1
|
Farooq MA, Johnston APR, Trevaskis NL. Impact of nanoparticle properties on immune cell interactions in the lymph node. Acta Biomater 2024:S1742-7061(24)00758-X. [PMID: 39701340 DOI: 10.1016/j.actbio.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/21/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
The lymphatic system plays an important role in health and many diseases, such as cancer, autoimmune, cardiovascular, metabolic, hepatic, viral, and other infectious diseases. The lymphatic system is, therefore, an important treatment target site for a range of diseases. Lymph nodes (LNs), rich in T cells, B cells, dendritic cells, and macrophages, are also primary sites of action for vaccines and immunotherapies. Promoting the delivery of therapeutics and vaccines to LNs can, therefore, enhance treatment efficacy and facilitate avoidance of off-target side effects by enabling a reduction in therapeutic dose. Several nanoparticle (NP) based delivery systems, such as polymeric NPs, lipid NPs, liposomes, micelles, and dendrimers, have been reported to enhance the delivery of therapeutics and/or vaccines to LNs. Specific uptake into the lymph following injection into tissues is highly dependent on particle properties, particularly particle size, as small molecules are more likely to be taken up by blood capillaries due to higher blood flow rates, whereas larger molecules and NPs can be specifically transported via the lymphatic vessels to LNs as the initial lymphatic capillaries are more permeable than blood capillaries. Once NPs enter LNs, particle properties also have an important influence on their disposition within the node and association with immune cells, which has significant implications for the design of vaccines and immunotherapies. This review article focuses on the impact of NP properties, such as size, surface charge and modification, and route of administration, on lymphatic uptake, retention, and interactions with immune cells in LNs. We suggest that optimizing all these factors can enhance the efficacy of vaccines or therapeutics with targets in the lymphatics and also be helpful for the rational design of vaccines. STATEMENT OF SIGNIFICANCE: The lymphatic system plays an essential role in health and is an important treatment target site for a range of diseases. Promoting the delivery of immunotherapies and vaccines to immune cells in lymph nodes can enhance efficacy and facilitate avoidance of off-target side effects by enabling a reduction in therapeutic dose. One of the major approaches used to deliver therapeutics and vaccines to lymph nodes is via injection in nanoparticle delivery systems. This review aims to provide an overview of the impact of nanoparticle properties, such as size, surface charge, modification, and route of administration, on lymphatic uptake, lymph node retention, and interactions with immune cells in lymph nodes. This will inform the design of future improved nanoparticle systems for vaccines and immunotherapies.
Collapse
Affiliation(s)
- Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
2
|
Hansmann ML, Scharf S, Wurzel P, Hartmann S. Lymphomas in 3D and 4D spaces. Hum Pathol 2024:105699. [PMID: 39603364 DOI: 10.1016/j.humpath.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
The cellular compartments in the lymph node form dynamic networks, enabling coordinated innate and adaptive immunological responses. This compartmentalization of the lymph node into subcompartments, such as the T and B zones, has been proven to be beneficial. The study of lymph node microarchitecture has yielded new insights into a range of fields, including anatomy, pathology and biological processes. This review focuses on three-dimensional (3D) and four-dimensional (4D) investigations of human lymph nodes, with a particular emphasis on comparisons with data obtained from mice. It will discuss the findings of 3D/4D investigations of human lymph nodes. The investigation of the immune system in 3D space and time offers numerous advantages over the analysis of thin tissue sections. It provides data that is not visible in two-dimensional (2D) representations. A comparison of volumes, surfaces, cell speeds, cell contact numbers, contact duration times, morphologies and other variables can be made in the context of immune responses and lymphomas. The evaluation of data, the application of statistics and the use of machine learning have all been demonstrated to be valuable. In conditions of reactivity and neoplasia, T cells are the fastest-moving cells. In contrast, B cells show slower movement and higher turning angles in reactive lymphoid tissue and lymphomas. Even slower than B cells are reticulum cells, like follicular dendritic reticulum cells (FDC) of the B zones and macrophages. Fast T cells are especially found in Hodgkin lymphomas and mantle cell lymphomas. Contact times between T and B cells differ between different lymphoma types and may prove useful in defining lymphomas. 4D technologies, which evaluate living tissue slices, are suitable for use in testing checkpoint blockers (such as nivolumab) and other therapeutic drugs or cells. Following incubation with nivolumab, the duration of contacts between CD4-positive T cells and CD30-positive Hodgkin-Reed-Sternberg cells was documented. The preliminary data indicate that 3D and 4D experiments in hematopathology may facilitate new insights into diagnostics, biology, and clinical applications, including the development of new lymphoma classifications.
Collapse
Affiliation(s)
- Martin-Leo Hansmann
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany; Institute of General Pharmacology and Toxicology, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt a. Main, Germany
| | - Sonja Scharf
- Institute of General Pharmacology and Toxicology, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt a. Main, Germany; Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Patrick Wurzel
- Institute of General Pharmacology and Toxicology, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt a. Main, Germany
| | - Sylvia Hartmann
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| |
Collapse
|
3
|
Kong D, WillsonShirkey M, Piao W, Wu L, Luo S, Kensiski A, Zhao J, Lee Y, Abdi R, Zheng H, Bromberg JS. Metabolic Reprogramming of Fibroblastic Reticular Cells in Immunity and Tolerance. Eur J Immunol 2024:e202451321. [PMID: 39555653 DOI: 10.1002/eji.202451321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Fibroblastic reticular cells (FRCs) are pivotal stromal components that maintain the structure of secondary lymphoid tissues and modulate the immune responses within the lymphoid microenvironment. In response to specific immune or inflammatory stimuli, such as infection or autoimmune triggers, FRCs undergo significant metabolic reprogramming. This process, originally characterized in cancer research, involves the regulation of key metabolic enzymes, pathways, and metabolites, resulting in functional transformations of these cells. Specifically, viruses stimulate FRCs to enhance the tricarboxylic acid cycle, while rheumatoid arthritis and sepsis prompt FRCs to increase oxidative phosphorylation. These changes enable FRCs to adapt their functions, such as proliferation or cytokine secretion, thereby effectively regulating the immune microenvironment to meet the dynamic needs of the immune system. This review provides a comprehensive update on the metabolic reprogramming of FRCs, highlighting how these changes support immune tolerance and response under varied physiological conditions.
Collapse
Affiliation(s)
- Dejun Kong
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Tianjin Organ Transplantation Research Center, Nankai University affiliated Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
| | - Marina WillsonShirkey
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wenji Piao
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Long Wu
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shunqun Luo
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Allision Kensiski
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jing Zhao
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Young Lee
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Hong Zheng
- Tianjin Organ Transplantation Research Center, Nankai University affiliated Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
| | - Jonathan S Bromberg
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Pérez Del Río E, Rey-Vinolas S, Santos F, Castellote-Borrell M, Merlina F, Veciana J, Ratera I, Mateos-Timoneda MA, Engel E, Guasch J. 3D Printing as a Strategy to Scale-Up Biohybrid Hydrogels for T Cell Manufacture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50139-50146. [PMID: 39285613 PMCID: PMC11440455 DOI: 10.1021/acsami.4c06183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The emergence of cellular immunotherapy treatments is introducing more efficient strategies to combat cancer as well as autoimmune and infectious diseases. However, the cellular manufacturing procedures associated with these therapies remain costly and time-consuming, thus limiting their applicability. Recently, lymph-node-inspired PEG-heparin hydrogels have been demonstrated to improve primary human T cell culture at the laboratory scale. To go one step further in their clinical applicability, we assessed their scalability, which was successfully achieved by 3D printing. Thus, we were able to improve primary human T cell infiltration in the biohybrid PEG-heparin hydrogels, as well as increase nutrient, waste, and gas transport, resulting in higher primary human T cell proliferation rates while maintaining the phenotype. Thus, we moved one step further toward meeting the requirements needed to improve the manufacture of the cellular products used in cellular immunotherapies.
Collapse
Affiliation(s)
- Eduardo Pérez Del Río
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Sergi Rey-Vinolas
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona 08019, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Fabião Santos
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Miquel Castellote-Borrell
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Dynamic Biomaterials for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, Bellaterra 08193, Spain
| | - Francesca Merlina
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Dynamic Biomaterials for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, Bellaterra 08193, Spain
| | - Jaume Veciana
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Imma Ratera
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Miguel A Mateos-Timoneda
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès 08195, Spain
| | - Elisabeth Engel
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona 08019, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Judith Guasch
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- Dynamic Biomaterials for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, Bellaterra 08193, Spain
| |
Collapse
|
5
|
Cinti I, Vezyrgianni K, Denton AE. Unravelling the contribution of lymph node fibroblasts to vaccine responses. Adv Immunol 2024; 164:1-37. [PMID: 39523027 DOI: 10.1016/bs.ai.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Vaccination is one of the most effective medical interventions, saving millions of lives and reducing the morbidity of infections across the lifespan, from infancy to older age. The generation of plasma cells and memory B cells that produce high affinity class switched antibodies is central to this protection, and these cells are the ultimate output of the germinal centre response. Optimal germinal centre responses require different immune cells to interact with one another in the right place and at the right time and this delicate cellular ballet is coordinated by a network of interconnected stromal cells. In this review we will discuss the various types of lymphoid stromal cells and how they coordinate immune cell homeostasis, the induction and maintenance of the germinal centre response, and how this is disorganised in older bodies.
Collapse
Affiliation(s)
- Isabella Cinti
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Kassandra Vezyrgianni
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Alice E Denton
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom.
| |
Collapse
|
6
|
Dotta E, Maciola AK, Baccega T, Pasqual G. Dendritic cells steering antigen and leukocyte traffic in lymph nodes. FEBS Lett 2024. [PMID: 38997244 DOI: 10.1002/1873-3468.14982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Dendritic cells (DCs) play a central role in initiating and shaping the adaptive immune response, thanks to their ability to uptake antigens and present them to T cells. Once in the lymph node (LN), DCs can spread the antigen to other DCs, expanding the pool of cells capable of activating specific T-cell clones. Additionally, DCs can modulate the dynamics of other immune cells, by increasing naïve T-cell dwell time, thereby facilitating the scanning for cognate antigens, and by selectively recruiting other leukocytes. Here we discuss the role of DCs in orchestrating antigen and leukocyte trafficking within the LN, together with the implications of this trafficking on T-cell activation and commitment to effector function.
Collapse
Affiliation(s)
- Enrico Dotta
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Italy
| | - Agnieszka Katarzyna Maciola
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Italy
| | - Tania Baccega
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
7
|
Dohi A, Noguchi T, Yamashita M, Sasaguri K, Yamamoto T, Mori Y. Acute stress transiently activates macrophages and chemokines in cervical lymph nodes. Immunol Res 2024; 72:212-224. [PMID: 38351242 PMCID: PMC11031481 DOI: 10.1007/s12026-023-09409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/12/2023] [Indexed: 04/20/2024]
Abstract
Acute restraint stress (RS) is routinely used to study the effects of psychological and/or physiological stress. We evaluated the impact of RS on cervical lymph nodes in rats at molecular and cellular levels. Male Sprague-Dawley rats were subjected to stress by immobilization for 30, 60, and 120 min (RS30, RS60, and RS120, respectively) and compared with rats of a no-stress control (C) group. The expression of genes encoding chemokines CXCL1/CXCL2 (Cxcl1 and Cxcl2) and their receptor CXCR2 (Cxcr2) was analyzed using reverse transcription-quantitative PCR (RT-qPCR) and microarray analyses. Immunohistochemistry and in situ hybridization were performed to determine the expression of these proteins and the macrophage biomarker CD68. Microarray analysis revealed that the expression of 514 and 496 genes was upregulated and downregulated, respectively, in the RS30 group. Compared with the C group, the RS30 group exhibited a 23.0-, 13.0-, and 1.6-fold increase in Cxcl1, Cxcl2, and Cxcr2 expression. Gene Ontology analysis revealed the involvement of these three upregulated genes in the cytokine network, inflammation, and leukocyte chemotaxis and migration. RT-qPCR analysis indicated that the mRNA levels of Cxcl1 and Cxcl2 were significantly increased in the RS30 group but were reverted to normal levels in the RS60 and RS120 groups. Cxcr2 mRNA level was significantly increased in the RS30 and RS120 groups compared with that in the C group. RS-induced CXCL1-immunopositive cells corresponded to B/plasma cells, whereas CXCL2-immunopositive cells corresponded to endothelial cells of the high endothelial venules. Stress-induced CXCR2-immunopositive cells corresponded to macrophages. Psychological and/or physiological stress induces an acute stress response and formation of an immunoreactive microenvironment in cervical lymph nodes, with the CXCL1/CXCL2-CXCR2 axis being pivotal in the acute stress response.
Collapse
Affiliation(s)
- Akihiro Dohi
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Tadahide Noguchi
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, Tochigi, 329-0498, Japan.
| | - Masako Yamashita
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Kenichi Sasaguri
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Toshiharu Yamamoto
- Brain Functions and Neuroscience Division, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| | - Yoshiyuki Mori
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, Tochigi, 329-0498, Japan
| |
Collapse
|
8
|
De Martin A, Stanossek Y, Pikor NB, Ludewig B. Protective fibroblastic niches in secondary lymphoid organs. J Exp Med 2024; 221:e20221220. [PMID: 38038708 PMCID: PMC10691961 DOI: 10.1084/jem.20221220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
Fibroblastic reticular cells (FRCs) are specialized fibroblasts of secondary lymphoid organs that provide the structural foundation of the tissue. Moreover, FRCs guide immune cells to dedicated microenvironmental niches where they provide lymphocytes and myeloid cells with homeostatic growth and differentiation factors. Inflammatory processes, including infection with pathogens, induce rapid morphological and functional adaptations that are critical for the priming and regulation of protective immune responses. However, adverse FRC reprogramming can promote immunopathological tissue damage during infection and autoimmune conditions and subvert antitumor immune responses. Here, we review recent findings on molecular pathways that regulate FRC-immune cell crosstalk in specialized niches during the generation of protective immune responses in the course of pathogen encounters. In addition, we discuss how FRCs integrate immune cell-derived signals to ensure protective immunity during infection and how therapies for inflammatory diseases and cancer can be developed through improved understanding of FRC-immune cell interactions.
Collapse
Affiliation(s)
- Angelina De Martin
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Yves Stanossek
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Natalia Barbara Pikor
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| |
Collapse
|
9
|
Schwarzenberg FL, Schütz P, Hammel JU, Riedel M, Bartl J, Bordbari S, Frank SC, Walkenfort B, Busse M, Herzen J, Lohr C, Wülfing C, Henne S. Three-dimensional analyses of vascular network morphology in a murine lymph node by X-ray phase-contrast tomography with a 2D Talbot array. Front Immunol 2022; 13:947961. [PMID: 36524111 PMCID: PMC9745095 DOI: 10.3389/fimmu.2022.947961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
With growing molecular evidence for correlations between spatial arrangement of blood vasculature and fundamental immunological functions, carried out in distinct compartments of the subdivided lymph node, there is an urgent need for three-dimensional models that can link these aspects. We reconstructed such models at a 1.84 µm resolution by the means of X-ray phase-contrast imaging with a 2D Talbot array in a short time without any staining. In addition reconstructions are verified in immunohistochemistry staining as well as in ultrastructural analyses. While conventional illustrations of mammalian lymph nodes depict the hilus as a definite point of blood and lymphatic vessel entry and exit, our method revealed that multiple branches enter and emerge from an area that extends up to one third of the organ's surface. This could be a prerequisite for the drastic and location-dependent remodeling of vascularization, which is necessary for lymph node expansion during inflammation. Contrary to corrosion cast studies we identified B-cell follicles exhibiting a two times denser capillary network than the deep cortical units of the T-cell zone. In addition to our observation of high endothelial venules spatially surrounding the follicles, this suggests a direct connection between morphology and B-cell homing. Our findings will deepen the understanding of functional lymph node composition and lymphocyte migration on a fundamental basis.
Collapse
Affiliation(s)
- Florian L. Schwarzenberg
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Paul Schütz
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Jörg U. Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Mirko Riedel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
- Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Jasmin Bartl
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Sharareh Bordbari
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Svea-Celina Frank
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Bernd Walkenfort
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Madleen Busse
- Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Julia Herzen
- Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Christian Lohr
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Clemens Wülfing
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Stephan Henne
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
10
|
Horsnell HL, Tetley RJ, De Belly H, Makris S, Millward LJ, Benjamin AC, Heeringa LA, de Winde CM, Paluch EK, Mao Y, Acton SE. Lymph node homeostasis and adaptation to immune challenge resolved by fibroblast network mechanics. Nat Immunol 2022; 23:1169-1182. [PMID: 35882934 PMCID: PMC9355877 DOI: 10.1038/s41590-022-01272-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 06/15/2022] [Indexed: 11/23/2022]
Abstract
Emergent physical properties of tissues are not readily understood by reductionist studies of their constituent cells. Here, we show molecular signals controlling cellular, physical, and structural properties and collectively determine tissue mechanics of lymph nodes, an immunologically relevant adult tissue. Lymph nodes paradoxically maintain robust tissue architecture in homeostasis yet are continually poised for extensive expansion upon immune challenge. We find that in murine models of immune challenge, cytoskeletal mechanics of a cellular meshwork of fibroblasts determine tissue tension independently of extracellular matrix scaffolds. We determine that C-type lectin-like receptor 2 (CLEC-2)-podoplanin signaling regulates the cell surface mechanics of fibroblasts, providing a mechanically sensitive pathway to regulate lymph node remodeling. Perturbation of fibroblast mechanics through genetic deletion of podoplanin attenuates T cell activation. We find that increased tissue tension through the fibroblastic stromal meshwork is required to trigger the initiation of fibroblast proliferation and restore homeostatic cellular ratios and tissue structure through lymph node expansion.
Collapse
Affiliation(s)
- Harry L Horsnell
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Robert J Tetley
- Tissue Mechanics Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Henry De Belly
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Spyridon Makris
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Lindsey J Millward
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Agnesska C Benjamin
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Lucas A Heeringa
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Charlotte M de Winde
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Ewa K Paluch
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Yanlan Mao
- Tissue Mechanics Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Sophie E Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
| |
Collapse
|
11
|
Nanomaterial-Based Drug Delivery System Targeting Lymph Nodes. Pharmaceutics 2022; 14:pharmaceutics14071372. [PMID: 35890268 PMCID: PMC9325242 DOI: 10.3390/pharmaceutics14071372] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/28/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
The lymphatic system plays an indispensable role in humoral balance, lipid metabolism, and immune regulation. The lymph nodes (LNs) are known as the primary sites of tumor metastasis and the metastatic LNs largely affected the prognosis of the patiens. A well-designed lymphatic-targeted system favors disease treatment as well as vaccination efficacy. In recent years, development of nanotechnologies and emerging biomaterials have gained increasing attention in developing lymph-node-targeted drug-delivery systems. By mimicking the endogenous macromolecules or lipid conjugates, lymph-node-targeted nanocarries hold potential for disease diagnosis and tumor therapy. This review gives an introduction to the physiological functions of LNs and the roles of LNs in diseases, followed by a review of typical lymph-node-targeted nanomaterial-based drug-delivery systems (e.g., liposomes, micelles, inorganic nanomaterials, hydrogel, and nanocapsules). Future perspectives and conclusions concerned with lymph-node-targeted drug-delivery systems are also provided.
Collapse
|
12
|
Ozawa M, Nakajima S, Kobayashi D, Tomii K, Li NJ, Watarai T, Suzuki R, Watanabe S, Kanda Y, Takeuchi A, Katakai T. Micro- and Macro-Anatomical Frameworks of Lymph Nodes Indispensable for the Lymphatic System Filtering Function. Front Cell Dev Biol 2022; 10:902601. [PMID: 35794860 PMCID: PMC9251010 DOI: 10.3389/fcell.2022.902601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/19/2022] [Indexed: 01/01/2023] Open
Abstract
In the lymphatic vascular system, lymph nodes (LNs) play a pivotal role in filtering and removing lymph-borne substances. The filtering function of LNs involves resident macrophages tightly associated with unique lymphatic sinus structures. Moreover, an intermittently arranged LN in the lymphatic pathway is considered to cooperatively prevent lymph-borne substances from entering blood circulation. However, the functional significance of tissue microarchitecture, cellular composition, and individual LNs in the “LN chain” system is not fully understood. To explore the mechanistic and histo-anatomical significance of LNs as lymph fluid filters, we subcutaneously injected fluorescent tracers into mice and examined the details of lymphatic transport to the LNs qualitatively and quantitatively. Lymph-borne tracers were selectively accumulated in the MARCO+ subcapsular-medullary sinus border (SMB) region of the LN, in which reticular lymphatic endothelial cells and CD169+F4/80+ medullary sinus macrophages construct a dense meshwork of the physical barrier, forming the main body to capture the tracers. We also demonstrated stepwise filtration via the LN chain in the lymphatic basin, which prevented tracer leakage into the blood. Furthermore, inflammatory responses that induce the remodeling of LN tissue as well as the lymphatic pathway reinforce the overall filtering capacity of the lymphatic basin. Taken together, specialized tissue infrastructure in the LNs and their systematic orchestration constitute an integrated filtering system for lymphatic recirculation.
Collapse
Affiliation(s)
- Madoka Ozawa
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shihori Nakajima
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Daichi Kobayashi
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koichi Tomii
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nan-Jun Li
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoya Watarai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryo Suzuki
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuhiro Kanda
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Arata Takeuchi
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- *Correspondence: Tomoya Katakai,
| |
Collapse
|
13
|
Shou Y, Johnson SC, Quek YJ, Li X, Tay A. Integrative lymph node-mimicking models created with biomaterials and computational tools to study the immune system. Mater Today Bio 2022; 14:100269. [PMID: 35514433 PMCID: PMC9062348 DOI: 10.1016/j.mtbio.2022.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
The lymph node (LN) is a vital organ of the lymphatic and immune system that enables timely detection, response, and clearance of harmful substances from the body. Each LN comprises of distinct substructures, which host a plethora of immune cell types working in tandem to coordinate complex innate and adaptive immune responses. An improved understanding of LN biology could facilitate treatment in LN-associated pathologies and immunotherapeutic interventions, yet at present, animal models, which often have poor physiological relevance, are the most popular experimental platforms. Emerging biomaterial engineering offers powerful alternatives, with the potential to circumvent limitations of animal models, for in-depth characterization and engineering of the lymphatic and adaptive immune system. In addition, mathematical and computational approaches, particularly in the current age of big data research, are reliable tools to verify and complement biomaterial works. In this review, we first discuss the importance of lymph node in immunity protection followed by recent advances using biomaterials to create in vitro/vivo LN-mimicking models to recreate the lymphoid tissue microstructure and microenvironment, as well as to describe the related immuno-functionality for biological investigation. We also explore the great potential of mathematical and computational models to serve as in silico supports. Furthermore, we suggest how both in vitro/vivo and in silico approaches can be integrated to strengthen basic patho-biological research, translational drug screening and clinical personalized therapies. We hope that this review will promote synergistic collaborations to accelerate progress of LN-mimicking systems to enhance understanding of immuno-complexity.
Collapse
Key Words
- ABM, agent-based model
- APC, antigen-presenting cell
- BV, blood vessel
- Biomaterials
- CPM, Cellular Potts model
- Computational models
- DC, dendritic cell
- ECM, extracellular matrix
- FDC, follicular dendritic cell
- FRC, fibroblastic reticular cell
- Immunotherapy
- LEC, lymphatic endothelial cell
- LN, lymph node
- LV, lymphatic vessel
- Lymph node
- Lymphatic system
- ODE, ordinary differential equation
- PDE, partial differential equation
- PDMS, polydimethylsiloxane
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Sarah C. Johnson
- Department of Bioengineering, Stanford University, CA, 94305, USA
- Department of Bioengineering, Imperial College London, South Kensington, SW72AZ, UK
| | - Ying Jie Quek
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, 138648, Singapore
| | - Xianlei Li
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, 117510, Singapore
| |
Collapse
|
14
|
Onder L, Cheng HW, Ludewig B. Visualization and functional characterization of lymphoid organ fibroblasts. Immunol Rev 2021; 306:108-122. [PMID: 34866192 PMCID: PMC9300201 DOI: 10.1111/imr.13051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Fibroblastic reticular cells (FRCs) are specialized stromal cells of lymphoid organs that generate the structural foundation of the tissue and actively interact with immune cells. Distinct FRC subsets position lymphocytes and myeloid cells in specialized niches where they present processed or native antigen and provide essential growth factors and cytokines for immune cell activation and differentiation. Niche‐specific functions of FRC subpopulations have been defined using genetic targeting, high‐dimensional transcriptomic analyses, and advanced imaging methods. Here, we review recent findings on FRC‐immune cell interaction and the elaboration of FRC development and differentiation. We discuss how imaging approaches have not only shaped our understanding of FRC biology, but have critically advanced the niche concept of immune cell maintenance and control of immune reactivity.
Collapse
Affiliation(s)
- Lucas Onder
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| |
Collapse
|
15
|
Takeuchi A, Ozawa M, Cui G, Ikuta K, Katakai T. Lymph Node Stromal Cells: Diverse Meshwork Structures Weave Functionally Subdivided Niches. Curr Top Microbiol Immunol 2021; 434:103-121. [PMID: 34850284 DOI: 10.1007/978-3-030-86016-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Lymph nodes (LNs) are secondary lymphoid organs that function as the first line of defense against invasive foreign substances. Within the LNs, different types of immune cells are strategically localized to induce immune responses efficiently. Such a sophisticated tissue structure is a complex of functionally specialized niches, constructed by a variety of fibroblastic stromal cells. Elucidating the characteristics and functions of the niches and stromal cells will facilitate comprehension of the immune response induced in the LNs. Three recent studies offered novel insights into specialized stromal cells. In our discussion of these surprisingly diverse stromal cells, we will integrate information from these studies to improve knowledge about the structure and niches of LN.
Collapse
Affiliation(s)
- Arata Takeuchi
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Madoka Ozawa
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan.
| |
Collapse
|
16
|
Kim J, Archer PA, Thomas SN. Innovations in lymph node targeting nanocarriers. Semin Immunol 2021; 56:101534. [PMID: 34836772 DOI: 10.1016/j.smim.2021.101534] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022]
Abstract
Lymph nodes are secondary lymphoid tissues in the body that facilitate the co-mingling of immune cells to enable and regulate the adaptive immune response. They are also tissues implicated in a variety of diseases, including but not limited to malignancy. The ability to access lymph nodes is thus attractive for a variety of therapeutic and diagnostic applications. As nanotechnologies are now well established for their potential in translational biomedical applications, their high relevance to applications that involve lymph nodes is highlighted. Herein, established paradigms of nanocarrier design to enable delivery to lymph nodes are discussed, considering the unique lymph node tissue structure as well as lymphatic system physiology. The influence of delivery mechanism on how nanocarrier systems distribute to different compartments and cells that reside within lymph nodes is also elaborated. Finally, current advanced nanoparticle technologies that have been developed to enable lymph node delivery are discussed.
Collapse
Affiliation(s)
- Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Paul A Archer
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road NE, Atlanta, GA 30322, USA.
| |
Collapse
|
17
|
Poirot J, Medvedovic J, Trichot C, Soumelis V. Compartmentalized multicellular crosstalk in lymph nodes coordinates the generation of potent cellular and humoral immune responses. Eur J Immunol 2021; 51:3146-3160. [PMID: 34606627 PMCID: PMC9298410 DOI: 10.1002/eji.202048977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/13/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
Distributed throughout the body, lymph nodes (LNs) constitute an important crossroad where resident and migratory immune cells interact to initiate antigen‐specific immune responses supported by a dynamic 3‐dimensional network of stromal cells, that is, endothelial cells and fibroblastic reticular cells (FRCs). LNs are organized into four major subanatomically separated compartments: the subcapsular sinus (SSC), the paracortex, the cortex, and the medulla. Each compartment is underpinned by particular FRC subsets that physically support LN architecture and delineate functional immune niches by appropriately providing environmental cues, nutrients, and survival factors to the immune cell subsets they interact with. In this review, we discuss how FRCs drive the structural and functional organization of each compartment to give rise to prosperous interactions and coordinate immune cell activities. We also discuss how reciprocal communication makes FRCs and immune cells perfect compatible partners for the generation of potent cellular and humoral immune responses.
Collapse
Affiliation(s)
- Justine Poirot
- Université de Paris, INSERM U976, Paris, France.,Université Paris-Saclay, Saint Aubin, France
| | | | | | - Vassili Soumelis
- Université de Paris, INSERM U976, Paris, France.,AP-HP, Hôpital Saint-Louis, Laboratoire d'Immunologie-Histocompatibilité, Paris, France
| |
Collapse
|
18
|
Kanda Y, Okazaki T, Katakai T. Motility Dynamics of T Cells in Tumor-Draining Lymph Nodes: A Rational Indicator of Antitumor Response and Immune Checkpoint Blockade. Cancers (Basel) 2021; 13:4616. [PMID: 34572844 PMCID: PMC8465463 DOI: 10.3390/cancers13184616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/22/2023] Open
Abstract
The migration status of T cells within the densely packed tissue environment of lymph nodes reflects the ongoing activation state of adaptive immune responses. Upon encountering antigen-presenting dendritic cells, actively migrating T cells that are specific to cognate antigens slow down and are eventually arrested on dendritic cells to form immunological synapses. This dynamic transition of T cell motility is a fundamental strategy for the efficient scanning of antigens, followed by obtaining the adequate activation signals. After receiving antigenic stimuli, T cells begin to proliferate, and the expression of immunoregulatory receptors (such as CTLA-4 and PD-1) is induced on their surface. Recent findings have revealed that these 'immune checkpoint' molecules control the activation as well as motility of T cells in various situations. Therefore, the outcome of tumor immunotherapy using checkpoint inhibitors is assumed to be closely related to the alteration of T cell motility, particularly in tumor-draining lymph nodes (TDLNs). In this review, we discuss the migration dynamics of T cells during their activation in TDLNs, and the roles of checkpoint molecules in T cell motility, to provide some insight into the effect of tumor immunotherapy via checkpoint blockade, in terms of T cell dynamics and the importance of TDLNs.
Collapse
Affiliation(s)
- Yasuhiro Kanda
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 950-8510, Japan;
| | - Taku Okazaki
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan;
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 950-8510, Japan;
| |
Collapse
|
19
|
Acton SE, Onder L, Novkovic M, Martinez VG, Ludewig B. Communication, construction, and fluid control: lymphoid organ fibroblastic reticular cell and conduit networks. Trends Immunol 2021; 42:782-794. [PMID: 34362676 DOI: 10.1016/j.it.2021.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 01/16/2023]
Abstract
Fibroblastic reticular cells (FRCs) are a crucial part of the stromal cell infrastructure of secondary lymphoid organs (SLOs). Lymphoid organ fibroblasts form specialized niches for immune cell interactions and thereby govern lymphocyte activation and differentiation. Moreover, FRCs produce and ensheath a network of extracellular matrix (ECM) microfibers called the conduit system. FRC-generated conduits contribute to fluid and immune cell control by funneling fluids containing antigens and inflammatory mediators through the SLOs. We review recent progress in FRC biology that has advanced our understanding of immune cell functions and interactions. We discuss the intricate relationships between the cellular FRC and the fibrillar conduit networks, which together form the basis for efficient communication between immune cells and the tissues they survey.
Collapse
Affiliation(s)
- Sophie E Acton
- Stromal Immunology Group, Medical Research Council (MRC) Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Mario Novkovic
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Victor G Martinez
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
| |
Collapse
|
20
|
Shanti A, Hallfors N, Petroianu GA, Planelles L, Stefanini C. Lymph Nodes-On-Chip: Promising Immune Platforms for Pharmacological and Toxicological Applications. Front Pharmacol 2021; 12:711307. [PMID: 34483920 PMCID: PMC8415712 DOI: 10.3389/fphar.2021.711307] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Organs-on-chip are gaining increasing attention as promising platforms for drug screening and testing applications. However, lymph nodes-on-chip options remain limited although the lymph node is one of the main determinants of the immunotoxicity of newly developed pharmacological drugs. In this review, we describe existing biomimetic lymph nodes-on-chip, their design, and their physiological relevance to pharmacology and shed the light on future directions associated with lymph node-on-chip design and implementation in drug discovery and development.
Collapse
Affiliation(s)
- Aya Shanti
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Nicholas Hallfors
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Georg A Petroianu
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Lourdes Planelles
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Cesare Stefanini
- Healthcare Engineering Innovation Center, Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
21
|
Choe K, Moon J, Lee SY, Song E, Back JH, Song JH, Hyun YM, Uchimura K, Kim P. Stepwise transmigration of T- and B cells through a perivascular channel in high endothelial venules. Life Sci Alliance 2021; 4:4/8/e202101086. [PMID: 34187874 DOI: 10.26508/lsa.202101086] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 01/13/2023] Open
Abstract
High endothelial venules (HEVs) effectively recruit circulating lymphocytes from the blood to lymph nodes. HEVs have endothelial cells (ECs) and perivascular sheaths consisting of fibroblastic reticular cells (FRCs). Yet, post-luminal lymphocyte migration steps are not well elucidated. Herein, we performed intravital imaging to investigate post-luminal T- and B-cell migration in popliteal lymph node, consisting of trans-EC migration, crawling in the perivascular channel (a narrow space between ECs and FRCs) and trans-FRC migration. The post-luminal migration of T cells occurred in a PNAd-dependent manner. Remarkably, we found hot spots for the trans-EC and trans-FRC migration of T- and B cells. Interestingly, T- and B cells preferentially shared trans-FRC migration hot spots but not trans-EC migration hot spots. Furthermore, the trans-FRC T-cell migration was confined to fewer sites than trans-EC T-cell migration, and trans-FRC migration of T- and B cells preferentially occurred at FRCs covered by CD11c+ dendritic cells in HEVs. These results suggest that HEV ECs and FRCs with perivascular DCs delicately regulate T- and B-cell entry into peripheral lymph nodes.
Collapse
Affiliation(s)
- Kibaek Choe
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jieun Moon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Soo Yun Lee
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Eunjoo Song
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ju Hee Back
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Joo-Hye Song
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université de Lille, Villeneuve d'Ascq, France
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea .,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
22
|
Lütge M, Pikor NB, Ludewig B. Differentiation and activation of fibroblastic reticular cells. Immunol Rev 2021; 302:32-46. [PMID: 34046914 PMCID: PMC8361914 DOI: 10.1111/imr.12981] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 12/29/2022]
Abstract
Secondary lymphoid organs (SLO) are underpinned by fibroblastic reticular cells (FRC) that form dedicated microenvironmental niches to secure induction and regulation of innate and adaptive immunity. Distinct FRC subsets are strategically positioned in SLOs to provide niche factors and govern efficient immune cell interaction. In recent years, the use of specialized mouse models in combination with single-cell transcriptomics has facilitated the elaboration of the molecular FRC landscape at an unprecedented resolution. While single-cell RNA-sequencing has advanced the resolution of FRC subset characterization and function, the high dimensionality of the generated data necessitates careful analysis and validation. Here, we reviewed novel findings from high-resolution transcriptomic analyses that refine our understanding of FRC differentiation and activation processes in the context of infection and inflammation. We further discuss concepts, strategies, and limitations for the analysis of single-cell transcriptome data from FRCs and the wide-ranging implications for our understanding of stromal cell biology.
Collapse
Affiliation(s)
- Mechthild Lütge
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Natalia B Pikor
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
23
|
Cinti I, Denton AE. Lymphoid stromal cells-more than just a highway to humoral immunity. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab011. [PMID: 36845565 PMCID: PMC9914513 DOI: 10.1093/oxfimm/iqab011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022] Open
Abstract
The generation of high-affinity long-lived antibody responses is dependent on the differentiation of plasma cells and memory B cells, which are themselves the product of the germinal centre (GC) response. The GC forms in secondary lymphoid organs in response to antigenic stimulation and is dependent on the coordinated interactions between many types of leucocytes. These leucocytes are brought together on an interconnected network of specialized lymphoid stromal cells, which provide physical and chemical guidance to immune cells that are essential for the GC response. In this review we will highlight recent advancements in lymphoid stromal cell immunobiology and their role in regulating the GC, and discuss the contribution of lymphoid stromal cells to age-associated immunosenescence.
Collapse
Affiliation(s)
- Isabella Cinti
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London W12 0NN, UK
| | - Alice E Denton
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London W12 0NN, UK,Correspondence address. Alice E. Denton, Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College, London W12 0NN, UK. Tel:+44 (0)20 3313 8213. E-mail:
| |
Collapse
|
24
|
Novkovic M, Onder L, Bocharov G, Ludewig B. Topological Structure and Robustness of the Lymph Node Conduit System. Cell Rep 2021; 30:893-904.e6. [PMID: 31968261 DOI: 10.1016/j.celrep.2019.12.070] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/26/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Fibroblastic reticular cells (FRCs) form a road-like cellular network in lymph nodes (LNs) that provides essential chemotactic, survival, and regulatory signals for immune cells. While the topological characteristics of the FRC network have been elaborated, the network properties of the micro-tubular conduit system generated by FRCs, which drains lymph fluid through a pipeline-like system to distribute small molecules and antigens, has remained unexplored. Here, we quantify the crucial 3D morphometric parameters and determine the topological properties governing the structural organization of the intertwined networks. We find that the conduit system exhibits lesser small-worldness and lower resilience to perturbation compared to the FRC network, while the robust topological organization of both networks is maintained in a lymphotoxin-β-receptor-independent manner. Overall, the high-resolution topological analysis of the "roads-and-pipes" networks highlights essential parameters underlying the functional organization of LN micro-environments and will, hence, advance the development of multi-scale LN models.
Collapse
Affiliation(s)
- Mario Novkovic
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland
| | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow 119333, Russia; Institute for Personalized Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland.
| |
Collapse
|
25
|
Kochappan R, Cao E, Han S, Hu L, Quach T, Senyschyn D, Ferreira VI, Lee G, Leong N, Sharma G, Lim SF, Nowell CJ, Chen Z, von Andrian UH, Bonner D, Mintern JD, Simpson JS, Trevaskis NL, Porter CJH. Targeted delivery of mycophenolic acid to the mesenteric lymph node using a triglyceride mimetic prodrug approach enhances gut-specific immunomodulation in mice. J Control Release 2021; 332:636-651. [PMID: 33609620 DOI: 10.1016/j.jconrel.2021.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022]
Abstract
The mesenteric lymph nodes (MLN) are a key site for the generation of adaptive immune responses to gut-derived antigenic material and immune cells within the MLN contribute to the pathophysiology of a range of conditions including inflammatory and autoimmune diseases, viral infections, graft versus host disease and cancer. Targeting immunomodulating drugs to the MLN may thus be beneficial in a range of conditions. This paper investigates the potential benefit of targeting a model immunosuppressant drug, mycophenolic acid (MPA), to T cells in the MLN, using a triglyceride (TG) mimetic prodrug approach. We confirmed that administration of MPA in the TG prodrug form (MPA-TG), increased lymphatic transport of MPA-related species 83-fold and increased MLN concentrations of MPA >20 fold, when compared to MPA alone, for up to 4 h in mice. At the same time, the plasma exposure of MPA and MPA-TG was similar, limiting the opportunity for systemic side effects. Confocal microscopy and flow cytometry studies with a fluorescent model prodrug (Bodipy-TG) revealed that the prodrug accumulated in the MLN cortex and paracortex at 5 and 10 h following administration and was highly associated with B cells and T cells that are found in these regions of the MLN. Finally, we demonstrated that MPA-TG was significantly more effective than MPA at inhibiting CD4+ and CD8+ T cell proliferation in the MLN of mice in response to an oral ovalbumin antigen challenge. In contrast, MPA-TG was no more effective than MPA at inhibiting T cell proliferation in peripheral LN when mice were challenged via SC administration of ovalbumin. This paper provides the first evidence of an in vivo pharmacodynamic benefit of targeting the MLN using a TG mimetic prodrug approach. The TG mimetic prodrug technology has the potential to benefit the treatment of a range of conditions where aberrant immune responses are initiated in gut-associated lymphoid tissues.
Collapse
Affiliation(s)
- Ruby Kochappan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia.
| | - Luojuan Hu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Tim Quach
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia; Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Danielle Senyschyn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Vilena Ivanova Ferreira
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Given Lee
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Nathania Leong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Garima Sharma
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Shea Fern Lim
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia; Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Ziqi Chen
- Dept. of Immunology, Harvard Medical School and Ragon Institute of MGH, MIT and Harvard, 77 Ave. Louis Pasteur, Boston, MA 02115, USA
| | - Ulrich H von Andrian
- Dept. of Immunology, Harvard Medical School and Ragon Institute of MGH, MIT and Harvard, 77 Ave. Louis Pasteur, Boston, MA 02115, USA
| | - Daniel Bonner
- PureTech Health, 6 Tide Street, Boston, MA 02210, USA
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia
| | - Jamie S Simpson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia; PureTech Health, 6 Tide Street, Boston, MA 02210, USA
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia.
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia.
| |
Collapse
|
26
|
Elliott RO, He M. Unlocking the Power of Exosomes for Crossing Biological Barriers in Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13010122. [PMID: 33477972 PMCID: PMC7835896 DOI: 10.3390/pharmaceutics13010122] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/25/2022] Open
Abstract
Since the 2013 Nobel Prize was awarded for the discovery of vesicle trafficking, a subgroup of nanovesicles called exosomes has been driving the research field to a new regime for understanding cellular communication. This exosome-dominated traffic control system has increased understanding of many diseases, including cancer metastasis, diabetes, and HIV. In addition to the important diagnostic role, exosomes are particularly attractive for drug delivery, due to their distinctive properties in cellular information transfer and uptake. Compared to viral and non-viral synthetic systems, the natural, cell-derived exosomes exhibit intrinsic payload and bioavailability. Most importantly, exosomes easily cross biological barriers, obstacles that continue to challenge other drug delivery nanoparticle systems. Recent emerging studies have shown numerous critical roles of exosomes in many biological barriers, including the blood–brain barrier (BBB), blood–cerebrospinal fluid barrier (BCSFB), blood–lymph barrier (BlyB), blood–air barrier (BAB), stromal barrier (SB), blood–labyrinth barrier (BLaB), blood–retinal barrier (BRB), and placental barrier (PB), which opens exciting new possibilities for using exosomes as the delivery platform. However, the systematic reviews summarizing such discoveries are still limited. This review covers state-of-the-art exosome research on crossing several important biological barriers with a focus on the current, accepted models used to explain the mechanisms of barrier crossing, including tight junctions. The potential to design and engineer exosomes to enhance delivery efficacy, leading to future applications in precision medicine and immunotherapy, is discussed.
Collapse
Affiliation(s)
- Rebekah Omarkhail Elliott
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
| | - Mei He
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
27
|
Thomos M, Wurzel P, Scharf S, Koch I, Hansmann ML. 3D investigation shows walls and wall-like structures around human germinal centres, probably regulating T- and B-cell entry and exit. PLoS One 2020; 15:e0242177. [PMID: 33170900 PMCID: PMC7654765 DOI: 10.1371/journal.pone.0242177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/27/2020] [Indexed: 11/19/2022] Open
Abstract
This study deals with 3D laser investigation on the border between the human lymph node T-zone and germinal centre. Only a few T-cells specific for antigen selected B-cells are allowed to enter germinal centres. This selection process is guided by sinus structures, chemokine gradients and inherent motility of the lymphoid cells. We measured gaps and wall-like structures manually, using IMARIS, a 3D image software for analysis and interpretation of microscopy datasets. In this paper, we describe alpha-actin positive and semipermeable walls and wall-like structures that may hinder T-cells and other cell types from entering germinal centres. Some clearly defined holes or gaps probably regulate lymphoid traffic between T- and B-cell areas. In lymphadenitis, the morphology of this border structure is clearly defined. However, in case of malignant lymphoma, the wall-like structure is disrupted. This has been demonstrated exemplarily in case of angioimmunoblastic T-cell lymphoma. We revealed significant differences of lengths of the wall-like structures in angioimmunoblastic T-cell lymphoma in comparison with wall-like structures in reactive tissue slices. The alterations of morphological structures lead to abnormal and less controlled T- and B-cell distributions probably preventing the immune defence against tumour cells and infectious agents by dysregulating immune homeostasis.
Collapse
Affiliation(s)
- Miguel Thomos
- Reference and Consultant Center of Lymph Node and Lymphoma Pathology at Dr. Senckenberg Institute for Pathology, Goethe-Universität Frankfurt am Main, Frankfurt/Main, Hessen, Germany
| | - Patrick Wurzel
- Department of Molecular Bioinformatics, Johann Wolfgang Goethe-University Frankfurt/Main, Frankfurt/Main, Hessen, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt/Main, Hessen, Germany
| | - Sonja Scharf
- Department of Molecular Bioinformatics, Johann Wolfgang Goethe-University Frankfurt/Main, Frankfurt/Main, Hessen, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt/Main, Hessen, Germany
| | - Ina Koch
- Department of Molecular Bioinformatics, Johann Wolfgang Goethe-University Frankfurt/Main, Frankfurt/Main, Hessen, Germany
| | - Martin-Leo Hansmann
- Reference and Consultant Center of Lymph Node and Lymphoma Pathology at Dr. Senckenberg Institute for Pathology, Goethe-Universität Frankfurt am Main, Frankfurt/Main, Hessen, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt/Main, Hessen, Germany
| |
Collapse
|
28
|
Pérez del Río E, Santos F, Rodriguez Rodriguez X, Martínez-Miguel M, Roca-Pinilla R, Arís A, Garcia-Fruitós E, Veciana J, Spatz JP, Ratera I, Guasch J. CCL21-loaded 3D hydrogels for T cell expansion and differentiation. Biomaterials 2020; 259:120313. [DOI: 10.1016/j.biomaterials.2020.120313] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/08/2020] [Accepted: 08/08/2020] [Indexed: 01/21/2023]
|
29
|
Kaji S, Hiruta N, Sasai D, Nagashima M, Ohe R, Yamakawa M. Cytokeratin-positive interstitial reticulum cell (CIRC) tumor in the lymph node: a case report of the transformation from the epithelioid cell type to the spindle cell type. Diagn Pathol 2020; 15:121. [PMID: 32979929 PMCID: PMC7519525 DOI: 10.1186/s13000-020-01032-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/09/2020] [Indexed: 12/03/2022] Open
Abstract
Background Cytokeratin-positive interstitial reticulum cells (CIRCs), which are a subgroup of fibroblastic reticular cells (FRCs), are known to be present in the lymph nodes. There have been only a few cases of tumors derived from CIRCs. Case presentation We have reported a new case involving a CIRC tumor in a 75-year-old man and reviewed the literature. The resected mediastinal lymph nodes showed epithelial-like proliferation of large atypical round and polygonal epithelioid cells. The tumor cells expressed CK8, CK18, CAM5.2, AE1/AE3, epithelial membrane antigen, vimentin, fascin, and some FRC markers, which is consistent with the diagnosis of a CIRC tumor. Following chemotherapy, the CIRC tumor was observed to have responded very well and became difficult to confirm on imaging, but a small cell lung carcinoma developed 12 months later. Chemoradiotherapy was performed, but the patient passed away 29 months after the initial diagnosis. The autopsy revealed the recurrence of the CIRC tumor, residual small cell lung carcinoma, and a very small latent carcinoma of the prostate. The relapsed CIRC tumor cells had a spindle shape; they were highly pleomorphic and had invaded the superior vena cava. Conclusion We first reported autopsy findings of CIRC tumors and demonstrated the transformation of the tumor from the epithelioid cell type to the spindle cell type.
Collapse
Affiliation(s)
- Sachiko Kaji
- Department of Diagnostic Pathology, Chiba Kaihin Municipal Hospital, 3-31-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan.
| | - Nobuyuki Hiruta
- Department of Surgical Pathology, Toho University Sakura Medical Center, Sakura, Japan
| | - Daisuke Sasai
- Department of Pathology, Seirei Sakura Citizen Hospital, Sakura, Japan
| | - Makoto Nagashima
- Department of Surgery, Toho University Sakura Medical Center, Sakura, Japan
| | - Rintaro Ohe
- Department of Pathological Diagnostics, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Mitsunori Yamakawa
- Department of Pathological Diagnostics, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
30
|
Robbertse L, Richards SA, Stutzer C, Olivier NA, Leisewitz AL, Crafford JE, Maritz-Olivier C. Temporal analysis of the bovine lymph node transcriptome during cattle tick (Rhipicephalus microplus) infestation. Vaccine 2020; 38:6889-6898. [PMID: 32900540 DOI: 10.1016/j.vaccine.2020.08.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 11/18/2022]
Abstract
Livestock production is a fundamental source of revenue and nutrition, wherein cattle-farming constitutes one of the major agricultural industries. Vectors and vector-borne diseases constitute one of the major factors that decrease the livelihood of all farming communities, more so in resource-poor communities and developing countries. Understanding the immunological responses during tick infestation in cattle is instrumental in the development of novel and improved tick control strategies, such as vaccines. In this study, gene expression patterns were compared within the lymph nodes of three cattle breeds at different life stages of the cattle tick, Rhipicephalus microplus. For Bonsmara (5/8Bos taurus indicus × 3/8B. t. taurus) cattle specifically, some 183 genes were found to be differentially expressed within the lymph nodes during larval and adult tick feeding, relative to uninfested cattle. Overall, the data provides evidence for a transcriptional regulatory network that is activated during immature tick infestation, but is down-regulated towards basal transcriptional levels when adult ticks are feeding. Specific processes in the lymph nodes of Bonsmara cattle were found to be differentially regulated on a transcriptional level. These include: (1) Leukocyte recruitment to the lymph node via chemokines and chemotaxis, (2) Trans-endothelial and intranodal movement on the reticular network, (3) Active regulation of cellular transcription and translation in the lymph node (including leukocyte associated cellular regulatory networks) and (4) Chemokine receptors regulating the movement of cells out of the lymph node. This work provides a first transcriptome analysis of bovine lymph node responses in tick-infested cattle. Findings show a dynamic immune response to tick infestation for the Bonsmara cattle breed, and that suppression of the maturation of the cattle hosts' immunity is especially evident during the larval feeding stages.
Collapse
Affiliation(s)
- Luïse Robbertse
- Department of Genetics, Biochemistry and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Sabine A Richards
- Department of Genetics, Biochemistry and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Christian Stutzer
- Department of Genetics, Biochemistry and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Nicholas A Olivier
- Department of Plant and Soil Sciences, University of Pretoria, South Africa; ACGT Microarray Facility, University of Pretoria, South Africa
| | - Andrew L Leisewitz
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Jan E Crafford
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Christine Maritz-Olivier
- Department of Genetics, Biochemistry and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| |
Collapse
|
31
|
Lim GN, Regan SL, Ross AE. Subsecond spontaneous catecholamine release in mesenteric lymph node ex vivo. J Neurochem 2020; 155:417-429. [DOI: 10.1111/jnc.15115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Gary N. Lim
- Department of Chemistry University of Cincinnati Cincinnati OH USA
| | - Samantha L. Regan
- Department of Pediatrics University of CincinnatiCollege of Medicine and Division of NeurologyCincinnati Children’s Research Foundation Cincinnati OH USA
- Neuroscience Graduate Program University of Cincinnati Cincinnati OH USA
| | - Ashley E. Ross
- Department of Chemistry University of Cincinnati Cincinnati OH USA
- Neuroscience Graduate Program University of Cincinnati Cincinnati OH USA
| |
Collapse
|
32
|
Li L, Shirkey MW, Zhang T, Xiong Y, Piao W, Saxena V, Paluskievicz C, Lee Y, Toney N, Cerel BM, Li Q, Simon T, Smith KD, Hippen KL, Blazar BR, Abdi R, Bromberg JS. The lymph node stromal laminin α5 shapes alloimmunity. J Clin Invest 2020; 130:2602-2619. [PMID: 32017712 PMCID: PMC7190966 DOI: 10.1172/jci135099] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
Lymph node stromal cells (LNSCs) regulate immunity through constructing lymphocyte niches. LNSC-produced laminin α5 (Lama5) regulates CD4+ T cells but the underlying mechanisms of its functions are poorly understood. Here we show that depleting Lama5 in LNSCs resulted in decreased Lama5 protein in the LN cortical ridge (CR) and around high endothelial venules (HEVs). Lama5 depletion affected LN structure with increased HEVs, upregulated chemokines, and cell adhesion molecules, and led to greater numbers of Tregs in the T cell zone. Mouse and human T cell transendothelial migration and T cell entry into LNs were suppressed by Lama5 through the receptors α6 integrin and α-dystroglycan. During immune responses and allograft transplantation, depleting Lama5 promoted antigen-specific CD4+ T cell entry into the CR through HEVs, suppressed T cell activation, and altered T cell differentiation to suppressive regulatory phenotypes. Enhanced allograft acceptance resulted from depleting Lama5 or blockade of T cell Lama5 receptors. Lama5 and Lama4/Lama5 ratios in allografts were associated with the rejection severity. Overall, our results demonstrated that stromal Lama5 regulated immune responses through altering LN structures and T cell behaviors. This study delineated a stromal Lama5-T cell receptor axis that can be targeted for immune tolerance modulation.
Collapse
Affiliation(s)
- Lushen Li
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marina W. Shirkey
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tianshu Zhang
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yanbao Xiong
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wenji Piao
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Vikas Saxena
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Christina Paluskievicz
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Young Lee
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Benjamin M. Cerel
- Department of Surgery, and
- Graduate Medical Sciences, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | - Kyle D. Smith
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, Minnesota, USA
| | - Keli L. Hippen
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, Minnesota, USA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, Minnesota, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan S. Bromberg
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Morgado FN, da Silva AVA, Porrozzi R. Infectious Diseases and the Lymphoid Extracellular Matrix Remodeling: A Focus on Conduit System. Cells 2020; 9:cells9030725. [PMID: 32187985 PMCID: PMC7140664 DOI: 10.3390/cells9030725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
The conduit system was described in lymphoid organs as a tubular and reticular set of structures compounded by collagen, laminin, perlecan, and heparin sulfate proteoglycan wrapped by reticular fibroblasts. This tubular system is capable of rapidly transport small molecules such as viruses, antigens, chemokines, cytokines, and immunoglobulins through lymphoid organs. This structure plays an important role in guiding the cells to their particular niches, therefore participating in cell cooperation, antigen presentation, and cellular activation. The remodeling of conduits has been described in chronic inflammation and infectious diseases to improve the transport of antigens to specific T and B cells in lymphoid tissue. However, malnutrition and infectious agents may induce extracellular matrix remodeling directly or indirectly, leading to the microarchitecture disorganization of secondary lymphoid organs and their conduit system. In this process, the fibers and cells that compound the conduit system may also be altered, which affects the development of a specific immune response. This review aims to discuss the extracellular matrix remodeling during infectious diseases with an emphasis on the alterations of molecules from the conduit system, which damages the cellular and molecular transit in secondary lymphoid organs compromising the immune response.
Collapse
Affiliation(s)
- Fernanda N. Morgado
- Correspondence: (F.N.M.); (R.P.); Tel.: +55-2138658226 (F.N.M.); +55-2138658203 (R.P.)
| | | | - Renato Porrozzi
- Correspondence: (F.N.M.); (R.P.); Tel.: +55-2138658226 (F.N.M.); +55-2138658203 (R.P.)
| |
Collapse
|
34
|
Map3k14 as a Regulator of Innate and Adaptive Immune Response during Acute Viral Infection. Pathogens 2020; 9:pathogens9020096. [PMID: 32033109 PMCID: PMC7168624 DOI: 10.3390/pathogens9020096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 01/13/2023] Open
Abstract
The replication of virus in secondary lymphoid organs is crucial for the activation of antigen-presenting cells. Balanced viral replication ensures the sufficient availability of antigens and production of cytokines, and both of which are needed for virus-specific immune activation and viral elimination. Host factors that regulate coordinated viral replication are not fully understood. In the study reported here, we identified Map3k14 as an important regulator of enforced viral replication in the spleen while performing genome-wide association studies of various inbred mouse lines in a model of lymphocytic choriomeningitis virus (LCMV) infection. When alymphoplasia mice (aly/aly, Map3k14aly/aly, or Nikaly/aly), which carry a mutation in Map3k14, were infected with LCMV or vesicular stomatitis virus (VSV), they display early reductions in early viral replication in the spleen, reduced innate and adaptive immune activation, and lack of viral control. Histologically, scant B cells and the lack of CD169+ macrophages correlated with reduced immune activation in Map3k14aly/aly mice. The transfer of wildtype B cells into Map3k14aly/aly mice repopulated CD169+ macrophages, restored enforced viral replication, and resulted in enhanced immune activation and faster viral control.
Collapse
|
35
|
Thierry GR, Gentek R, Bajenoff M. Remodeling of reactive lymph nodes: Dynamics of stromal cells and underlying chemokine signaling. Immunol Rev 2020; 289:42-61. [PMID: 30977194 DOI: 10.1111/imr.12750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/19/2022]
Abstract
Lymph nodes (LNs) are secondary immune organs dispersed throughout the body. They are primarily composed of lymphocytes, "transient passengers" that are only present for a few hours. During this time, they extensively interact with a meshwork of stromal cells. Although these cells constitute less than 5% of all LN cells, they are integral to LN function: Stromal cells create a three-dimensional network that provides a rigid backbone for the transport of lymph and generates "roads" for lymphocyte migration. Beyond structural support, the LN stroma also produces survival signals for lymphocytes and provides nutrients, soluble factors, antigens, and immune cells collectively required for immune surveillance and the generation of adaptive immune responses. A unique feature of LNs is their ability to considerably and rapidly change size: the volume and cellularity of inflamed LNs can increase up to 20-fold before returning to homeostatic levels. This cycle will be repeated many times during life and is accommodated by stromal cells. The dynamics underlying this dramatic remodeling are subject of this review. We will first introduce the main types of LN stromal cells and explain their known functions. We will then discuss how these cells enable LN growth during immune responses, with a particular focus on underlying cellular mechanisms and molecular cues. Similarly, we will elaborate on stromal dynamics mediating the return to LN homeostasis, a process that is mechanistically much less understood than LN expansion.
Collapse
Affiliation(s)
- Guilhem R Thierry
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
| | - Rebecca Gentek
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
| | - Marc Bajenoff
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
| |
Collapse
|
36
|
Haberman AM, Gonzalez DG, Wong P, Zhang TT, Kerfoot SM. Germinal center B cell initiation, GC maturation, and the coevolution of its stromal cell niches. Immunol Rev 2019; 288:10-27. [PMID: 30874342 DOI: 10.1111/imr.12731] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
Throughout the developing GC response, B cell survival and fate choices made at the single cell level are dependent on signals received largely through interactions with other cells, often with cognate T cells. The type of signals that a given B cell can encounter is dictated by its location within tissue microarchitecture. The focus of this review is on the initiation and evolution of the GC response at the earliest time points. Here, we review the key factors influencing the progression of GC B cell differentiation that are both stage and context dependent. Finally, we describe the coevolution of niches within and surrounding the GC that influence the outcome of the GC response.
Collapse
Affiliation(s)
- Ann M Haberman
- Department of Immunobiology, Yale University, New Haven, Connecticut.,Department of Laboratory Medicine, Yale University, New Haven, Connecticut
| | - David G Gonzalez
- Department of Immunobiology, Yale University, New Haven, Connecticut.,Department of Genetics, Yale University, New Haven, Connecticut
| | - Patrick Wong
- Department of Immunobiology, Yale University, New Haven, Connecticut
| | - Ting-Ting Zhang
- Department of Immunobiology, Yale University, New Haven, Connecticut
| | - Steven M Kerfoot
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| |
Collapse
|
37
|
Kelch ID, Bogle G, Sands GB, Phillips ARJ, LeGrice IJ, Dunbar PR. High-resolution 3D imaging and topological mapping of the lymph node conduit system. PLoS Biol 2019; 17:e3000486. [PMID: 31856185 PMCID: PMC6922347 DOI: 10.1371/journal.pbio.3000486] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
The conduit network is a hallmark of lymph node microanatomy, but lack of suitable imaging technology has prevented comprehensive investigation of its topology. We employed an extended-volume imaging system to capture the conduit network of an entire murine lymph node (comprising over 280,000 segments). The extensive 3D images provide a comprehensive overview of the regions supplied by conduits, including perivascular sleeves and distinctive “follicular reservoirs” within B cell follicles, surrounding follicular dendritic cells. A 3D topology map of conduits within the T-cell zone showed homogeneous branching, but conduit density was significantly higher in the superficial T-cell zone compared with the deep zone, where distances between segments are sufficient for T cells to lose contact with fibroblastic reticular cells. This topological mapping of the conduit anatomy can now aid modeling of its roles in lymph node function, as we demonstrate by simulating T-cell motility in the different T-cell zones. Extended-volume confocal imaging allowed 3D visualisation of the fine network of conduits within lymph nodes; the resulting map of conduit topology underscores structural differences between the deep and superficial T cell zone and identifies "follicular reservoirs" within B cell follicles that concentrate lymphoid fluid around follicular dendritic cells.
Collapse
Affiliation(s)
- Inken D. Kelch
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- * E-mail: (IDK); (PRD)
| | - Gib Bogle
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Gregory B. Sands
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Anthony R. J. Phillips
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Department of Surgery, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ian J. LeGrice
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Physiology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - P. Rod Dunbar
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- * E-mail: (IDK); (PRD)
| |
Collapse
|
38
|
Mechanosensing by Peyer's patch stroma regulates lymphocyte migration and mucosal antibody responses. Nat Immunol 2019; 20:1506-1516. [PMID: 31611698 PMCID: PMC7015178 DOI: 10.1038/s41590-019-0505-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 08/27/2019] [Indexed: 11/08/2022]
Abstract
Fibroblastic reticular cells (FRCs) and their specialized collagen fibers termed “conduits” form fundamental structural units supporting lymphoid tissues. In Lymph Nodes, conduits are known to transport interstitial fluid and small molecules from afferent lymphatics into the nodal parenchyma. However, the immunological contributions of conduit function have remained elusive. Here, we report that intestinal Peyer’s patches (PPs) contain a specialized conduit system that directs the flow of water absorbed across the intestinal epithelium. Notably, PP FRCs responded to conduit fluid flow via the mechanosensitive ion channel Piezo1. Disruption of fluid flow or genetic deficiency of Piezo1 on CCL19-expressing stroma led to profound structural alterations in perivascular FRCs and associated high endothelial venules. This in turn impaired lymphocyte entry into PPs and initiation of mucosal antibody responses. These results identify a critical role for conduit-mediated fluid flow in the maintenance of PP homeostasis and mucosal immunity.
Collapse
|
39
|
Schudel A, Francis DM, Thomas SN. Material design for lymph node drug delivery. NATURE REVIEWS. MATERIALS 2019; 4:415-428. [PMID: 32523780 PMCID: PMC7286627 DOI: 10.1038/s41578-019-0110-7] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A significant fraction of the total immune cells in the body are located in several hundred lymph nodes, in which lymphocyte accumulation, activation and proliferation are organized. Therefore, targeting lymph nodes provides the possibility to directly deliver drugs to lymphocytes and lymph node-resident cells and thus to modify the adaptive immune response. However, owing to the structure and anatomy of lymph nodes, as well as the distinct localization and migration of the different cell types within the lymph node, it is difficult to access specific cell populations by delivering free drugs. Materials can be used as instructive delivery vehicles to achieve accumulation of drugs in the lymph nodes and to target specific lymph node-resident cell subtypes. In this Review, we describe the compartmental architecture of lymph nodes and the cell and fluid transport mechanisms to and from lymph nodes. We discuss the different entry routes into lymph nodes and how they can be explored for drug delivery, including the lymphatics, blood capillaries, high endothelial venules, cell-mediated pathways, homing of circulating lymphocytes and direct lymph node injection. We examine different nanoscale and microscale materials for the targeting of specific immune cells and highlight their potential for the treatment of immune dysfunction and for cancer immunotherapy. Finally, we give an outlook to the field, exploring how lymph node targeting can be improved by the use of materials.
Collapse
Affiliation(s)
- Alex Schudel
- School of Materials Science and Engineering, Georgia institute of Technology, Atlanta, GA, USA
- Parker H. Petit institute for Bioengineering and Bioscience, Georgia institute of Technology, Atlanta, GA, USA
- These authors contributed equally: Alex Schudel, David M. Francis
| | - David M Francis
- Parker H. Petit institute for Bioengineering and Bioscience, Georgia institute of Technology, Atlanta, GA, USA
- School of Chemical and Biomolecular Engineering, Georgia institute of Technology, Atlanta, GA, USA
- These authors contributed equally: Alex Schudel, David M. Francis
| | - Susan N Thomas
- Parker H. Petit institute for Bioengineering and Bioscience, Georgia institute of Technology, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia institute of Technology and Emory University, Atlanta, GA, USA
- Winship Cancer institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
40
|
Hickey JW, Dong Y, Chung JW, Salathe SF, Pruitt HC, Li X, Chang C, Fraser AK, Bessell CA, Ewald AJ, Gerecht S, Mao HQ, Schneck JP. Engineering an Artificial T-Cell Stimulating Matrix for Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807359. [PMID: 30968468 PMCID: PMC8601018 DOI: 10.1002/adma.201807359] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/04/2019] [Indexed: 05/17/2023]
Abstract
T cell therapies require the removal and culture of T cells ex vivo to expand several thousand-fold. However, these cells often lose the phenotype and cytotoxic functionality for mediating effective therapeutic responses. The extracellular matrix (ECM) has been used to preserve and augment cell phenotype; however, it has not been applied to cellular immunotherapies. Here, a hyaluronic acid (HA)-based hydrogel is engineered to present the two stimulatory signals required for T-cell activation-termed an artificial T-cell stimulating matrix (aTM). It is found that biophysical properties of the aTM-stimulatory ligand density, stiffness, and ECM proteins-potentiate T cell signaling and skew phenotype of both murine and human T cells. Importantly, the combination of the ECM environment and mechanically sensitive TCR signaling from the aTM results in a rapid and robust expansion of rare, antigen-specific CD8+ T cells. Adoptive transfer of these tumor-specific cells significantly suppresses tumor growth and improves animal survival compared with T cells stimulated by traditional methods. Beyond immediate immunotherapeutic applications, demonstrating the environment influences the cellular therapeutic product delineates the importance of the ECM and provides a case study of how to engineer ECM-mimetic materials for therapeutic immune stimulation in the future.
Collapse
Affiliation(s)
- John W Hickey
- Department of Biomedical Engineering, School of Medicine, Baltimore, MD, 21218, USA
- Institute for Cell Engineering, School of Medicine, Baltimore, MD, 21205, USA
- Department of Pathology, School of Medicine, Baltimore, MD, 21287, USA
- Translational Tissue Engineering Center, Baltimore, MD, 21287, USA
- Institute for NanoBioTechnology, Baltimore, MD, 21218, USA
| | - Yi Dong
- Graduate Program in Immunology, School of Medicine, Baltimore, MD, 21205, USA
| | - Jae Wook Chung
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Baltimore, MD, 21218, USA
| | - Sebastian F Salathe
- Department of Biology, Krieger School of Arts and Sciences, Baltimore, MD, 21218, USA
| | - Hawley C Pruitt
- Institute for NanoBioTechnology, Baltimore, MD, 21218, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Baltimore, MD, 21218, USA
| | - Xiaowei Li
- Translational Tissue Engineering Center, Baltimore, MD, 21287, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Baltimore, MD, 21218, USA
| | - Calvin Chang
- Department of Biomedical Engineering, School of Medicine, Baltimore, MD, 21218, USA
- Translational Tissue Engineering Center, Baltimore, MD, 21287, USA
| | - Andrew K Fraser
- Department of Biomedical Engineering, School of Medicine, Baltimore, MD, 21218, USA
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Baltimore, MD, 21205, USA
| | - Catherine A Bessell
- Graduate Program in Immunology, School of Medicine, Baltimore, MD, 21205, USA
| | - Andrew J Ewald
- Department of Biomedical Engineering, School of Medicine, Baltimore, MD, 21218, USA
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Baltimore, MD, 21205, USA
- Department of Oncology, School of Medicine, Baltimore, MD, 21205, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, School of Medicine, Baltimore, MD, 21218, USA
- Institute for NanoBioTechnology, Baltimore, MD, 21218, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Baltimore, MD, 21218, USA
- Physical Sciences-Oncology Center, Baltimore, MD, 21218, USA
| | - Hai-Quan Mao
- Department of Biomedical Engineering, School of Medicine, Baltimore, MD, 21218, USA
- Translational Tissue Engineering Center, Baltimore, MD, 21287, USA
- Institute for NanoBioTechnology, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Baltimore, MD, 21218, USA
| | - Jonathan P Schneck
- Institute for Cell Engineering, School of Medicine, Baltimore, MD, 21205, USA
- Department of Pathology, School of Medicine, Baltimore, MD, 21287, USA
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
41
|
Cote B, Rao D, Alany RG, Kwon GS, Alani AW. Lymphatic changes in cancer and drug delivery to the lymphatics in solid tumors. Adv Drug Deliv Rev 2019; 144:16-34. [PMID: 31461662 DOI: 10.1016/j.addr.2019.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023]
Abstract
Although many solid tumors use the lymphatic system to metastasize, there are few treatment options that directly target cancer present in the lymphatic system, and those that do are highly invasive, uncomfortable, and/or have limitations. In this review we provide a brief overview of lymphatic function and anatomy, discusses changes that befall the lymphatics in cancer and the mechanisms by which these changes occur, and highlight limitations of lymphatic drug delivery. We then go on to summarize relevant techniques and new research for targeting cancer populations in the lymphatics and enhancing drug delivery intralymphatically, including intralymphatic injections, isolated limb perfusion, passive nano drug delivery systems, and actively targeted nanomedicine.
Collapse
|
42
|
Abstract
In this issue of JEM, Thierry et al. (https://doi.org/10.1084/jem.20180344) demonstrate that, once secreted by freshly activated plasmablasts, IgM leaves the lymph node via the microarchitecture of the fibroblastic reticular cell conduit. This work demonstrates how the very peculiar stromal compartment of lymphatic organs optimizes the systemic distribution of immune effectors.
Collapse
Affiliation(s)
- Anne Reversat
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
43
|
Thierry GR, Kuka M, De Giovanni M, Mondor I, Brouilly N, Iannacone M, Bajénoff M. The conduit system exports locally secreted IgM from lymph nodes. J Exp Med 2018; 215:2972-2983. [PMID: 30429248 PMCID: PMC6279403 DOI: 10.1084/jem.20180344] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 09/15/2018] [Accepted: 10/17/2018] [Indexed: 01/15/2023] Open
Abstract
IgM provides early protection against pathogens. How IgM is exported out of lymph nodes remains unknown. Thierry et al. report that B cells utilize a system of paracortical conduits to rapidly export their IgM to the periphery. Immunoglobulin M (IgM) is the first type of antibody produced during acute infections and thus provides an early line of specific defense against pathogens. Being produced in secondary lymphoid organs, IgM must rapidly be exported to the blood circulation. However, it is currently unknown how such large pentameric molecules are released from lymph nodes (LNs). Here, we show that upon immunization, IgM transiently gains access to the luminal side of the conduit system, a reticular infrastructure enabling fast delivery of tissue-derived soluble substances to the LN parenchyma. Using microinjections of purified IgM, we demonstrate that conduit-associated IgM is delivered by neither the afferent lymph nor the blood, but is locally conveyed by conduits. Exploiting in vivo models, we further demonstrate that conduit-associated IgM is locally and transiently produced by activated, antigen-specific B cells migrating in the T cell zone. Thus, our study reveals that the conduit system is coopted by B cells to rapidly export secreted IgM out of LNs.
Collapse
Affiliation(s)
- Guilhem R Thierry
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Mirela Kuka
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Marco De Giovanni
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Isabelle Mondor
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Nicolas Brouilly
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Marc Bajénoff
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
44
|
Novkovic M, Onder L, Cheng HW, Bocharov G, Ludewig B. Integrative Computational Modeling of the Lymph Node Stromal Cell Landscape. Front Immunol 2018; 9:2428. [PMID: 30405623 PMCID: PMC6206207 DOI: 10.3389/fimmu.2018.02428] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/02/2018] [Indexed: 11/13/2022] Open
Abstract
Adaptive immune responses develop in secondary lymphoid organs such as lymph nodes (LNs) in a well-coordinated series of interactions between migrating immune cells and resident stromal cells. Although many processes that occur in LNs are well understood from an immunological point of view, our understanding of the fundamental organization and mechanisms that drive these processes is still incomplete. The aim of systems biology approaches is to unravel the complexity of biological systems and describe emergent properties that arise from interactions between individual constituents of the system. The immune system is greater than the sum of its parts, as is the case with any sufficiently complex system. Here, we review recent work and developments of computational LN models with focus on the structure and organization of the stromal cells. We explore various mathematical studies of intranodal T cell motility and migration, their interactions with the LN-resident stromal cells, and computational models of functional chemokine gradient fields and lymph flow dynamics. Lastly, we discuss briefly the importance of hybrid and multi-scale modeling approaches in immunology and the technical challenges involved.
Collapse
Affiliation(s)
- Mario Novkovic
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
45
|
Takeuchi A, Ozawa M, Kanda Y, Kozai M, Ohigashi I, Kurosawa Y, Rahman MA, Kawamura T, Shichida Y, Umemoto E, Miyasaka M, Ludewig B, Takahama Y, Nagasawa T, Katakai T. A Distinct Subset of Fibroblastic Stromal Cells Constitutes the Cortex-Medulla Boundary Subcompartment of the Lymph Node. Front Immunol 2018; 9:2196. [PMID: 30333825 PMCID: PMC6176096 DOI: 10.3389/fimmu.2018.02196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
The spatiotemporal regulation of immune responses in the lymph node (LN) depends on its sophisticated tissue architecture, consisting of several subcompartments supported by distinct fibroblastic stromal cells (FSCs). However, the intricate details of stromal structures and associated FSC subsets are not fully understood. Using several gene reporter mice, we sought to discover unrecognized stromal structures and FSCs in the LN. The four previously identified FSC subsets in the cortex are clearly distinguished by the expression pattern of reporters including PDGFRβ, CCL21-ser, and CXCL12. Herein, we identified a unique FSC subset expressing both CCL21-ser and CXCL12 in the deep cortex periphery (DCP) that is characterized by preferential B cell localization. This subset was clearly different from CXCL12highLepRhigh FSCs in the medullary cord, which harbors plasma cells. B cell localization in the DCP was controlled chiefly by CCL21-ser and, to a lesser extent, CXCL12. Moreover, the optimal development of the DCP as well as medulla requires B cells. Together, our findings suggest the presence of a unique microenvironment in the cortex-medulla boundary and offer an advanced view of the multi-layered stromal framework constructed by distinct FSC subsets in the LN.
Collapse
Affiliation(s)
- Arata Takeuchi
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Madoka Ozawa
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuhiro Kanda
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mina Kozai
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Yoichi Kurosawa
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Md Azizur Rahman
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshihiko Kawamura
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Immunology, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Yuto Shichida
- School of Medicine, Niigata University, Niigata, Japan
| | - Eiji Umemoto
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Miyasaka
- MediCity Research Laboratory, University of Turku, Turku, Finland.,WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.,Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, Suita, Japan
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Yousuke Takahama
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan.,Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
46
|
Identification of a new subset of lymph node stromal cells involved in regulating plasma cell homeostasis. Proc Natl Acad Sci U S A 2018; 115:E6826-E6835. [PMID: 29967180 DOI: 10.1073/pnas.1712628115] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Antibody-secreting plasma cells (PCs) arise rapidly during adaptive immunity to control infections. The early PCs are retained within the reactive lymphoid organ where their localization and homeostasis rely on extrinsic factors, presumably produced by local niche cells. While myeloid cells have been proposed to form those niches, the contribution by colocalizing stromal cells has remained unclear. Here, we characterized a subset of fibroblastic reticular cells (FRCs) that forms a dense meshwork throughout medullary cords of lymph nodes (LNs) where PCs reside. This medullary FRC type is shown to be anatomically, phenotypically, and functionally distinct from T zone FRCs, both in mice and humans. By using static and dynamic imaging approaches, we provide evidence that medullary FRCs are the main cell type in contact with PCs guiding them in their migration. Medullary FRCs also represent a major local source of the PC survival factors IL-6, BAFF, and CXCL12, besides also producing APRIL. In vitro, medullary FRCs alone or in combination with macrophages promote PC survival while other LN cell types do not have this property. Thus, we propose that this FRC subset, together with medullary macrophages, forms PC survival niches within the LN medulla, and thereby helps in promoting the rapid development of humoral immunity, which is critical in limiting early pathogen spread.
Collapse
|
47
|
Kityo C, Makamdop KN, Rothenberger M, Chipman JG, Hoskuldsson T, Beilman GJ, Grzywacz B, Mugyenyi P, Ssali F, Akondy RS, Anderson J, Schmidt TE, Reimann T, Callisto SP, Schoephoerster J, Schuster J, Muloma P, Ssengendo P, Moysi E, Petrovas C, Lanciotti R, Zhang L, Arévalo MT, Rodriguez B, Ross TM, Trautmann L, Sekaly RP, Lederman MM, Koup RA, Ahmed R, Reilly C, Douek DC, Schacker TW. Lymphoid tissue fibrosis is associated with impaired vaccine responses. J Clin Invest 2018; 128:2763-2773. [PMID: 29781814 DOI: 10.1172/jci97377] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/10/2018] [Indexed: 11/17/2022] Open
Abstract
Vaccine responses vary by geographic location. We have previously described how HIV-associated inflammation leads to fibrosis of secondary lymph nodes (LNs) and T cell depletion. We hypothesized that other infections may cause LN inflammation and fibrosis, in a process similar to that seen in HIV infection, which may lead to T cell depletion and affect vaccine responses. We studied LNs of individuals from Kampala, Uganda, before and after yellow fever vaccination (YFV) and found fibrosis in LNs that was similar to that seen in HIV infection. We found blunted antibody responses to YFV that correlated to the amount of LN fibrosis and loss of T cells, including T follicular helper cells. These data suggest that LN fibrosis is not limited to HIV infection and may be associated with impaired immunologic responses to vaccines. This may have an impact on vaccine development, especially for infectious diseases prevalent in the developing world.
Collapse
Affiliation(s)
- Cissy Kityo
- Joint Clinical Research Center, Kampala, Uganda
| | - Krystelle Nganou Makamdop
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | - Rama S Akondy
- Emory Vaccine Center, and Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Jodi Anderson
- University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | | | | - Eirini Moysi
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Constantinos Petrovas
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Lin Zhang
- University of Minnesota, Minneapolis, Minnesota, USA
| | - Maria T Arévalo
- Center for Vaccines and Immunology and Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | | | - Ted M Ross
- Center for Vaccines and Immunology and Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Lydie Trautmann
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | | | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rafi Ahmed
- Emory Vaccine Center, and Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Cavan Reilly
- University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
48
|
Lin Y, Louie D, Ganguly A, Wu D, Huang P, Liao S. Elastin Shapes Small Molecule Distribution in Lymph Node Conduits. THE JOURNAL OF IMMUNOLOGY 2018; 200:3142-3150. [PMID: 29592965 DOI: 10.4049/jimmunol.1800074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/05/2018] [Indexed: 12/15/2022]
Abstract
The spatial and temporal Ag distribution determines the subsequent T cell and B cell activation at the distinct anatomical locations in the lymph node (LN). It is well known that LN conduits facilitate small Ag distribution in the LN, but the mechanism of how Ags travel along LN conduits remains poorly understood. In C57BL/6J mice, using FITC as a fluorescent tracer to study lymph distribution in the LN, we found that FITC preferentially colocalized with LN capsule-associated (LNC) conduits. Images generated using a transmission electron microscope showed that LNC conduits are composed of solid collagen fibers and are wrapped with fibroblastic cells. Superresolution images revealed that high-intensity FITC is typically colocalized with elastin fibers inside the LNC conduits. Whereas tetramethylrhodamine isothiocyanate appears to enter LNC conduits as effectively as FITC, fluorescently-labeled Alexa-555-conjugated OVA labels significantly fewer LNC conduits. Importantly, injection of Alexa-555-conjugated OVA with LPS substantially increases OVA distribution along elastin fibers in LNC conduits, indicating immune stimulation is required for effective OVA traveling along elastin in LN conduits. Finally, elastin fibers preferentially surround lymphatic vessels in the skin and likely guide fluid flow to the lymphatic vessels. Our studies demonstrate that fluid or small molecules are preferentially colocalized with elastin fibers. Although the exact mechanism of how elastin fibers regulate Ag trafficking remains to be explored, our results suggest that elastin can be a potentially new target to direct Ag distribution in the LN during vaccine design.
Collapse
Affiliation(s)
- Yujia Lin
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150086, China
| | - Dante Louie
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Anutosh Ganguly
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada; and
| | - Dequan Wu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150086, China
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Shan Liao
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada;
| |
Collapse
|
49
|
Golub R, Tan J, Watanabe T, Brendolan A. Origin and Immunological Functions of Spleen Stromal Cells. Trends Immunol 2018; 39:503-514. [PMID: 29567327 DOI: 10.1016/j.it.2018.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 01/20/2023]
Abstract
The mammalian spleen is a peripheral lymphoid organ that plays a central role in host defense. Consequently, the lack of spleen is often associated with immunodeficiency and increased risk of overwhelming infections. Growing evidence suggests that non-hematopoietic stromal cells are central players in spleen development, organization, and immune functions. In addition to its immunological role, the spleen also provides a site for extramedullary hematopoiesis (EMH) in response to injuries. A deeper understanding of the biology of stromal cells is therefore essential to fully comprehend how these cells modulate the immune system during normal and pathological conditions. Here, we review the specificities of the different mouse spleen stromal cell subsets and complement the murine studies with human data when available.
Collapse
Affiliation(s)
- Rachel Golub
- Unit for Lymphopoiesis, Immunology Department, INSERM U1223, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Institut Pasteur, Paris, France.
| | - Jonathan Tan
- Clem Jones Research Centre for Regenerative Medicine, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Australia
| | - Takeshi Watanabe
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Andrea Brendolan
- Unit of Lymphoid Organ Development, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
50
|
Abstract
AbstractEthological and ecological studies of wild animals are producing evidence for metabolic stress during courtship, breeding and parental care comparable with that of domestic livestock. Resistance to disease may be compromised by the demand for fatty acids and proteins during reproduction and even more during lactation. The adipose tissue around major lymph nodes is indistinguishable histologically from that in larger depots. In vitro and in vivo studies reveal that it is specialized to respond to lipolytic agonists secreted by lymphoid cells but is insensitive to the endocrine conditions of short-term fasting. These properties enable it to provision adjacent immune cells. Such adipose tissue may act as a forum for competing demands of mammary glands, muscles etc. and local defences against pathogens. Glutamine is essential to the nutrition of the immune system and is used by the mammary gland. Muscle is the best known source but adipose tissue also participates in glutamine metabolism and may become more important in animals in which the musculature is wasted through prolonged lactation.
Collapse
|