1
|
Lopes KF, Freire ML, Souza Lima DC, Enk MJ, Oliveira E, Geiger SM. Development and evaluation of an indirect ELISA using a multiepitope antigen for the diagnosis of intestinal schistosomiasis. Parasitology 2023; 150:683-692. [PMID: 37092694 PMCID: PMC10410369 DOI: 10.1017/s0031182023000409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/29/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
The laboratory diagnosis of intestinal schistosomiasis, carried out by detecting parasite eggs in feces, has low sensitivity when applied to individuals with low parasitic load. Serological tests can be more sensitive for the diagnosis of the disease. Therefore, the objective of this work was to develop and evaluate an ELISA-based immunoenzymatic assay, using a Schistosoma mansoni multiepitope antigen (ELISA IgG anti-SmME). For this, the amino acid sequences of S. mansoni cathepsin B and asparaginyl endopeptidase were submitted to the prediction of B cell epitopes and, together with peptide sequences obtained from earlier works, were used in the construction of a minigene. The multiepitope protein was expressed in Escherichia coli and the performance of the ELISA IgG anti-SmME for schistosomiasis was evaluated using serum samples from 107 individuals either egg positive or negative. In addition, 11 samples from individuals with other helminth infections were included. The ELISA IgG anti-SmME showed a sensitivity of 81.1% and a specificity of 46.1%. Further analysis revealed a 77.2% sensitivity in diagnosis of individuals with egg counts of ≤12 epg (eggs per gram feces) and 87.5% for individuals with 13–99 epg. It is worth mentioning that, to our knowledge, this was the first study using a multiepitope recombinant antigen in an ELISA for diagnosis of intestinal schistosomiasis, which demonstrated promising results in the diagnosis of individuals with low parasitic loads.
Collapse
Affiliation(s)
- Karine Ferreira Lopes
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- René Rachou Institute – Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | | | - Dayane Costa Souza Lima
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Martin Johannes Enk
- Evandro Chagas Institute – Secretary of Health Vigilance, Ministry of Health, Ananindeua, Pará, Brazil
| | - Edward Oliveira
- René Rachou Institute – Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Stefan Michael Geiger
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Expression of O-glycosylated oncofetal fibronectin in alternatively activated human macrophages. Immunol Res 2023; 71:92-104. [PMID: 36197587 DOI: 10.1007/s12026-022-09321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/11/2022] [Indexed: 01/28/2023]
Abstract
Macrophage (Mϕ) polarization is an essential phenomenon for the maintenance of homeostasis and tissue repair, and represents the event by which Mϕ reach divergent functional phenotypes as a result to specific stimuli and/or microenvironmental signals. Mϕ can be polarized into two main phenotypes, M1 or classically activated and M2 or alternatively activated. These two categories diverge in many aspects, such as secreted cytokines, markers of cell surface, and biological functions. Over the last 10 years, many potential markers have been proposed for both M1 and M2 human Mϕ. However, there is scarce information regarding the glycophenotype adopted by these cells. Here, we show that M2- but not M1-polarized Mϕ expresses high levels of an unusual glycoform of fibronectin (FN), named O-glycosylated oncofetal FN (onf-FN), found in fetal/cancer cells, but not in healthy tissues. The onf-FN expression was confirmed in vitro by Western blot and real-time RT-qPCR in primary and cell line monocyte-derived Mϕ. onf-FN was induced by IL-4 and IL-13, but not by pro-inflammatory stimuli (LPS and INF-γ). RNA and protein analysis clearly demonstrated that it is specifically associated with the M2 polarization. In conclusion, we show by the first time that O-glycosylated onf-FN is expressed by M2-polarized Mϕ.
Collapse
|
3
|
Young RJ, Flitsch SL, Grigalunas M, Leeson PD, Quinn RJ, Turner NJ, Waldmann H. The Time and Place for Nature in Drug Discovery. JACS AU 2022; 2:2400-2416. [PMID: 36465532 PMCID: PMC9709949 DOI: 10.1021/jacsau.2c00415] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 05/31/2023]
Abstract
The case for a renewed focus on Nature in drug discovery is reviewed; not in terms of natural product screening, but how and why biomimetic molecules, especially those produced by natural processes, should deliver in the age of artificial intelligence and screening of vast collections both in vitro and in silico. The declining natural product-likeness of licensed drugs and the consequent physicochemical implications of this trend in the context of current practices are noted. To arrest these trends, the logic of seeking new bioactive agents with enhanced natural mimicry is considered; notably that molecules constructed by proteins (enzymes) are more likely to interact with other proteins (e.g., targets and transporters), a notion validated by natural products. Nature's finite number of building blocks and their interactions necessarily reduce potential numbers of structures, yet these enable expansion of chemical space with their inherent diversity of physical characteristics, pertinent to property-based design. The feasible variations on natural motifs are considered and expanded to encompass pseudo-natural products, leading to the further logical step of harnessing bioprocessing routes to access them. Together, these offer opportunities for enhancing natural mimicry, thereby bringing innovation to drug synthesis exploiting the characteristics of natural recognition processes. The potential for computational guidance to help identifying binding commonalities in the route map is a logical opportunity to enable the design of tailored molecules, with a focus on "organic/biological" rather than purely "synthetic" structures. The design and synthesis of prototype structures should pay dividends in the disposition and efficacy of the molecules, while inherently enabling greener and more sustainable manufacturing techniques.
Collapse
Affiliation(s)
| | - Sabine L. Flitsch
- Department
of Chemistry, University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Michael Grigalunas
- Department
of Chemical Biology, Max-Planck-Institute
of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
| | - Paul D. Leeson
- Paul
Leeson Consulting Limited, The Malt House, Main Street, Congerstone, Nuneaton, Warwickshire CV13 6LZ, U.K.
| | - Ronald J. Quinn
- Griffith
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Nicholas J. Turner
- Department
of Chemistry, University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Herbert Waldmann
- Department
of Chemical Biology, Max-Planck-Institute
of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
- Faculty of
Chemistry and Chemical Biology, Technical
University of Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| |
Collapse
|
4
|
Vaccination with Deglycosylated Modified Hemagglutinin Broadly Protects against Influenza Virus Infection in Mice and Ferrets. Vaccines (Basel) 2022; 10:vaccines10081304. [PMID: 36016191 PMCID: PMC9414581 DOI: 10.3390/vaccines10081304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Recent efforts have been directed toward the development of universal influenza vaccines inducing broadly neutralizing antibodies to conserved antigenic supersites of Hemagglutinin (HA). Although several studies raise the importance of glycosylation in HA antigen design, whether this theory can be widely confirmed remains unclear; which influenza HA with an altered glycosylation profile could impact the amplitude and focus of the host immune response. Here, we evaluated the characteristics and efficacy of deglycosylated modified HA proteins, including monoglycosylated HA (HAmg), unglycosylated HA (HAug), and fully glycosylated HA (HAfg), without treatment with H3N2 Wisconsin/67/2005. Our results showed that HAug could induce a cross-strain protective immune response in mice against both H3N2 and H7N9 subtypes with better antibody-dependent cellular cytotoxicity (ADCC) than the HAmg- and HAfg-immunized groups, which suggested that highly conserved epitopes that were masked by surface glycosylation may be exposed and thus promote the induction of broad antibodies that recognize the hidden epitopes. This strategy may also supplement the direction of deglycosylated modified HA for universal influenza vaccines.
Collapse
|
5
|
Hariharan V, Kane RS. Glycosylation as a tool for rational vaccine design. Biotechnol Bioeng 2020; 117:2556-2570. [PMID: 32330286 DOI: 10.1002/bit.27361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/01/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022]
Abstract
The discovery of broadly neutralizing antibodies that can neutralize multiple strains or subtypes of a pathogen has renewed interest in the development of broadly protective vaccines. To that end, there has been an interest in designing immunofocusing strategies to direct the immune response to specific, conserved regions on antigenic proteins. Modulation of glycosylation is one such immunofocusing strategy; extensive glycosylation is often exploited by pathogens for immune evasion. Masking epitopes on protein immunogens with "self" glycans can also shield the underlying protein surface from humoral immune surveillance. We review recent advances in applying glycosylation as an immunofocusing tool. We also highlight recent interesting work in the HIV-1 field involving the identification and elicitation of broadly neutralizing antibodies that incorporate glycans into their binding epitopes.
Collapse
Affiliation(s)
- Vivek Hariharan
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Ravi S Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
6
|
Abstract
The technological advances in diagnostics and therapy of primary immunodeficiency are progressing at a fast pace. This review examines recent developments in the field of inborn errors of immunity, from their definition to their treatment. We will summarize the challenges posed by the growth of next-generation sequencing in the clinical setting, touch briefly on the expansion of the concept of inborn errors of immunity beyond the classic immune system realm, and finally review current developments in targeted therapies, stem cell transplantation, and gene therapy.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.,Childhood Immunology, Department of Pediatrics, University Hospitals Leuven, ERN-RITA Core Member, Herestraat 49, Leuven, 3000, Belgium
| | - Isabelle Meyts
- Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.,Childhood Immunology, Department of Pediatrics, University Hospitals Leuven, ERN-RITA Core Member, Herestraat 49, Leuven, 3000, Belgium
| |
Collapse
|
7
|
Lan Y, Li X, Liu Y, He Y, Hao C, Wang H, Jin L, Zhang G, Zhang S, Zhou A, Zhang L. Pingyangmycin inhibits glycosaminoglycan sulphation in both cancer cells and tumour tissues. J Cell Mol Med 2020; 24:3419-3430. [PMID: 32068946 PMCID: PMC7131950 DOI: 10.1111/jcmm.15017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 12/18/2022] Open
Abstract
Pingyangmycin is a clinically used anticancer drug and induces lung fibrosis in certain cancer patients. We previously reported that the negatively charged cell surface glycosaminoglycans are involved in the cellular uptake of the positively charged pingyangmycin. However, it is unknown if pingyangmycin affects glycosaminoglycan structures. Seven cell lines and a Lewis lung carcinoma‐injected C57BL/6 mouse model were used to understand the cytotoxicity of pingyangmycin and its effect on glycosaminoglycan biosynthesis. Stable isotope labelling coupled with LC/MS method was used to quantify glycosaminoglycan disaccharide compositions from pingyangmycin‐treated and untreated cell and tumour samples. Pingyangmycin reduced both chondroitin sulphate and heparan sulphate sulphation in cancer cells and in tumours. The effect was persistent at different pingyangmycin concentrations and at different exposure times. Moreover, the cytotoxicity of pingyangmycin was decreased in the presence of soluble glycosaminoglycans, in the glycosaminoglycan‐deficient cell line CHO745, and in the presence of chlorate. A flow cytometry‐based cell surface FGF/FGFR/glycosaminoglycan binding assay also showed that pingyangmycin changed cell surface glycosaminoglycan structures. Changes in the structures of glycosaminoglycans may be related to fibrosis induced by pingyangmycin in certain cancer patients.
Collapse
Affiliation(s)
- Ying Lan
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.,College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiulian Li
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yong Liu
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanli He
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui Hao
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hua Wang
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liying Jin
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guoqing Zhang
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shufeng Zhang
- College of Chemistry, Tianjin Normal University, Tianjin, China
| | - Aimin Zhou
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Lijuan Zhang
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Brunner K, Samassa F, Sansonetti PJ, Phalipon A. Shigella-mediated immunosuppression in the human gut: subversion extends from innate to adaptive immune responses. Hum Vaccin Immunother 2019; 15:1317-1325. [PMID: 30964713 PMCID: PMC6663138 DOI: 10.1080/21645515.2019.1594132] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/13/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023] Open
Abstract
The enteropathogen, Shigella, is highly virulent and remarkably adjusted to the intestinal environment of its almost exclusive human host. Key for Shigella pathogenicity is the injection of virulence effectors into the host cell via its type three secretion system (T3SS), initiating disease onset and progression by the vast diversity of the secreted T3SS effectors and their respective cellular targets. The multifaceted modulation of host signaling pathways exerted by Shigella T3SS effectors, which include the subversion of host innate immune defenses and the promotion of intracellular bacterial survival and dissemination, have been extensively reviewed in the recent past. This review focuses on the human species specificity of Shigella by discussing some possible evasion mechanisms towards the human, but not non-human or rodent gut innate defense barrier, leading to the lack of a relevant animal infection model. In addition, subversion mechanisms of the adaptive immune response are highlighted summarizing research advances of the recent years. In particular, the new paradigm of Shigella pathogenicity constituted of invasion-independent T3SS effector-mediated targeting of activated, human lymphocytes is discussed. Along with consequences on vaccine development, these findings offer new directions for future research endeavors towards a better understanding of immunity to Shigella infection.
Collapse
Affiliation(s)
- Katja Brunner
- Molecular Microbial Pathogenesis Unit, Department of Cellular Biology of Infection, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
| | - Fatoumata Samassa
- Molecular Microbial Pathogenesis Unit, Department of Cellular Biology of Infection, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
| | - Philippe J. Sansonetti
- Molecular Microbial Pathogenesis Unit, Department of Cellular Biology of Infection, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
- Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France
| | - Armelle Phalipon
- Molecular Microbial Pathogenesis Unit, Department of Cellular Biology of Infection, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
| |
Collapse
|
9
|
Abstract
Immunoglobulin G (IgG) antibodies function, in part, through ligation of cell-surface Fc receptors such as FcγRIIIA (also known as CD16A). IgG glycosylation is known to impact antibody function, but the role of FcγRIIIA glycans, if any, is unclear. Patel et al. now reveal that these glycans do impact protein conformation and IgG affinity and display cell-specific glycosylation patterns, leading to a potential model in which the affinity and possibly function of Fc receptors is dictated by the cell type and its surface glycome.
Collapse
Affiliation(s)
- Kelsey D Oliva
- From the Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44107
| | - Jill M Cavanaugh
- From the Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44107
| | - Brian A Cobb
- From the Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44107
| |
Collapse
|
10
|
Barb AW, Falconer DJ, Subedi GP. The Preparation and Solution NMR Spectroscopy of Human Glycoproteins Is Accessible and Rewarding. Methods Enzymol 2018; 614:239-261. [PMID: 30611426 DOI: 10.1016/bs.mie.2018.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The majority of proteins excreted by human cells and borne at the cell surface are modified with carbohydrates. Glycoproteins mediate a wide range of processes and adopt fundamental roles in many diseases. The carbohydrates covalently attached to proteins during maturation in the cell directly impact protein structure and function as integral and indispensable components. However, the ability to study the structure of glycoproteins to high resolution was historically limited by technical barriers including a limited availability of appropriate recombinant protein expression platforms, limited methods to generate compositional homogeneity, and difficulties analyzing glycoprotein composition. Furthermore, glycoproteins and in particular the glycan moieties themselves often exhibit a high degree of conformational heterogeneity. Solution NMR spectroscopy is a powerful tool to study biological macromolecules that is capable of characterizing mobile elements of molecules with atomic-level resolution. Methods to express glycoproteins, incorporate stable isotope labels, and analyze glycoproteins have recently opened new avenues to prepare and investigate glycoproteins. These methods are accessible to many laboratories with experience expressing and purifying proteins from prokaryotic expression hosts.
Collapse
Affiliation(s)
- Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States.
| | - Daniel J Falconer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Ganesh P Subedi
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
11
|
Baum LG, Cobb BA. The direct and indirect effects of glycans on immune function. Glycobiology 2018; 27:619-624. [PMID: 28460052 DOI: 10.1093/glycob/cwx036] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/21/2017] [Indexed: 12/26/2022] Open
Abstract
The biological impact of glycans is as diverse and complex as the impact of proteins on biology. Familiar roles include those as a protein folding checkpoint in the endoplasmic reticulum and as a modulator of the serum half-life of secreted glycoproteins, but it has become clear over the last several decades that glycans are key signaling moieties, participate in cell-cell interactions and modulate the function of individual proteins, to name but a few examples. In the immune system, the majority of microbial "patterns" are glycans or glycoconjugates, while virtually all cell surface receptors are glycoproteins, and antibody glycosylation critically influences antibody function. In order to provide a simple contextual framework to understand the myriad roles, glycans play in immunity, we propose that glycan effects are considered direct or indirect, depending on their direct participation or their indirect effects on other components in a given biological process or pathway. Here, we present the published evidence that supports this framework, which ultimately leads to the conclusion that we should learn to embrace the complexity inherent to the glycome and its potential as a largely uncharted but target rich area of new therapeutic investigation.
Collapse
Affiliation(s)
- Linda G Baum
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Brian A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
Li J, Hsu HC, Mountz JD, Allen JG. Unmasking Fucosylation: from Cell Adhesion to Immune System Regulation and Diseases. Cell Chem Biol 2018. [DOI: 10.1016/j.chembiol.2018.02.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Abstract
Direct interactions between bacterial and host glycans have been recently reported to be involved in the binding of pathogenic bacteria to host cells. In the case of Shigella, the Gram-negative enteroinvasive bacterium responsible for acute rectocolitis, such interactions contribute to bacterial adherence to epithelial cells. However, the role of glycans in the tropism of Shigella for immune cells whose glycosylation pattern varies depending on their activation state is unknown. We previously reported that Shigella targets activated, but not nonactivated, human CD4+ T lymphocytes. Here, we show that nonactivated CD4+ T lymphocytes can be turned into Shigella-targetable cells upon loading of their plasma membrane with sialylated glycosphingolipids (also termed gangliosides). The Shigella targeting profile of ganglioside-loaded nonactivated T cells is similar to that of activated T cells, with a predominance of injection of effectors from the type III secretion system (T3SS) not resulting in cell invasion. We demonstrate that gangliosides interact with the O-antigen polysaccharide moiety of lipopolysaccharide (LPS), the major bacterial surface antigen, thus promoting Shigella binding to CD4+ T cells. This binding step is critical for the subsequent injection of T3SS effectors, a step which we univocally demonstrate to be dependent on actin polymerization. Altogether, these findings highlight the critical role of glycan-glycan interactions in Shigella pathogenesis. Glycosylation of host cell surface varies with species and location in the body, thus contributing to species specificity and tropism of microorganisms. Cross talk by Shigella, the Gram-negative enteroinvasive bacterium responsible for bacillary dysentery, with its exclusively human host has been extensively studied. However, the molecular determinants of the step of binding to host cells are poorly defined. Taking advantage of the observation that human-activated CD4+ T lymphocytes, but not nonactivated cells, are targets of Shigella, we succeeded in rendering the refractory cells susceptible to targeting upon loading of their plasma membrane with sialylated glycosphingolipids (gangliosides) that are abundantly present on activated cells. We show that interactions between the sugar polar part of gangliosides and the polysaccharide moiety of Shigella lipopolysaccharide (LPS) promote bacterial binding, which results in the injection of effectors via the type III secretion system. Whereas LPS interaction with gangliosides was proposed long ago and recently extended to a large variety of glycans, our findings reveal that such glycan-glycan interactions are critical for Shigella pathogenesis by driving selective interactions with host cells, including immune cells.
Collapse
|
14
|
Gulati K, Meher MK, Poluri KM. Glycosaminoglycan-based resorbable polymer composites in tissue refurbishment. Regen Med 2017. [DOI: 10.2217/rme-2017-0012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Regeneration of tissue structure with the aid of bioactive polymer matrices/composites and scaffolds for respective applications is one of the emerging areas of biomedical engineering. Recent advances in conjugated glycosaminoglycan (GAG) hybrids using natural and synthetic polymers have opened new avenues for producing a wide variety of resorbable polymer matrices. These hybrid scaffolds are low-immunogenic, highly biocompatible and biodegradable with incredible mechanical and tensile properties. GAG-based resorbable polymeric matrices are being exploited in migration of stem cells, cartilage and bone replacement/regeneration and production of scaffolds for various tissue engineering applications. In the current review, we will discuss the role of GAG-based resorbable polymer matrices in the field of regenerative medicine.
Collapse
Affiliation(s)
- Khushboo Gulati
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Mukesh Kumar Meher
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
15
|
Monticelli M, Ferro T, Jaeken J, Dos Reis Ferreira V, Videira PA. Immunological aspects of congenital disorders of glycosylation (CDG): a review. J Inherit Metab Dis 2016; 39:765-780. [PMID: 27393411 DOI: 10.1007/s10545-016-9954-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/16/2016] [Accepted: 06/06/2016] [Indexed: 02/06/2023]
Abstract
Congenital disorders of glycosylation (CDG) are a rapidly growing family of genetic diseases comprising more than 85 known distinct disorders. They show a great phenotypic variability ranging from multi-organ/system to mono-organ/system involvement with very mild to extremely severe expression. Immunological dysfunction has a significant impact on the phenotype in a minority of CDG. CDG with major immunological involvement are ALG12-CDG, MAGT1-CDG, MOGS-CDG, SLC35C1-CDG and PGM3-CDG. This review discusses the variety of immunological abnormalities reported in human CDG. Understanding the immunological aspects of CDG may contribute to a better management/treatment of these pathologies and possibly of more common diseases, such as inflammatory diseases.
Collapse
Affiliation(s)
- Maria Monticelli
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School / Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Tiago Ferro
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School / Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Jaak Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- Center for Metabolic Disease, KU Leuven, Leuven, Belgium
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Lisbon, Portugal.
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal.
| | - Paula A Videira
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School / Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal.
| |
Collapse
|
16
|
Sun L, Middleton DR, Wantuch PL, Ozdilek A, Avci FY. Carbohydrates as T-cell antigens with implications in health and disease. Glycobiology 2016; 26:1029-1040. [PMID: 27236197 DOI: 10.1093/glycob/cww062] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/11/2016] [Accepted: 05/23/2016] [Indexed: 12/27/2022] Open
Abstract
Glycosylation is arguably the most ubiquitous post-translational modification on proteins in microbial and mammalian cells. During the past few years, there has been intensive research demonstrating that carbohydrates, either in pure forms or in conjunction with proteins or lipids, evoke and modulate adaptive immune responses. We now know that carbohydrates can be directly recognized by T cells or participate in T-cell stimulation as components of T-cell epitopes. T-cell recognition of carbohydrate antigens takes place via their presentation by major histocompatibility complex pathways on antigen-presenting cells. In this review, we summarize studies on carbohydrates as T-cell antigens modulating adaptive immune responses. Through discussion of glycan-containing antigens, such as glycoproteins, glycolipids, zwitterionic polysaccharides and carbohydrate-based glycoconjugate vaccines, we will illustrate the key molecular and cellular interactions between carbohydrate antigens and T cells and the implications of these interactions in health and disease.
Collapse
Affiliation(s)
- Lina Sun
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Dustin R Middleton
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Paeton L Wantuch
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ahmet Ozdilek
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Fikri Y Avci
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
17
|
|
18
|
Ravidà A, Aldridge AM, Driessen NN, Heus FAH, Hokke CH, O’Neill SM. Fasciola hepatica Surface Coat Glycoproteins Contain Mannosylated and Phosphorylated N-glycans and Exhibit Immune Modulatory Properties Independent of the Mannose Receptor. PLoS Negl Trop Dis 2016; 10:e0004601. [PMID: 27104959 PMCID: PMC4841591 DOI: 10.1371/journal.pntd.0004601] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/11/2016] [Indexed: 11/19/2022] Open
Abstract
Fascioliasis, caused by the liver fluke Fasciola hepatica, is a neglected tropical disease infecting over 1 million individuals annually with 17 million people at risk of infection. Like other helminths, F. hepatica employs mechanisms of immune suppression in order to evade its host immune system. In this study the N-glycosylation of F. hepatica’s tegumental coat (FhTeg) and its carbohydrate-dependent interactions with bone marrow derived dendritic cells (BMDCs) were investigated. Mass spectrometric analysis demonstrated that FhTeg N-glycans comprised mainly of oligomannose and to a lesser extent truncated and complex type glycans, including a phosphorylated subset. The interaction of FhTeg with the mannose receptor (MR) was investigated. Binding of FhTeg to MR-transfected CHO cells and BMDCs was blocked when pre-incubated with mannan. We further elucidated the role played by MR in the immunomodulatory mechanism of FhTeg and demonstrated that while FhTeg’s binding was significantly reduced in BMDCs generated from MR knockout mice, the absence of MR did not alter FhTeg’s ability to induce SOCS3 or suppress cytokine secretion from LPS activated BMDCs. A panel of negatively charged monosaccharides (i.e. GlcNAc-4P, Man-6P and GalNAc-4S) were used in an attempt to inhibit the immunoregulatory properties of phosphorylated oligosaccharides. Notably, GalNAc-4S, a known inhibitor of the Cys-domain of MR, efficiently suppressed FhTeg binding to BMDCs and inhibited the expression of suppressor of cytokine signalling (SOCS) 3, a negative regulator the TLR and STAT3 pathway. We conclude that F. hepatica contains high levels of mannose residues and phosphorylated glycoproteins that are crucial in modulating its host’s immune system, however the role played by MR appears to be limited to the initial binding event suggesting that other C-type lectin receptors are involved in the immunomodulatory mechanism of FhTeg. Fascioliasis, caused by the liver fluke Fasciola hepatica, is a neglected tropical disease infecting over 1 million individuals annually with 17 million people at risk of infection. These worms infect the liver and can survive for many years in its animal or human host because they supress the host’s immune system that is important in clearing worm infection. Worms are similar to humans in that they are made of proteins, fats and sugars, and while there are many studies on worm proteins, few studies have examined the sugars. We are interested in the sugars because we believe that they help the parasite survive for many years within its host. To examine this, we have used a technique called mass spectrometric analysis to characterise the sugars present in F. hepatica. We also have developed systems in the laboratory to test if these sugars can suppress the host’s immune system. We conclude that F. hepatica sugars are crucial in suppressing its host’s immune system; however, the exact way the sugars can do this requires further studies. These studies are important for the development of worm vaccines or therapies.
Collapse
Affiliation(s)
- Alessandra Ravidà
- Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| | - Allison M. Aldridge
- Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| | - Nicole N. Driessen
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferry A. H. Heus
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis H. Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sandra M. O’Neill
- Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
19
|
Mechanistic and therapeutic overview of glycosaminoglycans: the unsung heroes of biomolecular signaling. Glycoconj J 2015; 33:1-17. [DOI: 10.1007/s10719-015-9642-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/28/2022]
|
20
|
Li W, Yu R, Ma B, Yang Y, Jiao X, Liu Y, Cao H, Dong W, Liu L, Ma K, Fukuda T, Liu Q, Ma T, Wang Z, Gu J, Zhang J, Taniguchi N. Core fucosylation of IgG B cell receptor is required for antigen recognition and antibody production. THE JOURNAL OF IMMUNOLOGY 2015; 194:2596-606. [PMID: 25694612 DOI: 10.4049/jimmunol.1402678] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ag recognition and Ab production in B cells are major components of the humoral immune response. In the current study, we found that the core fucosylation catalyzed by α1,6-fucosyltransferase (Fut8) was required for the Ag recognition of BCR and the subsequent signal transduction. Moreover, compared with the 3-83 B cells, the coalescing of lipid rafts and Ag-BCR endocytosis were substantially reduced in Fut8-knockdown (3-83-KD) cells with p31 stimulation and then completely restored by reintroduction of the Fut8 gene to the 3-83-KD cells. Indeed, Fut8-null (Fut8(-/-)) mice evoked a low immune response following OVA immunization. Also, the frequency of IgG-producing cells was significantly reduced in the Fut8(-/-) spleen following OVA immunization. Our results clearly suggest an unexpected mode of BCR function, in which the core fucosylation of IgG-BCR mediates Ag recognition and, concomitantly, cell signal transduction via BCR and Ab production.
Collapse
Affiliation(s)
- Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China;
| | - Rui Yu
- College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Biao Ma
- College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Yan Yang
- College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Xinyan Jiao
- College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Yang Liu
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, Life Science College, Northwest University, Xi'an 710127, China
| | - Hongyu Cao
- College of Life Science and Technology, Dalian University, Liaoning 116622, China
| | - Weijie Dong
- College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Linhua Liu
- College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Keli Ma
- College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Miyagi 981-8558, Japan
| | - Qingping Liu
- College of Life Science and Technology, Dalian University, Liaoning 116622, China
| | - Tonghui Ma
- College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Zhongfu Wang
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, Life Science College, Northwest University, Xi'an 710127, China
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Miyagi 981-8558, Japan
| | - Jianing Zhang
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China; and
| | - Naoyuki Taniguchi
- Systems Glycobiology Research Group, Advanced Science Institute, RIKEN, Saitama 351-0198, Japan
| |
Collapse
|
21
|
Nishida A, Lau CW, Mizoguchi A. Examination of the role of galectins in intestinal inflammation. Methods Mol Biol 2015; 1207:231-48. [PMID: 25253144 DOI: 10.1007/978-1-4939-1396-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The intestine, which provides the first line of defense against over trillion of enteric microorganisms, suffers from broad range of inflammatory conditions caused by infectious, autoimmune, allergic, neurological, and ischemic mechanisms. Recent data have suggested dual roles (protective versus deleterious) for galectins in the pathogenesis of some intestinal inflammations, highlighting the importance of this area of research. A potential problem with the research of intestinal inflammation may be the requirement of some unique techniques. Therefore, we herein describe how to induce intestinal inflammation and how to isolate lymphocyte, myeloid cell, follicular cell, and epithelial cell populations separately from the intestine for the study of intestinal inflammations.
Collapse
Affiliation(s)
- Atsushi Nishida
- Molecular Pathology Unit, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, USA
| | | | | |
Collapse
|
22
|
Adaptive immune activation: glycosylation does matter. Nat Chem Biol 2014; 9:776-84. [PMID: 24231619 DOI: 10.1038/nchembio.1403] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/22/2013] [Indexed: 12/13/2022]
Abstract
Major histocompatibility complex (MHC) class I and II are glycoproteins that can present antigenic peptides at the cell surface for recognition and activation of circulating T lymphocytes. Here, the importance of the modification of protein antigens by glycans on cellular uptake, proteolytic processing, presentation by MHC and subsequent T-cell priming is reviewed. Antigen glycosylation is important for a number of diseases and vaccine design. All of the key proteins involved in antigen recognition and the orchestration of downstream effector functions are glycosylated. The influence of protein glycosylation on immune function and disease is covered.
Collapse
|
23
|
Naito-Matsui Y, Takada S, Kano Y, Iyoda T, Sugai M, Shimizu A, Inaba K, Nitschke L, Tsubata T, Oka S, Kozutsumi Y, Takematsu H. Functional evaluation of activation-dependent alterations in the sialoglycan composition of T cells. J Biol Chem 2013; 289:1564-79. [PMID: 24297165 DOI: 10.1074/jbc.m113.523753] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sialic acids (Sias) are often conjugated to the termini of cellular glycans and are key mediators of cellular recognition. Sias are nine-carbon acidic sugars, and, in vertebrates, the major species are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), differing in structure at the C5 position. Previously, we described a positive feedback loop involving regulation of Neu5Gc expression in mouse B cells. In this context, Neu5Gc negatively regulated B-cell proliferation, and Neu5Gc expression was suppressed upon activation. Similarly, resting mouse T cells expressed principally Neu5Gc, and Neu5Ac was induced upon activation. In the present work, we used various probes to examine sialoglycan expression by activated T cells in terms of the Sia species expressed and the linkages of Sias to glycans. Upon T-cell activation, sialoglycan expression shifted from Neu5Gc to Neu5Ac, and the linkage shifted from α2,6 to α2,3. These changes altered the expression levels of sialic acid-binding immunoglobulin-like lectin (siglec) ligands. Expression of sialoadhesin and Siglec-F ligands increased, and that of CD22 ligands decreased. Neu5Gc exerted a negative effect on T-cell activation, both in terms of the proliferative response and in the context of activation marker expression. Suppression of Neu5Gc expression in mouse T and B cells prevented the development of nonspecific CD22-mediated T cell-B cell interactions. Our results suggest that an activation-dependent shift from Neu5Gc to Neu5Ac and replacement of α2,6 by α2,3 linkages may regulate immune cell interactions at several levels.
Collapse
|
24
|
Nishida A, Nagahama K, Imaeda H, Ogawa A, Lau CW, Kobayashi T, Hisamatsu T, Preffer FI, Mizoguchi E, Ikeuchi H, Hibi T, Fukuda M, Andoh A, Blumberg RS, Mizoguchi A. Inducible colitis-associated glycome capable of stimulating the proliferation of memory CD4+ T cells. ACTA ACUST UNITED AC 2012; 209:2383-94. [PMID: 23209314 PMCID: PMC3526363 DOI: 10.1084/jem.20112631] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The colitis-associated glycome mediates CD4+ T cell expansion and contributes to the exacerbation of T cell–mediated intestinal inflammation. Immune responses are modified by a diverse and abundant repertoire of carbohydrate structures on the cell surface, which is known as the glycome. In this study, we propose that a unique glycome that can be identified through the binding of galectin-4 is created on local, but not systemic, memory CD4+ T cells under diverse intestinal inflammatory conditions, but not in the healthy state. The colitis-associated glycome (CAG) represents an immature core 1–expressing O-glycan. Development of CAG may be mediated by down-regulation of the expression of core-2 β1,6-N-acetylglucosaminyltransferase (C2GnT) 1, a key enzyme responsible for the production of core-2 O-glycan branch through addition of N-acetylglucosamine (GlcNAc) to a core-1 O-glycan structure. Mechanistically, the CAG seems to contribute to super raft formation associated with the immunological synapse on colonic memory CD4+ T cells and to the consequent stabilization of protein kinase C θ activation, resulting in the stimulation of memory CD4+ T cell expansion in the inflamed intestine. Functionally, CAG-mediated CD4+ T cell expansion contributes to the exacerbation of T cell–mediated experimental intestinal inflammations. Therefore, the CAG may be an attractive therapeutic target to specifically suppress the expansion of effector memory CD4+ T cells in intestinal inflammation such as that seen in inflammatory bowel disease.
Collapse
Affiliation(s)
- Atsushi Nishida
- Molecular Pathology Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Clark MC, Baum LG. T cells modulate glycans on CD43 and CD45 during development and activation, signal regulation, and survival. Ann N Y Acad Sci 2012; 1253:58-67. [PMID: 22288421 DOI: 10.1111/j.1749-6632.2011.06304.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glycosylation affects many essential T cell processes and is intrinsically controlled throughout the lifetime of a T cell. CD43 and CD45 are the two most abundant glycoproteins on the T cell surface and are decorated with O- and N-glycans. Global T cell glycosylation and specific glycosylation of CD43 and CD45 are modulated during thymocyte development and T cell activation; T cells control the type and abundance of glycans decorating CD43 and CD45 by regulating expression of glycosyltransferases and glycosidases. Additionally, T cells regulate glycosylation of CD45 by expressing alternatively spliced isoforms of CD45 that have different glycan attachment sites. The glycophenotype of CD43 and CD45 on T cells influences how T cells interact with the extracellular environment, including how T cells interact with endogenous lectins. This review focuses on changes in glycosylation of CD43 and CD45 occurring throughout T cell development and activation and the role that glycosylation plays in regulating T cell processes, such as migration, T cell receptor signaling, and apoptosis.
Collapse
Affiliation(s)
- Mary C Clark
- Department of Pathology and Laboratory Medicine, UCLA School of Medicine, University of California, Los Angeles, USA
| | | |
Collapse
|
26
|
Gupta G, Surolia A, Sampathkumar SG. Lectin microarrays for glycomic analysis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:419-36. [PMID: 20726799 DOI: 10.1089/omi.2009.0150] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glycomics is the study of comprehensive structural elucidation and characterization of all glycoforms found in nature and their dynamic spatiotemporal changes that are associated with biological processes. Glycocalyx of mammalian cells actively participate in cell-cell, cell-matrix, and cell-pathogen interactions, which impact embryogenesis, growth and development, homeostasis, infection and immunity, signaling, malignancy, and metabolic disorders. Relative to genomics and proteomics, glycomics is just growing out of infancy with great potential in biomedicine for biomarker discovery, diagnosis, and treatment. However, the immense diversity and complexity of glycan structures and their multiple modes of interactions with proteins pose great challenges for development of analytical tools for delineating structure function relationships and understanding glyco-code. Several tools are being developed for glycan profiling based on chromatography, mass spectrometry, glycan microarrays, and glyco-informatics. Lectins, which have long been used in glyco-immunology, printed on a microarray provide a versatile platform for rapid high throughput analysis of glycoforms of biological samples. Herein, we summarize technological advances in lectin microarrays and critically review their impact on glycomics analysis. Challenges remain in terms of expansion to include nonplant derived lectins, standardization for routine clinical use, development of recombinant lectins, and exploration of plant kingdom for discovery of novel lectins.
Collapse
Affiliation(s)
- Garima Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|