Durham, NC 27713, USA;
| | - Li Han
- RTI International, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA; (L.H.); (L.H.)
| | - Laura Haines
- RTI International, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA; (L.H.); (L.H.)
| | - Christie M. Sayes
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA;
| | - Adriana R. Oller
- Oller Consulting, 722 Gaston Manor Drive, Durham, NC 27703, USA;
| |
Collapse
|
3
|
Podobas EI, Gutowska-Owsiak D, Moretti S, Poznański J, Kulińczak M, Grynberg M, Gruca A, Bonna A, Płonka D, Frączyk T, Ogg G, Bal W. Ni 2+-Assisted Hydrolysis May Affect the Human Proteome; Filaggrin Degradation Ex Vivo as an Example of Possible Consequences. Front Mol Biosci 2022; 9:828674. [PMID: 35359602 PMCID: PMC8960189 DOI: 10.3389/fmolb.2022.828674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 01/28/2023] Open
Abstract
Deficiency in a principal epidermal barrier protein, filaggrin (FLG), is associated with multiple allergic manifestations, including atopic dermatitis and contact allergy to nickel. Toxicity caused by dermal and respiratory exposures of the general population to nickel-containing objects and particles is a deleterious side effect of modern technologies. Its molecular mechanism may include the peptide bond hydrolysis in X1-S/T-c/p-H-c-X2 motifs by released Ni2+ ions. The goal of the study was to analyse the distribution of such cleavable motifs in the human proteome and examine FLG vulnerability of nickel hydrolysis. We performed a general bioinformatic study followed by biochemical and biological analysis of a single case, the FLG protein. FLG model peptides, the recombinant monomer domain human keratinocytes in vitro and human epidermis ex vivo were used. We also investigated if the products of filaggrin Ni2+-hydrolysis affect the activation profile of Langerhans cells. We found X1-S/T-c/p-H-c-X2 motifs in 40% of human proteins, with the highest abundance in those involved in the epidermal barrier function, including FLG. We confirmed the hydrolytic vulnerability and pH-dependent Ni2+-assisted cleavage of FLG-derived peptides and FLG monomer, using in vitro cell culture and ex-vivo epidermal sheets; the hydrolysis contributed to the pronounced reduction in FLG in all of the models studied. We also postulated that Ni-hydrolysis might dysregulate important immune responses. Ni2+-assisted cleavage of barrier proteins, including FLG, may contribute to clinical disease associated with nickel exposure.
Collapse
Affiliation(s)
- Ewa Izabela Podobas
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Medical Research Council Human Immunology Unit, National Institute for Health Research Oxford Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Danuta Gutowska-Owsiak
- Medical Research Council Human Immunology Unit, National Institute for Health Research Oxford Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Sébastien Moretti
- SIB Swiss Institute of Bioinformatics, Vital-IT Team, Lausanne, Switzerland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Mariusz Kulińczak
- The Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Gruca
- Institute of Informatics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Arkadiusz Bonna
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Dawid Płonka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Frączyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Graham Ogg
- Medical Research Council Human Immunology Unit, National Institute for Health Research Oxford Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Effects of Artificial Sweat Formulation and Extraction Temperature on Estimation of the Dermal Bioaccessibility of Potentially Toxic Elements in a Contaminated Soil from an E-Waste Recycling Site. GEOSCIENCES 2022. [DOI: 10.3390/geosciences12010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Informal recycling of electronic waste leads to soil contamination that can impact human health. To accurately assess exposure to potentially toxic elements (PTE) in soil it is necessary to consider their bioavailability through ingestion, inhalation and dermal contact. However, bioaccessibility tests that estimate dermal absorption following adhesion of contaminated soil particles to skin are not well established. In this study the concentrations of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn were estimated in the <45 µm particle size fraction of a bulk composite soil from an e-waste recycling site using five different artificial sweat formulations. Extractions were performed at temperatures ranging from 17 to 47 °C to investigate the effect of ambient temperature on bioaccessibility. Results obtained using the different artificial sweats were not consistent with one another. In particular, the NIHS 96-10 formulation solubilized larger amounts of analytes (ranging from 6.3 times the next most effective extractant for Cu to 1700 times the next most effective for Pb). There was a general increase in release of PTE with increasing temperature, except for As. Although trends varied between analytes and formulations, this highlights the need to consider ambient temperature when estimating dermal bioaccessibility of PTE in soil.
Collapse
|
5
|
Linauskiene K, Dahlin J, Ezerinskis Z, Isaksson M, Sapolaite J, Malinauskiene L. Occupational exposure to nickel, cobalt, and chromium in the Lithuanian hard metal industry. Contact Dermatitis 2021; 84:247-253. [PMID: 33277692 DOI: 10.1111/cod.13756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Metalworkers are said to have heavy exposure to metals, but the amount of released metal ions from alloys and deposition on the hands is unknown. OBJECTIVE To analyze nickel, cobalt, and chromium in vitro release to the artificial sweat from nails and wire made of different alloys, and to test metal deposition on the fingers of metalworkers. MATERIAL AND METHODS Six different samples of nails and wire were kept in artificial sweat for 24 hours and one week, respectively. The metal release was determined by atomic absorption spectrometry (AAS). Eighty-eight consecutive metal plant workers immersed their index fingers and thumbs in separate laboratory tubes filled with deionized water for 2 minutes. The sample analysis for metals was carried out with an inductively coupled plasma mass spectrometer (ICP-MS). RESULTS The average released concentration of Ni was 0.0012 μg/cm2 , for Co it was 0.0007 μg/cm2 , and for Cr 0.0037 μg/cm2 after 24 hours and 0.0135, 0.0029, and 0.0042 μg/cm2 , respectively, after 1 week. There was a statistically significant increase in released concentration of Ni during one week: 0.0012 μg/cm2 vs 0.0135 μg/cm2 (P = .04). Medians of the detected Co amount on fingers reflected a statistically significant difference between workplaces: 0.004 μg/cm2 for metalworkers vs 0.001 μg/cm2 for office staff (P = .04). CONCLUSION Nickel (Ni), cobalt (Co), and chromium (Cr) can be released in different concentrations from nails and wire. Detected Ni and Cr levels can elicit dermatitis in already sensitized patients. Co can be extracted from alloys even if not mentioned on material safety data sheets. The finger immersion technique was used for cobalt and chromium detection on fingers for the first time.
Collapse
Affiliation(s)
- Kotryna Linauskiene
- Vilnius University, Faculty of Medicine, Institute of Clinical Medicine, Clinic of Chest diseases, Immunology and Allergology, Vilnius, Lithuania
| | - Jacob Dahlin
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Zilvinas Ezerinskis
- Department for Nuclear Technologies, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Marléne Isaksson
- Department of Occupational and Environmental Dermatology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Justina Sapolaite
- Department for Nuclear Technologies, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Laura Malinauskiene
- Vilnius University, Faculty of Medicine, Institute of Clinical Medicine, Clinic of Chest diseases, Immunology and Allergology, Vilnius, Lithuania
| |
Collapse
|
6
|
Areecheewakul S, Adamcakova-Dodd A, Givens BE, Steines BR, Wang Y, Meyerholz DK, Parizek NJ, Altmaier R, Haque E, O’Shaughnessy PT, Salem AK, Thorne PS. Toxicity assessment of metal oxide nanomaterials using in vitro screening and murine acute inhalation studies. NANOIMPACT 2020; 18:100214. [PMID: 32968700 PMCID: PMC7504913 DOI: 10.1016/j.impact.2020.100214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Characterizations and in vitro toxicity screening were performed on metal oxide engineered nanomaterials (ENMs) independently comprising ZnO, CuO, CeO2, Fe2O3, WO3, V2O5, TiO2, Al2O3 and MgO. Nanomaterials that exhibited the highest toxicity responses in the in vitro screening assays (ZnO, CuO, and V2O5) and the lesser explored material WO3 were tested for acute pulmonary toxicity in vivo. Female and male mice (C57Bl/6J) were exposed to aerosolized metal oxide ENMs in a nose-only exposure system and toxicity outcomes (biomarkers of cytotoxicity, immunotoxicity, inflammation, and lung histopathology) at 4 and 24 h after the start of exposure were assessed. The studies were performed as part of the NIEHS Nanomaterials Health Implications Research consortium with the purpose of investigating the effects of ENMs on various biological systems. ENMs were supplied by the Engineered Nanomaterials Resource and Coordination Core. Among the ENMs studied, the highest toxicity was observed for CuO and ZnO NPs in both in vitro and in vivo acute models. Compared to sham-exposed controls, there was a significant increase in bronchoalveolar lavage neutrophils and proinflammatory cytokines and a loss of macrophage viability at both 4 h and 24 h for ZnO and CuO but not seen for V2O5 or WO3. These effects were observed in both female and male mice. The cell viability performed after in vitro exposure to ENMs and assessment of lung inflammation after acute inhalation exposure in vivo were shown to be sensitive endpoints to predict ENM acute toxicity.
Collapse
Affiliation(s)
- Sudartip Areecheewakul
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52246, USA
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52246, USA
| | - Brittany E. Givens
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52246, USA
| | - Benjamin R. Steines
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52246, USA
| | - Yifang Wang
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52246, USA
| | | | - Nathanial J. Parizek
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52246, USA
| | - Ralph Altmaier
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52246, USA
| | - Ezazul Haque
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52246, USA
| | - Patrick T. O’Shaughnessy
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52246, USA
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52246, USA
- Corresponding author
| | - Peter S. Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52246, USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52246, USA
- Correspondence to: P.S. Thorne, Department of Occupational and Environmental Health, The University of Iowa, College of Public Health, 145 N. Riverside Dr., S341A CPHB, Iowa City, IA 52242, USA. (A.K. Salem), (P.S. Thorne)
| |
Collapse
|
7
|
Wang X, Herting G, Wei Z, Odnevall Wallinder I, Hedberg Y. Bioaccessibility of nickel and cobalt in powders and massive forms of stainless steel, nickel- or cobalt-based alloys, and nickel and cobalt metals in artificial sweat. Regul Toxicol Pharmacol 2019; 106:15-26. [DOI: 10.1016/j.yrtph.2019.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 01/29/2023]
|
8
|
Chaparro Leal LT, Guney M, Zagury GJ. In vitro dermal bioaccessibility of selected metals in contaminated soil and mine tailings and human health risk characterization. CHEMOSPHERE 2018; 197:42-49. [PMID: 29331717 DOI: 10.1016/j.chemosphere.2018.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/18/2017] [Accepted: 01/03/2018] [Indexed: 05/25/2023]
Abstract
Dermal exposure to contaminated sites has generally received less attention than oral/inhalation exposure due to limited exposure scenarios and less perceived potential for toxicity, however, the risk can be significant for specific contaminants and scenarios. The present study aims to (1) measure Cr, Ni, Pb, and Zn contamination in soil and mine tailings samples (n = 7), (2) determine the dermal bioaccessibility of these metals via in vitro tests using two synthetic sweat formulations (EN 1811; NIHS 96-10), and (3) obtain dermal absorbed doses (DADs) for children's and adults' exposure scenarios and compare them to derived dermal reference values. The NIHS 96-10 formulation yielded higher bioaccessibility values for all metals than EN 1811, possibly due to its lower pH. Zn had the highest bioaccessibility for both formulations whereas Cr had the lowest. There was some evidence of adsorption of initially mobilized Pb and Zn to soil with longer test times, resulting in slightly lower bioaccessibility after 8 h of testing with respect to 2 h. The calculated DADs showed that the risk for exposure was acceptable (DAD < derived dermal reference value) for all metals except for Cr(VI) considering exposure to two of the samples. The risk in the case of children's exposure scenario (play on contaminated medium) was significantly higher than the case for the adults' exposure scenario (exposure in industrial context). Additional bioaccessibility research is recommended on additional samples with differing properties/contamination profiles, on additional contaminants with high dermal affinity (especially As), and on the development/validation of in vitro dermal bioaccessibility tests.
Collapse
Affiliation(s)
- Laura T Chaparro Leal
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, H3C 3A7, Montréal, QC, Canada
| | - Mert Guney
- Department of Civil Engineering, Nazarbayev University, 010000, Astana, Kazakhstan
| | - Gerald J Zagury
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, H3C 3A7, Montréal, QC, Canada.
| |
Collapse
|
9
|
The Health Risk of Cd Released from Low-Cost Jewelry. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14050520. [PMID: 28498325 PMCID: PMC5451971 DOI: 10.3390/ijerph14050520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/30/2017] [Accepted: 05/09/2017] [Indexed: 11/30/2022]
Abstract
The composition of the surface layer of 13 low-cost jewelry samples with a high Cd content was analyzed using an energy-dispersive X-ray fluorescence spectrometer (ED XRF). The analyzed jewels were obtained in cooperation with the Czech Environmental Inspectorate. The jewels were leached in two types of artificial sweat (acidic and alkaline) for 7 days. Twenty microliters of the resulting solution was subsequently placed on a paper carrier and analyzed by an LIBS (Laser-Induced Breakdown Spectrometry) spectrometer after drying. The Cd content in the jewelry surface layer detected by using ED XRF ranged from 13.4% to 44.6% (weight per weight—w/w). The samples were subsequently leached in artificial alkaline, and the acidic sweat and leachates were analyzed using laser-induced breakdown spectrometry (LIBS). The amount of released Cd into alkaline sweat ranged from 24.0 to 370 µg Cd per week, respectively 3.23–61.7 µg/cm2/week. The amount of released Cd into acidic sweat ranged from 16.4 to 1517 µg Cd per week, respectively 3.53–253 µg/cm2/week. The limit of Cd for dermal exposure is not unequivocally determined in the countries of the EU (European Union) or in the U.S. Based on the US EPA (United States Environmental Protection Agency) approach used to establish the reference dose (RfD) for Cd contained in food and information about the bioavailability of Cd after dermal exposure, we assessed our own value of dermal RfD. The value was compared with the theoretical amount of Cd, which can be absorbed into the organism from jewelry in contact with the skin. The calculation was based on the amount of Cd that was released into acidic and alkaline sweat. The highest amount of Cd was released into acidic sweat, which represents 0.1% of dermal RfD and into alkaline sweat, 0.5% of dermal RfD. These results indicate that the analyzed jewelry contains Cd over the limit for composition of jewelry available within the territory of the EU. The determined amount of Cd in analyzed jewelry does not, however, pose a threat in terms of non-carcinogenic toxic effects.
Collapse
|
10
|
Smith K, Kaya T. Implementation of a microfluidic conductivity sensor -- a potential sweat electrolyte sensing system for dehydration detection. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2014:1678-81. [PMID: 25570297 DOI: 10.1109/embc.2014.6943929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
As dehydration continues to plague performance athletes and soldiers, the need for improved dehydration detection is clear. We propose the use of a conductometric sensor as the foundation of a sweat-sensing patch to address this need. The conductometric sensor evaluates the conductivity of solutions with varying sodium concentrations. A lithographic process was used to fabricate a Polydimethylsiloxane (PDMS) microfluidic channel through which solution was flowed. The ionization of the solution that occurs when a voltage is applied results in an effective resistance across the channel. The measured resistance therefore, reflects the ionization of the solution and the corresponding sodium concentration. The potential application of the conductometric sensor in a sweat-sensing patch requires compatibility with a microcontroller and Bluetooth module. Thus, a circuit interface was created. A voltage divider was utilized to convert the output resistance of the sensor to a voltage that could be input into a microcontroller. An AC voltage signal with a frequency of 10 kHz was used as the source voltage of the voltage divider to minimize the faradaic impedance and the double layer effect of the ionized solution. Tests have revealed that the conductometric is capable of precisely measuring the conductivity of a sodium solution. The conductometric sensor will be applied to a sweat sensing patch through future work involving studying the link between sodium concentration in sweat and an individual's dehydration level, developing a sweat-collection method, and developing a method of consideration for the other ions contained in sweat.
Collapse
|
11
|
Crosera M, Adami G, Mauro M, Bovenzi M, Baracchini E, Larese Filon F. In vitro dermal penetration of nickel nanoparticles. CHEMOSPHERE 2016; 145:301-306. [PMID: 26692505 DOI: 10.1016/j.chemosphere.2015.11.076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/19/2015] [Accepted: 11/21/2015] [Indexed: 06/05/2023]
Abstract
Nickel nanoparticles (NiNPs) represent a new type of occupational exposure because, due to the small size/high surface, they can release more Ni ions compared to bulk material. It has been reported a case of a worker who developed sensitization while handling nickel nanopowder without precautions. Therefore there is the need to assess whether the skin absorption of NiNPs is higher compared to bulk nickel. Two independent in vitro experiments were performed using Franz diffusion cells. Eight cells for each experiment were fitted using intact and needle-abraded human skin. The donor phase was a suspension of NiNPs with mean size of 77.7 ± 24.1 nm in synthetic sweat. Ni permeated both types of skin, reaching higher levels up to two orders of magnitude in the damaged skin compared to intact skin (5.2 ± 2.0 vs 0.032 ± 0.010 μg cm(-2), p = 0.006) at 24 h. Total Ni amount into the skin was 29.2 ± 11.2 μg cm(-2) in damaged skin and 9.67 ± 2.70 μg cm(-2) in intact skin (mean and SD, p = 0.006). Skin abrasions lead to doubling the Ni amount in the epidermis and to an increase of ten times in the dermis. This study demonstrated that NiNPs applied on skin surface cause an increase of nickel content into the skin and a significant permeation flux through the skin, higher when a damaged skin protocol was used. Preventive measures are needed when NiNPs are produced and used due to their higher potential to enter in our body compared to bulk nickel.
Collapse
Affiliation(s)
- Matteo Crosera
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy; Department of Medical Sciences, University of Trieste, Via della Pietà 1, 34129, Trieste, Italy
| | - Gianpiero Adami
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Marcella Mauro
- Department of Medical Sciences, University of Trieste, Via della Pietà 1, 34129, Trieste, Italy
| | - Massimo Bovenzi
- Department of Medical Sciences, University of Trieste, Via della Pietà 1, 34129, Trieste, Italy
| | - Elena Baracchini
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Francesca Larese Filon
- Department of Medical Sciences, University of Trieste, Via della Pietà 1, 34129, Trieste, Italy.
| |
Collapse
|
12
|
Korać R, Krajišnik D, Milić J. Sensory and instrumental characterization of fast inverting oil-in-water emulsions for cosmetic application. Int J Cosmet Sci 2015; 38:246-56. [DOI: 10.1111/ics.12282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/16/2015] [Indexed: 11/30/2022]
Affiliation(s)
- R. Korać
- Department of Pharmaceutical Technology and Cosmetology; University of Belgrade-Faculty of Pharmacy; Vojvode Stepe No. 450 11221 Belgrade Serbia
| | - D. Krajišnik
- Department of Pharmaceutical Technology and Cosmetology; University of Belgrade-Faculty of Pharmacy; Vojvode Stepe No. 450 11221 Belgrade Serbia
| | - J. Milić
- Department of Pharmaceutical Technology and Cosmetology; University of Belgrade-Faculty of Pharmacy; Vojvode Stepe No. 450 11221 Belgrade Serbia
| |
Collapse
|
13
|
Novel metal allergy patch test using metal nanoballs. J Nanobiotechnology 2014; 12:51. [PMID: 25467761 PMCID: PMC4260209 DOI: 10.1186/s12951-014-0051-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/06/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patch tests are often used in the clinical diagnosis of metal allergies. In currently available patch tests, high concentrations of metal salt solutions are used. However, diagnosis accuracy can be influenced not only by acute skin reactions to high concentrations of metal salt, but also by skin reactions to other components present in the patch or to pH changes. In this study, we developed Ni nanoparticles (termed "nanoballs") for use in patch-test solutions. FINDINGS Highly soluble, spherical Ni nanoballs were prepared using plasma electrolysis. The Ni released from the nanoballs permeated through a dialysis membrane, and the nanoball-containing solution's pH was maintained constant. Ni ions were released slowly at low concentrations in a time-dependent manner, which contrasted the rapid release observed in the case of a commercial patch test. Consequently, in the new test system, reactions caused by high concentrations of metal salts were avoided. CONCLUSIONS By exploiting the high specific surface area of Ni nanoballs, we obtained an effective dissolution of Ni ions that triggered Ni allergy in the absence of direct contact between the nanoballs and mouse skin. This novel patch system can be applied to other metals and alloys for diagnosing various types of metal-induced contact dermatitis.
Collapse
|
14
|
Herting G, Jiang T, Sjöstedt C, Odnevall Wallinder I. Release of Si from silicon, a ferrosilicon (FeSi) alloy and a synthetic silicate mineral in simulated biological media. PLoS One 2014; 9:e107668. [PMID: 25225879 PMCID: PMC4166662 DOI: 10.1371/journal.pone.0107668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/21/2014] [Indexed: 11/19/2022] Open
Abstract
Unique quantitative bioaccessibility data has been generated, and the influence of surface/material and test media characteristics on the elemental release process were assessed for silicon containing materials in specific synthetic body fluids at certain time periods at a fixed loading. The metal release test protocol, elaborated by the KTH team, has previously been used for classification, ranking, and screening of different alloys and metals. Time resolved elemental release of Si, Fe and Al from particles, sized less than 50 µm, of two grades of metallurgical silicon (high purity silicon, SiHG, low purity silicon, SiLG), an alloy (ferrosilicon, FeSi) and a mineral (aluminium silicate, AlSi) has been investigated in synthetic body fluids of varying pH, composition and complexation capacity, simple models of for example dermal contact and digestion scenarios. Individual methods for analysis of released Si (as silicic acid, Si(OH)4) in synthetic body fluids using GF-AAS were developed for each fluid including optimisation of solution pH and graphite furnace parameters. The release of Si from the two metallurgical silicon grades was strongly dependent on both pH and media composition with the highest release in pH neutral media. No similar effect was observed for the FeSi alloy or the aluminium silicate mineral. Surface adsorption of phosphate and lactic acid were believed to hinder the release of Si whereas the presence of citric acid enhanced the release as a result of surface complexation. An increased presence of Al and Fe in the material (low purity metalloid, alloy or mineral) resulted in a reduced release of Si in pH neutral media. The release of Si was enhanced for all materials with Al at their outermost surface in acetic media.
Collapse
Affiliation(s)
- Gunilla Herting
- KTH Royal Institute of Technology, Division of Surface and Corrosion Science, School of Chemical Science and Engineering, Stockholm, Sweden
- * E-mail:
| | - Tao Jiang
- KTH Royal Institute of Technology, Division of Surface and Corrosion Science, School of Chemical Science and Engineering, Stockholm, Sweden
| | - Carin Sjöstedt
- KTH Royal Institute of Technology, Division of Surface and Corrosion Science, School of Chemical Science and Engineering, Stockholm, Sweden
| | - Inger Odnevall Wallinder
- KTH Royal Institute of Technology, Division of Surface and Corrosion Science, School of Chemical Science and Engineering, Stockholm, Sweden
| |
Collapse
|
15
|
Faulkner SH, Spilsbury KL, Harvey J, Jackson A, Huang J, Platt M, Tok A, Nimmo MA. The detection and measurement of interleukin-6 in venous and capillary blood samples, and in sweat collected at rest and during exercise. Eur J Appl Physiol 2014; 114:1207-16. [PMID: 24577845 DOI: 10.1007/s00421-014-2851-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/12/2014] [Indexed: 11/26/2022]
Abstract
PURPOSE This study aimed to quantify the relationship between venous and capillary blood sampling methods for the measurement of plasma interleukin-6 (IL-6). A parallel study was conducted to determine the possibility of measuring IL-6 in sweat using an enzyme-linked immunosorbent assay (ELISA) and investigate the relationship between plasma- and sweat-derived measures of IL-6. METHODS Twelve male participants were recruited for the measurement of IL-6 at rest and during exercise (study 1). An additional group of five female participants was recruited for the measurement of IL-6 in venous blood versus sweat at rest and following exercise (study 2). In study 1, venous and capillary blood samples were collected at rest and in response to exercise. In study 2, venous and sweat samples were collected following exercise. RESULTS Mean plasma IL-6 concentration was not different between venous and capillary blood sampling methods either at rest (4.27 ± 5.40 vs. 4.14 ± 4.45 pg ml(-1)), during (5.40 ± 5.17 vs. 5.58 ± 6.34 pg ml(-1)), or in response to exercise (6.95 ± 6.37 vs. 6.99 ± 6.74 pg ml(-1)). There was no IL-6 detectable in sweat either at rest or following exercise. CONCLUSION There are no differences in the measurement of plasma IL-6 using either venous or capillary blood sampling methods. Capillary measurement represents a minimally invasive way of measuring IL-6 and detecting changes in IL-6, which are linked to fatigue and overtraining.
Collapse
Affiliation(s)
- Steve H Faulkner
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Demoranville LT, Verkouteren JR. Measurement of drug facilitated sexual assault agents in simulated sweat by ion mobility spectrometry. Talanta 2013; 106:375-80. [DOI: 10.1016/j.talanta.2013.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/03/2013] [Accepted: 01/08/2013] [Indexed: 10/27/2022]
|
17
|
Nickel release and surface characteristics of fine powders of nickel metal and nickel oxide in media of relevance for inhalation and dermal contact. Regul Toxicol Pharmacol 2012; 65:135-46. [PMID: 23142754 DOI: 10.1016/j.yrtph.2012.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/06/2012] [Accepted: 10/11/2012] [Indexed: 11/22/2022]
Abstract
Differences in surface oxide characteristics and extent of nickel release have been investigated in two thoroughly characterized micron-sized (mainly <4 μm) nickel metal powders and a nickel oxide bulk powder when immersed in two different synthetic fluids, artificial sweat (ASW-pH 6.5) and artificial lysosomal fluid (ALF-pH 4.5) for time periods up to 24h. The investigation shows significantly more nickel released from the nickel metal powders (<88%) compared to the NiO powder (<0.1%), attributed to differences in surface properties. Significantly more nickel was released from the nickel metal powder with a thin surface oxide predominantly composed of non-stoichiometric nickel oxide (probably Ni(2)O(3)), compared to the release from the nickel metal powder with a thicker surface oxide predominantly composed of NiO and to a lesser extent Ni(2)O(3) (88% and 25% release after 24 h in ALF, respectively). Significantly lower amounts of nickel were released from the nickel metal powders in ASW (2.2% and <1%, respectively). The importance of particle and surface characteristics for any reliable risk assessment is discussed, and generated data compared with literature findings on bioaccessibility (released fraction) of nickel from powders of nickel metal and nickel oxide, and massive forms of nickel metal and nickel-containing alloys.
Collapse
|
18
|
Vemula PK, Anderson RR, Karp JM. Nanoparticles reduce nickel allergy by capturing metal ions. NATURE NANOTECHNOLOGY 2011; 6:291-295. [PMID: 21460828 DOI: 10.1038/nnano.2011.37] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 02/18/2011] [Indexed: 05/30/2023]
Abstract
Approximately 10% of the population in the USA suffer from nickel allergy, and many are unable to wear jewellery or handle coins and other objects that contain nickel. Many agents have been developed to reduce the penetration of nickel through skin, but few formulations are safe and effective. Here, we show that applying a thin layer of glycerine emollient containing nanoparticles of either calcium carbonate or calcium phosphate on an isolated piece of pig skin (in vitro) and on the skin of mice (in vivo) prevents the penetration of nickel ions into the skin. The nanoparticles capture nickel ions by cation exchange, and remain on the surface of the skin, allowing them to be removed by simple washing with water. Approximately 11-fold fewer nanoparticles by mass are required to achieve the same efficacy as the chelating agent ethylenediamine tetraacetic acid. Using nanoparticles with diameters smaller than 500 nm in topical creams may be an effective way to limit the exposure to metal ions that can cause skin irritation.
Collapse
Affiliation(s)
- Praveen Kumar Vemula
- Center for Regenerative Therapeutics and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
19
|
Hedberg Y, Midander K, Wallinder IO. Particles, sweat, and tears: a comparative study on bioaccessibility of ferrochromium alloy and stainless steel particles, the pure metals and their metal oxides, in simulated skin and eye contact. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2010; 6:456-68. [PMID: 20821707 DOI: 10.1002/ieam.66] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ferrochromium alloys are manufactured in large quantities and placed on the global market for use as master alloys (secondary raw materials), primarily for stainless steel production. Any potential human exposure to ferrochromium alloy particles is related to occupational activities during production and use, with 2 main exposure routes, dermal contact and inhalation and subsequent digestion. Alloy and reference particles exposed in vitro in synthetic biological fluids relevant for these main exposure routes have been investigated in a large research effort combining bioaccessibility; chemical speciation; and material, surface, and particle characteristics. In this paper, data for the dermal exposure route, including skin and eye contact, will be presented and discussed. Bioaccessibility data have been generated for particles of a ferrochromium alloy, stainless steel grade AISI 316L, pure Fe, pure Cr, iron(II,III)oxide, and chromium(III)oxide, upon immersion in artificial sweat (pH 6.5) and artificial tear (pH 8.0) fluids for various time periods. Measured released amounts of Fe, Cr, and Ni are presented in terms of average Fe and Cr release rates and amounts released per amount of particles loaded. The results are discussed in relation to bulk and surface composition of the particles. Additional information, essential to assess the bioavailability of Cr released, was generated by determining its chemical speciation and by providing information on its complexation and oxidation states in both media investigated. The effect of differences in experimental temperature, 30 degrees C and 37 degrees C, on the extent of metal release in artificial sweat is demonstrated. Iron was the preferentially released element in all test media and for all time periods and iron-containing particles investigated. The extent of metal release was highly pH dependent and was also dependent on the medium composition. Released amounts of Cr and Fe were very low (close to the limit of detection, <0.008% of particles released or dissolved as iron or chromium) for the alloy particles (ferrochromium alloy and stainless steel), the pure Cr particles, and the metal oxide particles. The released fraction of Cr (Cr/[Cr + Fe]) varied with the material investigated, the test medium, and the exposure time and cannot be predicted from either the bulk or the surface composition. Chromium was released as noncomplexed Cr(III) and in addition in very low concentrations (<3 microg/L). Nickel released was under the limit of detection (0.5 microg/L), except for ultrafine stainless steel particles (<10 microg/L). It is evident that media chemistry and material properties from a bulk and surface perspective, as well as other particle characteristics, and the chemical speciation of released metals have to be considered when assessing any potential hazard or risk induced by sparingly soluble metal or alloy particles.
Collapse
Affiliation(s)
- Yolanda Hedberg
- Division of Surface and Corrosion Science, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | | | | |
Collapse
|